

A project of Voluntee 's in Asia

Kabaryolo Moolbar

ITDG Agricultural Equipment and Tools No. 4
Published by :
Intermediate Technology Publications, Ltd. 9 King Street London WC2E 8HN United Kingdom

Paper copies are 0.50 British pounds.
Available from:
Intermediate Technology Publications, Lta. 9 King Street London WC2E 8HN United Kingdom

Reproduced by permission of Intermediate Technology Publications, Ltd.

Reproduction of tinis microfiche document in any form is subject to the sane restrictions as those of the original document.

AGRICULTURAL EQUIPMENT AND TOOLS FOR ̈ FARMERS DESIGNED FOR LOCAL CONSTRUCTION No. 4

"KABANYOLO" TOOLBAR

"LABANICLO" OX TOOLFRANE

DEVMIOPED BY:

DESCRIPTION:

Based on the "UNIBAR" develuped and made by A.R. STOKES, Project Equipment Ltd., Newton Tony, Salisbury, U.K., with locul modifications by L.J. Clarke, Makerere University, Uganda.

This multi-purpose toolframe is shown in plan and side views with a plough stem attached. When fitted with the "ry" frame it can be used as an adjustable-width 3-tine cultivator/weeder.

The tool frame is fabricated from mild steel flat, pipe, bar, channel, angle and box section materials. A simple skid is used instead of a depth wheel.

Noie: Figures in brackets are in millimetres.
KEY:

ITEM	NAME	QUANSITY	ITEM DESCRTPTION
A	MAIN FRAME	1	Of $2^{\frac{1}{2}}{ }^{\prime \prime}(63)$ internal diameter, $\frac{7}{4}$ " (6.3) thicik wall üld steel pipe, 381 (965) long.
B	REAR CHANNEL SECTION	1	Of $3^{\prime \prime} \times 1 \frac{1}{c}^{\prime \prime} \times \frac{7^{\prime \prime}}{4}(76 \times 38 \times 6.3)$ mile sterel channel section, 7" (178) ling.
c	SIDE PIEC:	2	of ? " $\times \varepsilon^{\prime \prime}(51 \times 9.5)$ flat mild steel, $15^{\prime \prime}$ (301) long.
D	FRONT CRANNEL SECTION	1	Of $3^{\prime \prime} \times 1:{ }^{\prime \prime} \times \frac{1}{4}$ " ($76 \times 58 \times 5.3$) mild steel chnnel section, $6 \frac{1}{\%}$ " (lós) long, 3 holes inch
E	HANDLE SIDE PIeCE	2	Of $\frac{1}{4}:$ (19) internal diameter pipe, 46" (1168) long.
F	HANLLE BRACE	1	(330) long.
G	HANDLE BRACE	1	(22O) lonf.
H	HANDLF: SICE BRACE	2	(114) long.
\mathfrak{J}	SKID CLAMP	1	Of $1^{\prime \prime}(2.5)$ internal diameter pipe, 4" (102) long.
K	SKID	1.	cif l" (?⿹) diameter mild steßi romai oar, 25' (635) long.
L	STEM BRACKETI	1	Of $2^{\prime \prime} \times 2$ " x angle, 6" (152) long.
M	PLOUGH STEM	1	(470) long.

AT MICROFICHE REFERENCE LIBRARY

A project of Volunteers in Asia

Chitedze Ridgemaster Toolbar
ITDG Agricultural Equipment and Tools No. 5

```
Published by:
Intermediate Technology Publications, Ltd. 9 King Sireet London WC2E 8HN United Kingdom
```

Paper copies are 0.50 British pounds.
Available from: Intermediate Technology Publications, Ltd. 9 King Street London WC2E 8HN United Kingdom

Rerroduced by permission of Intermediate Technology Publications, lst.

Reproduction of this microfiche document in any form is subject to the same restrictions as those of the original document.

"CHITEDZE RIDGEMASTER" TOOLBAR

"CHITMMARE RIDGBMASMER" TOOLBAR

DEVBLOFED BY:
DESCRIPTION:
G.D. Horspool, Chitedze Agricultural Research Station, Malawl.

This multi-purpose toolbar is shown in side and plan views with a plough body attached, but a ridger or cultivator can also be fitted to the vertical beam.

The unique design feature of this toolbar is that it combines lightness with adequate structural strength, the main parts being fabricated from rectangular hollow section (R.H.S.) mild steel.

Note: Figures in brackets are in millimetres.
ITEM NAME QUANTITY

A hakE PLATE 1

B

C HORIZONTAL BFAM 2
D WHEBL ASSEMBLY 1

E VERTIGAL BEAM 1

F HANDLE STAY 2

G HANDLE 2

H HITCH ASSEMBLY 1
J WHEEL 1

K BOLT HOLES

1 BULT HOLES

Plate of $\frac{1}{4} \times 1 \frac{1}{2}$ " $(6.3 \times 38 \times 38)$ mild stecl angle iron, parts a and b cut off and welded on top, with plate support of $2^{\prime \prime} \times 1^{\prime \prime}$ (50×25) R.H.S. steel.

Two pieces of $2^{\prime \prime} \times 1^{\prime \prime}(50 \times 25)$ R.H.S. welded together at right angles.

Each of $2^{\prime \prime} \times \mathbf{1 "}^{\prime \prime}(50 \times 25)$ R.H.S. steel. of $2^{\prime \prime} \times 1^{\prime \prime}(50 \times 25)$ R.H.S. steel welded to $2 " \times \frac{1}{4}$ " (50×6.3) ' U ' shaped wheel support.

Made from two pieces of 2" $^{x} 1$ 1" (50×25) R.H.S. steel welded together.

Each of $1^{\prime \prime} \times \frac{i^{\prime \prime}}{4^{\prime \prime}}(25 \times 6.3)$ section mild steel.

Each of $1 \frac{1}{4}$ " $\times 5 / 16^{\prime \prime}(32 \times 8)$ section mild steel

Of 5 香 (16) diameter mild steel rod.
$7^{\prime \prime}$ (178) diameter cast iron wheel running on bush of 9/16" (14) internal di.ameter and $\frac{1}{2}$ " (i2.5) diameter bolt.

All bolt holes in R.H.S. steel formed by drilling 1" (25) through R.H.S., inserting bush of $1^{\prime \prime}$ (25) outside diameter $\times 3 / 16^{\prime \prime}$ (5) thick wall mild steel tube, welding into position and grinding flush.

Formed by welding ${ }^{\prime \prime}$ (25) outside diameter x $3 / 16^{\prime \prime}$ (5) thick wall mild steel tube into position.

M R.H.S. CAPRING

5M 2:

ITVM
NANE
N "CHITEDZE" MK III TVOLBAR
iP HAKE PLATE

B2 CENTRE HITCH

L2 BOLT HOL2S

P CULTIVATOR MAIN FRAME

Q CULTIVATOR TINE BAR

R

All open ends of R.H.S. steel capped with $\frac{1}{8}^{\prime \prime} \times 1^{\prime \prime}(3 \times 25)$ mild steel flat, welded and ground to a bevel edge.

ITIMM DESCRIPTION

View showing design modifications and parts of cultivator attachment.

Plate made of $\frac{7}{2} "(12.5)$ thick flat mild steel instead of angle iron.

Made of one piece of $2^{\prime \prime} \times 1^{\prime \prime}(50 \times 25)$ R.H.S. steel.
$\frac{1}{2} "$ (12.5) diameter bolt holes drilled through i" (9.5) thick flat mild steel welded to horizontal beems.

Made of $2^{\prime \prime} \times 1^{\prime \prime}(50 \times 25)$ R.H.S. steel.

Made of $2^{\prime \prime} \times 2^{\prime \prime}(50 \times 25)$ R.H.S. steel, $18^{\prime \prime}$ (457) long.

Fabricated of mild steel for front or rear fitting as required.

\Leftrightarrow

$$
6
$$

MICROFICHE
REFERENCE
LIBRARYA project of Volunteers in AsiaPrototype Multi-Purpose Ox-Drawn ToolITDG Agricultural Equipment and Tools No. 6
Published byIntermediate Technology Publications, Ltd.9 King StreetLondon WC2E 8HNUnited Kingdom
Paper copies are 0.50 British pounds.
Available from:Intermediate Technology Publications, Ltd.9 King StreetLondon WC2E 8HNUnited Kingdom
Reproduced by permission of Intermediate Technology Publications, Ltd.
Reproduction of this microfiche document in any form is subject to the same restrictions as those of the original document.

PROTOTYPE MULTI-PURPOSE OX-DRAWN TOOL

DEVELOPED BY:

DESCRIPTION:
A.R. Stokes, Northern Region Research Station, Samaru, Nigeria.

This tool was one oi a series built by the engineer, Mr. A.R. Stokes, in a research programme aimed at assisting the small farmers who grow their crops on ridges in Northern Nigeria.

The share is adjustable to allow different soil cultivation operations to be carried out. In the design shown, the share angle settings obtainable with the beam horizontal are $40^{\circ}, 55^{\circ}, 70^{\circ}$ and 85° approximately.

On the comparatively heavy soils at Samaru, the multi-purpose share was used for ridging, splitting ridges, cross-tying, weeding and breaking capped soil in the furrows. The tool frame was designed with an offset beam to avoid blockage when lifting groundnuts.

This tool was a prototype but does show a considerable amount of ingenuity, and the fabrication methods illustrated shou'd be of value to field extension personnel in promoting various ideas on local construction of agricultural equipment to assist farmers in developing areas.

Note: Figures in brackets are in millimetres.
KLY:
ITEM
A

B

C
D
E
F
G

H
J
K
L. Rudder support made from two pieces of $I^{\prime \prime} \times I^{\prime \prime} \times \frac{7^{\prime \prime}}{8}$ ($25 \times$ 25×3) mild steel angle.

M Rudder of 3/16" (5) thick steel, secured with 各" (9.5) diameter bolts.

Beam attachment plate of $\frac{i}{2}$ " (12.5) thick mild steel.
Rear/side view of tool showing the share assembly.
$301 t s$ of 3 (12.5) diameter for securing beam attachment plate.

ATMEROFICHE

A project of Volunteers in Asia
Clod Crusbers. Two Designs
ITDG Agricultural Equipment and Tools No. 10
Published by:Intermediate Technology Publications, Ltd.9 King StreetLondon WC2E 8HNUnited Ringdom
Paper copies are 0.50 British pounds.
Available from:
Intermediate Technology Publications, Ltd.
9 King Street
London WC2E 8SN
United Kingdom
Reproduced by permission of Intermediate Technology Publications, Ltd.
Reproduction of this microfiche document in any form is subject to the same restrictions as those of the original document.

AGRICULTURAL EQUIPMENT AND TOOLS FOR FARMERS DESIGNED FOR I CAL CONSTRUCTION

DEVELOPED BY: R.B. BROCKBANK, Bunda College of Agriculture, Malawi.
DESCRIPRION: These two simple and cheaply-constructed implements are used for reducing the size of clods in cultivated land prior to ridging up the soil. They are made principally of 'gum' (Eucalyntus species) poles.

Type 1

Type ?

The roller gangs are built up from short pieces of pole, each drilled and grooved so that when fitted onto the steel bar axle they rest at an angle of approximately 60° to each other. The poles are mounted on their axles with sufficient play to provide a selfcleaning effect. This implement is provided with additional weight by either ballasting the frame or fitting a seat on the frame for the operator.

This model consists of short pole pegs attached in a staggered formation around the circumference of a single heavy log roller. The pegs need to be drilled before nailing to avoid splitting. Steel bolts, sharpened at the ends, of $\frac{1}{2}$ " (12.5) to $\frac{3}{4}$ " (19) diameter are driven into the centre of each end of the roller, to which the draught ahains are attached. A swingle tree tree is fitted to the roller draught chains.

Note: Figures in brackets are in millimetres.

KRY:	TYPE 1.		
ITMM	NAME	QUANTITY	ITEM DESCRIPTION
A	FRAME SIDF MEMBER	2	Wooden plank 4" x 1" (102 x 25), 40" (1016) long.
B	FRAME END MEMBER	2	Wooden plank 4" x $1^{\prime \prime}$ (102 x 25) , 30" (762) long.
c	DRAUGHT CHAIN	1	Mild steel link chain of convenient length.
D	REAR ROLIER PEGS	As required	Eucalyptus poles each 9" (229) iong.
E	ROLLER AXLE	2	$\frac{3}{4} \prime \prime$ (19) diameter mild steel bar.
F	FRONT ROLLER PEGS	As required	Eucalyptus roles each 12" (305) long.
G			Diagram showing roller pegs mounted at 60° to each other.
G			Vios showing a roller pegg Each peg has grorves cut at 60° on both sides.
KnY:	TYPE 2.		
ITEM	NAME	QUANTITY	ITEM DESCRIPIION
J	ROLI,ER	1	Eucalyptus $\log , 15^{\prime \prime}-18 "$ (381 to "457) in diameter, 36" - 48" (914 to 1219) long.
K	ROLLER PEGS	As required	Eucalyptus pegs, $2^{\prime \prime}-3^{\prime \prime}(51$ to 76) in diameter, $3^{\prime \prime}$ (76) long.
L	DRAUGHT CHAIN	1	Mild steel link chain of required length.

$$
11
$$

AT MICROFICHE
REFERENCE
LIBRARY

A project of Volunteers in Asia

Ox-Drawn Tie-Ridger/Werder Implement ITDG Agricultural Equipment and Tools No. 11
Published by:
Intermediate Technology Publications, Ltd. 9 king Street London WC2E 8HN United Kingdom
Paper copies are 0.50 British pounds.
Available from:
Intermediate Technology Publications, Ltd.
9 King Street
London WC2E 8HN
United Kingdom
Reproduced by permission of Intermediate Technolugy Publications, Ltd.
Reproduction of this microfiche document in any form is subject to the same restrictions as those of the original document.

OX-DRAWN TIE-RIDGER/WEEDER IMPLEMENT

OX-DRAWN TIE-RIDGER/WGEDER IMPLPMENT

(FOR ATTACHMENT TO "EMCOT" RIDGING PLOUGH)

> DEVELOPED BY: A.R. STOKES, Northern Nigeria.
> DESCRIPIION: This implement is designed for attachment to the "Emcot" oxdrawn ridging plough, a $\frac{1}{?}$ " (12.5) diameter bolt (of sufficient length) with lock nuts being used to hold the ridger handles to the plough beam, allowing the attached implement to pivot freely.

This attachment can be used for crosstying when ridging is carried out, and for crosstying and/or weeding after the ridging operation. During field use the implement handle is raised, then quickly dropped, every 6^{\prime} to 9^{\prime} or as required, leaving a crosstie of earth and/or weeds in the furrow.

On certain free-draining soils in Africa, the use of this implement has:
(1) increased crop yields by up to 100% where planting ontied= ridges was compared with planting on the flat;
(2) reduced the labour requirement for the combined land preparation and weeding operations by 60% when compared with cultivation by hand.

Note: Figures in brackets are in millimetres.

KتY: ITEM

NAME

GUANTITY

ITEM DESCRIPTION

A	HANDLE	1	Of $\frac{1}{2}: 1$ (12.5) internal diameter mild steel pipe.
B	ATTACHMENT BRACKEF	1	Made of one piece $2^{\prime \prime} \times \frac{1}{4} \prime \prime \times 11^{\prime \prime}(51 \times 6.3 \times 279)$ mild steel.
c	SLSEVE	1	Of 1電" (38) internal diameter mild steel pipe $3^{\prime \prime}$ (76) lor ${ }^{-}$, fitted with $\frac{1}{?}$ " (12.5) diameter locking bolt.
D	GEAM	1	Of 1 " (25) or $1 \frac{1}{4}$ " (32) internal diameter mild steal pipe.
E	$\begin{aligned} & \text { PIVOT BOLT } \\ & \text { HOLE } \end{aligned}$	1	$\frac{1}{2} "(12.5)$ diameter hole to take pivot/attachment bolt.
F	BRACE	1	Of ${ }^{\prime \prime}$ " (9.5) diameter mild steel round bar.
G	SHIRE SUPPORT PLATE	1	Of $7^{\prime \prime} \times 2^{\prime \prime} \times \frac{\hat{4}}{}{ }^{\prime \prime}(178 \times 51 \times 6.3)$ mild steel.
H	SHARE	1	An old plough disc of $22^{\prime \prime}$ to $24^{\prime \prime}$ (559 to 610) diameter, cut in half for share.
J	REAR VIEN OF SHARE		Showing method of securing the beam D to share support plate G.
K	BRACKET	2	Each of 1" $\times 1$ " (25×25) mila steel angle iron, $2^{\prime \prime}$ (51) long, welded to D and G.

$$
12
$$

AT MICROFICHE REFERENCE LIBRARY

A project of Volunteers in Asia

IDC Weeding Attachmens for Emcot Plow
 ITDG Agricultural Equipment and Tools No. 12

Published by:
Intermediate Technology Publications, Ltd.
9 King Street
London WC2E 8HN
United Kingdom
Paper copies are 0.50 British pounds.
Available from:
Intermediate Technology Publications, Ltd.
9 King Street
London WC2E 8BN
United Ringdom
Reproduced by permission of Intermediate Technology Publications, Ltd.

Reproduction of this microfiche document in any form is subject to the same restrictions as those of the original document.

"I.D.C." WEEDING ATTACHMENT
 FOR "EMCOT"PLOUGH

(FOR USE ON "EEMCCT" RIDGING PLOUGH)
DEVSLOFSD BY: Industrif Development Centre, Zaria, Nigeria.
DESCRIPTION:
This attachment enables weeding in ridged row crops to be carried out by animal power instead of by hand.

The plough, with weeding attachment, can be pulled by a single ox or two oxen.

The tool standards can be adjusted for heigint, and also for width according to the row spacing. The weeding knives ahould be positioned to run close to the plants without damaging the roots, and should dig ceep enough to cut gown the sides of the ridges. The sides of the ridges are remade by the ridger body following behind.

Note: Figures in brackets are in millimetres.

KEY:

ITSM	NAMS	QUANTITY	ITEM DESCRIPTION
A	MAIN FRAM	2	Each made from one piece of 䨐" $\times 2^{\prime \prime} \times 48^{\prime \prime}$ (9.5 x 51×1219) mild steel.
8	MAIN FRAME BRACKCFI	2	Each of $8^{\prime \prime} \times 2^{\prime \prime} \times 20^{\prime \prime}(9.5 \times 51 \times 508)$ mild steel, riveted or welded to main frame.
c	POSITIONING BLOCKS	2	Bach of fal $^{\prime \prime} \times 1^{\prime \prime} \times 2^{\prime \prime}(9.5 \times 25 \times 51)$ mild steel, welded or riveted inside rear part of main frame to fit on I-beam of t.le plough.
D	MAIN ERAME CLAMP FLATE	2	Each of $\mathbf{E}^{\prime \prime} \times 2^{\prime \prime} \times 6^{\prime \prime}(9.5 \times 51 \times 152) \mathrm{mild}$ steel, held together by two $\frac{1}{2}$ " (12.5) diameter mild steel bolts $3 \frac{1}{2}$ " (89) long.
D1	FRAME BOLT	1	Of $\frac{1}{2 \prime \prime}$ (12.5) diameter mild steel, $2 \frac{1}{2 \prime \prime}$ (63) long.
E	TOOL STANDAND	2	Each of $1^{\prime \prime} \times 1^{\prime \prime}(25 \times 25)$ mild steel square bar, 16" (406) long.
F	TOOL STANDARD CLAMP PLATE	4	Each of $\mathfrak{E}^{\prime \prime} \times \mathbf{2}^{\prime \prime} \times 5^{\prime \prime}(9.5 \times 51 \times 127)$ mild steel. Each pair of plates held together by two $\frac{1}{2}$ " (12.5) diameter mild ateel boits, $3^{\prime \prime}(76)$ long.
G	WFEDING KNIFE	2	Marte of $\frac{1}{4}{ }^{\prime \prime}(6.3)$ thick high grade steel; light car spring or old railway sleeper is suitable.
H	KNIFE TEMELATE	1	Make one full aize in sheet metal and use as a pattern for cutting out the knives.
J	KNIFE BOLT	4	Each of $\mathbf{z}^{\prime \prime \prime}$ (3.5) diameter miid steel, $\mathbf{2 ' ~}^{\prime \prime}$ (51) long.

Note on making the weeding knives:
(1) Cut out a piece of metal to the shape of the template H.
(2) Draw out the leading edge, as indicated by the dotted line in H, to make it sharp.
(3) Bend the knife material to a right angle, with the corner rounded (as shown at K) as this will help to avoid damage to roots when cultivating close to the plants.

$$
13
$$

ATM MICROFICHE

A project of Volunteers in Asia

Adjustable-Width V-Drag Ditcher/Bund Former ITDG Agricultural Equipment and Tools No. 13

Published by:
Intermediate Technology Publications, Ltd. 9 King Street London WC2E 8HN United Kingdom

Paper copies are 0.50 British pounds.
Available from:
Intermediate Technology Publications, Ltd. 9 King Street London WC2E 8HN United Kingdom

Reproduced by permission of Intermediate Technology Publications, Ltd.

Reproduction of this microfiche document in any form is subject to the same restrictions as those of the original document.

No. 13

ADJUSTABLE-WIDTH 'V-DRAG' DITCHER/BUND FORMER

,

\square ntermediate

ADJUSTABLE-WIDTH 'V-DRAG' DITCHER/BUND FORMER

SOURGE: United States Department of Agriculture, Soil

 Conservation Service.
Abstract

DESGRIPRION: This implement is used for making irrigation ditches, and can also be used to construct low-height contour bunds for border irrigation.

When making earth ditches for conveying water to crops or drainage channels, a furrow is first opened with a plough (running down and back the required number of times according to the depth required) along the line of the ditch. The V-drag is then used with the runner board riding in the furrow bottom, the crowder board deflecting the soil sideways. Veight can be added by the operator standing on the runner board. The depth of cut can be increased by placing additional weight towards the front of the implement and/or lengthening the hitch.

When using the 'V-drag' to construct contour bunds for irrigation, a plough is mun down and back twice, throwing the soil into the border line. The implement is then run down the line, the crowder board pushing the soil into a ridge.

Several passes are made in each direction until the required size of ditch or border has been formed.

Note: Figures in brackets are in millimetres.

ITPM	NAME	QUANTITY	ITEM DESCRIPTION
A	MITAL CUTTING POI ${ }^{7}$	1	12"' (305) $\times 12 \prime \prime$ (305) heavy sheet metal.
B	HITCH	1	音" $\times 2$ 2" $\times 36$ " $(9.5 \times 51 \times 914)$ strap iron, with $\frac{z^{\prime \prime}}{4}$ (19) round $2 \frac{1}{2} "(63)$ diameter hitch ring.
c	HINGES	2	3" (76) surface hinges.
D	HANDLS	1	$1 \frac{1}{2}^{\prime \prime} \times 2{ }^{\prime \prime}$ " $\times 54 "(38 \times 63 \times 1372)$ hardwood.
E	CROWDER ELOCK	1	$12^{\prime \prime} \times 2^{\prime \prime}(305 \times 51)$ triangular section hardwood.
F	CROWDER ROARD	1	$2^{\prime \prime} \times 12^{\prime \prime} \times 72^{\prime \prime}(51 \times 305 \times 1829)$ wooden board.
G	SPREADER BOARD	1	$2^{\prime \prime} \times 6^{\prime \prime} \times 36$ ' (51 $\left.\times 152 \times 914\right)$ wooden board.
H	SPREAD ADJUSTER ESARD	1	$2^{\prime \prime} \times 6^{\prime \prime} \times 48^{\prime \prime}(51 \times 152 \times 1219)$ wooden board with holes drilled at 6" (152) intervals for implement-width adjustment.

J	SPREADER ELOCK 1	$4^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime}(102 \times 152 \times 152)$ wooden block．
K	RUNNER BOARD 1	$2^{\prime \prime} \times 12^{\prime \prime} \times 132^{\prime \prime}(51 \times 305 \times 3353)$ wooden board．Bottom edge may be protected with $2^{\prime \prime} \times 2^{\prime \prime}(51 \times 51)$ angle iron if desired．
L	HANDLE SUPPORT 2	$3^{\prime \prime} \times 2 \prime \times 10^{\prime \prime} \times(9.5 \times 51 \times 254)$ strap iron．
M	SPREADER BOARD END 4 END PIECES	重＂$\times 1 \frac{3}{4 \prime \prime} \times 8$（ $9.5 \times 44 \times 203$ ）atrap iron．

BOLTS AND SCRIMS．

gUANTITI	STEE	PURPOSE
3	긍＂$\times 3{ }^{\prime \prime}(9.5 \times 76)$	Hitch ring to runner board．
3	$\frac{1}{411} \times 411(6.3 \times 102)$	Crowder block to runner board．
16	$\frac{1110}{4 \prime} \times 2 \frac{11}{11}(6.3 \times 63)$	For surface hinges．
8	$\frac{1}{4}^{\prime \prime} \times 22^{11} 11(6.3 \times 63)$	For handle supporta．
4	部 $\times 7$＂(9.5×178)	For spreader block．
2	姓 ${ }^{\prime \prime} \times 11(22.5 \times 178)$	For spreader board pivots，
4	音＂$\times 7$＂（9．5 $\times 178$ ）	For spreader board end pieces．
6	㨞＂$\times 5^{\prime \prime}$（12．5 $\times 127$ ）	For spread adjuster board to runner．

