

The Rasulia Bladed Roller Thresher
ITDG Agricuitural Equipment and Tools No. 38
published by:
Intermediate Technology Publications, Ltd.
9 King Street
London WC2E 8HN
United Kingdom
Paper copies are 0.50 British pounds.
Available from:
Intermediate Technology Publications, Ltd.
9 King Street
London WC2E 8HN
United Ringdam
Reproduced by permission of Intermediate Technology Publications, Ltd.

Reproduction of this microfiche document in any form is subject to the same restrictions as those of the original dccument.

THE "RASULIA" BLADED ROLLER THRESHER

RASULTA ANTMAL DRAWN ROLLER THEESSIER

Souroe

This implement was seen in use in Iran by Ed Abbot, who subsequently built examples at the friends' Raral Development Cen re, Rasulia, Hoshangabad, M.P. India.
I.T.D.G. has not yet had an opportunity to build or test the Rasulia thrssher and this leaflet is based on information supplied by Ed Abbot.

Description
The thresher is apparenting guitable Sor all types of corn and similar crops, and couid be made and nged gnywhere where bullocks are availsble anu suitable iscal araftsmen ani materifis can be found. It has proved to be 60% more efficient than the traditional Indian method of using bullooks to trampie tise harvestad oxopas

Construction.

The basic atructure is a frame whioh holds two cotagonal rollers on whioh are fixed the threshing biajes. Above this frame a sest is provided together with a foot reat. The side frames are made by eeleoting a guitably gized bent log and cutting jt in half lengthwgys. This prodrees

The sollers are fizat carefully planed square and out to length. Bearings are formed at exwh end, three inchas long with a three inch diameter. Next, two liniss are acribed the length of each facs of the roller at a diatance of $7 / \mathrm{s}^{\prime \prime}$ from the centre-line. The sorners now marked are cut away, producinc the required octagonal cross-section. The markings for bladessike holes must now be made as follows. Centre-lines should be scribed on each face if thia has not already been done. The firat hole should be marked on any centre line two ixches from the end excluding the bearing. Holes are now marked spifgily at one inch intervals, till the final hole is reached two inches foom the far end.

The holes are nc. drilled out to $\frac{1}{c}$ inch diameter and the roller is ready for the fixing of the blades.

Blades are made from flat strips of iroa or steel $\frac{1}{2}$ x $2^{\prime \prime}$ such as are used for rims for builock-csrt wheels.

Blades are driven into the holes at the correct angle as described below, the projecting inch or so of the spike being bent over to revain the blude. This job is made much easier if a punch is made to the shape . of the blade-spike and inserted red hot inte the drilled hole at the correct angle, thus also serving to locate twe blade as now described.

The angles at whioh blades are placed are crucial to efficient performance. The first blade should be placed parallel to the length of the roller, but the next blade (on the next face) is placed at 45° to the lencth of the roller, and the next is at right angles. The next la placed at 45° but tilted the 'other way', and so on until all blades are in place.

The reat of the structure is more or less straight forward and could be modified within practical limits to suit requirements.

Jraught ropes are attached to the outer ends of the forward brace and thenoe to the yoise of a pair of bullooks, the operator difuoting them from \& modera今ely comfortable sitting position.
N.B. The measuremerts in this design have been given in inches. A simple conversion table is shown below:

Eth fractions and inches so millimistras (mon)

Inches	0 m	1 in	2 m	3 m
Frackons	mm	25.400	50.800	36.200
$1 / 8 \mathrm{~mm}$.	3.175	28.575	53.975	79.375
$1 / 4 \mathrm{in}$.	6.350	31.750	$57 \cdot 150$	82.550
3/8 in	9.525	$34 \cdot 925$	$60 \cdot 325$	$85 \cdot 725$
$1 / 2 \mathrm{~mm}$	12.700	38.100	$63 \cdot 500$	88-900
5/8 in	15.875	41.275	66.675	92.075
$3 / 4 \mathrm{~mm}$	19.050	44.450	69.850	95.250
7.8 ul	$22 \cdot 225$	47.62t	73.025	98.425

trthes	411	5 \%17	6 mr	7 in.
Fractions	${ }^{10.101 / 600}$	127.000	152.400	177.800
$1 / 8 \mathrm{in}$.	104.775	$130 \cdot 175$	155.575	180.975
1/4 in.	107.950	133.350	158.750	184.150
$3 / 8$ in	111.125	136.525	161.925	$187 \cdot 325$
$1 / 2 \mathrm{in}$.	114.300	139.700	165.100	190-500
$5 / 8 \mathrm{in}$.	117.475	142.875	$168 \cdot 275$	$193 \cdot 675$
$3 / 4 \mathrm{in}$.	120.650	146.050	171.450	196.850
7/8 in.	123.825	$149 \cdot 225$	$174 \cdot 025$	200.025

Licthes	8 n	9 in	10 m	11 in
Ftactions	203.200	228-600	254.000	279.400
$1 / 8 \mathrm{~m}$	206.375	231.775	257.175	282.575
$1 / 4 \mathrm{~lm}$.	209.550	234.950	$260 \cdot 350$	285.750
3,8 in	212.725	$238 \cdot 125$	263.525	$288 \cdot 925$
$1 / 2 \mathrm{in}$	215.900	241-300	266.700	292100
$9 / 8$ ı1	219.075	244.475	269.875	295.275
$3 / 4 \mathrm{in}$	222.250	247.650	273.050	298.450
$1 / 8 \mathrm{~m}$	225.425	250.825	276.225	30: 625

Angle Sequence of Blades on Roller

AT MICROFICHE
REFERENCE
LIBRARY
A project of Volunteers in Asia
Qil. Soaked Wood Bearings: How to Make Them and How They Perform ITDG Agricultural Equipment and Tools No. 40
Published by
Intermediate Technology Publications, Ltd. 9 King Street London WC2E 8HN United Kingdon
Paper copies are 0.50 British pounds.
Available from:
Intermediate Technology Publications, Ltd. 9 King Street London WC2E 8HN United Kingdom
Reproduced by permission of IntermediateTechnology Publications, Ltd.
Reproduction of this microfi he document in anyform is subject to the same restrictions as thoseof the original document.

OIL SOAKED WOOD BEARIIIGS How To Make Them And How They Periopm

No. 40

Page No.

1. INHBODICTIOA 1
2. SOME ADVANAAES OF OTL-SOAKMD WOOD BBARINGS 1
3. LHOICE OF WOOD 1
3.1 Initial Selection 1
3.2 Other Considerations 2
4. COLSTROCHION 3
4.1 Types of Bearing 3
4.2 Conoral Ramarict 3
4.3 How to Snke the Bearinge 5
5. PGRTORANCE 9
6. RHTERHNCES 10
7. IEPRODUCTION

The purpose of this leaflet is to provide some baokground information for both construotors and designers who wish to use wood bearings.

The type of wood to use, its treatment, lubrication, and expected parformance will be discussed.

2. SOME ADVANTAGES OR OIL-SOAKED WOOD BEARTNGS

Kade irom locelly available materials.
Made by locai oraftamen with woodvorking skills. Easily assembled.
Do not require lubrication or maintenance.
Operate under dirty conditions.
Easily inspected for war.
ouickly repaired or replaced.
Can provide a temporary means of repairing a more sophisticated production bearing.
Require lou toleranoe on both the shafte and the houaings.

3. GROICE OF WOOD

The composition of wood is very complex, but in aimple teams it consists of fibrous material bound together with a glue-like substance, water, reains, and oile.

3.1 Initiel Selection

D.A.Atkingon (1972) stated that one of the eseential characteristies to look for in the ohoice of wood is hardness.

- The karder the hoarring surfuce, the less the deformation and the amaller the coaffioiont of friction
- The hardes the bearine surface, the lower the rate of wear.
- The harder the bearine surface the less likely it is to breakdown promaturelys singe, and ultimately burn.
- The harder the bearing surface the greater its strength.

It is also worth noting that generally, the harder the wood, the greater its weight and the more difficult it is to work.

The oiliness of the wood is a particularly important consideration when the bearings are unlikely (or not intended) to receive lubrication during their service. practical indicators that assist the identification of timbers which may have good self-lubricating properties ares
a) they are easily polished
b) they do not react with acids
c) they are difficult to impregnate with presurvatives
d) give does not easily stick to them

3.2 Other Considerations

High moisture content causes a reduction in hardness and results in greater wear:* For most applications low moisture content is preferred and excess moisture must be removed to prevent subsequent shrinkage especially if the bearing is to be used as a bush.

The hardest wood is to be found in the main trunk just below the first branch.

Grain circotion should be considered, and if possible advantage taken of the close grain to provide hardness at the wearing surface.

ons-piece block bearing (full size)
Fig. 1.

The piece of timber selected for the bearing should be free from cracks. Some suitable timbers are listed in Table 1.
"Greasy " woods Lignum vitae (Gusiacum officinale)

Tallowood	(Eacaliptus microcorys)
Teak	(Tectona grandis)
Blackbutt	(Eucaliptus pilularis)

Other woods Poon (Calophyllum tomentosum)

Hornbearn	(Carpinus betulus)
Degame	(Calycophyllum carididissimum)

Boxwood (Phyllostylon bresiliense)
Pear (Pyrus communis)

Oak (Quercus robur)
Camphorwood (Dryobalanops aromatica)

Table 1.

If the timber is not of the self-lubricating variety (or of coubtful self-lubricating characteristics) it can be socked in oil to minimize the need for subsequent lubrication. It is important to have dxy wood to assist maximan absorption of oil.

4. COMSTRUCHION

The following notes relate to experience gained in the "field" manufacture and testing of three types of wood bearing. all were of the oil-soaked variety.

4.1 Typee of Bearing

Buah bearing
Split-blook bearing
One-piece block bearing

4.2 General Remarks

H.S.Pearson (1975) has suggested that as a general rule-of-thumb guide to the size of timber needed for the bearing, the axial length of the bearing should be at least twice the shait diameter. For example, for 25 mm diameter axle, the bearing should be at least 50 mm long.

In the case of the block bearings, the thickness of bearing material
at any point should not be less than the shaft diameter.

Split-blook bearing (half aize).
FHg. 2

The drilling of radial holes for lubrication purposes is only recommended by Peasson for the bush type of bearing. He found that if lubrication holes vere drilled in block bearings not only were the bearinges weakenod but also the holes acted as dirt traps.

The bearing should be located whenever possible in a position where falling dirt will not directly enter the bearing. For example, if the axle is carried in bearings mounted under the floor of a cart instead of a fixed axie with bearings at the hub of the wheel, then dirt falling from the rim of the wheel will not fall directly onto the bearings.

If the bearing is expected to take side-thrust, large flat washers must be used, the one next to the end of the bearing being free to rotate an the shaft.

The bearins surface of the shaft should be perfectly round and gmooth and polished in appearance.

4.3 Eow to Make the Bearings

Available timber often has rather doubtful seif-lubricating properties and high moiature content. In this instence, a simple proceduae for making an oil-soaked bush bearing has been devised by the Industrial Development Center, Zaria in Nigeria. Excess water is removed and subsequent shrinkage prevented. (Shambaugh, Pearson and Jibril; 1969).
a) Reduce the timber to a square cross section and bore a hole through the centre the same diameter as the journai on which the bearing will be working.
b) Place the blocks into a metal container of commercial groundmut oil and keep them submerged by plaoing a brick on top. Raise the temperature of the oil until the water in the wood is turned into ateam - this will give the oil the gppearance of boiling vigorously. Naintain the temperature until only single streams of amall pin-size bubbles are rising to the gurface of the oil. This may take anytining from 30 mimites to 2 houre depending on the moisture content of the wood.
o) Remove the heat source and leave the blooks in the oil to cool ovemight if possible. During this stage the wood will absorb oil. BE VERY CARMFUL IF YOU NHMD TO HANDLE TFE COMTATNER WHILSI IT IS FULL OF BOT OIL. If the temperature of the oil is allowed to get too high after the bubbles hsye ceased to appear, the wood will change to charcoal and the bearings will be ruined.
d) Rebore the centre hole to compensate for any shrinkage that may have taken place.
e) Place on a mandrel and turn the outside diameter to the required measurement that will give the bush a press fit into the hab.
f) Bore four equally spaced holes through the wall of the bush at its mid-point and fill with lubricant - in general terms, the harder the lubricant the better, so animal fat, soap or tallow are preferable although grease is an excellent alternative.

Bush bearing showing the four Iubrication holes (full size).
Fig. 3
g) Finally preas the buah into the hub.

The forty bugh bearings made and tested at Zaria were cik" long by $1.55^{\prime \prime}$ outside diameter with a $0.855^{\prime \prime}$ bore. They were pressed into lit" seamleas black iron class C pipe, and turned on a $\frac{1}{2}$ ll pipe journal. The wood used was mahogany (being the most readily available) and rig tests with a loading of 100 lbs and apeed of 100 $200 \mathrm{rev} / \mathrm{min}$ indicated sufficient lubrication. These test conditions were chosen to simulate the working forces on a $7^{\prime \prime}$ gauge wheel of an ox-drawn plough. Tests performed on bush bearings without the four radial lubrication holes again indicated sufficient lubrication.

INITIAL PRERARATION.

Sew timber into shape of an oblong blook somewhet larger than the $0 . D$ of the finished bearing to allow for ahrinkage and bore being off centre. Bore hole through centre of block the aize of the journal.

DETHMRATTON

Soon after submerging the bearing blocks in hot groundnut oil, many gurface bubbles $1^{\prime \prime}$ in diameter, made from a multitude of amaller bubbles, will appear on the surface.

As the moisture content of blocka is reduced, the surface bubblea will become amaller in size.

When the gurfece bubbles are foimed from single streams of pin-size bubbies, the dehydration process has gone far enough. Stop heating, and let blocks cool in the oil overaight.

Re-drill centre hole and place shrunken oil-soaked bearing block on mandrel and turn to the desired size.

Cross section of the finished oilsoaked wood bearing showing grease reservolr holes.

On heavy equipment such as ox-carts or where it is not possible to push the axle through a bush bearing, the split-bjock bearing provides a more practical solution.

It is stmple to fit and replace, and if wear takes place the two halvee can be changed around. After further wear, the life of the bearing can be exteadsd by removing a small amount of materfal from the matohing faces.

A aimple procedure was devised by the GRZ/ITDG Project at the Magoye Regional Research Station in Zambia for the production of such a bearing, again using an oil soaking technique. The timber in this case was teak, and used enginemil provided a satisfactory alternative to groundmit oil. (Coombs \& Pearson, 1974)
a) Reduce the timber to a square cross-section and cut lengthwise into two halves.
b) The two balves of the bearing mast be clamped fixmly together for the drilling operstion. It is rast important taat the hole for the arie is bored exactly square through the blocks. For the beat results an electric powered pillar-drill should be used although a hand powered pillar-drill would be quite satisfactory. If neither of these is available, a jig would have to be made to keep the drill bit in line.

After drilling, the two halves should be tied together to keap them in paire.
c) For soaking in oll sn old 20 litre (5 gal .) drum is needed. Fill it three-quarters full with used ongine-oil and bring to the boil over an open fire. GREAT CARE is needed when handing the drum of hot oil. Lift the drum off the fire axd oarefully place the pairs of bearings into the hot oil. Put a brick on top of the last pair to stop them fioatines, and lewe the drum and contents to 0001 slowly overmight.

The split-block bearings measured $150 \mathrm{~mm} \times 150 \mathrm{~mm} \times 75 \mathrm{~mm}$ with a 38 mm ajameter bore. They were field tested for reliability by instailing them on ox-oarts fitted with ixon or pneumatic wheels and camying loads of up to 2 tons.

A radial clearance on one of these assemblies of about lmm was found to be essential. If carefully mun in at low speeds (ox work),
the clearance is increased to $1.5-2.0 \mathrm{~mm}$ and the bearing surface attained a highly polished glassulike appearance. Eaving reached this condition it was found capable of withstanding journeys of a few kilometers at higher speeds (Landrover towing).

A apft pine-wood oil-soaked bearing was tested as an alternative to the hardwood bearing, and this miso gave satisfactory performance but might have a shorter life.

For lower load, lower speed applications such as the seed-drive mechanism on a small planter, a smaller one-piece oil-soaked block bearing was used measuring $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 50 \mathrm{~mm}$ with a 16 m diameter bore, and this gave satisfactory results, although tests were not exteneive.

The possibility of boxing the axle hole by hot irons was not investigated but there should be no serious objections to this al ternative.

5. PEPRORMANCE

The following general points can be concluded:-
a) The running-in period is of oxitical importance. It is characterised by high initial rate of werar whilst smoothing and polishing of the beaming suriface takes place, after which wear becomes approximately proportional to time.
b) The greater the speed of rotation, the greater the wear, especially during the ranning-in period.
o) The greater the axle loading, the greater the rate of wear.

More apecifically, wear is approximately proportional to load, BUT inorases repidily for amall increments in speed.

Very high loading and low speeds should be avoided since this results in a jerking movement of the journal in the bearing and subsequent shaking and vibration will result in wear of other parts.

6. BHFEERENCES

1. ATKINSON, D.A.	The characteristics of bearings when employed in slow running machinery. Univ. of Manchester Inst. Science \& Technology (UNIST) April, 1972.
2. COOMBS, R.M. \& PEARSON, H.S.	The ITDG wood bearing ox cart. ITDG/GR2 Project, Magoye, Zambia February 1974
3. PEARSON,H.S.	Personal communioation. 1975
4. SHAMBAJGH,T.J. Jz. pgarson, H.s. \& JIBRIL, MAL. I.D.	The wood bearing - how to make it. Speaial Rep. No. 69-8. Industrial Development Center, Zaris, Nigeria. December, 1969.

A project of Volunteers in Asia

Hacrows: High-Clearance Peg Tooth. Triangular Spike Tooth, Flexible Peg Tooth and Japanese Harrom ITDG Agricultural Equipment and Tools No. 41

Published by:
Intermediate Technology Publications, Ltd.
9 King Street
London WC2E 8HN
United Kingdom
Paper copies are 0.50 British pounds.
Available from:
Intermediate Technology Publications, Ltd.
9 King Street
London WC2E 8HN
United Kingdom
Reproduced by permission of Intermediate Technology publications, Ltd.

Reproduction of this microfiche document in any form is subject to the same restrictions as those of the original document.

No. 41

HaRROWS

Irlangular splike-Tootio High Cliearance Pes Tooth Floxblide Pey Toolh Japarase Harfow

品

HIGH-CLEARANCE PEG-TOOHH HARROW

DEVEIOPLLD BY: DESCRIPRION:

Ministry of Agriculture, Tarzania.
This harrow is constructed entirely of timber. Its hjgh ground clearance and wide tooth spacing, make it suitable for working in minimal tillage systems where it is advantageous to leave a trash cover on the soil surface.

It can be used following sweep tillage operations to break down soil clods before crop planting, and also for covering of seed after broadcast seeding.

Note: Figures in brackets are in millimetres.

KEY:

ITEM	NAME	QUANTITY	ITEM DESCRIPITION
W	DRAUGHT CHAIN	2	Mild steel chain.
X	FRAME SIDE	2	of $2^{\prime \prime} \times 2^{\prime \prime} \times 40^{\prime \prime}(51 \times 51 \times 1016)$ hard wood.
Y	CROSS BEAM	4	of $41 \times 41 \times 601(102 \times 102 \times 2524)$ hard wood.
2	PEG	13	Of $1^{\prime \prime}$ (25) diameter hard wood, $16^{\prime \prime}$ (406) long with 10" (254) protruding below frame beans, peg teeth staggered in each row to give 4" (102) overall tooth spacing.

FLEXIBLE PEG-TOOTH HARROW

"JAPANESE" HARROW

DEVFLOPED BY: Locally-built design from Japan.
DESCRIPRION: A simple rigia two-row harrow with its flat-steel teeth driven through the wooden frame. The teeth are spaced 6" (1.52) apart in each row.
This implement has a cutting action, the narrow edge of the teeth being parallel to the line of draught.
Note: Figures in brackets are in millimetres.

K K

> NAME

QUANTITY
ITEM DESCRIPTION
x FRAME CROSS MEMBIER

4 Each of $2^{\prime \prime} \times 2^{\prime \prime} \times 18^{\prime \prime}(51 \times 51 \times 457)$ hard wood.
y TOOTH As required Each of $1^{\prime \prime} \times \frac{1}{4} \prime \prime(25 \times 6.3)$ mild steel, $9^{\prime \prime}$ (299) long and tapered towards working end.

2 MAIN FRAME Each of $2 " \times 2 才 "(51 \times 63)$ hard wood, 66" MEMBER

ATMICROFICHE REFERENCE LIBRARY

A project of Volunteers in Asia

Eight Simple_Surveying Levels
ITDG Agricultural Equipment and Tools No. 42

Published by:
 9 King Street
 London WC2E 8HN
 United Kingdom

Intermediate Technology Publications, Ltd.

Paper copies are 1.00 British pounds.
Avallable trom:
Intermediate Technology Publications, Ltd. 9 king Street
London WC2E 8 HN United Kinguom

Reproduced by permission of Intermediate Technology Publications, Ltd.

Reproduction of this microfiche document in any form is subject to the same restrictions as those of the original document.

EIGHT SIMPLE

SURVEYING LEVELS

CONSTRUCTED AND COMPARED BY JOHN COLLETT AND JOHN BOYD

[

$$
\rightarrow
$$

```
EIGHT SIMPLE SURVEYING LEVELS
Constructed and Compared by
John Collett
        and
    John Boyd
```

 CONTENTS
 Introduction 1
The Levelling Devices 1
Square and Plumb 2
Water Manometer 3
Spirit Level 5
Road Tracer 7
A-Frame and Plumb 9
H-Frame Manoreter 11
Flexible Tube Water Level 13
Line Level 15
Summary 17
Conclusions 17

Introduction

The surveying instrument most used on farms in developing countries is the level. It can be used to make a map before starting earthmoving work, it can be used to mark out on the ground either level contours, or else lines with a small, uniform slope for drainage, irrigation, soil conservation, roadmaking or building work.

Modern surveying instruments are very accurate, but expensive and easily damaged and need skilled workers to operate, adjust and repair them. The levelling work on small farms often does not require extrene accuracy because lines are being marked out on ordinarily rough field surfaces. There is, therefore, a case for examining alternatives to the modern surveyor's level which would be cheaper, simpler to operate and still reasonably accurate. This is what has been attempted here.

The Levelling Devices

The simple levelling devices tested can be divided into two groups:

1. Levels with which the operator sighte along a homisontal tine to take readinge on a graduated staff hela by a second man aome diatanee away.
This is the same method used with a nodern surveyor's level.
2. Leveta which do not recqure sighting onto a distant staff. The accuracy of these devicas is not affected by the operator's eyesight or by tia lighting conditions.

These simple levels did not have telescopes fitted with cross hairs, which are the costly parts of modern levels. Various types of sirple sights were fitted and a clear target attached to the staff, but it was still not possible to read the staff consistently to within less than $\pm 5 \mathrm{~mm}$ at a distance of 10 m . The accuracy of any level which requires sighting onto a distant staff is affected by the operator's eyesight and the degree of daylight.

A medern surveyor's level is usuaily mounted on a tripod, which is itself rather expensive to buy, difficult to make and awkward to carry. For simplicity, the devices tested were supported on a simple pole, although a tripod would be necessary on very hard ground. The pole was 1.5 m 10 ng and 28 mm diameter. One end was sharpened to a point and fitted with a protective metal sheath. The mounting block was made from a $140 \mathrm{~mm} \times 90 \mathrm{~mm}$ $x 70 \mathrm{~mm}$ piece of sciftwood and was drilled with a 30 mm diameter hole to a depth of 80 mm using a brace and bit. The top of the pole was smoothed with glass paper until the block rotated freely. A 6 mm diameter hole was drilled to take a carriage bolt for securing the instruments to the block.

SQUARE AND PLUMB

Construction

A right-angle square with arms 450 mm long was cut from a sheet of 12 mm thick plywood. A pair of sights was screwed into the top of the horizontal arm and a hook and marker fixed to the vertical arm for use with a plumb. The sights were adjusted so that when the plumb registered with the marker, the top edge was exactly horizontal. A 6 mm diameter hole was drilled through the horizontal arm for the securing bolt.

Use

The instrument was attached to the mounting block by a carriage bolt and wing nut. It was aimed at the staff and then levelled by adjusting its angle until the plumb was exactly over the market. The wing nut was then tightened. It was difficult to read the staff through the sights, although a moveable target on the staff made sighting easier.

Results

No testing was possible because the plumb bob was blown about by the wind.

Construction

A 300 mm length of planed $40 \mathrm{~mm} \times 20 \mathrm{~mm}$ soft wood was fitted with two rubber straps made from motor tyre inner tube and secured with nails and thin hardboard pads. Each end was fitted with a sight cut from scrap sheet metal. A 6 mm diameter hole for the mounting bolt was carefully drilled through the wood at the mid-point. A 100 mm length of glass tube (7 mm internal diameter) was inserted behind each strap and the lower ends joined with a 400 mm length of rubber tubing. Water was poured into the U-tube arrangement until the level in each glass tube was about 30 mm from the top. The ends were fitted with stoppers to prevent loss of water whilst transporting the instrument.

WATER MANOMETER

Uses

The mounting pole was prassed firmly in the ground as nearly vertically as possible. The mounting block was placed on top of the pole and the instrument secured by a carriage bolt and wing nut. The device was aimed at the staff at the first station, about 10 metres away. It was then levelled by removing the two stoppers and adjusting the angle until the two menisci were exactly level with the top edge of the wood. (Sometimes it was necessary to slide the glass tubes up or down in their rubber strap holders to achieve this condition.) Sighting from about 300 mm behind the rear sight, it was possible to line up the horizontal front sight and read the staff. A moveable horizontal target on the staff made sighting easier.

TAKING A READING

Results

The staff could be read at a distance of $8-10$ metres, but this range depends on the operator's eyesight. A 50 metre line was laid out 'on the contour' and checked with a nodern optical surveying level. The worst error was 42 mm in height over a horizontal distance of 8 metres.

Evaluation

Various types of water manometer have been described in surveying literature. Devices that require sighting along or through two menisci without the aid of a straight edge are difficult to use and liable to large errors. The inclusion of a sighting edge makes this a more practicable instrument. With care it would be used for setting level lines or graded lines of slopes not less than 1 in 200. The device must be kept upright when moving position to avoid loss of water, or alternatively the tubes can be stoppered.

Construction

A cheap wooden-cased spirit level 250 mm long formed the basis of this instrument. A 6 mm diameter hole for the securing bolt was drilled through the case, care being taken to avoid the glass tube.

Use

The pole and mounting block were again used for support. The instrument was aimed at the staff and then levelled by adjusting its angle until the bubble was exactly between the centre marks. No sights were fitted to this device and sighting was achieved by looking along the top edge of the levei. As before, a moveable horizontal target on the staff made sighting easier. Wind caused some movement of the apparatus, making exact setting of the bubble difficult. Wind effects could be eliminated if the level were mounted on a tripod.

Results

The ability to read the staff was dependent on the operator's eyesight and limited the range to $8-10$ metres. A 100 m line was laid out 'on the contour' and the worst error was measured as 30 mm over a distance of 9 metres.

Evaluation

If a spirit level is available it is a simple matter to convert it into a sighting level. With care it could be used for setting level lines or graded lines of slopes not less than 1 in 500.

SPIRIT LEVEL

Construction

This aevice consisted of a triangular wooden frame, free to swing on its supporting bolt. The base of the triangle served as a sighting tube and was made from a 450 mm length of bamboo cane. The nodes were drilled out from each end. Ono end was fitted with cross wines (chin wire gined into slots) whilst the other end was covered with tave pierced with a viewing hole. A hose clip was used as the balance weight and this was placed over the bamboo tube before the latter was glued to the suspending A-frame. An 8 mm diameter hole was drilled near the top of the A-frame so that the instrument could swing freely on the carriage bolt.

DETAIL OF THE ROAD
TRACER SHONTNG THE
TRACER SHONTNG THE
hose clip on the
EAMBOO POLE

Setting the Instrument

The road tracer and the staff were placed side by side on a flat surface and the moveable target on the staff was adjusted to be exactly level with the cross wires. The staff was then moved to a point about 20n away from the road tracer, chosen so that the target appeared to be at the same level when viewed through the sighting tube. The positions of the staff and the instrument were then reversed to check if there was any difference in the reading. Adjustment for the error was made by moving the balance weight so that half of the lifference in readings was removed. The weight was secured and the procedure repeated to check the setting.

To set out a level contour line, after checking the setting of the instrument, the st: ff was placed next to the road tracer and the target adj sted to coincide with the cross wires. The staff was then moved to a point about 10 metres away and moved up or down the slope until the target again coincided with the cross wires when viewed through the tube. The road tracer was then swung slightly and allowed to come to rest again so that the reading could be checked. If the reading was confirmed, the position was marked with an arrow and the staff moved on. The device was adversely affected by any wind and it was essential to use a target on the staff.

ROAD TRACER

Results

The range was limited to a maximum of about 20 metres by the operator's eyesight. A line was laid out on the contour and checked with modern instrument. The worst height error was 59 mm over a distance of 10 metres.

Evaluation

Care and patience are needed with this device to allow it to come to rest. Heavier construction, e.g. of steel, would make it less susceptible to movement by the wind. The need to 'set' the instrument and check both the setting and results is a disadvantage. Its use is restricted to level lines and graded lines of slopes not less than 1 in 200.

A-FRAME AND PLUMB

Construction

Two 2.5 m lengths of $60 \mathrm{~mm} x 20 \mathrm{~mm}$ soft wood were laid together at one end and spread apart by 4 m at the other. The joint was glued and screwed. Another piece of 60 mm $x 20 \mathrm{~mm}$ wood was glued and screwed to the side pieces so that it formed the horizontal of the A-frame. The "feet." of the frame were cut level after marking with a long straight piece of wood. A hook was screwed into the frame near the apex for attachment of the plumb.

Setting the Instrument

Two bricks were piaced 4 metres apart and the A-frame was placed upon them. When the plumb came to rest, the position of the string was marked on the horizontal bar. The frame was then placed the other way round on the same bricks and the procedure repeated. A permanent mark was then made halfway between these two marks to show when the feet of the frame were exactly level.

Use and Results

To set out a level contour, one leg of the frame was placed at the starting point and the other was positioned so that the plumb registered with the permanent mark. This position was marked with an arrow. The frame was then moved up to this arrow and the procedure repeated. Care was taken to get the plumb as close as possible to the marker. Although the plumb was affected by the wind it was possible to damp the movement by allowing the cord to rub against the frame. A line was laid on the contour and the worst height error was 13 mm in 4 metres.

Evaluation

Progress with this instrument can be quite fast even though each 'step' is limited by the phystcal span of the frame. The taller the frame, the more sensitive the instrument becomes to differences in level. The device described here could be used for setting level lines or graded lines of slopes not less than 1 in 500 .

II-FRAME MANOMETER

Construction

Whe frame of this device was made from two lm high uprights (50mm x 50 mm softwood) and a 2.5 m horizontal joined to form an H shape. A 1 m length of clear plastic tube (12 mm internal diameter) was secured to each end of a 2 m length of metal conduit using hose clips. The conduit was attached to the horizontal of the frame with nails, and the plastic tube fastened to the uprights with soft wire, Nater was poured in until the level was about halfway up each tube. The tube ends were stoppered to prevent loss of water during transport.

Setting the Instrument

Two bricks were placed 2.5 metres apart and the feet of the frame placed upon them. The stoppers were removed and a mark was made on each wooden upright, level with the bottom of the meniscus. The frame was placed on the bricks the other way round, the procedure repeated and two more marks made. A parmanent mark was then made midway between the marks on ach upright. Finally the stoppers were replaced for transport.

Use and Results

A level line was laid out by placing the foot of one of the uprights at the starting point, removing the stoppers and moving the leading foot until the botton of the meniscus was level with the permanent mark. Nith two operators, the following man could observe his reading to provide a check, (it should also be opposite the mark). The position of the leading foot was marked with an arrow, the stoppers replaced, and the frame moved forward to repeat the procedure. In this way a line was set on the contour and the worst height error was measured as 8 mm over a distance of 2.5 metres.

Evaluation

Care was needed to avoid spilling water whenever the instrument was moved. Although each 'step' was limited 2.5 metres, (the span of the frame) progress with the device was conparable with the previous levels. It could be used for seting level lines or graded lines of slopes not less than 1 in 3 CN. A refinement could be made by attaching a scale to the upiights for measuring height differences.

Flexible tube water level

Construction

Two 1.6 wooden staves ($40 \mathrm{~mm} \times 20 \mathrm{~mm}$) had battens ($2 \mathrm{~m} \times 10 \mathrm{~mm}$) nailed to ons side of the broad face. A 1.5 m tape was carefully glued to each batten with the zero level with the end of the batten. The two ends of a 15 m length of clear non-reinforced PVC tube (16mm internal diameter) were attached to the staves by drilling four 1.5 mm holes at 400 mm centres and using soft wire to secure the pipe firmly against the edge of the batten. The tube was then slowly filled with water, care being taken to expel all air bubbles, until the level was about im high in each of the stand pipes when they were held together. The ends of the tube were fitted with rubber stoppers to prevent loss of water during transport.

Use

To set a level line, the two stand pipes were brought together at the starting point, the stoppers removed and the readings taken level with the bottom of each meniscus. (The readings should be the same and may be marked with a pencil.) The ends of the tube were then stoppered and the lead man took his standpipe and stretched out the tube in the direction of the line. The stoppers were carefully removed and the lead man moved his standpipe up or down the slope until he obtained the original reading. (At this point, the following man could looh at his reading which should also be the same - this provided a simple checking procedure.) An arrow was placed by the lead man, stoppers were replaced and both men meved forward to repeat the operation.

FLEAIBLE TUBE WATER
LEVEL

Results

If care was taken, the accuracy of reading the meniscus was $\pm 0.5 \mathrm{~mm}$, (the smallest graduation of the tape being 1.0 mm). It did not take long for the levels in the stand pipes to set tle, and progress was quite fast. When moving the instrument the procedure to avoid spilling should be observed. A line was laid on the contour and the worst height error was 10 mm over a 10 metre distance.

Evaluation

The accuracy of this device was far superior to the other instruments, and it was one of the fastest to use. However, its construction relies upon the availability of clear plastic pipe. This is oniy strictiy necessary for the standpipe portions as the joining length could be any type of hose. The instrument does not rely on good eyesight for sighting purposes. A possible disadvantage is its bulkiness although the instrument described here was easily carried by one man. With care it could be used for setting level lines or graded slopes not less than 1 in 1000 .

Construction

A cheap wooden-cascd spirit level 250 mm long formed the basis of this instrument. A small screw-eye was screwed into each end face (on the centre-1ine and close to the top face) and a lom length ot cord tied to each eye. Two staves were made by glueing 1.5 m tape measures onto straight battens.

Use

Three people were needed to operate this device - one with a staff at each end of the cord, and the third at the centre watching the spirit level. The leading staff man either moved his position up or down the slope, (for laying out contours) or moved the string up or down the staff when measuring height differences. The centre man gave the instructions by observing the spirit level. Even though the device swayed around in the wind it was still easy to see the bubble, which came to rest after a few seconds.

LINE LEVEL

Results

The range of the device depends on the length of the line, in this case 20 metres. 5 arrows were set on the contour in 5 minutes and the worst height error was 55 mm in 20 m .

Evaluation

Of the instruments tested the line level gave the fastest rate of progress. Accuracy might be improved by suspending the level from the line in a different manner to ensure that it always hangs correctly. It was the most compact of the eight devices (the level and cord could be carried in a pocket) and with care could be used for setting level lines or graded lines of slopes not less than 1 in 500 .

SUMMARY

Eight simple surveying levels were constructed and compared. Those which involved sighting onto a distant staff were the least satisfactory. Of the remaining four levels, the fiexible tube water level was the most accurate, but the most expensive. The wooden $A-f r a m e$ and plumb line and the rigid f -frame manometer were simple to use but cumbersome to transport. The line level (small spirit level and cord) was cheap, fairly accurate, quick to use and easy to carry, but needed three operators.

All the levels were made using simple hand tools. The materials used included wood, screws, nails, string, scrap sheet metal, glass, rubber tube, plastic tube, soft wire and a length of metal conduit.

CONCLUSIONS

All the devices were cheap and simple to construct. They did not require delicate handling or skilled operators. They were all accurate enough to be useful in irrigation, drainage, soil conservation, roadmaking and building at the farm level.

The four levelling devices which involved sighting onto a distant staff (water manometer, spirit level, square and plumb and road tracer) Nere more difficult to use, particularly in less than perfect lighting, and their accuracy depended largly largely on the operator's eyesight. In each case a robust tripoc would have been some inprovement over the mounting pole used, but would have made transport more difficult. The remaining devices which did not require sighting onto a staff seemed more suitable for unskilled operators.
 to make and use, but were cumbersome to transport and could only be used over fixed intervals equal to the lengths of the frames.

The flexible tube manometer was the most accurate of the devices. Measuring or marking out gradients of up to 1 in 1000 was possible with this instrument. It was one of the fastest to use but was the most expensive to construct. Being flexible, it could be used for levelling two points not in sight of each other - a common problem in building construction.

The line level was cheap to make, very easy to transport and a very quick means of laying out contours, but required three operators.

$15 \begin{gathered}\text { MICROFICHE } \\ \text { REFERENCE } \\ \text { LIBRARY }\end{gathered}$A project of Volunteers in Asia
CartsITDG Agricultural Equipment and Tools No. 44
Fublished by:Intermediate Technology Publications, Ltd.9 King StreetLondon WC2E 8HNUnited Kingdom
Paper copies are 0.75 British pounds.Available fron:Intermedicte Technology Publications, Ltd.9 King StreetLondon WC2E 8HNUnited Kingdom
Reproduced by permission of IntermediateTechnology Publications, Ltd.:
Reproduction of this microfiche document in anyform is subject to the same restrictions as thoseof the original document.

No. 44A

THE "WANANCHI" OX-CART

"WWananchi" OX-CART

DEVELOPED BY:

DESCRIPTION:

Originally designed by Rev. V. Swenson of Singida Mission and later developed further at T.A.M.T.U., Tanzania,

Built to carxy a load of 1400 lbs. $(636 \mathrm{~kg})$, pulled by two oxen. An important design feature of this cart is the woodblock axle bearings, each made of two pieces of wood, oilimpregnated by soaking in hot oil, the axle bearing hole of I $\frac{1}{c} 11$ (38) diameter being drilled centrally through the blocks. This bearing design facilitates ease of maintenance and renewal of the bearings by carpenters in rural areas.

Each of the wheel assemblies is ar integral unit, the wheel spokes weldea to the axle shaft.

Note: Figures in brackete are in millimetres.

KEY:

$\frac{\text { ITEM }}{\text { A }}$ SHAFT
B FRONI/BACK

C SIDE SUPFORT
D SHAFM ERACE
E FLOOR BOARD
F CHASSIS MMMERR
G WHGML ASSEMELY
0
H AXIS

I AXLI GEARING HLATE CHASSIS CROSS MEMBSE

WOOF-BLOCK
BEARING
1 GREASO CUP
M BEARING BOLTS
N FLAT WASHER
P SIDE BOARD
Q YOKE HITCH

QUANTITY
1

20 Of $1^{\prime \prime} \times 12^{\prime \prime} \times 52^{\prime \prime}(25 \times 305 \times 1321)$ eoft wood. 6

2 Wheal rims of ty" \times gil $^{\prime \prime}(102 \times 9.5)$ mild steel, 30" (762) diameter, with $\frac{3}{4}$ " (19) diameter spokes of inild steel bar, 12 spokes per wheel.

2 Each of 30" (762) $\times 1 \frac{1}{2}$ " (38) diameter mild steel bar.

1 Of $2^{\prime \prime} \times 10^{\prime \prime} \times 48^{\prime \prime}(51 \times 254 \times 1219)$ hard wood.

4 Hach bearing consistes of two pieces of hard wood $31 \times 41 \times 10^{\prime \prime}(76 \times 102 \times 254)$.

4 Of screw-type design.
$810^{\prime \prime}(254)$ long $x \frac{1}{2} \prime \prime(22.5)$ diameter mild steel.
8 Of $1 \frac{1}{3}$ " (38) inner diameter, in pairs each side of inner bearings to locate axles. Inner washers free to rotate and outer washers welded to axis.
2 Of $1^{\prime \prime} \times 12^{\prime \prime} \times 70^{\prime \prime}(25 \times 305 \times 1778)$ soft $\mathbf{~ N o d .}$
1 'U' bolt of $\frac{1}{2}$ ' (12.5) diameter mild steel.

DEVELOPED BY: J. Wirth, Bngineer at the Tanzania Agricultural Machinery Testing Unit, Ianzania.

DESCRIPTION: | Designed to carry a load of 7001 bs (318 kg), pulled by a |
| :--- |
| single ox or donkey. The wood-block axle bearings fitted |
| uncierneath the cart body are oil-impregnated by soaking in |
| hot oil before drilling and assembly. |
| Both the front and back boards of the cart body are |
| removable. The cart shafts can be made of tubular metalpipe |
| instead of timber if extra strength is found necessary. |

Note: Figures in brackets are in millimetres.

ITMM	NAME	QUANTITY	ITEM DESCRIPTION
A	SHAFT/CHASSIS MEMBER	2	Of $2 \frac{1}{2} " \times 3 \frac{1}{7} " \times 153^{\prime \prime}(64 \times 89 \times 3886)$ wood. Shaft length can be varied to suit animal size.
B	AXIS BEARING PLATE/CHASSIS	1	Of $7^{\prime \prime} \times 2^{\prime \prime} \times 45^{\prime \prime}(178 \times 51 \times 1143)$ hard wood.
c	$\begin{aligned} & \text { WOOD-BLOCK } \\ & \text { BEARING } \end{aligned}$	4	Each bearing consists of two pieces of hard wood $2^{21}{ }^{\prime \prime} \times 3^{\prime \prime} \times 7^{\prime \prime}(64 \times 76 \times 178)$ with a $1^{\prime \prime} 1{ }^{\prime \prime}$ (32) diameter hole drilled centrally for the axle.
D	CORNER SUPPORT	8	of $2^{\prime \prime} \times 3^{\prime \prime} \times 18$ " $51 \times 76 \times 457$) hard wood.
E	DRAUCHT HOOK	2	Made from ${ }^{\text {(1) }}$ (12.5) dinmeter mild steel bar.
F	HARNESS EYE	2	Made of $\xi^{\prime \prime}$ (9.5) diameter taild steel bar, bolt-heads countersunk on inside of shafts.
G	WHWHL AND AXIS ASSEMELY	2	All parts of mild steel: wheel rins of $3^{\prime \prime} x$ 変" (76×9.5) $28^{\prime \prime}$ (711) in diameter; spokes of $\frac{1}{8}$ " (2玉்") diameter bar, i2 spokes per wheel. Axde of $1 \frac{1}{4} 11$ (32) diameter, $25^{\prime \prime}$ (635) long.
H	SIDE BOARD	2	Of $1^{\prime \prime} \times 12^{\prime \prime} \times 51^{\prime \prime}(25 \times 305 \times 1295)$ eoft wood.
\pm	FRONT/BACK BOARD	e	Of $1^{\prime \prime} \times 10{ }^{1} \times 5411(25 \times 267 \times 1372)$ soft wood.
K	GRPASS CUP	4	Of screw-type design.
1	FLAT WASHER	8	Oí 14" (32) inner diameter, in puirs each side of inner bearings to locate axles, inner washers free to rotate and outer washers welded to axle.

OX-CART USING OLD CAR WHEELS

DEVMHOPED BY:
DESCHIPTION:

Rev. L.H. Kobertson, Manje, Malawi.
This cart makes use of the front whels from an ola car or lorry, the wheel mountings being cut off and welned on to a box-section axle fabricated from angle iron. A car rear axle complete with differential can be used, but this adds unnecessary bulk and weipht to the cart.

The cart chassis and body are constructed of wood, all parts being bolted together. The body side and end boards ere made of planks $\mathbf{f}^{\prime \prime}(19)$ in thicknese, and are detachable.

Note: Figures in brackets are in millimetres.
KEY:

ITEM	NAME	QUANTITY	ITEM DESCRIPTION
A	SLOT	4	Slots to provide for removal of end boards formed with $2^{\prime \prime} \times 1^{\prime \prime}(51 \times 25)$ wooden slats.
8	STAKE/RIB	14	$2^{\prime \prime} \times 2^{\prime \prime}(51 \times 25)$ hard wood, of appropriate length to suit required height of cart sides.
c	FLOOR BOARD	5	Of $\frac{5}{\prime \prime}^{\prime \prime} \times 12^{\prime \prime} \times 84$ " $(19 \times 305 \times 2134)$ soft wood.
D	BRACE	4	
5	SHAPT	1	of $4^{\prime \prime} \times 4^{\prime \prime}(102 \times 102)$ sawn timber, or a termine-resistant bugh pole can be used instead.
F.	CHASSIS MEMBERR	2	Of $4^{\prime \prime} \times 2$ " $\times 84$ " (102 551×2134) hard wood.
G.	CHASSIS BOLT	8	Of 告" (9.5) diameter mild steel, $8^{\prime \prime}$ (203) long.
H	CHASSIS CKOSS MYMBSR	4	Of $3^{\prime \prime} \times 2^{\prime \prime} \times 60^{\prime \prime}(76 \times 51 \times 1524)$ hard wood.
J	SHAPT BOLT	3	Of $3^{\prime \prime}$ (12.5) diameter mild ateel, 8" (203) long.
K	CLAMP PLATE	4	Of $3^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}(51 \times 102 \times 12.5) \mathrm{mild}$ steel.
\mathbf{L}	RIB SUPPORT BOLT	8	Of $f^{\prime \prime}$ (9.5) diameter mild steel, 6" (152) long.
M	SLIDE RIB SUPFORT	2	Of 12" $\times 1 \frac{11}{\prime \prime} \times 84 \prime \prime(38 \times 38 \times 2134)$ hard wood.
N	H1545	2	Front wheels from an old vehicle.
P	AXLE CLAMF BOLT	4	Of ${ }^{\prime \prime \prime}$ (12.5) diameter mild steel, 12" (305) long.
Q	AXLS SUPPOFTP MEMBER	1	Of 8 " $\times 2$ " $\times 54 \prime \prime(20 \times 51 \times 1372)$ hard wood.
R	AXLE	1	Two pieces of $2^{\prime \prime} \times 2^{\prime \prime}(51 \times 51)$ angle iron, 54" (1372) long, welded torether to form box section anple.

