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A

COMPLETE SYSTEM

OF

ASTRONOMY.

CHAPTER 1.

DEFINITIONS.

Art. 1. ASTRONOMY is that branch ‘of natural philosophy which treats of
the heavenly bodies. The determination of their magnitudes, distances and
the orbits which they describe, is called pkme or pure Astronomy ; and the in-
vestlgahon of the causes of their motions is called physical Astronomy. The
" former is determined from observations on their apparent magnitudes and mo-
tions; and the latter from analogy, by applying those principles and laws of
motion by which bodies on and near the earth are governed, to the other bodies
in the system. The principles of plane Astronomy come first in order to be
treated of ; and in this, we shall begin with the explanation of such terms as
are the fundamental principles of the science.

2. A greal circle of a sphere is that whose plane passes through its center;
and a small circle is that whose plane does not pass through its center.

3. A diameter of a sphere perpendicular to any great circle, is called the

axis of that circle ; and the extremities of the diameter are called its Poles.

4. Hence, the pole of a great circle is 90° from every point of it upon the
surfac‘e of the sphere ; but as the axis is perpendicular to the circle when it is
perpendicular to any two radii, a point on the surface of a spherg 90° distant
from any two points of a great circle will be the pole.

5. All angular distances on the surface of a sphere, to an eye at the center,
are measured by the arcs of great circles; for they being arcs to equal radii, -
will be as the angles.

VOL. I. B



FIG.

DEFINITIONS.

6. Hence, all triangles formed upon the surface of a sphere, for the solutiorr
of spherical problems, must be formed by the arcs of great circles.

7. All great circles must bisect each other; for passing through the center
of the sphere their common section must be a diameter, which bisects all cir-
cles. :

8. Secondaries to a great circle are great circles which pass through its poles.

9. Hence, secondaries must be perpendicular to their great circle; for if”
one line be perpendicular to a plane, any plane passing through that line will
also be perpendicular to it ; therefore as the axis of the great circle is perpen-
dicular to it, and is the common diameter to all the secondaries, they must all
be perpendicular to the great circle. Ilence also, every secondary, bisecting
its great circle ('7)*, must bisect every small circle parallel to it ; for the plane
of the secondary passes through, not only the center of the great circle, but
also of the small circles parallel to it.

10. Hence, a great circle passing through the poles of two great circles,
must be perpendicular to each ; and, vice versd, a great circle perpendicular
to two other great circles must pass through their poles.

11. If an eye be in the plane of a circle it appears a straight lme hence in
the representation of the surface of a sphere upon a plane, those cxrcles whose
planes pass through the eye are represented by straight lines.

- 12. The angle formed by the circumferences of two great circles on the sur-
face of a sphiere, is equal to the angle formed by the planes of those circles;.
and is measured by the arc of a great circle intercepted between them, described
about the intersection of the circles as a pole.

. For let C be the center of the sphere, PQE, PRE two great circles; then
a8 the circunferences of these circles at P are perpendicular to the common
intersection PCE, the angle at P between them is equal to the angle between
the planes, by Euc. B. XI. Def. 6. Now draw CQ, CR perpendicular to PCE;
then the angle QCR is also the angle between the planes, and therefore equal
to the angle at P formed by the two circles ; and the angle QCR is measured

. by the arc QR of a great circle, which arc has (4) for its pole the point P, be-
‘cause PQ, PR are each 90°.

13. If at the intersection of two great circles as a pole, a great c1rcle be

-described, and also a small circle parallel to it, the arcs of the great and small

circles, intercepted between the two gteat cireles contain the same number of
degrees. ‘

For draw 4 B, AD perpendicular to PCE, then as 4B, AD are parallel to
CQ, CR, the plane BAD is parallel to the plane QCR, and therefore the small
circle BD of which 4 is the center, is parallel to the great circle QR, and as

* Figures included thus in a Parenthesis refer to the articles.



DEFINTTIONS.

each angle BAD, QCR, measures the inclination of the planes, they must be
equal, and consequently the arcs BD, QR contain the same number of degrees.
Hence, the arc of such a small circle measures the angle at the pole between
the two great circles. Also QR: BD:: QC: BA:: radius: cos. BQ. Hemse
QR is the greatest distance between the two circles.

14. The Aazis of the earth is that diameter about which it performs its diar-
nal motion ; and the extremities of this diameter are called its poles.

15. The fterresirial Equator is a great circle of the earth perpendieular to its
axis. Henee, the axis and poles of the earth are the axis and poles of its equa-
tor. That half of the earth which lies on the side of the equator which we in-
habit is called the northern Hemisphere, and the other the southern; and the
poles are respectively called the nortk and south poles.

16. The Latitude of a place on the earth’s surface is its angular distance from
the equator, measured upon a secondary to it. These secondaries to the equa-
tor are called Meridsans. :

17. The Longitude of a place on the earth’s surface is an arc of the equator
intercepted between the meridian passing through the place, and another,
called the first meridian, passing through that place from which you begm to
measure.

18. If the plane of the terrestrial equator be produced to the sphere of the
fixed stars, it marks out a circle called the celestial equator ; and if the axis of
the earth be produced in like manner, the points in the Heavens to which it is
produced are called poles, being the poles of the celestial equator. The star
nearest to each pole is called the pole star.

19. Secondaries to the celestial equator are called circles of Declination ; -of
these, 24 which divide the equator into equal parts, each containing 15°, are
called Hour circles.

20. Small circles parallel to the celestial' equator, are called parallels gf De-
clination.

21. The sensible horjzon is that circle in the heavens whose plane touches
the earth at the speetator. The rational herizon is a great circle in the hea-
vens, passing through the earth’s center, parallel to the sensible horizon.

22. Almacanter is a small circle parallel to the horizon.

28. If the radius of the earth to the place where the spectator stands, be pro-
duced both ways to the heavens, that point vertical to him is called the Zenith,
and the opposite point the Nadir. Hence, the zenith and nadir are (3) the
poles of the rational horizon; for the radtus produced being perpendicular to
the sensible, must also be perpendicular to the rational horizon.

24. Secondaries to the horizon are called vertical circles, because they are
(9) perpendicular to the horizon; on these circles therefore the altitude of an
heavenly body is measured.

4



DEFINITIONS.

25. A Secondary common to the celestial equator and the horizon of any
place, and which therefore (10) passes through the poles of each, is the celes-
tial meridian of that place. Hence, the plane of the celestial meridian of any
place.coincides with the plane of the terrestrial meridian of the same place.

26. That direction which passes through the north pole is called north, and
‘the opposite direction is called soutk. Hence, the meridian must cut the ho-
rizon in the north and south points. '

27. Hence, the meridian of any place divides the heavens into two hemi-
spheres lying to the east and west; that lying to the east is called the eastern
hemisphere, and the other lying to the west is called the western hemisphere.

28. The vertical circle which cuts the meridian of any place at right angles,
is called the prime vertical ; and the points where it cuts the horizon are called
the east and west points. Hence, the east and west points are 90° distant from
the north and south. These four are called the cardinal points.

29. The Azimuth of an heavenly body is its distance on the horizon, when
referred to it by a secondary, from the north or south pomts. The Amplitude
is 1ts distance from the east or west points.

. The Ecliptic is that great circle in the heavens which the sun appears to
descnbe in the course of a year.

81. The ecliptic and equator being great circles must (7) bisect each other,
and their angle of inclination is called the obliguily of the ecliptic ; also the
points where they intersect are called the equinoctial points. The times when
the sun comes to these points are called the Equinoxes.

82. The ecliptic is divided into 12 equal parts, called Signs ; Aries «, Tau-
rus % ,Gemini n, Cancer @, Leo a, Virgo m, Libra ~, Scorpio w, Sagit-
tarius ¢, Capricornus v, Aquarius z, Pisces x. The order of these is ac-
cording to the motion of the sun. The first point of aries coincides with one
of the equinoctial points, and the first point of libra with the other. The first
six mgns are called northern, lying on the north side of the equator; and the
last six are called southern, lying on the south side. The signs v, =, %, «,
%, o are called ascending, the sun approaching our (or the north) pole whilst
it passes through them; and @, L, m, &, m, ¢ are called descending, the
sun receding from our pole as it moves through them.

83. The motion of the heavenly bodies which is according to the order of
the signs, is called direct, or in consequent:a, and the motion in the contrary
dircction is called retrograde, or in antecedentia. The real motion of all the
planets is according to the order of the signs, but their apparent motion is some-
times in an opposxte direction.

34, The Zodiac is a space cxtending on cach side of the ecliptic, within
which the motion of all the planets is contained.

45, ‘Ihe right ascension of a body is an arc of the equator intercepted be-

3



DEFINITIONS.

tween the first point of aries and a declination circle passing through the body,
measured according to the order of the signs. .

86. The oblique ascension is an arc of the equator intercepted between the
first point of aries and that point of the equator which rises with any-body,
measured according to the order of the signs.

87. The ascensional difjcrence is the difference between the right and oblique
ascension.

88. The Declination of a body is its angular distance from the equator, mea-
sured upon a secondary to it drawn through the body.

. The Longztude of a star is an arc of the ecliptic mtercepted between the
ﬁrst pomt of aries and a secondary to the ecliptic passing through the body,
measured according to the order of the signs. If the body be in our system,
and seen from the sun, itis called the keliocentric longitude; but if seen from tlie
earth, it is called the geocentric longitude; the body in each case being referred
perpendicularly to the ecliptic in a plane passing through the eye.

40. The Latitude of a star is its angular distance from the ecliptic, measured
upon a secondary to it drawn through the body. If the body be in our system,
its' angular distarce from the ecliptic seen from the eartk is called the geocentric
latitude; but if seen from the sun it is called the keliocentric latitude.

41. Hence, if « Q be the equator, « C the ecliptic, « the first point of aries,
s a star, and the great circles sr, sn be drawn perpendicular to »C and « Q;
then «n is its right ascension, sn its declination, sr its latitude and « 7 its lon-
gitude. The circle sr is called a circle of latitude.

42. The Tropics are two parallels of declination touching the ecliptic. One,
touching it at the beginning of cancer, is called the fropic of camcer; and the
other touching it ‘at the beginning of capricorn, is called the tropic of capricorn.
‘The two points where the tropics touch the ecliptic are called the solstitial
points.

48. Colures are two secondaries to the celestial equator, one passing through
the equinoctial points, called the eguinoctial colure; and the other passing
through the solstitial points, called the solstitial colure. The times when the
sun comes to the solstitial points are called the Solstices. = *

44. The Arctic and Antarctic circles are two parallels of declination, the for-
mer about the north and the latter about the south pole, the distance of which
from the two poles is equal to the distance of the tropics from the equator.
These are also called polar circles.

45. The two tropics and two polar circles, when referred to the earth, divide
it into five parts, called Zones ; the two parts within the polar circles are called
the frigid zones; the two parts between the polar circles and tropics are called
the temperate zones; and the part between the tropics is called the forrid zone.

Small circles in the heavens are referred to the earth, or the contrary, by lines

FIG.



FIG.

DEFINITIONS.

drawn to the carth’s center. 'Thus, the small circle AzDBy, in the heavens, is
referred to LvMw on the earth. Hence, if AzBy be the tropic or the polar
circle in the heavens, LvMw will be the tropic or polar circle on the earth.
These circles therefore retain the same relative situations, that is, the formeris.
as far from the pole in the heavens, as the latter is from the pole of the earth.
The planes of these corresponding small circles do not coincide; but when they
become great circles, then the planes become coincident.

46. A body is in Conjunction with the sun, when it has the same longitude;
in Opposition, when the difference of their longitudes is 180% and in Quadra-
tures, when the difference of their longitudes is 90°. The conjunction is marked
thus &, the opposition thus &, and quadratures thus o.

47. Syzygy is either conjunction or opposition.

48. The Elongation of a body is its angular distance from the sun when seen
from the earth.

49. The diurnal parallax is the difference between the apparent places of the
bodies in our system when referred to the fixed stars, if seen from the center
and surface of the earth. The annual parallaz is the difference between the
apparent places of a body in the heavens, when seen from the oppesite points
of the earth’s orbit. ’

50. The Argument is a term used to denote any quantity by which another re-
quired quantity may be found. For example, the argument of that part of the
equation of time which arises from the unequal angular motion of the earth in
its orbit about the sun, is the sun’s anomaly, because that part of the equation
depends entirely upon the anomaly; and the latter being given, the former is
found from it. The argument of a star’s latitude is its distanee from its node,
becausc upon this the latitude depends.

51. The Nodes are the points where the orbits of the primary planets cut the
ecliptic, and where the orbits of the secondaries cut the orbits of their prima-
ries. That node is called ascending where the planet passes from the south to
the north side of the ecliptic, and the other is called the descending node. The
ascending node is marked thus @, and the descending node thus . The
line which joins the nodes is called the line of the nodes.

52. If a perpendicular be drawn from a planet to the ecliptic, the angle
at the sun between two lines, one drawn from it to that point where the perpen-
dicular falls, and another to the earth, is called the angle of Commutation.

53. The angle of Position is the angle at an heavenly body formed by two
great circles, one passing through the pole of the equator and the other through
the pole of the ecliptic. v o

54. Apparent noon is the time when the sun comes to the meridian.

56. True or mean noon is 12 o’clock, by a clock adjusted to go 24 hours in
a mean solar day. ‘



DEFINITIONS,

46. The Equation of Téme is the interval between true and apparent time.

57. A star is said to rise or set cosmically, when it rises or sets at sun rising;
and ‘when it rises or sets at sun setting, it is said to rise or set achronically.

58. A star rises heliacally, when, after having been so near to the sun as not
to be visible, it emerges out of the sun’s rays and just appears in the morning;
and it sets heliacally, when the sun approaches so near to it, that it is about to
immerge into the sun’s rays and become invisible in the evening.

59. Curtate distance of a planet from the sun or earth, is the distance of the
sun or earth from that point of the ecliptic where a perpendicular to it passes
through the planet. .

60. Aphelion is that point in the orbit of a planet which is furthest from the
sun.

61. Perilelion is that point in the orbit of a planet which i8 nearest the sun.

62. Apogee is that point of the earth’s orbit which is furthest from the sun,
or that. point of the moon’s orbit which is furthest from the earth.

63. Perigee is that point of the earth’s orbit which is nearest the sun, or that
point of the moon’s orbit which is nearest the earth.

The terms aphelion and perihelion are also-applied to the earth’s orbit.

64. Apsis of an. orbit, is either itsaphelion or perihelion, apogee or perigec;
and the line which joins the apsides is called the line of the apsides.

65. Anomaly (‘truc) of a planet is its angular distance at any time from its
aphelion; or apogee—("mean ) is its angular distance from the same point at the
same time if it had moved uniformly with its mean angular velocity.

66. Equation of the center is the difference between the true and mean ano-
maly; this is sometimes called the prosthapheresis.

67. Nonagesimal degree of the ecliptic is that point which is highest above
the horizon..

68. The mean place of a body is the place where a body, not moving with
an uniformly angular velocity about the central body, would have been, if the
angular velocity had been uniform. The #rue place of a body is the place where
the body actually is at any time.

69. Equations are corrections which-are applied to the mean place of a body
in order to get its frue place.

70. A Digit is a twelfth part of the diameter of the sun or moon:

71.. Those bodies which revolve about the sun in orbits very. nearly circular,
are called Planets, or primary planets for the sake of distinction; and those
bodies which revolve about the primary planets are called secondary planets, or
satellites. _

72. Those bodies which revolve about the sun in very elliptic orbits are called
€omets. 'The sun, planets and comets, comprehend all the bodies in what is
ealled the. Solar system..

b P



DEFINITIONS.

78. All the other heavenly bodies are called jfized stars, or simply Stars.

74. Constellation is a parcel of stars contained within some assumed figure,
as a ram, a dragon, an Hercules, §c. the whole heaven is thus divided into
constellations. A division of this kind is necessary, in order to direct a person
to any part of the heavens which we want to point out.

v o Do w ®

«@ o v (®

Characters used for the Sun, Moon and Planets.

The Sun. L ¢ Pallas.
The Moon. # Juno.
Mercury. = Vesta:
Venus. % Jupiter.
The Earth. b Saturn.
Mars. ¥ Georgian.
Ceres. _

- Characters used for the Days of the Week.

Sunday. % Thursday.
Moriday. ¢ Friday.
Tuesday. » Saturday.
Wednesday.



CHAP. II.

- ON THE DOCTRINE OF THE SPHERE.

Art. 75. A SPECTATOR upon the earth’s surface conceives himself to be
placed in the center of a concave sphere in which all the heavenly bodies are
situated; and by constantly observing them, he perceives that by far the greater
number never change their relative situations, each rising and setting at the
same interval of time and at the same points of the horizon, and are therefore
called fized stars; but that a few others, called planets, together with the sun
anl moon, are constantly changing their situations, each continually rising and
setting at different points of the horizon and at different intervals of time.
Now the determination of the.times of the rising and setting of all the hea-
venly bodies; the finding of their position at any given time in respect to the
horizon or meridian, or the time from their position; the causes of the different
lengths of days and nights, and the changes of seasons; the principles of dial-
ling, and the like, constitute the doctrine of the sphere. And as the apparent
diurnal motion of all the bodies have no reference to any particular system or
disposition of the planets, but may be solved, either by supposing them actually
to perform those motions every day, or by supposing the earth to revolve about
an axis, we will suppose this latter to be the case, the truth of which will after-
wards appear.

76. Let pep'q represent the earth, O its center, b the place of a spectator,
HZRN the sphere of the fixed stars; and although the fixed stars do not lie in
the concave surface of a sphere of which the center of the earth is the center,
yet, on account of the immense distance even of the nearest of them, their re-
lative situations from the motion of the earth, and consequently the place of a
body in our system referred to them, will not be affected by this supposition.
The plane abc touching the earth in the place of the spectator is called (21)
the sensible horizon, as it divides the visible from the invisible part of the heavens;
and a plane HOR parallel to abc, passing through the center of the earth, is
called the rational horizon; but in respect to the sphere of the fixed stars, these
may be considered as coinciding, the angle which the arc Ha subtends at the
earth becoming then insensible from the immense distance of the fixed stars,
Now if we suppose the earth to revolve daily about au axis, all the heavenly
bodies must successively rise and set in that time, and appear to de:cribe circles
whose planes are perpendicular to the earth’s axis, and consequently parallel to
each other; thus all the stars would appear to revolve daily about the earth’s
~ axis, asif they were placed in the concave surface of a sphere having the earth in

VOL. L ¢ '
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ON THE DOCTRINE OF THE SPHERE.

the center. Let therefore pp’' be that diameter of the earth about which it must
revolve in order to give the apparent diurnal motion to the heavenly bodies,
then p, ', are called its poles; and if pp' be produced both ways to P, P’ in the
heavens, these points are called (18) the poles in the heaven, and the star near-
est to each of these is called the pole star. Now, although the earth, from its
motion in its orbit, continually changes its place, yet as the axis always conti-
nues parallel to itself, the points P, P’ will not, from the immense distance of
the fixed stars, be sensibly altered ; we may therefore suppose these to be fixed
peints®. Produce Ob both ways to Z and N, and Z is the zenith and N the
nadir (23). Draw the great circle PZHNR, and it will be the celestial meri-
dian (25), the plane of which coincides with the terrestrial meridian pbp' passing
through the place of the spectator. Let eg represent a great circle of the earth
perpendicular to its axis pp', and it will be the equator (15), and if the plane of
this circle be extended to the heavens it marks out a great circle EQ called
the celestial equator (18). Hence, for the same reason that we may consider the
points P, P as fixed, we may consider the circle EQ as fixed. Now as the la-
titude of a place on the earth’s surface is measured by the degrees of the arc
be (16), it may be measured by the arc ZE ; hence as the equator, zenith, and
poles in the heaven, correspond to the equator, place of the spectator, and poles
of the earth, we may leave out the consideration of the earth in our further en-
quiries upon this subject, and only consider the equator, zenith and poles in
the heavens, and HR the horizon to the spectator.

77. Let therefore figure the fifth represent the position of the heavens to Z
the zenith of a spectator in north latitude, EQ the equator, P, P its poles,
HOR the rational horizon, PZHP' R the meridian, and draw the great circle
ZON perpendicular to ZPRH, and it is the prime vertical (28); R will be
the north point of the horizon and H the south (26), and O will be the east
or west points (28) according as this figure represents the eastern or western
hemisphere. Draw also a great circle POP' perpendicular to the meridian.
Now as each circle HR, EQ, ZN, PP’ is perpendicular to the meridian, its
pole must be in each (8, 9), therefore their common intersection Q is the pole
of the meridian. Draw also the small circles wH, m¢, ae, Rv, yz parallel to
the equator; and as the great circle POP’ bisects EQ in O, it must also bisect
the small circles mt, ae, in r and ¢; for as EO=90°, therefore (18) #r and ec
each =90°% and as QO =90°, mr and ac each=90°% hence, ac =ce, and mr=rt.

78. As all the heavenly bodies, in their diurnal motion, describe either the
equator, or small circles parallel to the equator, according as the body is in or
out of the equator, if we conceive this figure to represent the eastern hemi-
sphere, QE, ae, mt, may represent their apparent paths from the meridian under

* This is not accurately true, the earth’s -axis varying a little ‘from its parallelism, as will be-ex-
plained in the proper place.
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the horizon to the meridian above, and the points 5, 0, s 3r¢ the points of the
horizon where they rise. And as ge, QE, mt, are bisected in ¢, O, r, eb must
be greater than da, QO=0E, and # less than sm. Hence, a body on the same
side of the equator with the spectator will be longer above the horizon than be-
low, because ebis greater than ba; a body in the equator will he as long above
as below, because, QO =OE, and a body on the contrary side will be longer
below than above, because sms is greater than st. ‘The bodies describing ae, mf,
rise st b and s; and as O is the egst point of theharizon, and R and H are the
north and south points, a body on the same side of the equator with the specta-
ter rises between the east and the north, and a body oa the contrary side rises
between the east and the south; and a body in the eqnator rises in the east at
0. When the bodies come to d and 7, they are in the prime vertical, or in the
east; hence, a body on the same side of the equator with the spectator comes to
the east gfler it is risen, and a body.on the contrary side, before it rises. The
body which describes the circle Rv, or any circle nearer to P, never sets; and
such circles are called circles of perpetual apparition; and the stars which describe
them are called circumpolar stars. The body which describes the circle wH,
Jjust becomes visible at H, and then it instantly descends below the horizon;
but the bodies which describe the circles nearer to P’ are never visible. Such
is the apparent diurnal motion of the heavenly bodies when the spectator is
situated any where between the equator and poles; and this is called an oblique
sphere, because all the bodies rise and set obliquely to the horizon. As this
figure may also represent the western hemisphere, the same circles ea, tm will
represent the motion of the heavenly bodies as they descend from the wneri-
dian above the horizon to the meridian under. Hence, a body is at the greatest
altitude above the horizon, when on the meridian, and at equal altitudes when
equidistant on each side from it, if the body have .not changed its declination,
This is the foundation of finding the time of passing the meridian, from equal
altitudes of a body on each side.

79. If the spectator be at the equator, then E coincides with Z, and conse-
quently EQ with ZN, and therefore PP’ with HR. Hence, as the equator
EQ is perpendicular to the horizon, the circles ace, mrt, parallel to EQ, must
also be perpendicular to it; and as these circles are always bisected by PP, they
must now be bisected by HR. Hence, all the heavenly bodies are-as long
above the horizon as below, and rise and set at right angles'to it, on which
account this is called a right sphere.

80. If the spectator be at the pole, then P coincides with Z, and conse-
quently PP’ with ZN, and therefore EQ with HR. Hence, the circles m¢, ae,
parallel to the equator, are also parallel to the horizon ; therefore as a body in
its diurnal motion describes a circle parallel to the horizon, those fixed bodies
in the heavens which are above the horizon must always continue above, and
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those which are below must always continue below. Hence, none of the bodies
by their diurnal motion can either rise or set. This is called a parallel sphere,
because the diurnal motion of all the bodies is parallel to the horizon. These
apparent diurnal motions of the fixed stars remain constant, that is, each always
describes the same parallel of declination.

81. The ecliptic, or that circle in the heavens which the sun appears to de-
scribe in the course of a year, does not coincide with the equator, for during
that time it is found to be only twice in the equator; let therefore COL repre-
sent the ecliptic, which being a great circle must cut the equator into two equal
parts (7). Hence, as this apparent motion of the sun is nearly uniform, the
sun is nearly as long on one side of the equator as on the other. When there-
fore the sun is at ¢ on the same side of the equator with the spectator, describing
the parallel of declination ae by its diurnal motion, the days are longer than the
nights, and it rises at b from the east towards the north; but when it is on the
contrury side, at p, describing m¢, the days are shorter than the nights, and it
rises at s from the east towards the south, the spectator being on the north side
of the equator; but when the sun is in the equator, at O, describing QE, the
days and nights are equal, and it rises in the east at O*. If ae, m¢ be equidistant
from EQ, then will be =ms and ab=st; hence, when the sun is in these oppo-
site parallels, the length of the day in one is equal to the length of the night in
the other ; and the mean length of a day at every place is 12 hours. Hence, at
every place, the sun, in the course of a year, is half a year above the horizon
and half a year belowt. When the spectator is at the equator, tm, ea being

‘bisected by the horizon, the sun will be always as long above as below the ho-

rizon, and' consequently the days and nights will be always 12 hours long.
There will however be some variety of seasons, as the sun will recede 231° on
each side from the spectator. When the spectator is at the equator, the sun
will be vertical to him at noon when it is in the equator. And when the spec-
tator is any where between the tropics, the sun will be vertical to him at noon
when its declination is equal to the latitude of the place, and of the same kind,
that is, both north, or both south. When the spectator is at the pole, the sun
at p or ¢ is carried by its diurnal motion parallel to the horizon; hence it never
sets when it is in that part of the ecliptic which is above the horizon, nor rises

* The different degrees of heat in summer and winter do net altogether arise from the different
lengths of times which the sun is above the horizon, but from the different altitudes of the sun above
the horizon ; the higher the sun is above the horizon the greater is the number of rays which fall on
any given space, and the greater also is the force of the rays. From all these circumnstances arise the
different degrees of heat in summer and winter. The increase of heat alvo as yon approach the equa-
tor arises from the two latter circumstances.

4 This is not accurately true, because .the sun’s motion in the ecliptic- is not quite uniform, on
which account it is not exactly as long on one side of the equator as on the other. If the major axis
of the earth’s arbit coincided with the line joining the equinoctial points, the times would be equal.
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when in that part which is below; consequently there is half a year day and half
a year night. Hence, the variety of seasons arises from the axis of the earth
not being perpendicular to the plane of the ecliptic, for if it were, the ecliptic
and equator would coincide, and the sun would then be always in the equator,
and consequently it would never change its'position in respect to the surface
of the earth. If QR = EH =23°. 28’ the sun’s greatest declination, then on the
longest day the sun would describe the parallel Rv, which just touching the ho-
rizon at R, shews that the sun does not descend on that day below the horizon,
and therefore that day is 24 hours long. But when the sun comes to its great-
est declination on the other side of EQ, it describes wH and consequently does
not ascend above the horizon for 24 hours, and therefore that night is 24 hours
long. This therefore happens when EH, the complement of EZ the latitude
(16), is 28°. 28, or in latitude 66°. 82. If EH, the complement of latitude,
be less than 23°. 28', the sun will be above the horizon in summer, and below
in winter, for more than 24 hours, and the longer above or below as you ap-
proach the pole, where, as before observed, it will be 6 months above and as
long below the horizon. The orbits of all the planets, and of the moon, are
also inclined to the equator, and consequently their motions amongst the fixed
stars must be in circles inclined te the equator; therefore the same appearances
will take place in each, in the time they make one revolution in their orbits.
All these different appearances in the motion of the moon must therefore hap.
pen every month. It is evident also, that these variations must be greater or
less as the orbits are more or less inclined to the equator; hence they must be
greater in the moon than in the sun*. This apparent motion of the sun, and
real motion of the moon and planets amongst the fixed stars, is from west to
east, and therefore contrary to their apparent diurnal motion.

82. Hitherto we have considered the motion of the heavenly bodies i in the
eastern hemisphere; but if this figure represent the western hemisphere, all
the reasoning will equally apply; hence, the bodies will be just as long in de-
scending from the meridian to the horizon as in ascending from the horizon to
the meridian, the paths described will be similar, and they will set in the same
situation in respect to the west point of the horizon as they rise in respect to
the east; that is, if a body rise from the east towards the north or south, it will
set at the same distance from the west towards the north or south.

83, Having thus explained all the apparent diurnal motions of the heavenly
bodies, with the cause of the variety of seasons, we shall proceed in the next
place to shew the method of determining the positions of the different cir-

* On account of the continual change of declination of the sun, moon, and planets, their appa-
rent diurnal motions will not be accurately parallel to the equator; in such therefore whose declina-
tion alters sen-ibly in the course of a day, and in cases where great accuracy is required, we must,
in our computations, take into consideration the change of declination.
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cles, and the situation of the bodies in respect to the herizen, meridian or
any other circles, at any given time, and to find the time from their posi-
tion.

84. The altitude PR of the pele above the horizon is equal t the latitude
of the place. For the arc ZE is (16) the measure of the latitude, but PE=
ZR, each being =90°, take away ZP which is common to both, and EZ=
PRr*.

85. The latitude of a place may be found by observing the greatest and least
altitude of a circumpolar star, and then applying the correction for refraction,
and half the sum so corrected will be the altitude of the pole. For if yr be the

circle described by the star, then, as Pr=Py, PR=4x Ry + Rz. The lati-
tude may also be found thus. Let eOtbe the ecliptic, then when the sun comes
to e its declination is the greatest, and eH is the greatest meridian altitude;
when the sun comes to the ecliptic at ¢, let #s be the parallel described on that
day, and then sH is the least meridian altitude; and as Ee= Es, § x He + Hs
=HE the complement of the latitude.

86. Half the difference of the sun’s greatest and least meridian altitudes is
equal to the inclination of the ecliptic to the equator. ¥or half He — Hs, or
half se, is equal to Ee which (12) measures the angle EOc, the inclination of

* From hence arises the method of measuring the circumference of the earth; for if a man travel
upén a meridian till the height of the pole has altered one degree, he must then have travelled one
degree; hence by measuring that distance and multiplying it by 360, we get the circumference of
the earth. This was undertaken in England by our countryman Mr. Norwoop, who measured the
distance between London and York, and observed the different altitudes of the pole at those places.
Afterwards the French mathematicians measured a degree. Cassivi measured one in France. After
that, Crairaut, MaveerTuls and several other mathematicians went to Lapland and measured a de-
.gree, the length of which appears to be-69,2 English miles m the latitude of 45°; for the earth being
a spheroid, the degrees in different latitudes are different. This will appear when we treat of the
figure of the earth. The figure of the earth was very early discovered to be spherical ; first, from the
shadow of the earth upon the moon when it is eclipsed being always circular; and secondly, from the
apparent spherical figure of the sea, and from observing that as ships receded from the shore, the
hulks first became invisible, and then the masts gradually from the bottom to the top, which was the
last part that disappeared ; and this could not happen on a plane surface. CLEOMEDEs mentions that
Possipontus made use of a method similar to this in order to determine the magnitude of the earth.
He observed that at Alexandria the star Canopus passed the meridian at the altitude of 74°, and at
Rhodes, lying nearly under the same meridian, it passed the meridian just at the horizon. The dis-
tance between these two places was found to be 5600 stades, which multiplied by 48 (74° being the
48" part of 360°) gives 240000 stades for the whole circumference. It is uncertain what is the exact
length of the stade here made use of ; it also appears from the observations of CuazeLLEs that the dis-
tance of these two places is not 71° but only 5}% no conclusion thercfore can be drawn from hence
of the accuracy of this measurement. EraTosTHENEs makes the distance of Syene from Alexandria
(which he says lie under the same meridian) to be the fiftieth part of the circumference of the earth;
and he also makes it 5000 stades ; hence, the circumference is 250000 stades. But as we do not know
the exact length of the stades, we cannot say how accurate this is. Cleomedis Meteroa, lib. i. ch. 18.
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the ecliptic to the equator. To determine these altitudes without a quadrant,
a gnomon AB has been erected perpendicular to the horizon 4C, and the
length of the shadow 4.D has been observed on the longest and shortest day,
and knowing 4B, the angle BDA is known, which is the sun’s akitude.
Sometimes instead of erecting a gnomen, a small hole is made in the wall or
roof of a building for the sun to shine through, and a plumb line let fall from
the hole to the floor, the length of which is measured, and which answers to
a gnomon A8 ; and the length of the shadow 4.D from A4 being also measured,
( 4 being the point where the plumb line meets the floor) the angle BAC be-
comes known as before. Dr. Loxe made use of this method to find the latitude
of Pembroke Hall in this University, from the known declination. of the sun:
He made the latitude 52°. 12 55"; see his Astronomy, page 518.

87. The angle which the equator makes with the horizon, or the altitude of
that point of the equator which is on the meridian, is equal to the complement
of the latitude. For ZH is 90°, and therefore EH is the complement of EZ;
and as OE=0H=90°, EH measures {12) the angle EOH.

88. Let abcdze be a parallel of declination described by any heavenly body
in the eastern hemisphere, and draw the circles of declination P4, Pd, P, and
the circles of altitude Zb, Zc, Ze. Now, as has been already explained, when
the body comes to bit rises, atc it is at the middle point between ¢ and e, and
at d it is due east; and let # be its place at any other time. Let us first sup-
pose this body to be the sun, and not to change its declination® in its passage
from a to e, and let us suppose a clock to be-adjusted to go 24 bouss in ene
apparent diurnal revolution of the sun, or from the time it leawes any meridian
till it returns to it again, then the sun will always approach the meridian
which it has lefi, at the rate of 15° in an hour, or any other circle of de-
clination ; also, the angle which the sun describes about the pole will be at the
same rate, because (18) any arc z¢, which the sun at # has to describe before
it comes to the meridian, measures the angle xPe, called the kowr angle. If

. therefore we suppose the clock to show 12 when the sun is on the meridian at

g or e, it will be 6 o’clock when it is at c. And as the sun deseribes angles
about the pole P at the rate of 15° in an hour, the angle between any circle
Pz of declination passing through the sun at x and the mesidisn PE, con-
verted into time at the rate of 15° for an heur, will give the fime from appa-
rent noon, or when the sun comes to the meridian.

89. Given the sun’s declination and latitude of the place, to find the time of

* Knowing the longitude and time nearly at any place, the sun’s declination may be found at that
time by first taking the declination for noon on the given day from the nautical Almanac, and then gor-
recting it for the difference of the meridians of the place and Greenwich, and for the hour of the day,
by the 6" of the Requisite Tubles. These tables were computed to facilitate the computations from
the nautival Almanac, and were published by the Board of Lengitude.
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time when twilight begins. Twilight is here supposed to begin when the sun
is 18° below the horizon ; hence draw the circle hyk parallel to the horizon and
18° below it, and twilight will begin when the sun comes to 9 and Zy=108";
hence, sin. yP x sin. ZP : rad.*::sin. £ x PZ + Py + 108° x sin. %xPZ+Py-—

108° : cos. + yPZ*, hence yPZ is known, which converted into time gives the.
time from apparent noon.

95. To find the time when the apparent diurnal motion of a fixed star is
perpendicular to the horizon. Let yx be the parallel described by the star;
draw the vertical circle Zk touching it at o, and when the star comes to o its
motion is perpendicular to the horizon ; and as the angle ZoP is a right one,
we have, (Trig. Art. 212.) rad. : tan. oP::cot. PZ : cos. ZPo, that is, rad. :
cot. dec.:: tan. lat. : cos. ZPo, which converted into time (Tab. 1.) gives the
time from the star’s being on the meridian. Hcnce, the time of the star’s
coming to the meridian being found by Art. 105. the time required will be
known.

96. To find the time of the shortest twilight. Let b be the parallel of the
sun’s declination at the time required, draw cd indefinitely nedr and parallel to
it, and T'Wa parallel to the horizon 18° below it; then vPw, sP¢ measure the
twilight on each parallel of declination, and when the twilight is shortest, the
increment of the héur angle being=0, these must be equal ; hence, vPr=wPz,
therefore wr=w2; and as rs=1z, and the angles » and z are right ones, rvs§=
2wt ; but Pvr=90°=~2vs, take Zvr from both, and PvZ=rvs; for the same
teason PwZ = %ut; hence, PvZ=PwZ. Take ve=wZ=90° then as Pv=
Pw and the angle ‘Poe= P'wZ therefore Pe=PZ ; let fall the perpendicular
Py and it will bxsect the base eZ. Then (Tng. Art, 212.) cos. Py—f:g:: 1;3

cos. Pv L Py Pe cos. PZ he cos. Pv cos. PZ
ey’ 2180, €08 LY=(os. eJ =cos. ey’ ence, sin. ey cos. ey ~v €08

si.

n. ey
Cos. ey
or sin. lat.::tan. ey="9° :'sin. kv the sun’s declination at the time of shortest
twilight. Because PZ is always less than 90°, and Zy=9°, therefore /'y is al-
ways less than 90°, and therefore its cosine is positive ; also, vy is always greater
than 90°, theréfote its cosine is negative; hence, cos. Fv (=cos. Py x cos. vy)
is negative, consequently Fw is greater than 90°, thefefore the sun’s declination
is south. ‘'This is M. CaenoLr’s Investigation. _ .

97. "To find the length of the shortest twilight. As ?c'PZ=vPe,’thereﬁ)re
ZPe=vPw measuring the shortest time. Now sin. PZ, or cos. lat. : rad.:
sin. Zg/ =9° : sin ZPy, which doubled gives ZPe or v P, ‘which converted mto
time gives the length 'of the shortest twilight.

Tv, or sin. Ju,==Co0s. PZ_x =cos. PZ « tan. ey, hence,rad.,; cos. ’Z,

s
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Ex. To find the time of the year at Cambridge, when the twilight is short-
est; and the length of that twilight.

Rad. - - .- - - - - . - .- - . . 10,0000000
Sin. 52°.12. 85" - - - - . . . - - 98977695
Tana 90. - - - - - - ‘. - - - - - - 9,199712\5
Sin. 7°. 11. 25" dec. - - - . . - . - 9,0974820

This declination of the sun gives the time about March 2, and October 11.
Cos. 52°.12.85" - - - . - - - - . 0,2127004 A.C.

SiD.9° . . - e o« - o - - - - - 9,1943824
Rad. - - - - - - - - - - - - - lo’m
Sin. 14°. 47. 27" - - - . - - - - - 9,4070328

The double of this gives 29°. 34. 54", which converted into time gives 14.
58'. 20" for the dyration of the shortest twilight, it being supposed to end when
the sun is 18° below the horizon. X

98. To find the sun’s declination when it is just twilight all night. .H‘ere the
sun at @ must be 18° below the horizon; hence, 18°+dec. Q=RQ=EH =
comp. of lat. of place, and the sun’s dec.=comp. lat.—18%; look therefore
into the Nautical Almanac, and see on what days the sun has this declination,
and you have the time required. The sun’s greatest declination being 23°. 28,
it follows, that if the complement of latitude be greater than 41°. 28', or if the
latitude be less than 48°. 82, there can never be twilight all night! If the sun
be on the other side of the equator, then its dec.=18". — comp. lat.

99. If the spectator be between E and L, and the sun’s declination Ee be
greater than EZ, then the sun comes to the meridian at ¢ to the north of its
zenith ; andif we draw the secondary Zgm touching the parallel ae of declina-
tion described .by the sun, then Rm is the greatest azimuth from the north

which the sun has that day, the azimuth increasing till the sun comesto ¢, and

then decreasing again, and the sun has the same azimuth twice in the morn-
ing. If therefore we draw the straight line Zv perpendicular to the horizon,
the shadow of this line, being always opposite to the sun, would first recede
from the south point H and then approach it again in the morning, and there-
fore would go backwards upon the horizon. But if we consider PF' as a
straight line, or the earth’s axis produced, the shadow of that line would not
go backwards upon that plane, because the sun always continues to revolve
about that line, and therefore its shadow must always go forwards; whereas
the sun does not revolve about the perpendicular Zv. Hence it appecars, that
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‘the shadow of the sun upon a dial can never go backwards, because the gnomor

of a dial is parallel to PP, and therefore the sun must always revolve about
the gnomon. The time when the azimuth is greatest is found from the right
angled triangle P¢Z, by saying, rad. : tan. ¢P:: cot. PZ : cos. ZPg, or rad. :
col. dec. :: tan. lat. : cos. PZg the hour angle from apparent noon.

100. It has hitherto been supposed, that it is 12 o’clock when the sun comes
to the meridian, and that the clock goes just 24 hours in the interval of the
sun’s passage from any meridian till it returns to it again. But if a clock be
thus adjusted for one day, it will not continue to show 12 o’clock every day
when the sun comes to the meridian, because the intervals of time from the
sun’s leaving any meridian till it returns to it again, are not always equal; this

~ difference between the sun and the clock is called the Equation of Time, as

will be explained in Chap. IV. Hence, when the clock does not agree with
the sun, any arc e is not the measure of the time from 12 o’clock, but from
the time when the sun comes to the meridian, or from apparent noon®*,

101. In the same manner as we find the hour angle for the sun, we may also
find it for any fixed star or planet, its altitude and declination being given ;
but when the hour angle is thus found, it is necessary to know the time when
the body is upon the meridian in order to find the time from thence, the hour
angle being the distance from the meridian ; also the method of reducing the
hour angle into time will be different. For let E be the earth, rmsn the equa-
tor, sr a meridian passing through a fixed star § reduced to the equator ; then
as the meridian returns to the star in 28k. 56 4’ after leaving it (127), we
have 860° : hour angle:: 28k, 56'. 4" : time from the meridian. Now let P be
a planet, and the meridiam mn to pass through it; then the meridian will re-
turn to that position again in 284. 56'. 4"; now let Pv or Pv' be the planet’s
motion in right ascension in one day, according as its motion is direct or rc~
trograde, and reduce this into time (#) at the rate of 15° for an hour, which
will be sufficiently exact for so small an arc, then the meridian returns to the
planct again after an interval of 23k. 56'. 4"+¢; hence, the meridian, after
leaving the planet, approaches it at the rate of that time for 360°, because
when the meridian leaves the planet it is then approaching a point 360° from:
it ; hence, 860° : hour angle:: 23k. 56. 4"+ ¢ : time from the meridian.

* The conversion of the hour angle into time for the sun at the rate of 15° for an hour, by a clock
adjusted to mean solar time, is not accurate, because the solar days are not all accurately equal to 24
hours, but to 24k.the variation (¢) of the equation of time for that day, according as the eqnation.

is increasing or decreasing ; hence, to reduce the hour angle to give accurately the time from appar-
o

[
ent noon, say, 360°: hour angle (a°) :: 24h. ¢ : time=grm X 24k ¢; for, in this case, the meri-

dian, instead of returning to the sun in 244. returns to it in 24h. T e This quantity e is somctimes.
30", and therefore if «°=60° the correction would be 5”. A clock is adjusted to mean solar time,.
when it is adjusted to go 24 hours in a meun solar day.  Sce Are, 127.
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‘2. The hour angle which we have hitherto found for the time at which a
iy rises, has been upon supposition that the body is upon the rational horizon
ihe instant it appears; but all bodies in the horizon are elevated by refrac-
-1 33" above their true places ; this therefore would make them appear when
aey are 83 below the rational horizon, or 90° + 35 from the zenith ; also, all
.he bodies in our system are depressed below their true places by parallax, as
will be afterwards explained, therefore from this cause they would not appear
till they were elevated above the rational horizon by a quantity equal to their ho-
vizontal parallax, or when distant from the zenith 90°—hor. par. Hence, from
both causes together, a body becomes visible when its distance Z¥ from the
zenith =90° + 88'—hor. par. ¥ being the place of the body when it becomes
visible, Z the zenith and P the pole ; hence, knowing ZV, also ZP the com-
plement of latitude and PV the complement of declination, we can find the
hour angle ZPV. A fixed star has'no parallax, therefore ZV =90° 38.

108. If the body sensibly alter its declination in a few hours, as the moen
does, the time of its rising may be thus found. Let w be the place of the
moon on the meridian, v when in the horizon, and d the point when it becomes
visible ; draw ade parallel to EQ, and ew is the change of declination in the
time from rising to the meridian. Now from knowing the time (105) of pass-
ing the meridian, and the declination at noon, with the change of declination
in the interval of the passages of the moon over the meridian by the Nautical
Almanac, compute the change of declination in the interval between noon
and the time of the moon’s transit, and you will get the moon’s declination at
the time of its transit. To that declination compute the hour angle upon sup-
position that the declination continued the same as on the meridian, which will
be nearly the angle 2 Pd. From the Nautical Almanac find the change (v) of
declination in the interval (t) of time from the moon’s passage over the meri--
dian till it returns to it again ; then say, 860° : hour angle::v : the change of

declination in describing that angle, which added to or subtracted from the de-

clination at the time of passing the meridian gives very nearly the declination
at rising ; to which compute the hour angle and convert it into time as before
and subtract it from the time of passing the meridian, and it gives very nearly
the time of rising ; and if greater accuracy should be required, the operation.
may be repeated by taking this hour angle.

Ex. To find at what time the moon rose at Greenwich on July 1, 1767.
The latitude of Greenwich is 51°. 28" 40", and (105) the moon passed the me-
ridian at 44. 2. 9"; now t=24k. 40, and v=5° 28'; hence, 24h. 40’ : 4/h. 2.
9"::5°% 28" : 53 38" the change of declination in 4A. 2. 9°, which, as the de-
clination is decreasing, subtracted from 5°. 22/, the moon’s north declination
at noon, leaves 4°. 28'. 22" for the moon’s declination when it was on the me-
ridian ; hence we take Pd=85° 31 388", also PZ=238° 31'. 20"; and as the
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moon’s hot. parallax = 54, 21", and refraction 88', we-have Zd=89°. 38’ 89",
hence the angle ZPd=95° 8. 50°. Hence, 360° : 95°. 8. 50"::5° 28 : 1°
26'. 87" the change of declination in the time of describing 95°. 8% 50", which
added to 4°. 28" 22" gives 5°. 54. 59" for the declination at the time of rising,
very nearly; hence, Pd=84°. 5. 1, therefore the angle ZI’d=96°. 54." 2";
hence, 860° : 96°. 54, 2"::24h. 40 : 6h. 38. 22" the time of describing the
angle Z Pd, which subtracted from 4/4. 2. 9", the time when the moon was on
the meridian, gives the time of rising 2ik. 238 47", answering to 9k 28, 47"
in the morning apparent time. '
104. In determining the time when any body rises, or. when it is at any known
altitude or position, it has been supposed that we know the time at which it
comes to the meridian; the determination of this circumstance must therefore
be next explained.
105. Let a clock be adjusted to mean solar time, which we mny therefore
onsider as the time from the sun’s leaving the¢ meridian till it retuins to it
again, where great accuracy is not required, the difference being only the vari-
ation of the equation of time in 24 hours. Let S and P be the places of the
sun and a planet reduced to the equator; then the meridian sr approaches the
sun at the rate of 15° in an hour; for when it leaves the sun at § it may be
considered as approaching a point at that time 860° from it, and which it comes
up to in 24 hours; hence if any other point were moving forwards with the ve-
locity of the sun, the meridian would approach it at the same rate. Thercfore
if the planet at P move forwards with a different velocity from that of the sun,
the interval of their passages over any meridian will be the same as if we sup-
posed the sun to be at rest and the planet to move with its own proper motion
minus that of the sun, the planet’s motion in right ascension being greater
than that of the sun. Let x be the difference of their motions in right ascen-

‘sion in 24 hours reduced into time, and ¢=S8P reduced also into time in like
* manner, the planet being at P at the time the meridian passes through the sun

at §; and let v be the place of the planet when the meridian overtakes it,
and e be the arc Pv in time; then the motions of the meridian will be 24 and
t+ e, and of the planet in the same times » and ¢; hence, as we may consider

each motlonasumform, 24 2 t+e: e,..24- riat: e_.%t‘r' . This is
-

the case if the planet’s motion be gleater than the sun’ 8, but if the sun’s be

greater, then z itself becomes negative, and therefore —z will be positive ;
lr 241 .

; therefore t+e=t+ — =""__

; therefore ¢+ TEyiar e the time from apparent

noon when the planet passes the meridian, where the upper or lower sign

prevails according as the planet’s or sun’s motion is greatest. If the motion

of the planet in right ascension be retrograde, it is manifest that z is the

—
hence e=
€ 24+
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sum of the motions of the planet and sun in 24 hours, for the bodies moving
in opposite directions they approach each other with the sum of their motions;
let therefore v' be the place of the planet when it comes to the meridian,
then the motion of the meridian:from its passage through the sun to the
planet will be ¢—e; hence 24 :x::t-e:e, therefore 24+a:a:it:e=
—; hence, the time requu'ed t—_t‘”_._—;_f.if.. But as the division
24 + 4+ 24+a
by 24- Fz is not so convenient as it would be by 24, therefore resolve
24 into ¢+ 71T -+ &c. where the two first terms will be sufficient for alk
247> 24 24
~ cases except the moon, where it will be necessary to take the third. For a fixed
star, = will represent the increase of the sun’s right ascension in 24 hours, and the
time required =2—it-t.z‘-= t--{ﬁ,_ By this method we find, very nearly, the
time at which any body comes to the meridian, and hence, by the last ar-
ticles, we may find the time of its rising, or the time at any given altitude.
Ex. To find the time of the inoon’s passage over the meridian at Green-
wich on July 1, 1767. The sun’s AR.* when on the meridian that day
was 6h. 40. 25", and its daily increase 4. 48" also, the moon’s 4AR. was
10k. 86'. 8", and its daily increase 42. 28". Hence, t=10%k. 36'. 8" —6h. 40 25"
=8h. 55. 43"=38,9285 (Tab. 8.), also, 2=42. 28" — 4 48"=37" 40"=0,6277;
iz te ta*

tr ' .
hence, - =6. 10"; —.=10"; therefore f+_—+_— ...4-h 2. g appar
24 TogeT ! 24 24  the appa

rent time of passing the meridian. :

Where great accuracy of time is required from an observed altitude, the
body made use of must be the sun or a fixed star. The method of finding the
time by the sun has been already explained (92), and the tlme by'a star may
be found by the following method.

106. Find the star’s true altitude, and take its declmatlon from the 7th of
the Requisite Tables, or from any other tables if it be not there; then in the
triangle ZPx (« representing the place of the star) we have ZP the comple-
ment of latitude, Pz the complement of declination and Zr the complement
of the star’s altitude, to find the angle ZPuz, the star’s distance from the
meridian, which convert into time. Now the point of the equator which is

upon the meridian at any time, is called the mid-keaven ; therefore the angle ZPz
measures the star’s distance from the mid-heaven. Hence, if the star be to
the east of the meridian, subtract its distance from the meridian from its 4R.
(adding, if necessaty, 24 hours to its AR.) and the difference is the 4R.
of the mid-heaven: But if the star be to the west, add them together (sub-

* AR. mcans right ascension, -
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tracting 24 hours from the sum, if greater,) and the sum gives the AR of the
mid-heaven®. Then find the sun’s AR at the preceding noon at Greenwich
from the Nautical Almanac, and from thence at noon at the given place by
the 23d of the Requisite Tables, and subtract it from the AR. of the mid-
heaven (adding 24 hours to the lattert, if necessary), and the difference would
be the apparent time from the préceding noon, or the estirate time, if the
sun had had no motion in that time; but as it has moved, find that mo-
tion by the 23d of the Requisite Tables, and subtract it, and it gives the
apparent time required.—Hence, if we apply the equation of time it gives the
true time, which compared with the watch, shows how much it is too fast or
too slow; and by repeating the observations, the rate of going of the watch
may be determined; but this will be further explained in Chap. IV.

‘Ex. On April 144 1780, lat. 48° 56. N. lon. 66°. W. the true altitude
of Aldebaran west of the meridian was 22° 17. 50" to find the apparent
time.
 Sun’s AR. for noon at Greenwich by the Nautical Almanac 14 31', 1”

" Corrected for the Long. by the 28d of the Requisite Tables ¥ +41

Sun’s AR. at noon at the given place - - - . . - - - 1.31.42

- Also by Requisite Table 7. the star’s dec. is 16°. 3' N. Hence ZP =41°.
4, Zr=67°. 42. 10", zP="73° 57'; hence by sph. trig.
Pr = 78° 57. 0" arith. comp. of sine 0.017304
ZP = 41. 4. O arith. comp. of sine 0.182476
= 67.42.10

Sum = 182.43.10

.

# 'That this is true for every position of the point aries and place of the star, may be thus
shown. Let E2 represent the equator, E the point on the meridian, &, o', on”, different positions
of the point aries, in respect to the place 4, A’ of the star referred to the equator, 4 on the western
side of the meridian, and 4’ on the eastern; B the point to which the sun is referred; o0 EB2 the
direction in which the right ascension is measured. Now suppose the star at 4, to the east of the
meridian; then, 1. w4’ —AE=oE. 2. o' A—AE=—ep"E=—24h.+ " 2E, ... n*A+2U4h—
AE=o"BE. Now suppose the star at 4, on the west side ; then 1. trA+AE_q'E. 2. w4+
AE—24h. = o *'RA 4 Aoy’ + op' E—24h. = op’E, because q-'AQA+A¢v~'=94h.

" 4 For, 1. #”BRE—o""B=E2B. 2 o E 4 24h. —fv'B wE+EAB4ERB—oB=ERB, be-
¢ause wE+EAB=oB.

% The daily variation of the sun’s AR, with which you enter the Requisite Tables, is taken from
the Nawtical Almanac.

5
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91 . 21 ; 35 Sine ‘- - - - - 9-999874 .
67.42.10

4 Sum
Zx

Dif. =23.89.25sne - - - - - 9.603425

-
—

—

—

2)19.803079

: ‘ 9.901539 the cosine of
37°. 8. 29" hence the angle 2PZ (or in FIG. 15. the arc AE) ="74° 16. 58,
or m time = 4-h 57. 8"; hence, :

Star west of merid. - 4h. 57. 8" | Estimate Time - - 7h. 48. 46"
Star’s AR. by Req. Tab.7. 4 . 23. 20 | Correc. from Req. Tab.28. — 1. 12

AR. of mid-heaven - 9 . 20. 28 Apparent Time reqhired 7. 47. 34
Sun’s AR.at noon - 1. 31. 42

107. The time of the passage of a star over the meridian may be found (78)
from taking the times at which it had equal altitudes on each side of the meri-
dian, and bisecting the interval. If equal altitudes be taken at 8 and 11 o’clock,
the star was upon the meridian at half past 9 o’clock. But for the sun this will
want a correction, owing to its change of declination, on which account it
is not at equal altitudes when equidistant from the meridian. If be be the di-
urnal arc described by the sun in its ascent to the meridian, and ed in its de-
scent from it, and mn be drawn parallel to HOR, then the sun is at equal alti-
tudes at m and n, and the angle mPn, or the arc ¢gr, measures the difference of
the times at m and zn from the meridian; when we therefore bisect the interval
of the times at which the sun was at m and », we must correct it by half mPn,
or half ¢gr, in order to get the time at which it comes to the meridian. This cor-
rection is called the equation Qf equal altitudes. Now (Trig. Art. 264.) if d'=.
the variation of the sun’s dec. in the interval of the observations, ¢=tan. lat.

= tan. decl. at noon, s =sine, » =tan. of the hour angle from noon at the time of
the observation, takmg the half interval of times for the measure of that angle; H

then f{gr=4d"x -__ ;, radius being unity; or as the value of d" in time is 1_::

seconds, estlmated at the rate of 15° for 1 hour, or 15" for 1 second of tlme‘_

v seconds of time, where the sign — isto be ,

d
therefore the correction=_— x-%_
30 s r

used when the lat. and decl. are both north or both south and + when one
is north and the other south. Now in north latitude, when the sun approaches
the north pole, or is in the 9th. 10th. 11th. Uth. 1st. 2nd. signs, it is manifest

VOL. I. B
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from the figure, that the-sun, after passing the meridian, will not come to the
same altitude as at the observation before, wmtil it. be at a greater distance
from the meridian ; therefore the middle point of time-betwcen the observa-
tions must be, when the sun has passed the meridian, and the correction must
be subtracted. When fhe sun is in the other signs, receding from the north

- pole, it comes to the same altitude at a less distance from the meridian; there-

fore the middle point of time must be, before the sun comes to the meridian,
and censequently the correction must be added. - Te facilitate this computation,
Mr. WaLEs constructed and computed a set of tables which were published in
the Nautical Almanac for 17 73; these tables are called Equation to correspond-
ing alhudeo.

To jbm‘tke Time tke Sun is passing the Meridtan, or the horizontal or perpendi-
cular Wire of a” Telescope.

108. Let mz be the diameter d” of the sun, estimated in seconds of a great
circle; then, (as the minutes in mr, considered as a small circle, must be
gr&iter @ proportion as the radius is less, because, when the arc is given; the
angle is inversely as the radius), sin. Pa, or cos. dec. 7z : rad.::seconds d' in
ma of a great circle : the seconds in mz of the small circle ea, which is equal
to (13) the seconds in gr=the angle »Pg, and therefore the angle rPg=d’
divided by ceos: dees (rad. being unity)=d" x sec. dec., which measures the
time the sum is passing over its diameter, and consequently the time the dia-
meter would e in passing over the meridian ; lience (asin Art. 107), the time
d’ x sec. dec.

15" .

Hemce ¢r, the sun’s: diameter in right ascension, is-equal to d” x sec. dec.
If therefore the san’s  diameter =32 = 1920, and its dec. 20°, its diameter in
right ascension= 1920" x 1,064 =34, 2,88. 'The same will do for the moou,
if d' zits digmeter.

109. By Art. 98. gr=nx x

d x M’ \

cos. lat. x sin. azi.
time in which the sun ascends perpendicularly through a space equal to its dia-
meter, or the time of passing an horizontal wire, is equal to£ x (':OS la':f:; =
The same expression must also give the time which the sun is in rising:
3-d =1860" the hosizontsd refraction, then d’ divided by 15”— 182"; heace,

of passing the meridian =

o lati’s;n azi."—‘(if nr=d the sun’s diam.)

; hence, as before, the time of describing ¢r, or the

weffaction accelerates the rising of the sun by 132" X Zos Tat. x sin. azi.
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The sin. mva & sin, ame:imn  ne=mn x o o hence (98), .qr=
sin., mrm
wmr rad. * o e
X = ad =mnx rad ; and if mn=d’, we
iam - Sin. N x COS. 1T $in. 72M x COS. 7'¥
time, in which the horizontal motion of the sun is equal to its diameter,
o rad. *
5 " cos. ZaP x cos. dec

. pass the vertical wire of a telescope.

, which is therefore the time in which the sun

M AskeELYNE’s Rules to find the Time of the Passage of a Star or Planet from
one T¥ire to another of a tramsit Instrument.

1. For a fized Star. Multiply the equatorial interval of time by the secant
¢ star’s declination, and you have the time required. For an arc of the
tor, measured on a small circle parallel to it, subtends a greater angle
¢ the earth’s axis, in the proportion of rad. : cor. dec.. or sec. dec. :
v the Sun. Increase the equatorial time of a star by the 365th part (owing:
. sun’s motion in that time) and you have the equatorial time by the sun ;
" proceed as for a star. ‘
or a Planet, except the moon. Take the difference (&) of 23%. 56, and
interval of two successive transits of the planet over the meridian, asgiven.
lic Nautical Almanac; thensay, 24/. : d:: the time of the passage of a star-
.ing the same declination : a fourth number, which added to or subtracted:
m the time of the passage of a star, according as the interval of the two
-cessive transits is more or less than 23'. 56", gives the time of the planet’s
Nsage.
For the Moon. Put n=the equatorial interval by a star, r=daily retard--
‘on of the moon’s passage over the meridian in minutes; then allowing for
- moon’s motion, 26%. 56 : 1440 +7 1:n x kT +T the timeinthe equator fiom:
to wire, seen from the earth’s center. Now the time of the image from wire-
.ire, is caeteris paribus, as the angle subtended by the interval of the wires at
bject glass, or as its vertical angle, or the angle described by the moon.about
.pposed place of observation; but the velocity of the moon and the angle-
bed being given, the arc, and therefore the time, is as the distance;.

’

the time seen from the ceater of the easth (7 % %) : time .at the

vt ¢ s dist. from center : ¢ ’s dist. from spectator:: sin. ap. Zen. dist..
rue zen. dist. therefore the interval of time (/) at the spectator=:

ey
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1440’ +7 o 52 Ir-zen. dist.
23h. 56 s.ap.sen.dist.
L. (1440 +7) + 1 Req. Tab. IX. +/ sec. ¢’s dec.—30.

On the Principles of Dialling.

112. As the apparent motion of the sun about the axis of the earth is at the
rate of 15° in an hour, very nearly, let us suppose the axis of the earth to pro-
ject its shadow into the meridian opposite to that of the sun, and then this me-
ridian will move at the rate of 15° in an hour. Hence,let s PRpH represent a
meridian on the earth’s surface, POp its axis, 2 the place of the- spetfator,.
HKRYV a great circle of which z is the pole ; draw the meridians P1p, P2p, &c.

x sec. ¢ ’s dec.; hence, Log. 1.=6,84278 +1. n +

‘making angles with PRp of 15°, 80°, &c. respectively; then supposing PR to

be the meridian into which the shadow of PO is projected at 12 o’clock,

P1, P2, &c. are the meridians into which it is projected at 1, 2, &c. o’clock,

and the shadow will be projected on the plane HKRV in the lines OR, 01,

02, §c., and the arcs R1, R2, &c. will measure the angles RO1, RO2, &c.

between the 12 o’clock line and the 1, 2, &c. o’clock lines. Now in the right

angled triangle PR1, we have PR (84) the latitude of the place, and the angle '
‘RP1=15° hence, rad. : tan. 15°::sin. PR : tan. R1; in the same manner we

may calculate the arcs B2, R3, &c. In this case we make the earth’s axis the

gnomon, and the shadow is projected upon the plane HKRV. But if we take a

plane abed at 2 parallel to HKRV, and consequently parallel to the horizon

at 2, and draw zr para]lel to POp, then on account of the great distance of
the sun we may conceive it to revolve about 2zt in the same manner as about

Pp, and consequently the shadow will be projected upon the plane abed in the

same manner as the shadow of PO is projected upon the plane HKRV, and

therefore the -hour angles are calculated by the same proportion. This is an

hor:zontal dial.

" 118. Now let NLzK be a great circle perpendicular to PRsz, and ‘con-
sequently perpendicular to the horizon at z, and the side next to' H is full south:
Then, for the same reason as before, if the angles Npl, Np2, §c. be 15°, 80°,
&c. the shadow of pO will be projected into the lines 01, 02, &c. at 1, 2, .
o’clock, and the angles NO1, NO2, will be measured by the arcs N1, N2 e.
Hence, in the right angled triangle pN1, pN =the complement of the latltude,
and the ‘angle Npl=15° therefore rad. : tan.15°::sin. pN : tan. N1; in the
same manner we find N2, N3, &. Hence, for the same reason as‘for the ho:
rizontal dial, if 2abc be a plane coinciding with- NLsK, and st be "parallel to
Op, st will project its shadow in the same manner on the plane zabc as Qp
does on the plane NLzK, and therefore the hour angles from the 12 o’clock
liné are compiited by the same “proportion. - “This is & vertical south dial. In the



»

ON THE DOCTRINE OF THE SPHERE.

same manner the shadow may be projected uf;on a plane in any position, and the

" hour angles be calculated.

114. In order to fix an horizontal dial, we must be able to tell the exact
time of the sun’s coming to. the meridian; for which purpose, find the time (92)
by the sun’s altitude when it is.at the solstices, because then the declination
does not vary, and set a well regulated watch to that time; then when the
-watch shews 12 o’clock, the sun is on the meridian; at that instant therefore
set the dial to 12 o’clock, and it stands right. .

.. 115. Hence we may easily draw a meridian line upon any horizontal plane.
Suspend a plumb line so that the shadow of it may fall upon the plane, and
when the watch shows 12, the shadow of the plumb line is the true meridian.
The common way is to describe several concentric circles upon an horizpntal
plane, and in the center to erect a gnomon perpendicular to it with a small
round well defined head, like the head of a pin; make a point upon any one
of the circles where the shadow of the head, by the sun, falls upon it on the
morning, and again where it falls upon the same-circle in the afternoon; draw
two radii from these two points, and bisect the angle which they form, and it
will be a meridian line. This should be done when the sun is at the tropic,
when it does not sensibly change its declination in the interval of the obser
wvation; for if it do, the sun will not (107) be equidistant from the meridian
at equal altitudes. This method is otherwise not capable of very great accu-
racy, as, from the shadow not being very accurately defined, it is not easy to

. say at what instant of time the shadow of the head of the gnomon is bisected by
' the circle. If, however, several circles be made use of, and the mean of the
whole taken, the meridian may be gotten with sufficient accuracy for all com-
.Inon purposes.

116. To find whether a wall be full south for a vertical south dial, erect a
gnomon perpendicular to it and hang a plumb line from it; then, when the
watch shows 12, if the shadow of the gnomon coincide with the plumb line,
the wall is full south.

29
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TO DETERMINE THE RIGHT ASCENSION, &c.. or THE HEAVENLY BODIES.

together with an example. Let AGCKE be the equator, 4 BCWE the ecliptic,
S the place of the star, and Sm a secondary to the equator, and let the sun be
at P, very near to 4, when it is on the meridian, and take CT'= P4, and draw
PL, TQ perpendicular to 4GC, and QL parallel to 4C; then the sun’s deeli-
nation is the same at T as at P. Observe the meridian altitude of the sun
when at P, and also the time of the passage of its center over the meridian ;
observe also at what time the star passes over the meridian, and then (118) find
the apparent difference Lm of their right ascensions. When the sun approaches
near to T, observe its meridian altitude for several days, so that on one of themn,
at ¢, it may be greater and on the next day, at e, it may be less than the meri-
dian altitude at P, so thatin the intermediate time it may have passed thromght
T ; and drawing ®, es perpendicular to AGCE, observe on these two days, the
differences &m, sm of the sun’s right ascension and that of the star ; draw also
sv parallel to Qo. Hence, to find Qb, we may consider the variation both of’
the right ascension and declination te be: uniform for a small time, and conse-
guently to be proportional to each other; hence, vb (the change of meridian
altitudes in one day) : o (the differencc of the meridian altitudes at ¢ and 7,

or the difference of declinations) :: sb (the difference of sm, bm found by obser- |

vation) : Qb, which added to-bm, orsubtracted from it, according to the situa-
tion of s, gives Qm, to which add Lm, or take thetr difference, according to
circumstances, and we get QL, whic¢h- subtracted from 4GC, or 180°, half
the remainder will be AL the sun’s right ascension at the first observation, to
which add Lm and we get the star’s right ascension at the same time. Instead
of finding 8Q, we might have found sQ, by taking TQ —es for the second term,
and from thence we should have gotten @n. Thus we should get the right as.
ceusion of a star, upon supposition that the position of the equator had re-
mained the same, and the apparent place of the:star had net varied, in the in.
terval of the observations. But the interseetion of the equator with the eclip.
tic has a retrograde motion, called the Precession of the Equinoxes; also, the
inclination of the equator to the eeliptic is subject to a variation, called tite
Nutation ; and from the Aberration of the star, its apparent place is contima-.
ally changing. The effects of all these circumstances in changing thé right as.
cemsion of the star will be exphined and investigated in their proper places
Now Tables ¥IL and VIIL. (see Vol. IL) contain thesé corrections for 38 prin.
cipal stars ; that is, if the meun right ascension of any star be taken for the Be.
ginning of the year, and these corrections be applied #v it, according to their
signs, for any day, the result gives the apparent right ascension of the star for
that day.

120.y1',et therefore ABCE be the ecliptic, A4GCE the positioh of the egua-
tor at the first obscrvation when the sun was at P, and agcd the position of' the
cquator at the time of the observation at the other equinox, and take 7C="P 4,

FIG.
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FIG.
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and draw 7'Q perpendicular to AGCE, as before, gnd draw- Qg parallel to 4 BC;
and tgr perpendicular to AGCE ; -let Ae be also perpendicular to agcd. Now
as the position of the equator and the apparent place of the star are altered in
the time between the two observations, let m be the point where a secondary
from the apparent place of the star to the equator at the first observation would
cut it, and v the place at the second observation, and draw vw perpendicular
to AGCE ; then Am is the apparent right ascension of the star at the first ob-
servation, and av at the second. Also, the sun must be at ¢ when it has the
same declination #7 at the second observation as it had at the first, and conse-
quently gv is the apparent difference of right ascensions of the sun at ¢ and star,
which difference is found by observation in the same manner as the difference
at 7' was before found, when the equator was fixed. Also, as Qg=Cc= Aa,
and the angle ¢Qr=cCQ = Aae, we have Qr=ae¢=Aa x cos. Aae. Now if we
put M for the mean right ascension of the star at the beginning of the year,
and § for the sum of all the corrections due at the time of the first observation,
and s.for the sum due at the second ; then, from what we have already explain-
ed in the last -article, M +S=A4m; M +s=av, hence, if we take the former
from the latter, suppesing s to be greater than S, we have s— S=av— Am=aqe
+ev—Aw—um (m lying beyond w); but ev=dw; hence, s—S=ac—um,
consequently wm=ae—s—S. Now gv, or rw, is known, hence we know rm,
-and as Qr is.known, Qm will be known ; and as we also know Lm, we get the
value of QL*, with which we proceed, as before, to get the star’s right ascen-
sion. The great advantage of this method, is, that it does not depend upon
any determination of the latitude of the place, declination of the sun or accu-
racy in the divisions of the instrument. If the latitude be known, we may.
find the declination from the meridian altitude, it being, from Art. 87, equal

" to the difference between the meridian altitude and the complement of latitude,

and then one observation at the second equinox will be sufficient, because the
daily variation of the declination and right ascension may be taken from the-
Nautical Almanac. Having thus determined the right ascension of one star,
the right ascension of all the heavenly bodies may from thence be found (118).
. If the right ascension of a star, which is not in these tables, should be re-.

- quired, the corrections must be computed by the Rules which we shall give in

their proper places. . If the right ascension of the star be first computed with-
out considering these corrections, it will be sufficiently accurate to compute.
the corrections from, and then they may be applied.

* # In all these cases, if you draw the figure and put the star in its proper place, and put m and w,
in their proper situations, which may be done by observing whether ew or 4m be the greater, you'
will immediately see what quantities are to be added together, and what subtracted. This ﬁgure is
drawn for the Example.
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" Ex. Let it be required to find the right ascension of Palluz on March 24, in
the year 1768, from Dr. MAsKELYNE’s observations.

On March 24, Pollux passed the meridian at 7k. 81'. 38"; and on the 25, at
7h. 81'. 87",66 ; on the same day the sun passed at Ok. 16'. 35",5 ; hence, the ap-
parent difference of the 4R’s. of the sun and Pollux on the 24th, allowing for the
error of the clock (122), was 7h. 15. 2,46 =108°. 45 36",9=Lm. Now on
March 24, :

Appar. zen. dist. ® L. L. - - . 49°% 58 587
Semidiam. - - - - - . =16, 4, 4

Appar. zen. dist. @ cen. - - - 49, 42. 54,3
Parallax - - - - - - 6,7
Ref'r cor. for Bar. and Ther. + 1. 10, 4

True zen. dist. ® cen. . - - 49. 43. 58
True meridian altitude - - - 40. 16. 2

To find when the sun had the same meridian altitude, or declination, just
before it came to the next equinox, let us take Sept. 18, on which we find,
Appar. zen. dist. ® L. L. - - 50°. 8. 37,8
Semidiam. - - - - - - 15. 59, 4

Appar. zen. dist. ® cen. - - - 49. 52, 388, 4
Parallax - - - - - - 6,7
v Refr. cor. for Bar. and Ther - - + 1. 5,8

True zen. dist. ® cen. - - 49. 538. 87,5
True meridian altitude - - - 40. 6. 22,5 -

)

As this altitude is less than that on March 24, the instant of time when the
sun had the same declination as on the 24th must be defore the 18th ; therefore
as the sun on the 18th had gotten beyond that point where its declination was,
the same as at P, we must, from the difference of the right ascensions of the
sun and star observed on that day, subtract the increase of the sun’s right as-
cension between the 18th and that point of time when the declination was the
same as at P, in order to get the difference of the apparent right ascensions at
the time when the sun’s declination was the same as at . We may: also ob-
serve, that the difference of any two true meridian altitudes is the same as the
difference of the declinations at the same times. Now as the sun’s altitudc was
not observed on the 17th, we will take the change of declination for that day
from the Nautical Almanac, which is 28 20"; also, the increase of the sun’s
AR. for that day was 8'. 36" in time, or 54’ in space. The difference of the:

VYOL. L ) 3
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true meridian altitudes, or the difference of declinations on March 24, and
Sept. 18, was 9'. 89",5; hence, 28" 20" : 9, 89",5:: 54 : 22. 21,"4, the increase
of the sun’s right ascension from the time before the 18th at which the decli-
nation was the same as on March 24, to the 18th. On Sept. 18, Pollux passed
the meridian at 7k. 30. 389°,9, and on the 19th at ‘7h. 30. 40°. On the 18th the
sun passed at 114. 44'. 53°,33; therefore the apparent difference of the 4R’s
‘of the sun and Pollux on that day, allowing for the error of the clock (122),
was 4h. 14. 18",5=63°, 83 22°,5, from which subtract 22 21",4, and we have
63° 11. 1,1 =qu. Now to get the correction in Table VIII. we must have
the place of the moon’s ascending node, which, from the Lunar Tables, is
found to be 9°. 17°. 45. 28" on March 24, and 9'. 8°. 19 54° on Sept. 18.
Hence,

March 24, Correction from Table VIIL. + 19,2
’ vm} red- tospace | 14
+ 88,7=8
.Sept. 18, E€orrection from Table \‘;IIIII g red. to spacei Zg "\8
+ 51,8=s

Hence, s-5=12",6.

Prec. of Equin. from March 24, }
to Sept. 18, Table XV.
Variatien of the equat. of equinoxes, Table XVI. + 0,7
‘ True Precession in the interval - - - - - - - - 25-, 6=Aa
Co0s.28°.28 - =« « « = & - o & o o = - 917

- 23, 4=ae

- e - e - - 249

Hence, mw=23",4—12",6=10",8; therefore rm = rw—mw = qu —mw=68"
10. 49",3; to this add Qr=23",4, and we have Qm=63°. 11'. 12,7, which
being added to Lm=108°. 45. 36",9 we have LQ=171°. 56'. 49,6, which sub-
tracted from 180°, half the difference is 4°. 1. 35",2=A4L the sun’s right as-
cension on March 24, to which add Lm=108°. 45. 36,9 and we get 112°. 47.
12,1 the apparent right ascension of Pollux at the same time ; and if from this
we subtract 38”,7 the equation at that time, we get 112°. 46. 83",4 for itsmean
right ascension. = This conelusion differs a little from that determined by Dz
MasgeLNE in Table VI, from the mean of seven observations.

]
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121. But the method made use of by Dr. MaskeLYNE in settling the right
ascensions of the stars, though founded upon the same principle as this of Mr.
FLaMsTEAD, is different in its process, and procured him the advantage of a
greater number of observations, both ef the sun and stars, in the same time,
and consequently enabled him to fix the right ascension of the stars with greater
accuracy in a shorter time. He took a« Aguile for his fundamental star, and
assumed its right ascension as settled by Dr. BrapLEY, reducing it to the time
- of his observations by the mean precession, and afterwards making the follow-

ing correction. By comparing a great many observed transits of such stars as
he thought proper to select, with that of Aquils, in various parts of the year,
and applying the proper equations, he obtained their mean right ascensions re-
lative to that of « Aquile assumed, or affected with the same error; and com-
paring the transits of the sun near the equinoxes with those of the above men-
tioned stars observed on the same day, he obtained the sun’s right ascension
relative to that of « Aquile assumed. From the observed zenith distances of

the sun on the same days, corrected for refraction, parallax and the error of

the line of collimation, with. the apparent ebliquity of the ecliptic at the time,
he deduced the sun’s right ascensions : and then by comparing the sun’s right
ascensions deduced from the observed transits with those deduced from his ob--
served zenith distances at equal or nearly equal declinations of the same kind
near both equinoxes, he deduced the error of the assumed right ascension of
« Aquilee, which came out 8',8 additive. He ohserved further, that in the in-
terval of 12 years, which passed between the settling of Dr. BrapLEY’s Cata-
logue about 1755 and his own about 1767, the precession.in right ascension
was diminished by 2°,16.by the action of the planets. Therefore if this had
been allowed in assuming the right ascension of a Aquilee from Dr. BrapLEY’s
determination, the correction of the right ascension of a Aquilee would have
come out 5",96 additive, or at the rate-of 1" a year, which agrees very well with-
the annual proper motion of a Aquilee deduced from other observations.. Dr..
MaskeLYNE has also given the following method. °

Assume the mean AR of the star at the beginning of the year, and thence,.
by applying the equations, compute its apparent AR on two days of the year
when the sun has nearly equal declinations on the same side of the equator,
from two declinations observed ;. and then by the observed difference of the
transits of the sun and star, compute the two apparent AR’s of the sun and

star; call this by the star.. Correct the observed zenith distances of the sun.

by the correction of the line of collimation (if .necessary), refraction and

parallax, and you will obtain its apparent zemith distances, affected only by an-

arror in the latitude of the place, making an error in the declination. To the

mean obliquity of the ecliptic at the beginning of the year, apply the propor-
tional part of the annual diminution, the correction for the day of the.year,
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and the equation depending on the place of the moon’s node, and you will
have the apparent obliquity, with which and the two declinations of the sun
before found, compute the two AR’s by the sun; call this by the declination.
Subtract the sun’s AR by the star from his AR by the declination near the ver-
nal equinox,’ and call the difference @ put down with its-proper sign. Do the
same for the autumnal equinox, and call the difference d. Then § (e+0)1s
the correction of the mean AR of the star at the beginning of the year. This
correction being applied to the two AR’s of the sun by the star, will give the
apparent AR’s of the sun at those times. For let A =app. AR of © at P by
the star, A' that at T, B= ©s AR at P by the declination, B'=thatat T'; y=
correction to be applied to correct the computed declination of the sun, and
let 1 :n:: @s error (%) in decl. : corresponding error in AR=ny. Now an
increase of declination, increases the AR in the first quadrant, and decreases it in
the second ; hence, an increase (ny) of AR in the first quadrant, makesit B +ny,
and in the second, B —ny ; these we may consider as the true AR’s of the ®
from the declination ; also, the true 4 R’s from the star (putting z =the correction
of the mean AR of the star at the beginning of the year)are 4 +rand 4"+ ;
hence, A +z=B+ny, A' +2=B —ny, and xr=% (B—A4+ B —A4); but a=
B—A4, x=B—A4'; therefore z=% (a+0b). Further, y=in(B-B+4'-4

the error in declination. But 1 :n:: PL:: AP ; now sin. AP =tan. PL x co'

A, therefore sin. AP = AP x cos. AP = AP x cos. PL*xcot. 4, and 1 : n:
cos. AP :sec. PL* x cot. A ; hence, y=% (B—B +A4'—A4)xcos. AR xco
dec.* x tan. obl. ecl. .

By making a great number of observations of this kind, and taking tl
mean, the AR of a star may be very accurately determined. Dr. MaskeLY!
observed, that this method is more simple than that of Dr. BrapLEY, or 1
La CaiLie, though on the same principle, first introduced by I'LAMSTEAD.

122. The practical method of finding the right ascension of a body from
of a fixed star, by a clock adjusted to sidereal time, is thus. Ifet the «
begin its motion from Ok. 0. 0" at the instant the first point of Aries 1s «
meridian ; then, when any star comes to the meridian, the clock wqu‘
the apparent right ascension of the star, the right ascension being est:
time at the rate of 15° an hour, provided the clock was subject to nc
cause it would then show at any time how far the first point of Ari

the meridian. But as the clock is nccessarily liable to err, we mu

any time to ascertain what its error is, that is, what is the .diﬁ'cr
the right ascension shown by the clock and the right ascension «
the cquator which is at that time on the meridian. To do this,
a star, whose apparent right ascension is known, passes the m:
its apparent right ascension with the right ascension shown !
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the difference will show the error of the clock. For instance, let the apparent
right ascension of Aldebaran be 4h. 28.50" at the time when its transit over
the meridian is observed by the clock, and suppose the time shown by the clock
to be 4A. 23. 52, then there is an error of 2 in the clock, it giving the right
ascension of the star 2" more than it ought. If the clock be compared with
several stars* and the mean error taken, we shall have, more accurately, the
error at the mean time of all the observations. These observations being re-
peated every day, we shall get the rate of the clock’s going, that is, how fast
it gains or loses. The error of the clock, and the rate of its going, being thus
ascertained, if the time of the transit of any body be observed, and the error
of the clock at the time be applied, we shall have the right ascension of the.
body. This is the method by which the right ascension of the sun, moon and
planets are regufal ly found in Observatories.

Ex. On April 27, 1774, the following observations were made at Greenwich:
a Serpentis passed the meridian at 15k. 81'. 28",76, the moon’s second limb
passed at 15k, 59. 7",76, and Antares at 16k, 18'. 55,02 sidereal time ; to find
the moon’s right ascension. :

First, to find the-error of the clock by the transit of the stars.
Mean AR. of a serpentis at begin. of 1790 by Tab.-VI. 15" 33" 55", 84

Precession in 16 years by Tab. VI. - - - - 46, 94
Mean AR. at begin. of 1774 - - 15. 33. 8, 90
Cor. for aber. and prec. to April 27, by Tab VII + 2,12
Cor. for nutation by Tab. VIII. -~ . . . . - 0, 28"

App. AR. by the tables - - - - . 15. 33. 10, 79
App. AR.bytheclock - . - - - . 15 31,28, 76

Error of the clock by a serpentis too slow - - 1. 42, 03
Mean AR. of Antares at begin. of 1790 by Tab, VI. 16. 16. 33, 24 -
Precession in 16 years by Tub VI - - - — 58, 45
Mean AR. at begin. of 1774 = - - - 16. 15. 34, 79
Cor. for aber. and prec. to April 27, by Tab. WII - + 2, 88 .
Cor. for nutation by Tab. VIIL. -~ . - . - - 0,09 .

* The stars used for this purpose at the Observatory at Greenwich are those in Tab. VI. whose
AR’s Dr. MaskeLy~E settled to a very great degree of accuracy. = As many of these as conveniently
can, are observed every day, in order to ascertain the going of the clock, and for no other purpose.
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App. AR. by the tables - - - - - 16. 15. 87, 08
App. 4R. by the clock - - - - - 16. 13. 55, 02

Error of the clock by antares too slow - . . 1. 42, 06

The mean of these two errors gives 1'.42",045 for the error at the middle be-
tween the times of the transits of the two stars, or at 15k. 52'. 41", 89. Now
from knowing the error of the clock at this time, and the rate of its going, we
must find the error at the time the moon passed, which may, in this case, be
considered the same, the times being nearly equal. Hence,

Moon passed the meridian by the clock .- . . 15, 59 775
Error of the clock, too slow - - - - - 4+ 1. 42,045

True AR. of the moon’s 2d limb - e = 16. 0. 49,795

Do. in degrees - - - e - . 8'. 0°. 12. 26",9
Moon’s semid. in 4R. (109) - . T - 17. 18,5

True AR. of the moon’s center - - - - 7T.29. 55. 13,‘4-

The error of the clock is generally determined by a greater number of stars,
when they can be observed; and the mean error from day to day gives the rate
of its going, from which we may find the error at any other time. For in-
stance, on August 8, 1769, I found, from taking the mean of the errors of
four stars, that the mean error of the clock was 27,32, too fast, at 16k..
21'. 18", being the mean of all the times when the stars were observed; and
on the 9th the error was 2,09, too fast, at 18k. 52 58", the mean of all the
times. Also Jupiter passed the meridian on the 9th at 144. 49. 10",4. Now
the interval between the 8d. 16h. 21'. 18" and 9d. 13A. 52" 58" is 21hA. 31',
40", in which time the clock lost 0",28; also, the interval between 134. 52«
58" and 14A. 49'. 10",4 is 56. 12",4; hence, 21h. 31'. 40" : 56. 12",4::0",28

: 0,009, which is what the clock lost in the second interval; therefore when

- Jupiter passed the ‘meridian, the clock was 2",09-0",009=2",08 too fast,

which subtracted from 14A. 49'. 10",4 gives 14/. 49'. 8",32, the apparent right
ascension of Jupiter. To the apparent AR. apply the aberration in 4.R. and
you get thefrue AR.

123. The right ascension of the heavenly bodies being thus ascertained,
the next thing to be explained is, the method of finding their declinations.
Take the apparent altitude of the body, when it passes the meridian, by an
astronomical quadrant, as explained in my ZTreatise on Practical Astronomy;
correct it for parallax and refraction, and for the error of the line of collima-

4
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tion of the instrument, if necessary, and you get the true meridian altitude,
the difference between which and the altitude of the equator (87) (which is

equal to the complement of the latitude, previously determined) is the decli-
nation required.

Ex. On April 27, 1774, the zenith distance of the moon’s lower limb when
it passed the meridian at Greenwich was 68° 19. 87',3; its parallax in al.
titude was 56'. 19°,2, allowing for the spheroidical figure of the earth; the
barometer stood at 29, 58, and the thermometer at 49; to find the decli-
nation.

Observed zenith distance of L. L. - - 68°. 19. 37,8
Reft. cor. for bar. and ther. Tab. XL XIL + 2.23

68. 22. 00, 8
Pal’allax - - - - - - - - 56 . 19, 2

‘True zenith distance of L.L. . - - 67. 25. 41, 1
Semidiameter . - - - . - - 16. 385

True zenith distance of the center - - 67. 9. 6,1
Latitude - - - - - - 51. 28. 40

Declination south - < - - 15. 40. 26, 1

The horizontal parallax and semidiameter may be taken from the Nautical
Almanac; and the parallax in altitude may be found, as will be explained when
we come to treat of the. Parallax, and then the correction is to be applied to
the semidiameter, from Table XIII.

124. To find the latitude and longitude from the right ascension and

declination, or the converse, we have the following admirable Rules, given by
Dr. MASKELYNE. '

Given the Right Ascersion and Declination of an Heavenly Body, and the Obliquity
of the Ecliptic, to find its Latitude and Longitude. -

1. The *sine of AR.+ cotang. decl. —10,=cotang. of arc A, which call
north or south, according as the declination is nortk or south. 2. Call the obli-
quity of the ecliptic south in-the 6 first signs of AR, and north in the 6 last.
Let the sum of arc A and obl. eclip. according to their titles,—arc B with its
proper titlet. 8. The arith. comp. of cos. arc A +cos. arc B 4tan. AR.—

* By sine, tang. &c. is meant log. sine, log. tang. &c.
1 If one be north and the other south, the proper title is that belonging to the greater of the two,
and in this case, arc B is their difference, one being considered as negative to the ether.

-
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10,=tan. of the longitude, of the same kind as AR, unless arc B be more
than 90°, in which case, the quantity found of the same kind as AR. must be
subtracted from 12 signs or 360°. 4. The sine of longitude + tan. arc B—10,
=tan. of the required lafitude, of the same title as arc B. N. B. If the lon-
gitude come out near 0° or near 180°, for the sine of long. in the last opera-
tion, Substitute tan. long. + cos. long.—10,*; or the last operation will be,
tan. long. +cos. long. +tan. arc B—20, =tan. lat. The tan. long. is already

given. '

Given the Latitude and Longitude of an Heavenly Body, and the obliquity of
the Ecliptic, to find its Right Ascension and Declination.

1. Sine long. +cot. lat.—10,=cot. arc A, which call north or south, ac-
cording as the lat. is nortk or south. 2. Call the obliquity of the ecliptic nortk
in the first semicircle of longitude, and soutk in the second. Let the sum of
arc A and obl. eclip. according to their titles,=arc B with its proper title.
8. The arith. comp. of cos. arc A +cos. arc B+tan, long.—10,=tan. of
right ascension, of the same kind as the longitude, unless arc B be mote than
90°% in which case, the last quantity found of the same kind as the longi-
tude, must be subtracted from 12 signs or 360°. 4. The sine of 4R.+
tan. arc B—10.=<tan. of the required declination, of the same title as arc B.
N. B. If AR. come out near 0°% or near 180° for the sine AR. in the last
operation, substitute tan. AR.+cos. 4R.—10; or the last operation will
be tan. 4R. +cos. AR. +tan. arc B—20,=tan. declination. The tan. 4R. is
already given. '

. DemonsTrATION. Let s be the body, «C the ecliptic, «Q the equator,
sr, sn perpendicular to «C, v Q. Then rad. : sin. wn::cot. sn : cot. swn,
hence, log. sin. «n+log. cot. sn—10, =log. cot. swn arc A. Hence, swn
G QvC=svrarc B. Also '

cos. sewn :rad. :: tan. no : tan. smg Trig. Art. 219.

rad. : cos. swr:: tan. So ;tan. 7o

S, COS. S COS.Sp7 i tan.no : tan. ro =cos. Svrxtan. nm; hence, ar. co.

_ Cos. S 7
log. cos. son+log. cos. swr+log. tan. 7 —10,=log. tan. r o the longitude.
And (Trig. Art. 210), rad. : sin. 7« :: tan. ros : tan. s7; hence, log. sin. 79 +
log. tan. res—10,=log. tan. srthe latitude. Andin whatever position we take
s, these conclusions will give the rule as stated above. If we consider «C as
the equator and «Q the ecliptic, the demonstration will do for the second

rule.

* For the reason of this correction in cxtreme cases, see Dr. MaskeLYNE’s excellent Introduction.
to Tavrow’s Logarithms, ’
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Ex.  Given the true A.R. of the moon’s center 7s. 29° 55.138",4. and its
declination 15°. 40. 26,1 south, a3 determined in the two last Examples; to
find its latitude and longitude*.

By Dr. MAsgeLYNE’s observations, the mean obliquity of the ecliptic at the
beginning of the year 1784, was 23° 28'. 0",2, and as its gradual diminution
is at the rate of  a second in a year, the mean obliquity at the beginning of
1774 was 28°. 28 5,2, which corrected by Tab. IX. X. gives 23°. 27 55°,8
for the obliquity at the time of observation.

Sine of right asc. - 7% 29°% 55.138°,4 - 9.9371817
Cotan. of decl. ~ - - 15.40.26,1 - 10.5519188

Cotan. arc A south - . 17.571.51,8 - 10.4891000
Obliq. ecl. nortk - - - 23.27.55,8

AI'C B ﬂorth - - - 5 . 29A 58’ o COS. 90997%64\ )
Arith. comp. of log. cos. arc A - - - 0.0217102
Tang. of right asc. - - - - - 10.2871744

Tang. of longitude - - 8. 1% 2. 74 - 10.2568810

Sine of longitude - - - - - - 9.9419678
- Tang. ofarcB - - - - - - - 89885328

Tang. of latitude north - - 4° 48, 54,1 - 8.9255006

In like manner, the right ascensions and declinations of the fixed stars being
found from observation, their latitudes and longitudes may be computed, and
thus a catalogue of all the fixed stars may be made for any time. But as both
the equator and ecliptic are subject to a change in their positions, the right as-
cension, declination, latitude and longitude of all the fixed stars W1ll vary.
Hence, if their annual variations be computed, as will be afterwards explained,
their right ascensions, &c. may be found at any other time.

125. If the body be the sun at s, whose right ascension and declination are
glven, to find its longitude; then sin. s'vzn : rad.::sin. su : sin. o5, that is,
sin. obl. ecl. : rad.:: sin. decl. : sin. longitude. Or, cos. s’ rad.:: tan. 2 ;
tan. «s, that is, cos. obl. ecl. : rad:: tan. right asc. : tan. longitude. ‘The sun,
being always in the ecliptic, has no latitude.

 To find the angle of Position.
126. Let p be the pole of the ecliptic L, P the pole of the equator «C,

* In making trigonometrical calculations, it will save tiine, when the same arcs occur, to take out
all their logarithms at once, to avoid the trouble of turning to them again. The Computer therefore,
bcfore he begins his operation, should put it down in its proper order, leaving it to be filled up by the
logarithms; he will thtn see what arcs are repeated, and he may, at one opening of the table;, take
out all their logarithins and put them down iu their proper places.
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S a star, draw the great circles pPLC, pSD, PSBA, and (53) PSp is the
angle of position. Now theangle PpS, or (12) DL, is the complement of lon-
gitude « D; the angle pPS is the supplement of 4PC, or of AC (12), whichis
the complement of the right ascension v 4 of the star; pP is the obliquity of
the ecliptic; PS is the complement of declination, and pS the complement of the
latitude of the star. Hence, if the longitude and declination of a star be given,
we have, sin. PS : sin. PpS::sin. Pp : sin. PSp, that is, cos. star’s dec. : cos.
its long. :: sin. obl. ecl. : sin. angle of Position. If the latitude and declination
of the star be given, we know p§ and PS§ their complements and Pp;
hence, sin. pS§ x sin. PS : rad.*:: sin. 4 x m xsin.ixSP+Sp—Pp:
cos. 4 2 PSp*. Or of theright ascension, declination, latitude and longitude of
the star, any two being known, we shall know three parts of the triangle PpS,
and consequently the angle PSp may befound. If S be the sun, p§=90° and
the triangle may be solved by the circular parts.




CHAP. IV.

ON THE EQUATION OF TIME.

Art. 127. HHAVING explained, in the last Chapter, the practical methods
of determining the place of any body in the heavens, we come next to the
consideration of another circumstance not less important, that is, the irregu-
larity of time as measured by the sun. The best measure of time which we’
have, is a clock regulated by the vibration of a pendulum. But however
accurately a clock may be made, it must be subject to go irregularly, partly’
from the imperfection of the workmanship, and partly from the expansion
and contraction of the materials by heat and cold, by which the length of

the pendulum, and consequently the time of vibration, will vary. As ne clock’

therefore can be depended upon for keeping time accurately, it is mecessary
that we should be able to ascertain at any time, how much it is too fast or too
slow, and at what rate it gains or loses. For this purpose it must be com-

pared with some motion which is uniform, or of which, if it be not uniform,

you can ascertain the variation. The motions of the heavenly bodies have
therefore- been considered as most proper for this purpose. Now the earth

revolving uniformly about its axis, the apparent diurnal motion of the fixed

stars about the axis must be uniform. Ifa clock therefore be adjusted. to go
24 hours from the passage of any fixed star over the meridian till it returns to’
it again, its rate of going may be at any time determined by comparing it
with any fixed star, and observing whether the imterval comtinues to be 24
hours; if not, the difference shows how much it gains or loses in that time.

A clock adjusted to go 24 heurs in this interval is said to be adjusted to side-
real time. But if we compare a clock with the sun, and adjust it to go 24 hours
from the time the sun leaves the meridian on- any day, till it returns to it the
next day, which is a #ue solar day, the clock will not, even if it go uniformly,
continue to agree with the sun, that is, it will not:show 12 when the sun comes
to the meridian.

128. For let P be the pole of the earth, vwyz its equator, and let the earth
revolve about its axis in the order of the letters vuyz; v DLE the celestial
equator, and «CL the ecliptic, in which the sun moves according to that di-
rection. - Let a, m, be the sun when on the meridian of any place on two suc-
cessive days, and draw Puvae, Prmh, secondaries to the equator, and let the

spectator be at s on the meridian Pv, awith the sun at a an his meridian. Then -

when the earth has made one revolution .abeut its axis, Psvis come again inte
the same position; but “the san-having moved forward:to m, the earth has still’

FIG.
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ON THE EQUATION OF TIME.

to describe the angle vPr in order to bring the meridian Psv into the position
Pr, so that the sun may be again in the spectator s meridian. Now the angle
vPr is measured by the arc ek, which is the increase of the sun’s right as-
cension in a #rue solar day; hence, the length of a true solar day is equal to the
time of the eartl’s rotation about its axis + the time of its describing an angle equal
lo the increase of the sun’s right ascension in a true solar day. Now if the sun
moved uniformly in the equator ¥ DLE, this increase ek would be always the
same in the same time, and thercfore the solar days would be always equal;
but the sun moves in the ecliptic *CL, and therefore if’its motion were uni-
Jorm, equal arcs am upon the ecliptic would not give equal arcs ek upon the
equator®.  But the motion of the sun is not uniform, and therefore am, de-
scribed inany given time, is subject to a variation, and which also must neces-
sarily make ek variable. Hence, the increase ek of the sun’s right ascension
in a day varies from two causes, that is, from the obliquity of the ecliptic to
the equator, and from the unequal motion of the sun in the ecliptic. The
length therefore of a true solar day, is subject to a continual variation; conse-
quently a clock adjusted to go 24 hours for any one true solar day, would not .
continue to show 12 when the sun comes to the meridian, because the in-
tervals by the clock would continue equal (the clock being supposed neither
to gain nor lose), whilst the mterva.ls of the sun’s passage over the meridian
would vary.
. 129. As the sun moves through 860° of right ascension in 865 days very
nearly, therefore 3651 days 1 day:: 860° : 59 8",2 the increase of right as-
cension in one day, 1f the increase were uniform, or it would be the increase
in a mean solar day, that is, if the solar days were all equal. If therefore a
clock be adjusted to go 24 hours in a mean solar day, it cannot continue to coin-
cide with the sun, that is, to show 12 when the sun is on the meridian; but the
sun will pass the meridian, sometimes b¢fore 12 and sometimes afier. This dif-
- ference s called the Equation of Time. A clock thus adjusted is said to be ad-
justed to mean solar timet. The time shown by the clock is called frue or mean
time, and that shown by the sun is called apparent time. What we call apparent.
time the French call true. :

* For draw mt parallel to ¢h, and suppose ma to be indefinitely small; then by phin trigon,
ma : mt :: rad. : sin. mat, or Yac,
mt : eh 3 cos. ue : rad. (13)
.~ ma : ek :: cos. ae : sin. opae iz (because Trig. Art. 212. sin. opae=

Cos. aye Xrad.
C0s. ae

) Cos. ac': cos.
aore Xradius; hence, the ratio of ma to ek is variable.

+ As the earth describes an angle of 360°. 59'. 8”,2 about its axis 1n a mean solar day of 24 hours,
and an angle of 860° in a sidercal day, therefore 360°. 59’. 87,2 : 360° :: 4h. : 23h. 56'. 47,098 the
length of the sidereal day in mean solar time, or the time from the passage of a fixed star over the me-
ridian till it returns to it again.



ON THE EQUATION OF TIME.

130. A clock adjusted to go 24 hours in a mean solar day, would coincide
with an imaginary star moving uniformly in the equator with the sun’s mean
motion 59. 8°,2 in right ascension, if the star were to set off from any given
meridian when the clock is 12; that is, the clock would always show 12 when
the star came to the meridian, because the interval of the passages of this star
over the meridian would be a mean solar day. This star therefore, if we reckon
~ its'motion from the meridian in time at the rate of 1 hour for 15°, would always
coincide with the clock; that is, when the clock shows 1 hour, the star’s motion
would be 1 hour; when the clock shows 2 hours, the star’s motion would _he
2 hours; and so on. Hence, this star may be substituted instead of the clock ;
therefore when the sun passes the given meridian, the difference .between its
right ascension and that of the star, converted into time, is the difference be-
tween the time when the sun is on the meridian and 12 o’clock, or the equa-
tion of time ; because the given meridian passes through the star at 12 o’clock,
and its motion in respect to that star is at the rate of 15° in an hour (182)..

131.. Now to compute this equation of time, let APLS be the ecliptic, 4ALv
the equator, A4 the first point of aries, P the sun’s apogee, § any place of
the sun, draw Sv perpendicular to the equator, and take dn=A4P. When
the sun sets out at P, let the imaginary star set out at » with the sun’s mean
motion in right ascension, or longitude, or at the rate of 59'.8",2 in a day,

and when 7 passes the meridian let the clock be adjusted to 12, as described

in the last Article: These are the corresponding positions of the clock and
sun, as assumed by Astronomers. Take n»m=Ps, and when the star comes:
to m, the place of the sun, if it moved uniformly with its mean motion, would.
be at s, but at that time let S be the place of the sun. Now let the sun
S, and consequently v, be on the meridian; then as m is the place of the
imaginary star at that instant, mwv is the equation of time. The sun’s mean
place is at s, and as An=AP, and .nm=Ps... Am=APs, consequently mv
=Av— Am=Av—~ APs. Let a be the mean equinox, and draw az perpendicu.
lar to AL; then Am=Az+2m=Ada x cos. adz +2m=2A4a + 3m; hence, my
=Av—2zm—1 Aa; but 4v is the sun’s true right ascension, zm is the mean
right ascension, or mean longitude, and 11 Aa (42) is the equation of the
equinoxes in right ascension; hence, the equation of time is equal to the differ-
ence of the sun's true right ascension, and its mean longitude corrected by the
equation of the equinoxes in right ascension. When Am is less than Av, mean
time precedes apparent, and when greater, apparent time precedes mean; for
as the earth turns about its axis in the direction Av, or in thé order of right
ascension, that body whose right ascension is least must come to the meridian
first. - That is, when the sun’s true right ascension is greafer than its mean lon-
gitude corrected as above, we must add the equation of time to apparent, to
get the mean time; and when it is less, we must subfract, To convert mean

FIG.
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ON THE EQUATION . OF TIME.

time into Apparent, we must sublract in the former case and: add in the latter.
This Rule for computing the equation of time was first given by Dr. Maske-
LYNE in the Phil. Trans. 1764

182. As a meridian of the éarth, when it leaves m, returns to it again in 24
hours, it may be considered, when it leaves that pomt as approaching a point
at that time 860° from it, and at which it arrives in 24 hours. Hence, the re-
lative vélocity with which a meridian accedes to or recedes from m is at the rate
of 15° in an hour. Therefore when the meridian passes through v, the arc vm

- reduced into time at the rate of 15° in an hour, gives the equation of time at

that instant. Hence, the equation of time is computed for the instant of ap-
parent noon. Now the time of apparent noon in mean solar time, for which
we compute, can only be known by knowing the equation of time. To com-
pute therefore the equation on any day, you must assume the equation the same
a8 on that day four years before, from which it will differ but very little, and
it will give the time of apparent noon, sufficiently accurate for the purpose of
computing the equation. If you do not know the equation four years before,
compute the equation for noon mean time, and that will give apparent noon
accurately enough.

i

Ex. To find the equation of time on July 1, 1792, for the meridian of Green-.
wich, by MavEr’s Tables.

. The equation on July 1, 1788, was, by the Nautical Almanac, 8'. 28", to bc
added to apparent noon, to give the corresponding mean time; hence, for

‘July 1, 1792, at Oh. 8'. 28" compute the true longitude®.

Mean. Long.® [Long. ®’s Apog.llN".l. N°.2./N°.8.[N°.4.

] Epnchﬁ:x1792, 9'.10°% 50. 0°,718°. " 9° 23. 46" [ 241 |227| 123|478

Mean Mat. July 1,5. 29. 28. 16, 2 83 [ 168|456 [312| 27|
7, 4 I
23” 1,1 o 1.

1 Mean Lon tude 3. 10..18.25,4{3. 9. 24. 19 |404]688|485]|505
-| Bguat. of Center —  1.87,18. 10. 18. 25,4 » :
‘ tha\t.'n..l. L + 4y Sf—remr . :

% H N B T N | I 49. 6,4Mean Anomaly.

8- IV - -0, 6

: TrueLongitude . 10. 11. 51,15

"» The reason of this operatlon will appear,  when we come lo the construction and use of the Solar °
Tables. ..



ON THE EQUATION OF TIME.

what we call, mean time nearly; corresponding therefore to this time, take out
the correction from Table XVIII, which is 48,5, and add it to the given mean
solar time, and we get 4k 25. 88°,14 correctly for what we call mean time
nearly ; add this to 6k. 54 85",86, the sun’s mean longitude at noon, and it
gives 11h. 20. 14" the sidereal time required.

136. Whenever the time is computed from the sun’s altitude, that time must
_ be apparent time, because we compute it from the time when the sun comes to
the meridian, which is noon, or 12 o’clock, apparent time. Hence also, the
time shown by a dial is apparent time, and will differ from the time shown by
a well regulated watch .or clock, by the equation of time. A clock or watch
may therefore be regulated by a goed dial, by applying the equation, as before
directed, to the apparent time shown by the dial, and it will give the mean
time, or that which the clock or watch ought to show.

187. Mr. WoLrasTon has proposed to regulate a watch or clock by a dial
constructed to show mean noon, or 12 o’clock by a watch or clock. A ray of
light through a small hole being let into a dark chamber upon the floor, draw
a meridian upon the floor corresponding to the hole, on which therefore the
sun’s rays will always fall when the sun comes to the meridian. On each side
of this line, for every day of the year, make a point where the image of the
sun is at 12 o’clock mean time, by a clock’ or watch regulated for that purpose ;
through all these points draw a curve, and then you may regulate your clock
or watch by setting it to 12 when the image of the sun falls on that curve. To
prevent any mistake, put the months against the different parts of the curve on
which the ray falls in them. Or the same may be done on any horizontal
plane, by erecting a piece of brass, and making a small hole for the sun to
shine through, The curve may also be laid down by calculation, as Mr. WoL.-
LAsTON has shown; and if it be drawn with .great care, it will be sufficiently
accurate for regulating all common clocks; and it has this advantage over that
of correcting them by a common sun dial, that as the months are put to the
curve, you cannot easily make a mistake ; whereas, in applying the equation
of time to a dial, a person, ignorant of these matters, is very apt to apply it
wrong.

188. The Equation of Time was known to, and ade use of by ProLemy.
TycHo employed only one part, that which arises from the unequal motion of
the sun in the ecliptic ; but KErLER made use of both parts. He further sus-
pected, that there was a third cause of the inequality of solar days, arising
from the unequal motion of the earth about its axis. “But the Equation of
Time, a8 now computed, was not generally adopted till 1672, when FLaMsTEAD
published a Dissertation upon it, at the end of the works of Horrox.
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CHAP. V.

ON THE LENGTH OF THE YEAR, THE PRECESSION OF THE EQUINOXES FROM
’ OBSERVATION, AND THE OBLIQUITY OF THE ECLIPTIC.

Art. 139. FROM comparing the sun’s right ascension every day with the fixed
stars lying to the east and west, the sun is found constantly to recede from those
on the west, and approach to those on the east; and the interval of time from
its leaving any fixed star till it returns to it again is called a sidereal year, being
the time in which the sun completes its revolution amongst the fixed stars, or
in the ecliptic. But the sun, after it leaves either of the equinoctial points,
returns to it again in a less time than it returns to the same fixed star, and this
interval is called a solar or tropical year, because the time from its leaving one
equinox till it returns to it, is the same as from one tropic till it comes to the
same again. This is the year on which the return of the seasons depends.

On the Sidereal Year.

140. To find the length of a sidereal year. On any day take the difference
between the sun’s right ascension when it passes the meridian and that of a
fixed star; and when the sun returns to the same part of the heavens the next
year, compare its right ascension with the same star for two days, one when
their difference of right ascensions is less and the other when greater than the
difference before observed ; and let D be the increase of the sun’s right ascen-
sion in this interval of one day; then take the difference (d) between the dif-
ferences of the sun’s and star’s right ascensions on the first of these two days
and on the day when the observation was made the year before ; and let ¢ be
equal to the exact time between the transits of the sun over the meridian on
the two days; then D : d::¢: the time from the passage of the sun over the
meridian on the first day to the instant when it had the same difference of right
ascension compared with the star which it had the year before ; the interval
between these two times gives the length of a sidereal year. The best time for
these observations is about March 25, June 20, September 17, December 20,
the sun’s motion in right ascension being then uniform. Instead of observing
the difference of the right ascensions, you may observe that of their longitudes.
If instead of repeating the second observations the year after, there be an in-
terval of several years, and you divide the observed interval of time when the
difference of their right ascensions was found to be equal, by the number of
years, you will have the length of a sidereal year more exact. Or the length -
may be found thus.




ON THE LENGTH OF THE YEAR, &c.

141. Take the time () of a star’s transit over the meridian by a clock ad-
justed to mean solar time; then the year after, take the time again on two
days, one (m) when it passes the meridian bgfore, and the other (z) afler the
time ¢; then m—n : m—¢::23h. 56. 4" : the time from m till the difference be-
tween the star’s and sun’s right ascension was the same as at the first observa-
tion ; and the interval of these two times is the length of a sidereal year. Cas-
sini’s Elem. d& Astron. pag. 202.

Ex. On April 1, 1669, at Ok. 8. 47" mean solar time, M. Picarp observed
the difference between the sun’s longitude and that of Procyon to be 3°. 8°. 59
86", which is the most ancient observation of this kind whose accuracy can be
depended upon ; see Hist. Celeste, par M. le Monnier, pag. 37. And on April
2, 1745, M. de la CarLLE found, by taking their difference of longitudes on
the 2d and 8d, that at 11%4. 10. 45" mean solar time, the difference of their
longitudes was the same as at the first observation. Now as the sun’s revolu-
tion was known to be nearly 365 days, it is manifest that it had made in this
interval 76 complete revolutions in respect to the same fixed star in the space
of 76 years 1d. 114, 6. 58". But in these 76 years, there were 58 of 365 days,
and 18 bissextiles of 366 days; that interval therefore contains 27759d. 11h.
6'. 58", which being divided by 76, the quotient is 365d. 6h. 8'. 47" the length
of a sidereal year.

Ex. M. Cassint observed the transit of Sirius over the meridian on May 21,
1717, to be at 2k. 38", 58°; on May 21, 1718, it passed at 2k. 40, and on the
22d at 2h. 36'; to find the length of the sidereal year.

In this case t=2k. 38. 58", m=2h. 40, n=2h. 36, hence, 4 : 1. 2":: 23
56'. 4" : 6h. 10. 59", which added to 2k. 40’ the time it passed on May 21, 1718,
gives 8h. 50. 59" for the time on that day when the difference between the sun’s

and star’s right ascensions was the same as on May 21, 1717. Hence this in-

terval is $65d. 6h. 10. 59" for the length of a sidereal year. The mean of these
two, gives the length 365d. 6k. 9. 53". But the length of a sidereal year has
generally been determined from the length of a tropical year, found as we shall
now proceed to explain.

On the Tropical Year.

142. Observe the meridian altitude (@) of the sun on the day nearest to the
equinox ; then the next year take its meridian altitude on two following days,
one, when its altitude (m) is less than ¢, and the next when its altitude (#) is
greater than ¢, and n—m is the increase of the sun’s declination in 24 hours;
hence, n—m : a—m:: 24 hours : the interval from the first of the two days till

the sun has the same declination as at the observation the year before, because’
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ON THE LENGTH OF THE YEAR, THE PRECESSION OF THE EQUINOXES

to get'the length of a tropical year between the mean equinoxes in order to get
the length of a mean tropical year. But in taking a long interval of time,
the difference, whether we take the true or mean equinox; will be insensible.
Another correction might also be added, when we compare the modern ob-
servations with the ancient ones, on account of the precession of the equi-
noxes being greater now than it was then. From the modern observations the
length of a mean solar year appears to be 2",6 less than that which is deduced
from comparing the same observations with those of Hipparcuus.

144. As the sun’s declination at the equinoxes changes about 24' in 24 hours,
an error of 10" in the altitude of the sun will cause an error of 10 minutes in
the determination of the time of the equinox, and consequently the same error
in the length of the year, if it were determined by 2 observations at the in-
terval only of 1 year; but if the interval were 60 years, the error would be
only 10 seconds. As the accuracy therefore is very much increased by taking
a long interval, let us compare the most ancient observations with the mo-
dern ones.

HirparcHus, in the year 145 before J. C. found the time of the equinox
to be on March 24, at 114. 55’ in the morning at Alexandria. In the year
1785, at the Royal Observatory at Paris the time of the equinox was found to
be on March 20, at 144. 20. 40". Now the difference of the meridians be-
tween Paris and Alexandria is, in time, 14. 51'. 46", which, as Alexandria lies
to the east of Paris, being added to 144. 20. 40" gives 16k. 12. 26" the time
at Alexandria. Reduce this time to the Julian year, by subtracting 11 days by
which the Gregorian is before the Julian, and we have the time of the equinox
by this style, on March 10, at 44. 12.. 26" in the morning. Between these
two observations there was an interval of 1880 Julian years, except 14d. 7A.
42. 34", In these years there were 470 bissextiles and the rest common Julian
years of 365 days. Therefore if we divide 14d. 7h. 42.. 84" by 1880 it gives
10. 58". 10", showing how much the apparent solar year is less than 365 days
6 hours; hence, the length of the apparent solar year is 865d. 5h. 49'. 1". 50",
to which add 6". 30", being what the apparent is less than the mean solar year,
found as before, and we get 365d. 5h. 49'. 8". 20" the length of the mean solar
year from these observations. ‘The mean of 10 results from different observa-
tions made by HipparcHus, compared with the modern ones, gives the length
of the mean solar year 365d. 5h. 48'. 49",

.. 145, The length of the year may also be found by finding the time when
the sun comes to the tropic. For let 4 DL be the equator; ASL the ecliptic,
A aries; find the time (119) when the sun has the same declination mv, nw on
each side, of the tropic §, and at the same times find also the differences of its
right ascension and that of a fixed star s, the sum or difference of which ws,
vz, according to the position of 3, measures the motion vw of the sun in right
ascension, .the half of .which is wD (8D, sz being perpendicular to AL);
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the spring 1716 is greater by 18" than in 1672, and this answers to 5. 16" in
time ; in this interval of time therefore (44 years), there have been 44 mean
revolutions + 5. 16"; and consequently 44 apparent solar years are greater by
5. 16" than 44 mean ; divide this by 44, the number of years in the interval,
and it gives 7°. 11" for the length of the apparent above the mean solar year.
Now the length of the apparent solar year was determined to be 365d. 5k. 49'.
0'. 53"; hence, from these observations, the length of the mean solar year is
865d. 5h. 48'. 58", 42",

143. The length of a tropical year may also be found by observing the exact
time of the equinoxes. To do this we must previously know the latitude of
the place, from which we shall know the altitude of the point of the equator
on the meridian, it being equal (87) to the complement of latitude. Take
the meridian altitude of the sun’s center on two days, one when it is less than
the complement of latitude and the other when greater; then the sun must
have passed the equator in the intermediate time. Take the difference (D) be-

tween these altitudes.and it gives the increase of the sun’s declination in 24

hours ; take also the difference (d) between the altitude on the first day and
the complement of latitude, and then say, D : d:: 24 hours : to the time from
noon on the first day till the sun came to the equator. Repeat this when the
sun returns to the same equinox, and the interval of the times gives the length
of a tropical year. If an interval of several years be taken, and you divide
by the number, it will give the time more accurately. If we take a difference
of two days, the third term must be 484 The same may be done by one ob-
servation, if we know the rate at which the sun changes its declination in 24
hours, which at the equinox in spring time is found, by the mean of a great
number of observations, to be 28. 40", and in the autumn to be 23, 28",

Cassini’s Elem. &’ Astr. pag. 207.

Ex. On March 20, 1672, the sun’s meridian altitude at the Royal Observa-
tory at Paris was observed to be 41°. 25". 56", from which subtract 41°. 9'. 50
the meridian altitude of the equator, and there remains 16 6" for the sun’s de-
clination ; hence, 23'. 40" : 16. 6":: 24 hours : 16k. 19, the sun’s distance in
time from the equinox, which, as the sun was past the equinox, subtracted
from the 20th gives the 19th day 74. 41’ for the time of the equinox. And in
1731 the time of the equinox was found, in the same manner, to be on Mar.
20, at 14h. 45. In thisinterval of 59 years there were 18 bissextiles, and con-
sequently the whole number of days in the 59 years was 21548, and therefore
the whole interval between the two equinoxes was 21549d. 7h. 4, which di-
vided by 59 gives the length of the apparent solar year 865d. 5h. 48'. 53"; from
this subtract 7", the variation of the equation of the orbit in the interval of the
observations, and we have the mean length of the solar year 865d. 5h. 48'. 46".

“The interval has here been taken between the true equinoxes, whereas we want

53



ON THE LENGTH OF THE YEAR, THE PRECESSION OF THRE EQUINOXES, &c.

Cassini (the Father) in 1656 - - 28° 29, 2"
Cassint (the Son) in 1672 23 . 28. 54

. FLAMSTEAD in 1690 - - - 23 . 28. 48
De la CaILLE in 1750 23 .28.19
Dr. BRADLEY in 1750 - - . 23.28.18
MAvYER in 1750 - - - . - 28.28.18
Dr. MASKELYNE in 1769 - - . 28,28, 85
M. de la LaNDE in 1786 - - - 23.28. 0

The observations of ALBATEGNIUS, an Arabian, are here corrected for re-
fraction. Those of WaLTHERUS, M. de la CalLLE computed. The obliquity
by TycHo is here put down as correctly computed from his observations.
Also the obliquity, as determined by FLAMSTEAD, is corrected for the nutation
of the earth’s axis. These corrections M. de la LaNDE applied.

152. It is manifest from the above observations, that the obliquity of the
ecliptic keeps diminishing; and the irregularity which here appears in the dimi.
nution we may ascribe to the inaccuracy of the ancient observations, as we
know that they are subject to greater errors than the irregularity of this varia-
tion. If we compare the first and last observations, they give a diminution of
70" in 100 years. If we compare the last with that of Tycuo, it gives 45"
The last compared with that of FLaMSTEAD gives 50". If we compare that of
Dr. MasgeLYNE with Dr. BrapLEY’s and MAvER’sit gives 50". The compari-
son of Dr. MAskeLYNE’s determination, with that of M. de la Lanpe, which
he took as the mean of several results, gives 50°. We may therefore state the
secular diminution of the obliquity of the ecliptic, at this time, to be 50", as de-
termined from the most accarate observations. This result agrees very well
with that deduced from theory, as will be shown when we come to treat of the
physical cause of this diminution. It must however be observed, that -some
eminent Astronomers use 50°,25.



CHAP. VL
ON PARALLAX.

Art. 158. 'L HE center of the earth describes that circle in the Heavens
which is called the ecliptic; but as the same object would appear in different
positions in respect to this circle, when seen from the center and surface,
Astronomers always reduce their observations to what they would have been,
if they had been made at the center of the earth, in consequence of which,
the places of the heavenly bodies are computed as seen from the ecliptic, and
it becomes a fixed point for that purpose, on whatever part of the earth’s sur-
face the observations are made.

154. Let C be the center of the earth, 4 the place of the spectator on its
surface, § any object, ZH the sphere of the fixed stars, to which the places of
all the bodies in our system are referred; Z the zenith, H the horizon; draw
CSm, ASn, and m is the place seen from the center, and n from the sur-
face. Now the plane SAC passing through the center of the earth must be
perpendicular to its surface, and consequently it will pass through the zenith
Z; and the points m, n lying in the same plane, the arc of parallax mn must
lie in a circle perpendicular to the horizon, and hence the azimuth is not
affected, if the earth be a sphere. Now the parallax mn is measured by the
angle mSn or ASC, and by trig. CS : CA::sin. SAC or SAZ : sin. ASC the
panallax = CA x z‘,; S4Z  As CA is constant, supposing the earth to be a
sphere, the sine of the parallax varies as the sine of the apparent zenith distance
directly, and the distance of the body from the center of the earth inversely.
Hence, a body in the zenith has no parallax, and at s in the horizon it is
the greatest. If the object be at an indefinitely great distance, it has no pa-
rallax; hence the apparent places of the fixed stars are not altered by it. As
n is the apparent place, and m is called the true place, the parallax depresses
an object in a vertical circle. For the same body at different altitudes, the
parallax varies as the sine (s) of the apparent zenith distance; therefore if r=
the horizontal parallax, and radius be unity, the sine of the parallax =ps.
To ascertain therefore the parallax at all altitudes, we must first find it at
some given altitude.

155. First method, for the sun. ARisTarcHUs proposed to find the sun’s
parallax, by observing its elongation from the moon at the instant it is dicho-
tomized, at which time the angle at the moon is a right angle; therefore we
should know the angle which the distance of the moon subtends at the sun;
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which diminished in the ratio of the moon’s distance from the earth’s center
to the radius of the earth, would give the sun’s horizontal parallax. But a
very small error in the time when the moon is dichotomized, (and it is impos-
sible to be very accurate in this) will make so very great an error in the sun’s
parallax, that nothing can be depended upon from it. VevpeLiNus deter-
mined the angle of elongation when the moon was dichotomized to be 89°. 45',
from which the sun’s parallax was found to be 15". But P. RiccroLi found
it to be 28" or 80" from like observations.

156. Second method. - HippARcHUS proposed to find the sun’s parallax from
a lunar eclipse, by the following method. Let S be the sun, E the earth,
Ev the length of its shadow, mr the path of the moon in a central eclipse.
Observe the length of this eclipse, and then, from knowing the periodic
time of the moon, the angle mEr, and consequently nEr, will be known.

- Now the horizontal parallax ErB of the moon being known, we have the angle

Evr=ErB—nEr; hence we know EAB=AES— Evr=AES— ErB +nEr;

that is, the sun’s horizontal parallax —the apparent semidiameter of the sun—

the horizontal parallax of the moon + the semidiameter of the earth’s shadow
where the moon passes through. The objection to this method is, the great
difficulty of determining the angle nEr with sufficient accuracy ; for any error
in that angle will make the same error in the sun’s parallax, the other quan-
tities remaining the same. By this method ProLEMY made the sun’s horizon-
tal parallax 2. 50°. Tycuo made it 8’

15%7. Third method, for the moon. Take the meridian altitudes of the moon,
when it is at its greatest north and south latitudes, and correct them for refrac-
tion ; then the difference of the altitudes, thus corrected, would be equal to the
sum of the two latitudes of the moon, if there were no parallax; consequently
the difference between the sum of the two latitudes and the difference of the
altitudes will be the difference between the parallaxes at the two altitudes.
Now to find from thence the parallax itself, let S, s be the sines of the greatest
and least apparent zenith distances, P, p the sines of the corresponding paral-
laxes; then as, when the distance is given, the parallax varies (154) as the sine
sxP—p

S—s
the parallax at the greatest altitude. This supposes that the moon is at the
same distance in both cases; but as this will not necessarily happen, we must
correct one of the observationsin order to reduce it to what it would have been,
had the distance been the same. If the observations be made in those places
where the moon passes through the zenith in one of the observations, the
difference between the sum of the two latitudes and the zenith distance at the
other observation, will be the parallax at that altitude.

of the zenith distance, §:s:: P : p, hence, S—s:s:: P—p:p=
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158, Fourith method. Let a body P be observed from two places 4, B in
the same meridian, then-the whole angle 4P B is the effect of parallax between
the two places. The parallax (154) APC=hor. par. xsin. PAL, taking APC
for sin. 4 PC, and the parallax BPC=lor. par. x sin. PBM; hence hor. par. x
sin. PAL +sin. PBM =APB, .. hor. par. = APB divided by the sum of these
two sines. If the two places be not in the same meridian it does not signify,
provided we know how much the altitude varies from the change of declina-
tion of the body in the interval of the passages over the meridians.

Ex. On Oct. 5, 1751, M. dé la CaiLLE, at the Cape of Good Hope, ob-
served Mars to be 1'. 25",8 below the parallel of » in aquarius, and at 25° dis-
tance from the zenith. On the same day at Stockholm, Mars was observed to
be 1'. 57",7 below the parallel of A and at 68°. 14’ zenith distance. Hence the
angle APB is 81",9, and the sines of the zenith distances being 0,4226 and

0,9287, the horizontal parallax was 23",6. Hence, if the ratio of the distance:

of the earth from Mars to its distance from the sun be found, we shall have the
sun’s horizontal parallax. Now from comparing the altitudes of the northern
limb of Mars with stars nearly in the same parallel observed on the same days
at the Cape and at Greenwich, Bologna, Paris, Stockholm, Upsal, Hernosand,
the mean of the whole gave 10",2 for the horizontal parallax of the sun; and
rejecting those results which differed the most from the rest, the mean was 9”,
842. From the mean of another set of observations, the result was 9",575.
From the mean of several observations on Venus made in like manner, the pa-
rallax came out 10",38. The mean of the three Iast gives 9°,98 for the hori-
zontal parallax of the sun. FraMsteap, from an observation on Mars, con-
cluded the sun’s parallax could not be more than 10". Mararpr found the
same. From the observations of Pounp, and Dr. BrapLEy, Dr. HaLLEY found
it never greater than 12" nor less than 9". CassiNi, from his observations on
Mars, found it to be between 11" and 15”. But the most accurate method of

determining the sun’s parallax is from the transit of Venus over its dlsc, as will.

be explained when we treat on that subject.

159. If the earth be a spheroid, let E be the equator draw GAv, HBr
perpendicular to the surface, and compute the angles CAv or LAG, and CBr
or MBH by the Rule which we shall give, when we treat of the figure:of the
earth ; subtract these from the observed zenith distances PAG, PBH, and we
have the angles PAL, PBM. Now CP : C4::.sin. CAP or PAL : sin
apc= SN PAL o, cP : CB::sin. CBP or PBM : sin. BPC=

CB x sin. PBM

CP ; and as the parallax is very small, the sum of the two. sines.

will be very nearly the sine of the sum, therefore the sine of 4PB=:

2
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CA x sin.PAL ég-PCB x sin. PBM . hence, C P:CA x sm.P::nI: ; (13;1133 xsin.PBM i

160. Fifth method. Let EQ be the equator, P its pole, Z the zenith, v
the true place of the body and r the apparent place as depressed by parallax in
the vertical circle ZK, and draw the secondaries Pva, Prb; thien ab is the pa-
rallax in right ascension, and rs in declination. Nowvr : vs:: 1 (rad.) : sin. vrs
or ZvP, and vs : ab::cos. va : 1 (18); hence, vr : ab::cos. va : sin. ZvP, ..
ab =M; but vr=hor. par. x sin. vZ (164), and (Trig. Art. 221.) sin.

cos. va
sin. ZP x sin. ZPv’ therefore by substitu-

vZ : sin.ZP:.sin. ZPv : sin. ZvP =

' sin. vZ
) hor. . x sin. ZP x sin. ZP:
tion, ab= par x cl:;‘ v X sin °. Hence for the same star, where the
hor. par. is given, the parallax in right ascension varies as the sine of the hour

angle. Also the kor. par.= siigggﬁ;i?:zPif For the eastern hemisphere,
the apparent place b lies on the equator to the east of @ the true place, and
therefore the right ascension is diminished by parallax ; but in the western he-
misphere, b lies to the west of a, and therefore the right ascension is increased.
Hence, if the right ascension be taken before and after the meridian, the whole
change of parallax in right ascension between the two observations is the sum

(s) of the two parts before and after the meridian; and the kor. par. =:’_—1:.Z§'xv§' |

where § = sum of sines of the two hour angles.

161. To apply this Rule, observe the right ascension of the planet when it
passes the meridian, compared with that of a fixed star, at which time there
is no parallax in right ascension; about 6 hours after, take the difference of
their right ascensions again, and observe how much the difference (d) between
the apparent right ascensions of the planet and fixed star has changed in that
time. Next observe the right ascension of the planet for 8 or 4 days when it
passes the meridian, in order to get its true motion in right ascension ; then if
its motion in right ascension in the above interval of time between the taking
of the right ascensions of the fixed star and planet on and off the meridian be
equal to d, the planet has no parallax in right ascension; but if it be not equal
to d, the difference is the parallax in right ascension, and hence, by the last
Article, the horizontal parallax will be known. Or one observation may be
made as long before the planet comes to the meridian, by which a greater dif-
ference will be obtained.

Ex. On August 15, 1719, Mars was very near a star of the 5th magnitude
in the eastern shoulder of aquarius, and at 9%. 18'in the evening, Mars fol-
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lowed the star in 10. 17", and on the 16th at 4& 21’ in the morning it followed
it in 10. 1", therefore in that interval, the apparent right ascension of Mars
had increased 16" in time. But according to observations made in the meri-
dian for several days after, it appeared, that Mars approached the star only 14’
in that time, from its proper motion, therefore 2’ in time, or 30" in motion, is
the effect of parallax in the interval of the observations. Now the declination
of Mars was 15°, the co-latitude 41°. 10, and the two hour angles 49°. 15’ and

30" x cos. 15° "
sin. 41° 10 x sin, 49° 15’ + sin. 56°. s9=273"
But at that time, the distance of the earth from Mars was to its distance from
the sun as 37 to 100, and therefore the sun’s horizontal parallax comes out
10,17.

56°. 89'; therefore the kor. par. =

162. When Dr. MASkeLYNE was at St. Helena and Barbadoes, he made se-
veral observations of this kind on the moon, in order to determine her hori-
zontal parallax ; and he further observes, ¢ that if the like observations were
repeated in different parts of the earth, it would probably afford the best means,
yet proposed, for ascertaining the true figure of the earth, as they would de-
termine the ratio of the diameters of the parallels of latitude to each other,
the horary parallaxes being in proportion thereto: For though the earth affords
but a small base at the moon, yet, by repeating these trials, and comparing
the results, we may hope to attain that degree of exactness, which we could
never expect from fewer observations.”

163. But besides the effect of parallax in right ascension and declination, it
is manifest that the latitude and longitude of the moon and planets must also
be affected by it ; and as the determination of this, in respect to the moon, is
in many cases, particularly in solar eclipses, of great importance, we shall pro-
ceed to show how to compute it, supposing that we have given the latitude of
the place, the time, and consequently the sun’s right ascension, the moon’s
true latitude and longitude, with her horizontal parallax.

164. Let HZR.be the meridian, v EQ the equator, p its pole; «C the
ecliptic, P its pole; « the first point of aries, HQR the horizon, Z the zenith,
ZL a secondary to the horizon passing through the true place » and apparent
place t of the moon; draw Pt, Pr, which produce to s, drawing the small
circle #s parallel to ov ; let 7n be perpendicular to P#, and draw the small circle
ra parallel to ov ; then rs, or ta, is the parallax in latitude, and ov the parallax
in longitude. Draw the great circles Pv, PZAB, Ppde, and ZW perpendi-
cular to pe; then as » P=90° and «p=90° « must (4) be the pole of Ppde,
and therefore dv =90% consequently d is one of the solsticial points @ orvs;
also, draw Zzr perpendicular to Pr, and join Ze, pv. Now « E, or the angle
vpE, or Zp-, is the right ascension of the mid-heaven, which is known (106);
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PZ=AD (because 4Z is the complement of both) the altitude of the highest
point 4 of the ecliptic above the horizon, called the nonagesimal degree, and
w4, or the angle v P4 isits longitude. Now in the right angled triangle
ZpW, we have Zp the co-latitude of' the place, and the angle ZpW, the dif-
ference between the right ascension of the mid-heaven «pE and «d; hence,
(Trig. Art. 212.) cot. p. Z : rad::cos. p : tan. pW; therefore PW=pW ¥ pP,
where the upper sign is to be taken when the right ascension of the mid-heaven
is less than 180°, and the under, when greater. Also, in the triangles WZp,
IWZP, (Trig. Art. 231.) sin Wp : sinWP:: cot. WpZ : cot. WPZ, or tan.
AP« ; and as we know «0, or o Po, the true longitude of the moon, we know
APo, or ZPx. Also (Trig. Art. 219.) cos. WPZ, or sin. APZ, : rad.:: tan.
VP : tan. ZP. Hence, in the triangle Zr P, we know ZP, Pr and the angle
P, from which the angle ZrP or ¢rs, and Zr may be found ; for in the right
angled triangle ZPx, we know ZP and the angle P, to find Pz ; therefore we
know 72 ; and hence (Trig. Art. 231.) we may find the angle Zrz, with which,
and rz, we may find Zr the #rue zenith distance ; to which, as if it were the
apparent zenith distance, find the parallax (154) and add to it, and you will
get very nearly the apparent zenith distance, corresponding to which, find the
parallax 7¢; then in the right angled triangle rst, which may be considered as
plane, we know r¢ and the angle r, to find rs the parallax in latitude ; find also
ts, which multiplied (108) by the secant of tv, the apparent latntude, gives the
arc ov, the parallax in'longitude.

Ex. On January 1, 1771, at 9%. apparent time, in lat. 53°N. the moon’s true
longitude was 8s. 18° 27’ 85", and latitude 4°. 5. 30'S. and its horizontal pa-
rallax 61'. 9"; to find its parallax in latitude and longitude.

The sun’s right ascension was 282° 22 2" by the Tables, and its distance
from the meridian 185°% also (106) the right ascension « E of the mid-heaven
was 57°. 22. 2"; hence, the whole operation for the solution of the triangles
may stand thus.

N (ZpW = 82°. 87.58" - . .  cos. 9.9253864
N&‘ ZP p—d 87 . 0 . ) O - - - tanc.\ 9-8871 144‘
g pW = 82 . 23 . 57 - - - tano 9.8025008

Pp = 23.28. O
PW = 55.51. 57

pW = 82.23.57 . - A.C. sin. 0.2709855
p—y 55 . 51 . 57 - - - sino 9-9178865
ZpW: 32. 87. 58 - - - cot. 10.1985941

AP*: 67 . 290 8 - - - tano 10.3824'661

Tri. WpZ,IWWPZ
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0P+ =108°% 27. 85"
oPA4 = 40. 58. 27

E APZ: 670 29. 8 - - - sino 9.9655700

N Jwp = 55.51.51 - - tan. + 10 20.1688210

.EE ZZP b= 570 56- 36‘ - - - tal’l. 10.2032510

& (ZP = 57.56.36 - - - tan. 10.2032555

N JZPr = 40. 58. 27 - - - cos. 9.8779500

S (Pr =50.19.3 - - -  tan. 100812055
Pr =

94. 5. 30
48. 450 57 - - AoCo Sin. 0.16%743

50. 19. 38 - - - sin, 9.8863144
4‘00 58. 27 - - - tano 909387676

——

44. 1.16 - - - tan, 9.9851563

44, 1. 16 - - cos. + 10 19.8567795
43 . 45. 57 - - - tan. 9.9812846

’ Zrx
Zrx

rr

Tri.Zrr Ti.ZPz,Zre

rr
Pa
ZPx

Zr = 53. 6.10 " - - - cot. 9.8754949

Zr = 53. 6.10 - - -  sin. 9.9029362
Hor. par.=61'. 9"=38669". - - log. 8.5645477

t uncorrected — 2934"=48". 54" - log. 3.4674839

——

App. zen. dist. Zt=153°. 55. 4" nearly sin.  9.9075042
Hor. par.=61". 9" = 3699". - - log. 3.5645477

Par. r¢ cor.=2965"=49'. 25" 519

- log. 3.4720519

»
S Jtrs=44° 1. 16’ - - - - cos. 9.8567795
& ({rspar. in lat.—=2132" = 35" 32" - log. 3.3288314
rt cor. = 2965" - - - - log. 8.4720519
2 \trs=44° i\ 16 - - - - sin.  9.8419369
2 ) s=2061"=34. 21" - -« - log. 8.5139888
* " (True lat. ro=4°. 5. 30"
App. lat. tv=ro—7rs=4° 41" 2" - sec. 10.0014528
ov par. in long.=2067"=384. 27" - log. 3.3154416

“The value of fvis 70—or +7s, according as the moon has N. or 5. latitude.
The Figure is drawn for north latitude, but the Example is for south latitude.

Thisis the direct method of solving the problem from the triangles ; but the
VOL. I, X
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operation may be rendered easicr by the following Rule (the most convenient
of’ any yet given) discovered by Dr. MaskeLYNE, but communicated without
the demonstration.  The investigation here given, is by the Rev. Dr. Brixk-
LEY, Professor of Astronomy at Dublin.

Let the height H of the nonagesimal degree, or PZ, and the angle ZPr
{n), the moon’s true distance from the nonagesimal, be computed as before.
Put P =the parallax ov in longitude, Q =the parallax at in latitude, depressing
the moon southwards, I.=the truc latitude, / the apparent latitude, /4 the ho-
rizontal parallax. Now

P :rnsirad. :sin. Pr

~t sin.ntr - rad. o P : h::sin. ntr x sin. Zt : sin. Pr,

£ b isin. Z0 - rad. radius being unity ;
I x sin. ntr x sin. Z¢ . . . .
hence, P = s Dr = (as sin. nirxsin, Zt=sin. ZPtxsin. . PZ)

&« sin. s,I:,/ :’,sm 7I’{_h x sin. cHosxzm n+ P , the parallax in Longitude.
Also, tn : tr::cos. r¢n : rad.::sin. rin ; tan. rin
tr: ko sin. Zt : rad.
W b i sin. rin x sin. Zt ; tan. rénxrad. :: sin. PZ x sin. ZP¢:
sin, Z Pt bstit: '
sin. I’t < cot. ZP —cos. Pt x cos. ZI'? substitu
terms their values; hence, tn=/h x sin. PZ xsin. P¢xcot. ZP~hxsin. PZ

w cos. Pt x cos. ZPt="h x cos. H x cos.l — I x sin.H x sin. I x cos. n+ P.
1%

™
Now as the angle #Pu is very small, we have an=g————=F. = (from the first

P;::;“'If;r =L P*xsin. Prx cos. Pr=4% P x P xsin. Pr x
cos. Pr=(as, from above, P xsin. Pr=/hx sin. PZ xsin. ZP) P x k x sin.
H x sin. n+ P x sin. L, or sin. lneanly ; hence, Q=ta=tn—an=" x cos. H x
cos. | —hxsin. H x sin. I x cos. n + P—h x sin. H x % Pxsin. 7+ P x sin.
But as P is very small, we may call 1 P the sine of 1 P, and its cosine we may
put=rad.=1; hence, for cos. #+ P we may s substltute cos. n+ P x cos. L P,
and for 3 P xsin. » + %+ P we may put sin. n+ n+ £ xsin L hence, Q= hxcos.

IIxcos. l—hxsin. Hxsin. {xcos. n+ P xcos. ¢ P +sin. n+szin. P =(be-
cause by plane Trig. Art. 103. cos. n+ P X cos. 3P +sin. n+ PX sin. 1P=
cos. n+3P)h x cos. Hx cos. {—i % sin. HX sin. [ X cos.n + 7 + 32, the parallax

in Latitude.
Now P enters into the expression for the value of P, and as P is very small,

ting for the third and fourth

proportion above)

» |f we conceive two tangents to be drawn to Pr and Pa at r and a, and to meet, then ra may
e condered as the sine of ra to the length of these tangents as a radius, and therefore, by the pro-
gucty of the circle, an = rn® divided by twice the tangent.



ON PARALLAX.

h x sin. Hx sin. n

cos. L
P; then put that value into the numerator, and you will get a very accurate
value of P. Also, in the expression for Q, we have the apparent latitude,
which cannot be known without knowing Q; hence we must first get a ncar
- value of Q and apply it to the true latitudc to get the .apparent nearly; to do
this, we may omit the sccond part as being small, on account of sin. / being
small for the moon, and suppose Q=% x cos. H x cos. [=hxcos. I xcos. Lnearly;
or when the latitude is very small, as is the case of the moon in solar eclipses,
we may suppose Q=~xcos. F, from which we shall get the apparent latitude
with sufficient accuracy.

In the application of this Rule, regard must be had to the signs of the quan-
titics; if n+ 1P be greater than 90° its cosine becomes negative, in which
case Q will be the sum of the quantities, unless the apparent latitude { is south,
in which case, its cosine will be negative, which makes the first term negative.
In general, Q will be the sum of the two parts, when n +LP and the moon’s
apparent distance from P are, one greater and the other less than 90°% otherwise
Q will be the difference. The parallax in longitude increases the longitude, if
the body be to the east of the nonagesimal degree, and decreases it, if it be to
the west. This Rule is more correct than the other, because in that we took
the small circle #5, instead of a great circle from 7, as the perpendicular from
t upon Pr produced. This error, for the’ moon, may sometimes amount to
about 2. It may be corrected by applying an found above.

To apply this Rule to the last case, we have H=357° 568. 36’, n=40"
58, 27", L =4°. 5. 80" south, 1=61".9"=3669"; hence,

we must first suppose P= » which will give a near value of

Log. k2 - - - - - - - - 3.56454'1"7
Sin. H - - - - - - - - 9.9281518
Cos. L. - - - - - - A4.C. 0.0011084

3.4938079
Smn - - - - - . - < 98167176

Log. 2044'=34.4'=Pnearly - - - - 83105255

Therefore n + P =41° 32. 81"; hence,

3.4938079
Sil'l. 7”4+ P - - - - - - - 9.8216237
Log. 2067" =34'. 27" par. in Longitude - - 83154316

Log.h - - - = = = = =  3.564547T
Cos. H - . - - - - - - 9.7248963

Log. 218%" =35, 33" par. lat. nearly s - - 3.2804440
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4% 5. 80"
4. ¢1. 8 app. lat. nearly.

’ iaogc h - - - - - 305645477
Cos. H - - - - 9.7248963
Cos.I=4°. 41, 8" nearly 9.9985470 o~ first part of Q.

Log. 1941"=32.21" - - . 8$.2879910

1

]
]

Log.h - - - - -  38.5645477]
Sin. H - - . - . 99281518
Sin.l - - - - - 89120258
Cos. n+ 1P - - - - 9.87593899
Log. 191"=3%.11" = . . 2.2806552J
82. 21 |

85 .32 par. in Latitude.

> second part of Q.

. 'The sum of the two parts is here taken, because P¢is greater than 90°, and
2 +14P less than 90°. »

165. Hitherto we have considered the effect of parallax, upon supposition
that the earth is a sphere; but as the earth is a spheroid, having the polar
diameter shorter than the equatorial, it will be necessary to show hew the com-
putations are to be made for this case. The following method is given by
CLAIRAUT. -

166. Let EPQp be the earth, EQ the equatorial and Pp the polar diame-
ters, O the place of the spectator, HCR the rational horizon, to which draw
ZONK perpendicular; L the moon, join LO, LC, LK, and draw CV per-
pendicular to LK. Now to compare the apparent places seen from O and C,
let us compare the places seen from O and K, and from K and C. Put k=the
horizontal paralax to the radius QC, or ON which is very nearly equal to it,
on account of the smallness of the angle CON. Let CO=1, and CN (the
sine of CON to that radius)=a, #=tan. of the angle KCN the latitude of the
place; then rad.=1 :¢::a: a=NK; hence, as h=the angle under which
ON. (which we may consider as equal to unity) appears when seen directly at
the moon, we have % x fa =the angle under which VK would appear; therefore
h x 1+ ta=the horizontal parallax of OK; considering therefore K as the
center of a sphere and KO the radius, compute the parallax as before. Now
-as the planes of all the circles of declination pass through Pp, in estimating

" the parallax either from Kor O,the parallax in right ascension must be the same,
decause K and O lie in the plane of the same circle of declination; the only
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difference therefore between-the effect of parallax at X and O must be in decli-
nation. Now at K, the angular distance of the moon from the pole P is LK P,
and the angular distance from C is LCP; the difference of these two angles.
therefore, or CLK, is the difference between the parallax i declination atK
and at C, and this angle CLK is akvays to be added to the polar distance seen:
from K to get the polar distance from C. Now CLK=F~LxCV; but the
angle VCK (= LCE) is the moon’s declination, therefore CV=CK x cos. dec.
- CN a I x ax ees. dec.. v .
also, CK = ~cos, KCN =cos. Tat.’ hence, CLA = cos. lat. ° This there-
fore is the equation of declination for the spheroid, to be applied to find.
the parallax in declimation seen from C, after having calculated the effect of
parallax in declination for a sphere whose centeris K and radius KXO. Thereis
no equation for the parallax in right ascension. Te find how this equation- in.
declination will affect the latitude, let P be the pole of the equator, p the pole
of the ecliptic, L the place of the moon seen from X, and b seen from C; then
8L is the equatien in declination; draw La perpendicular te: pb, and ba is the
equation in latitude, and the angle apL the equation in longitude. Now con.--
sidering &L and ba as the variations of the two sides P4, pb, whilst Pp and the
angle P remain constant, we have oL : ba:: (Trig, Art. 262.) rad..: cos. b,.
T . cos. Pp —cos. Pp x cos. pb _
or cos. L=(Trig. Art. 243.) sin. Pp x sin. pb ; hence, ba=0L x
€0s. Pp—cos. Pbxcos.pb_ hxa  cos. Pb _cos. Phxcos. pb'_ hxa
' sin. Pb x sin. pb = Gos. Tat. . sin. b sin. pb " cos. lat.

. 5. 23°% 2 .
€ po _ cos.. b x cotan. pb= hxa  _60s.23 ; 8 —sin. dec. x tan.
sin. pb cas. lat. ~  cos. moon’s lat.

moon’s lat. But if CP be to CE as 1 : 1 +m, and z, %, =the sine and cosine

of the latitude of the place, then a=2m x 2y, as skown in the Chapter on the-

- cos. 23°, 28
Figure of the Earth; hence, ba=2kmx x .
‘cos. moen’s lat.

— sin. dec. x tan.

moon’s lat. “The sign —becomes: + if* the- declination and latitude of the moon.
be of different affections, that is, one soutli and thie other north. The latitude
dere used, is that seen from the center of the eartit: This correction.increases.

the moon’s distance fram-the pole p of the ecliptic:
167. To find the correction of the longitude, or the angle Lpa, we have

(13) La=Lpa x sin.. pL, hence, Lpa ~sin. pL

by spher. trig. sin. P : sin. p.:isin. Pp : sin b__ S’? 1; :: s:‘}b Pp. ; alse, Lb

il . i . 0002
—2hmr; hence, Lpa=2kme x sm.p x sifl. Pp_thx cos.lon. ¢ x sin 20__8_
- " sin Pb xsin. pL. 00s. dec, ¢ x cos.lat. ¢

La 5 but aL=DbL xsin. &, and:

FIG.
32..
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=(as the cos. of the moon’s latitude may be considered equal to unity) 2/ms x
sin. 28°, 28’
cos. dec. ¢

the longitude seen from K, when the moon is in the descending signs 3, 4, 5,

x cos. lon. ¢. In north latitude, we must add this correction tor

6,7, 8, but sublract it, when in the ascending signs 0, 1, 2, 9, 10, 11, to have

the longitude seen from C; and the contrary when the latitude of the place
is south. _

168. According to the Tables of MavEr, the greatest parallax of the moon,
(or when she is in her perigee and in opposition) is 61'. 82"; the least parallax
(or when in her apogee and conjunction) is 53 52", in the latitude of Paris;
the arithmetical mecan of these is 57. 42; but this is not the parallax at the
mean distance, because the parallax varies inversely as the distance, and there-
fore the parallax at the mean distance is 57'. 24", an harmonic mean between
the two. M. de LamBre recalculated the parallax from the same observations
from which Maver calculated it, and found it did not exactly agree with
Maver’s. He made the equatorial parallax 57'. 11",4. M. de la LaNDE makes
it 57. 5" at the equator, 56. 53,2 at the pole, and 57 1" for the mean radius
of the earth, supposing the difference of the equatorial and polar diameters to

be 33_0 of the whole. From the formula of MavEr, the equatorial parallax is
57. 117,4 with the following equations, according to M. de la LaAXDE.

57.11",4-8."7",7 cos. ano. ¢
+ 10,0 cos. 2 ano. ¢
0, 8 cos. 8 ano. ¢
87, 8 cos. arg. evection
0, 3 cos. 2 arg. evect.
26,0 cos. 2 dist. €3®
1,0 cos. dist. €aA@E
0, 2 cos. 4 dist. €30
2,0 cos. 2 (apo. ¢ — Q)
0, 2 cos. 3 (apo. ¢ — Q)
1, O cos. (arg. evect. +ano. ©)
0, 8 cos. (2 arg. lat.—ano. < cor.)
0, 8 cos. (2 dist. €A©® —ane. @)
0, 7 cos. (2 dist. €3@® +ano. ®)
0, 6 cos. (arg. evect. —mean ano. &)
0,4co8.2(8 —@),0or2(®+sup. 8)
0, 8 cos. mean ano. @
O, 2 cos. (mean ano. ¢ —mean ano. @)
0, 1 cos. (2.dist. ®a ¢ +mean ano. ¢ )

2

s ++++ I L+ +++ 1 ++1
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169. Let r=4 the semiaxis major, p=1 the semiaxis minor, n = the sine,
m the cosine of the angle OCE; then, from conics, the sine of the horizontal

polar parallax : sine of the bor. parallax at O :: {/7*n* + /"m" : rp; hence the sine

of the hor, par. atO= ——2f____ x the sine of the hor. polar parallax. If
JIrint+emt

r :p::280: 229, we have the following Table for the horizontal parallax for

every degree of latitude, that at the pole being unity. :

Lat. | Hor. Par. | Lat. [ Hor. Par. || Lat. | Hor. Par.
o | 100438 r 31° | 100321 61° | 100103
1 100438 32 100314 62 100097
2 100437 | 33 100307 63 100091
3 100436 | 34 100300 64 100085
4 100435 | 35 100293 65 100079
5 100434 | 36 100286 66 100073
6 100432 | 37 100279 67 100067
7 100430 | 38 100272 68 100062
8 100428 | 89 100265 69 100057
9 | 100426 | 40 100257 70 100052
. 10 100424 41 100250 71 100047
11 100421 | 42 100248 72 100042
12 | 100418 | 43 100235 73 100038 |
13 100415 | 44 100227 74 100034
14 100412 | 45 100219 75 100080
15 100408 46 100211 76 100026
16 100404 | 47 100203 7 100023
17 100400 | 48 100195 78 100020
18 100396 | 49 100187 79 100017
19 100391 .| 50 100180 80 100014 |
20 100386 [ 51 100173 81 100012 |
21 100381 | 52 100166 82 100010
22 100376 53 100159 83 100008
23 100371 54 100152 84 100006
24, 1003865 55 100145 85 100004
25 100859 56 100188 86 | 100003
26 100358 57 100131 87 100002
27 100347 58 100124 88 100001
28 1003841 59 100117 89 100000
29 100385 60 100110 90 100000
30 1003828

Hence, by multiplying the polar parallax by the number corresponding to
any latitude, it gives the horizontal parallax at that latitude. .From the
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"Theorem, ‘the parallax may be very easily calculated for any other ratio of the
diameters of the-earth.

170. . To find the mean distance. Cs of the moon, we have A4C, the meamr
radius (r) of the earth, : Cs, the mean distance (D) of the moon from the
éarth, ::sin. 57. 1"=A4sC (168) : radius:: 1 : 60,3; consequently D=60,3r;
but » = 3964 miles; hence, .D=289029 miles.

171. According to M. de la LaxpE, the horizontal semidiameter of the
moon : its horizontal parallax f01 the mean radius (r) of the earth::15 :
54-. 57',4, or very nearly as 8 : 11; hence, the semidiameter of the .moon is

Lr=--x3964=1081 miles; and as the magnitudes of sphericat bodies are
as the cubes of their ra.du, we have the magnitudes of the moon and earth
as 311301 49,

172. In the sphcroid, besides the parallax in right ascension and declination,
latitude and longitude, there is also a parallax in azimuth, and also a correction
of the parallax in altitude. For the plane which is perpendicular to the sur-
face at O, always passes through ON, and therefore the azimuth seen from O
or N and from C must be different, except when the body is on the meridian,
in which case the plane also passes through C; and the altitude seen from N
must also be different from that seen from C. Hence, having compared the
parallax between O and N in altitude, we shall want a correction for the diffe-
rence between the altitudes and azimuths seen from N and C. Let therefore
CN represent CN in rig. 31. L the moon, LCR a plane perpendicular to
the horizon, and then will NCR be the azimuth secn from C; draw N/ per-
pendicular to CR, A/S perpendicular to CL, and LR perpendicular to the
horizon ; and let m and n be the sine and cosine of NCM, r the sinc of MCS,
a=CN, the sine of CON in ric. 81. and c¢ the cosine of LNR, and let d=
the distance of the moon; then cd=RN, ma=MN. Now the line CO in

FIG. 31.or unity, at the distance d appears under an angle 2 when seen di-
hma

rectly; hence, —d- ko 2 c d : the angle NRC_..E_ the difference of the
azimuths seen from C and N. Also, as the arc parallel to ¢he horizon be-
tween any two secondarics to it varies (13) as the cosine of the altitude, the
arc of the difference of the azimuths at the altitude of the moon=/lma=~ x
MN. Now as the plane NML is perpendicular to CLM, and NM is ex-
tremely small, the altitudes seen from N and A/ will not sensibly differ; hence,
the difference between the altitudes at NV and C is the angle CLM =/ xSM
=hXrxCM=IXr xnxa. If the moon be to the souith ot the prime verti-
cal, we must sublract this correction from the altitude at N to get the altitude
at C; if it be to the north, we must add the correction.

173. But ‘the most elegant and simple mecthod of finling the parallax in
latitude and lon_itude on a spheroid, is the following, given by Mayer.
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The parallax at any place O in the spheroid is the same as on a sphete whose
radius is CO, and latitude OCE; subtract therefore the angle COK (found
from the following Table) from the latitude OvE on the spheroid, and you
get the angle OCE the Iatitude of the point O reduced to a sphere. Also, the
horizontal parallax which is made use of, must be adapted to the radius OC,
by diminishing the equatorial horizontal parallax by a quantity corresponding
to the difference between CE and CO. This diminution is also found in the
same Table. The latitude thus reduced, and the horizontal parallax thus
found, are to be employed in computing the moon’s parallaxes in longitude,
latitude, right ascension and declination, which will now be performed by the
Rule (164) founded on the hypothesis of the earth being a sphere; for by
means of the Table, both the base of the parallax and the latitude of the
place are referred to the earth’s center.

ARGUMENT.
Elevation of the Pole, and Equatorial Parallaz.
Elev- Equatorial Parallax. Reduct.
ol i om
" | Reduction of Parallax. i
 0° | —0'0 | -0'0 | =00 |~0. O
6 0,2 0,2 0,2 3. 6
12 0,6 0,7 0,7 | 6. 4
18 1,4 1,4 | 1,5 8. 57
24 2,8 2,5 2,6 |11. 6
30 3,5 3,7 3,9 | 12. 56
36 4,9 5,1 5,4 | 14. 12
42 6,8 6,7 7,0 | 14. 51
48 7,7 8,2 8,6 | 14. 51
54 9,2 9,7 10,2 | 14. 12
60 10,5 11,1 11,7 12. 56
66 11,7 12, 4 13,0 | 11. 6
79 12,7 18, 4 14, 1 8. 57
78 13,4 14,2 14,9 6. 4
-84 18,9 14,6 15, 4 3. 6
90 14,1 14,8 15,6 | 0. O

YOLe 1o L

FIG.
31.
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Ex. If the latitude on the spheroid be 63° and the equatorial parallax be 56';
what are the reductions? :

The reduction of the parallax is 11°,5, and of the elevation of the pole it
is 55" hence, the reduced latitude is 62°. 59 5%, and the parallax 55'. 48",5.



CHAP. VII

ON REFRACTION.

Art. 174. WHEN a ray of light passes out of a vacuum into any medium,
or out of any medium into one of greater density, it is found to deviate from
its rectilinear course towards a perpendicular to the surface of the medium into
which it enters. Hence, light passing out of a vacuum into the atmosphere will,
where it enters, be bent towards a radius drawn to the earth’s center, the top
of the atmosphere being supposed to be spherical and concentric with the center
of the earth; and as, in approaching the earth’s surface, the density of the
atmosphere continually increases, the rays of light, as they descend, are con-
stantly entering into a denser medium, and therefore the course of the rays
will continually deviate from a right line and describe a curve; hence, at the
surface of the earth, the rays of light enter the eye of the spectator in a
different direction from what they would have entered, if there had been no
atmosphere; consequently the apparent place of the body from which the light
comes must be different from the true place. Also, the refracted ray must move
in a plane perpendicular to the surface-of the earth; for conceiving a ray to
come in that plane before it is refracted, then the attraction being always
towards the perpendicular which lies in that plane, the ray must continue to
move in that plane. Hence, the refraction is always in a vertical circle. The
ancients were not unacquainted with this effect. ProLEmMY mentions a differ-
ence in the rising and setting of the starsin different states of the atmosphere;
he makes however no allowance for it in his computations from his observa-
tions ; this correction therefore must be applied, where great accuracy is re-
quired. ARCHIMEDES observed the same in water, and thought the quantity
of refraction was in proportion to the angle of incidence. AvLHAZEN, an Ara-
bian Optician, in the eleventh century, by observing the distance of a cir-
cumpolar star from the pole, both above and below, found them to be different,
and such as ought to arise from refraction. SNELL1US, who first observed the
relation between the angles of incidence and refraction, says, that WaLTHERUS
in his computation allowed for refraction; but Tycuo was the first person who
constructed a Table for that purpose, which however was very incorrect, as he
supposed the refraction at 45° to be nothing. About the year 1660, Cassint
published a new Table of Refractions, much more correct than that of Tyeno;
and since his time, Astronomers have employed much attention in construct-
ing more correct Tables, the niceties of modern Astronomy requiring their
utmost accuracy. We shall treat this subject, by first showing the practical
methods by which the quantity of refraction is determined at some certain
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altitudes, and then give the investigation of the rules for the vanatlon at dif-
ferent altitudes, from which a Table for the Refraction at all altitudes may be

- constructed.

175. First method. Take the altitude of the sun, or a star whose right as-
cension and declination are known, and note the time by the clock; observe
also the times of their transits over the meridian; then find (92) the hour an-
gle; hence in the triangle PZz, we know PZ and Pz the complements of lati-
tude and declination, and the angle #PZ, to.find the side Zz, the complement
of which is the altitude, the difference between which and the observed altitude
is the refraction of that altitude.

Ex. On May 1, 17388, at 3h. 20" in the morning, Cassini observed the
altitude of the sun’s center at Paris to be 5° 0. 14", and the sun passed the
meridian at 124 ©'. O, to find the refraction, the latitude being 48°. 50 10",
and the declipation was 15°. 0. 25". The sun’s distance from the meridian was
6h. 40, which gives 100° for the hour angle #PZ; also, PZ=41° 9. 30" and
Pr="74°. 59. 35"; hence, Zz=85°. 10. 8", consequently the true altitude was
4°. 49. 52 Now to 5° 0. 14', the apparent altitude, add 9" for the parallax,
and we have 5°.0. 23" the apparent altitude corrected for parallax; hence,
5° 0. 28'—4° 49. 52'=10. 31" the refraction at the apparent altitude 5°.
Q. 14"

176. Second method. Take the greatest and least altitude of a circumpolar
star which passes through, or very near, the zenith, when it passes the meridian

.above the pole; then the refraction being nothing in the zenith, we shall have

the true distance of the star from the pole at that observation, the altitude of
the pole above the horizon being previously determined; but when the star
passes the meridian under the pole, we shall have its distance affected by refrac-

_ tion, and the difference of the two observed distances above and below the pole

gives the refraction at the apparent altitude below the pole.

Ex. M. de la CarLLE observed at Paris a star to pass the meridjan within
6 of the zenith, and consequently at the distance of 41° 4 from the pole;
hénce it must pass the meridian under the pole at the same dlstance, or at the
altitude 7°. 46’; but the observed altitude at that time was 7°. 52 25"; hence
the refraction was 6. 25" at that apparent altitude.

1'77. Third method. M. de la CaiLLE also employed observations made at
Paris and at the Cape of Good Hope, in order to ascertain the refraction. The
method he made use of was this: The distance of the parallels of Paris and the
Cape was found to be about 82° 46, the half of which is 41° 28'; therefore
a star vertical to a parallel in the middle between Paris and the Cape, must
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be at the zenith distance of 41° 28 from each. Now the sum of the apparent
zenith distarices of such a star was found to be 82°. 44'. 46", which therefore
is the distance of the two parallels, diminished by the sum of the two refractions
at the zenith distance 41° 28, for refraction elevating a star, must make the
apparent zenith distance of each star less than the true distance. Next, the
apparent altitude of the pole at the €ape was observed to be 83°, 56", 49%1,
and the altitude at Paris to be 48°. 52'. 27,5, the sum of these two apparent
altitudes is 82°. 49'. 16",6 the distance of the parallels increased by the sum
of the two refractions corresponding to the altitude of each pole. The differ-
emce of these two determinations is 4. 30°,6 for the sum of the four refrac-
tions. Now taking the refraction te be as the tangent of the zemith distance,
(182), he found the tangents of 41°. 28/, and of the complement of the altitudes
of the two poles, and divided 4. 30",6 into four parts in the ratio of these tan-
gents, making the refraction a fortieth part less at the Cape than at Paris, as he
had observed it; hence, he got 1'. 36',5 for the refraction at the altitude 33°,
56'. 49",1 at the Cape, and 58",2 at the altitude 48°. 52 27",5 at Paris; also
57",2 for the refraction at the zenith distance 41°. 29" at the Cape, and 58",7
for the refraction at the zenith distance 41°. 28' at Paris. The altitudes and
zenith distances corrected by these refractions give 82° 46. 42" for the true
distance of the parallels of Paris and the Cape.

178. Having determined the refraction at the altitude 48°. 52'. 27,5 at Pa-
ris, he calculated the refractions from that altitude up to the zenith, upon sup-
position that they were as the tangents of the zenith distances, and hence he
knew the refractions at these altitudes at the Cape. Therefore, by taking the
meridian altitudes of stars from 7° to 48° at Paris, and the corresponding meri-
dian altitudes at the Cape, and correcting these latter for refraction, he got the
refraction from 7° to 48° at Paris; for the sum of the two true zenith distances
was 82° 46. 42", therefore knowing the true zenith distance at the Cape, the
true zenith distance at Paris was known, the difference between which and the

apparent zenith distance was the refraction. Thus M. de la CaiLLE formed his .

Table of refractions. His method was very ingenious; but from more accurate
observations since his time, it appears, that his refractions are a little too great.
This Dr. MaskeLYNE has clearly shown in the Phil. Trans. 1787. By com-
paring the sum of the two apparent zenith distances of stars observed at a low
altitude at Paris, and consequently at an high altitude at the Cape, and at an
high altitude at Paris, and therefore at a low altitude at the Cape, he found
the refraction at the Cape to be a fortieth part less than at Paris.

179. Fourth method. Boscovicu proposes to find the refraction by the cir-
cumpolar stars, only by knowing its variation at different altitudes. Let aand
« be the apparent meridian zenith distances of a star below and above the pole,
z and & the respective refractions; b and & the apparent meridian zenith dis-
tances of another star below and above the pole, 2 and 2’ the corresponding

”
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il bea+z, d+2, and b+2, &'+2; and

R o = ‘ﬁ:t d:luzem'th is equal to half the sum of the

— S ‘:;m distances, a+2+d& +2=b+2+b +2; hence,
- o= T Now taking, at first, the refractions to be
.- ~“"wces, (182), we have tan. a : tan. @':: 2z : &' =

_ . wmomd ranb ,_zx tan. &'
w-mIZen T 0" T Ttanog

-
-
~

- substitute these into

S s
b+b—a—d xtan. a
r= . .3 hence
e WS et tan. d —tan. b—tan. b’

o dovwn.  But as the refractions vary more accurately
wck distance diminished by three times the refrac-
& =m, b—383=n, b'-82'=n, and we have z=

el
—- ™
<~

- = —- the correct refraction at the apparent altitude
- Q. 2

= ¥

g™ -~ ! x tano n ’ X 3 !
e, TXBL 7 pg g ftan.

et amm tan. m n. m

warnd, by taking 3z, 87, 8z, 32 from the common Tables.

. \»**‘“, the true zenith distances of one of the stars below and

<~ > .7 e wue zenith distance of the pole will be one half of
- N *"‘:‘\ 2 is the complement of the latitude of the place.

-~

-~

. The opera-

wut zenith distance of » Draconis below and above the pole

~ iv:N i“: be 69° 5. 2°,4 and 13° 8. 27°,2; and of ¢ Urse minoris 53°.
- \WN . 11, 28%,2; to find the corresponding refractions, and the

—— A o rk\cv.
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a =69 5. 24 tan. ¢ = 2,616 .
ad=18. 8. 27,2 tan. @ = 0,233 Z"=52”’807

2' = gg : lf‘ ZZ’Z 2,849 | z=52, 807%2,616=138",2

- e tan. b = 1.529 a'= 52, 807%0,288 = 12, 3
a+d =82. 18. 29,6 t:::‘ = ooas | ==52,807%1,329 = 70,2
b+b =82. 14. 20,4 T= 2= 52, 807%0,558 = 29, 5

c= 0. 0. 50,8 1,887
¢ =0,962

a=69°. 5. 2,4 ad=18° 8. 27,2| b=153%. 2.57,2| =29 11. 23”2
8= O. 6.54,6(327= 0. 0.386,9|33= 0. 8.380,6|82= 0. 1.28,5

— ————— e

m=68.58. 7,8 mM=18. 7. 50,8 n =52.59. 26,6| " =29. 9. 54,7

-— c "
tan.m = 2,6009 | ° _ 59 505
tan. m' = 0,2338 | €

tan. # = 0,5581

a+d - =82° 18, 29",6
x+2 - = 0. 2.81,7
—— | & = 58, 505 X 2,6009 =139",2 a+d+r+a'=82. 16. 1,8

<

2,8342 | 4/ = 53, 505 X 0,2333 = 12,5 _—
73?6—6- 41. 8. 0,6
tan.z =1, Refraction at zenith dist. 69° 9. 0. O

5. 2"4 is 189°,2; at zenith dist. | Lat. of Placer 48. 51. 59, 4

1,8847 | 100 o ovv g is 19" CP
| 18%.8.27,2 15125 We may get the correct re-

¢ = 0,9495 fractions 2, 2’ in like manner.

180. Fifth method. Dr. MASKELYNE informs us in the Phil. Trans. 1787,
that Dr. BrapLEY found his refractions in the following manner. He observed
the pole star, and other circumpolar stars, above and below the pole, and from
thence deduced the apparent zenith distance of the pole. By the apparent and
equal zenith distances of the sun at the two equinoxes, having at the same time
opposite right ascensions, as found by comparing (118) its observed transits
over the meridian with those of fixed stars, he found the apparent zenith
distance of the equator, which diminished by parallax and added to the appa-
rent zenith distance of the pole, gave a sum less than 90° by the sum of the
two refractions belonging to the pole and meridian altitude of the equator®.
Now he observed, that the difference of the refractions at these altitudes came
out within 2’ or 8, from the best Tables then extant, whether deduced solely
from observations, or partly from observation and partly from theory. Hence,
knowing the sum and difference of the refractions, he knew the refraction at
each altitude. He afterwards more accurately divided the sum of the two
refractions, by taking the partsin proportion to the tangents of the zenith -

® For the sum of the two true zenith distances==90°% but the true distance of each is diminished by
refraction, and therefore the sum (after the correction for parallax) must be less than 90° by the sum

of the two refractions.
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distances. The apparent zenith distance of the equator, by the mean of 20
observations in 1746-47 he found to be 51° 27. 28" ; and the mean apparent
zenith distance of 'the pole, by observations made between 1750-52, was
88°, 30. 85"; the sum of which being 89°. 58'. 8" the sum of the two refractions
is 1. 57"; consequently the polar refraction is 454", and the equatorial 1. 114";
therefore the latitude of Greenwich Observatory is '51°, 28'. 894“. Dr. BRADLEY
here supposed the sun’s horizontal parallax to be 10i"; but Dr. MaskeELYNE
observes, that had he taken it 8", as determined from the two last transits of
Venus over the sun, the refraction at 45°, which he fixed at 57", would have
come out 561", and the latitude of the Observatory 51°. 28" 40". Dr. BRADLEY
having thus settled the refraction at the altitude of the equator and pole, could
‘calculate the refraction at all higher altitudes, or for all stars between the
equator and pole, by taking it as the tangent of the zenith distances, which
would be very accurate for all such altitudes. Hence, by taking the altitudes
of the circumpolar stars above and below the pole, and knowing the refraction
above, he immediately got the refraction at the lower altitudes ; for knowing
the refraction at the altitude above the pole, he knew the true altitude above,
and knowing the altitude of the pole he got the true distance of the star from
the pole, which subtracted from the altitude of the pole, gave the true altitude
below, the difference between-which and the apparent altitude was the refrac-
tion. When the weight and temperature of the air remain the same, the Dr.
found that the refraction varied as the tangent of the zenith distance diminished
by three times the refraction found by the common Rule ; and having fixed the
refraction at 45° (whose tangent, if radius = 1, is unity) to be 57", if » = the
refraction in the Tables, 2= the apparent zenith distance, he got this pro-
portion, » : 57"::tan. 2=3r: 1.* And by comparing the refractions in different
temperatures of the air, and at different altitudes of the barometer, he inferred
the following elegant Rule for determining the refraction at all altitades: Put
a= the altitude of the barometer in inches, h°— the altitude of FAHRENHEIT’S
o (]
thermometer, then the #ue refraction: 57":: —9_6 x tan. z— 8r: ’_‘%gfg_ The
very near agreement of this Rule with that given by MavEr, and their agree-
ment with observations, are a strong confirmation of the accuracy of each.

* The application of this Rule to find the refraction at all altitudes is thus: Let the apparent
zenith distance be g, then the refraction will be nearly 377 Xtan.s, which pat=r; and the correct
mean refraction will be 57”xtan. £ —38r. M at’ very low sRitedes it should be required to harve
the refraction more correctly, put 57 xtan. t—3r=r', and the refraction becomes 57" x tam,
3 —3r’. Let the refraction at the apparent zenith distance 70° be required. The tangent of 70°
is 2,747 ; hence 57" x2,747=2". 36,6, which multiplied by S and subtracted from 7¢° gives 69°.
$%°. 10", the tangent of which is 2,738 ; therefore 57 x 2,728 = #. 35",5 the mean refraction at the
apparent zenith distance 70°. In this manner Table XI. was caloulated,

3

\
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This correction for the barometer and thermometer may be immediately found
from Table XII.—The Instrument invented by Mr. RaMsDEN, called a Circular
Instrument (for a description of which see my T'reatise on Practical Astronomy),
is admirably calculated to determine the quantity of refraction at all altitudes ;
for by taking the altitude and azimuth of a body whose declination is known,
the true altitude may be immediately computed from the latitude of the place,
declination of the body, and observed azimuth ; hence, the difference between
the observed and computed altitudes gives the refraction at that apparent
altitude.

181. Sizth method. From Dr. BrapLEY'S observations of the zenith distances
of the polar star above and below the pole, and the zenith distance of Capella
south of the zenith and below the pole, to find the mean refraction at 45°, the
barometer being at 29,6 inches, and the thermometer at 50°; also, . the
mean declinations of the pole star and Capella, and the latitude of the place.
Let Z be the zenith, P the apparent place of the pole, C the apparent place ¢
of Capella south of the zenith, ¢ that below the pole. Let the refraction
at € (computed by Dr. BrapLeY’s Rule) =C, at P=P, and at c=c; and
let the true refractions at these places be respectively n C, n P, nc, or to
those computed by Dr. BrabrLey’s Rule, in the ratio of #: 1. Then
the true polar distance of Capella from the observation above the pole =ZC
+nC+ZP +nP, and below the pole =Zc+nc—ZP—nP ; hence, n=
ZC+2ZP—Zc

c—<iP-C ~
cannot be observed directly, let ZQ be the apparent zenith distance of the .
pole star above the pole, and 'ZS that below, and 2 Q, n 8, the respective
refractions; then 4 (ZQ+ZS) +% (nQ+nS) = co-latitude ; but this quantity
added to the true zenith distance of Capella south of the zenith =true distance
of Capella below the pole, lessened by the same quantity; hence, { (ZQ + ZS)

+3 (nQ+nS) +ZC+nC=Zc+nc—% (ZQ+25)—4 (nQ+nS), and n=
ZC+ZQ+2728—-Zc

c—Q-S-C
If a number of zenith distances of the pole star above and below the pole be

observed, and also of Capella south of the zenith and below the pole, and their
refractions be computed by Dr. BrapLEY’s Rule, the mean of each being taken,
we shall obtain » more accurately. For example :

n_ W e N
T

But as ZP, the apparent zenith distance of the pole,

the ratio of the refractions to Dr. BRADLEY’s refraction.

Z€ mean of 25= 5° 45. 88",4 C mean of 25=0. 5,78
ZQ 94= 86. 28. 22,23 Q 94=0. 42,6 ,
- Z8 109 =: 40. 32. 50,65 S 109=0. 48,64 ,
Sum - = 82. 48. 51,28 Sum -  -=1. 87,02
Zc mean of 44= 82. 41. 25,14 ¢ mean of 44=6. 58,48
Dif. - = 5. 26,14 Dif. . =5, 21,46
VOL. I. . M
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n=;— :?’l;_l. 01456, which multiplied by 57" Dr. BrapLEY’s re-
fraction at 45° gives 57,83 the corrected refraction.

Or n may be found thus: Let the observed zenith distances of two circum-
polar stars above and below the pole, when corrected for the equations of the
stars to reduce them to their mean place, and reduced by precession to the
same epoch, be 4, B, and C, D, the former, that nearest the pole; and the
corresponding computed refractions by Dr. BrapLey’s Rule, be @, b, and ¢, d ;
then double the co-latitude will be 4 +a+ B+ b and C+c+.D+d; but calling.
the corrected refractions na, nb, nc, nd, we then have 4 +ra+ B + nb===C +nc
+ D +nd, and n_—————-——A tg-ac-—-.bp

Let one of the stars be the sun, and C, D its observed zenith distance, at the
summer and winter solstice, corrected by its parallax, equation of obliquity,
and reduced by its gradual diminution to the same epoch as for the star; then
the double latitude for the sun=C+nc + D +nd, and co-latitude for the star
=A+na+ B+nb; hence, A +na+B+nb+C+nc+D+nd—-180° and n=
1% a(fb-:f_:-f'* D), : these methods were given by Dr. MASKELYNE.

* Having thus explained the practical methods of finding the refraction, we
proceed to investigate its laws.

182. Let ACn be the angle of incidence, 4Cm the angle of refraction, and

Hence,

-consequently mCn the quantity of refraction; let AT be the tangent of Am,

mv its sine, nw the sine of An, and draw rm parallel to vw ; then as the re-
fraction in air is very small, we may consider mrn as a rectilinear triangle, and

C
hence, by similar triangles, Cv : Cm::rn : mn =—%ﬁ ; but Cm is constant,

and as the ratio of mw to mw is constant by the laws of refraction, their diffe-

my Omxmy ..
rence rn must vary as mv ; hence, mn varies as ; but AT'= Oxv which va-

ries as%-z, because Cm is eonstant ; hence, the refraction mn varies as AT, the

tangent of the apparent zenith distance of the star, because the angle of refrac-
tion ACm is the angle between the refracted ray and the perpendicular to the
surface of the medium, which perpendicularis directed to the zenith.. Whilst
therefore the refraction is very small, so that rmn may be considered as a recti-
linear triangle, this Rule will be sufficiently accurate; otherwise we must use
Dr. Braprey's Rule, the demonstration of which is given by Boscovicm in
his Works, Vol. IL. but one of the principles, that the force with which the ray
is attracted in passing through the air may be considered as uniform, is taken
from Mr. SiMpson’s Solution in his Mathematical Dissertations. We shall

therefore ficst give his reasons for this supposition. After constructing his
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Table of refraction, he observes, that the only: material objection which it is
liable to is, its being founded upon supposition, that the density of the air de-
creases uniformly, which appears contrary to experiinent, whereby it is proved,
that the density of the air decreases as the compressing force decreases: But
though this is true in air of the same temperature, yet it cannot be supposed to
hold true in the earth’s atmosphere, since the upper region thereof is known
to be much colder, and consequently the elasticity there is much less than at
the earth’s surface: But a convincing proof that this law of density cannot

obtain in our atmosphere is, that the mean horizontal refraction computed from -

it, according to the known refractive power and specific gravity of the air, will
be found to come out no less than 52/, which is greater by about { of a degree
than it ought to be, it being only 33'; whereas, if the same reﬁactlon be
calculated upon the hypothesis of the density decreasing uniformly, and com-
pared with observations, the difference will be much less. This latter hypo-
thesis will therefore best correspond to the state of our atmosphere.

183. Let us therefore suppose the atmosphere to be divided into an infinite
number of lamina concentric with the center of the earth, and of an equal

thickness, then the denslty of these lamina is supposed to decrease uniformly,

for the reasons above given, and therefore the difference of the densities is con-

stant. ‘But when a ray of light passes out of one medium into another, it is

attracted by a force which depends on the difference of their densities, and
therefore when the difference is constant the force is constant. Hence, a ray
of light descending through the atmosphere may be supposed to be attracted
by it in a direction perpendicular to the surface of the earth by a constant
force.

184. Let C be the center of the earth, 4M its surface, ZF the top of the
atmosphere, FA4 the passage ofthe ray ; draw the tangents SFH, I4G cutting
each other in 7, and let CH, CG be drawn perpendicular to them, and 4L
parallel to CF. Now the state of the atmosphere remaining the same, the
sine of incidence is to the sine of refraction for each lamina in a given ratio,

therefore by composition, the sine of incidence CFH at F'is to the sine of re-

fraction CAG at A4 in a given ratﬁo. Hence, if radius=1, (-Z—I—; and %;4- will be

ihese respective sines ; but the velocities at F and A are as CG to CH, which

CH CG 1+b
assume as 1 to 1+4b; and if MF=e, CM=1, CF ‘CA  T7e 15 put m
:_T_b 'y = angle CAG, and then 1 : m::sin. a : sin. CFH=m xsin. a. Let

z =angle ACF, r _angle GIH of refraction. In the quadrilateral ﬁgure
CAIF, the angle ACF + IFC=the sum of the externil angles GIH +CAG,

because’ FIA +CAI added to each would make the sum equal to fourwight

FIG.
85.
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angles ; hence, 7JFC or CFH=CAG— ACF + GIH, that is, m x sin. a==sin,
a—Zz—r, therefore 1 :m::sin. a: sin. a—z—r; but by plain trigonometry,
the sum of the sines of two angles : their difference :: tan. of half the sum of
the angles : tan, of half their difference; hence, 14+m : 1—m::tan.a -3z —r

: tan. L.z —7, and as this ratio is constant, the tan. @— 4.z — varies as the tan.
1.z —r; butas the difference between 2 and r must be very small, the tangent
of 4.z —7 may be considered as equal to the angle itself §.z—r; also, a is the
apparent zenith distance; hence, the angle 4. .z —r varies as the tangent of the
apparent zenith distance diminished by 3.z—r. If therefore the ratio of  to r

be constant, then z—r, and consequently 7 itself, will vary as the tangent of'
the zenith distance diminished by some multiple of r ; for if dr=z, then r—r="
dr—r=d—1 xr; let therefore 1+m : 1—m::tan. a— jnr : tan. } nr, and
then the refraction  varies as tan. a—3 nr. On this supposition }.z—r=4}
nr, or z—r=nr. That z is to rin a constant ratio may be thus proved.

185. Let us conceive 4AF to be an indefinitely small part of the whole
curve, taken any where, and 4L (which isdrawn parallel to FC) is the sagitta
of the curve. Put v=the velocity through F4, t{=the time, 2 =CF, := FM,
#=the angle FCA, r =the angle GIH, f=the force in the direction FC.
Now from the principles of Mechanics, AF=vt, and the sagitta LA=1 z= 1t ;
hence, the tangent AI (which=44F)= =Jut; also, as the arc varies as the
angle multlplled into the radius, AM =z, and the sine of ALI or CFL

AM =zv 20

=ZT-;,—" but A7 : AL::sin. ALI : sin. AIL, that is, lvt ft* _t . sin,

r or 7, hence, g_g_v{f. Now if we consider the velocity and distance from

the center as having but a very small variation, and f'to be constant (188),

ca T , <
we may consider ~ as constant, and consequently r varies as &, therefore r.

varies as z when 4 Fisfipite. Hence (184), r varies as the tan. a—}nr.

186. Because 1+m : 1—m::tan. a—4nr : tan. jnr::(by trig.) sin. a+
sin. a—nr : sin. a—sin. a—nr, hence, m x sin. a==sin. a—nr= (by trig.) sin-
a x cos. nr —sin. nr x cos. a=(because nr being a very small arc its coes.=
/1 —n'r,=1— 1n"r*, and the sine =arc very nearly) sin. a —sin. a x {n*r’—
ar x cos. a, and by dividing by sin. a, we have m=1—} n'r*—nr x cot. a. Now
let @' be any other apparent zenith distance, and »' the refraction, then, for the

same reason, m = 1—} n’r*—nr’ x cot. ' ; make these values of m equal, and we

r x cot. &— x cot. @ . .
get i n= pem—— . Now by Dr. BrapLEY’s observations, if @

=60° r=1.88"4; and if a=90°, r=289'; hence, } n=2,996; he therefore
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assumes }n=8; the refraction therefore varies as the tang. ¢— 3r, that is, the
refFaction varies as the tangent of the apparent zenith distance diminished by three

times the refraction. SimpsoN makes #=35,5, CassiNni=6,452 and Boucuer -

=6,645. But Dr. BRADLEY’s value is most to be depended upon, as best
agteeing with observations, which we shall therefore follow.

187. Because m=1-—4 n'r'—ar x cot. a, therefore, as § n'r* is very small in
respect to the other terms, m=1—nr x cot. « ; hence, } ~m=nr x cot.a. For
the horizontal refraction, ¢ =90°, r=38'; therefore m=1~—4 n'r*=cos. nr;
hence, if n=6, we have m =cos. 6r=cos. 8'. 18"=0,9983. Hence also (184),
2—r=nr=6r, according to Dr. BrapLEY, therefore r="7r, or the angle
which the refracted Tay subtends at the center of the earth =7 times the refrac-
tion.

188. Join CZ, and let the angle ACI=y, then CI4 or CIG:a-—y, CIH
=a—y +r, and their sines are as the perpendiculars CG, CH, which are in-
versely as the velocities at 4 and F, oras 1:1+5; hence, 1+ 6 xsin. a—y
=sin. a—y +7r=sin. a—y x cos. 7 +sin. 7 x cos. a—y =(because r being very
small its cos.=1, and ‘it’s sine=r) sin. a—y+rxcos.a—y; hence, 1+b
=1+rxcot. a—y, and b=r x cot. a—y. But if we make a approach to 90°,
 will be very small when compared with a, therefore =7 x cot.a. If a=60°,
then »=1'. 38",4 according to Dr. BraprLE¥; hence, b=r x cot. a=sin.
7 x cot. a=0,0002755; therefore the sine of incidence out of a vacuum into
air at the mean density at the earth’s surface is to the sine of refraction as
1,0002755 : 1. Mr. HauksBee makes it as 1.000264 : 1 by experiment. As.
b=r x cot. a, therefore 66 =6r x cot.a=1—m from the last Article; hence,

1-m

189. Having determined the values of 4 and m, we get, from the cquation

1+b 1—m+b 1—m\7—"Tm
Tre=" the value ofe—-"——,-n*—_ (as b———s——)——(%—:o,ool%e parts of

the earth’s radius=177,25 miles, the altitude above the earth’s surface at which:
the air begins to have any sensible effect on the rays of light to refract them.

190. The refraction varies as the tan. a— 3r at any altitude above the earth’s
surface ; for the proof remains the same for whatever part of the curve you take
from the top of the atmosphere. Hence we may find the refraction at any alti-
tude, by making e denote its distance from the top of the atmesphere ; for by.

the last Arncle m:i—fa,.-_(by division, and neglecting all the powers of e

€ . .
above the first on account of their smallness) 1-'-—,? =(187) cos. 6r ; hence, the-

€os. of 6r being known, 6r, and consequently r itself, the horizontal refraction
in this case, will be known, and hence the refraction at any other altitude.
4
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191, As (186) m x sin. a=sin. a—6r, according to Dr. BrapLey, put p=
the complement of @, and let m x cos. p=cos. ¢, then cos.g=m xcos. p=
m x sin. a=sin. a—6r=_(as a=90"—p) sin. 90°—p—6r=cos. p + 67, hence,
p +6r=g, therefore ,.___Z:G_L'. This expression is accommodated to find the
refraction below the horizon, when the observer is elevated above it, by making
p negative. Hence, the refraction below the horizon increases very fast, r
being expressed by the sum of p and 4.

6e 6

~ 192. In the horizon, cos.6r=1—= therefore-,?: 1—cos. 6r=ver. sin. 6r
=18r* by the property of the cu‘cle ; consequently the horizontal refraction
~ varies as the square root of e. Hence, if 4 be the altitude of the atmosphere,
we know the horizontal refraction at any altitude 2 —¢ above the horizon, for
it will be to the horizontal refraction on the earth’s surface as /¢ : \/h. The -
horizontal refraction therefore being known, the refraction at any other altitude
will be known.

193. Upon the same principles, we have a very elegant method of ﬁndmg
the radius of curvature to the curve which the ray describes. Let 4F be an
indeﬁnitely small part of the curve adjacent to 4 the surface of the earth, and

" conceive AZV to be a circle of curvature, O its center, and QOK perpendi-

cular to AV, which therefore must bisect 4V. Then the angle AJE =F0A
=2FVA=FKA ; but (187) TAIE =FCA, therefore TFKA=FCA ; hence,
AK ="1A4C the radius of the earth, and therefore is a constant quantity for all
angles JAE. Hence, the center of the circle of curvature is always in the line

QK. By trig. 40 : AK::rad.=1 : sin. AOK or IAE ; hence, 40= ‘;.fE
7A4C

=145 and as AC is constant, the radius of curvature varies inversely as

the sine of the apparent zenith distance. Hence, for horizontal refractions, the
radius of curvature is equal to 7 times the radius of the earth. This agrees
with the conclusions deduced by J. H. LaoMBERT in his very elegant Treatise
entitled, Les Proprietés remarquables de la Route de la Lumicre par les Airs,
which he has applied with so much success to terrestrial refractions, and which
we shall now proceed to consider. v

" 194. Suppose MF to be any object, and FA the curve described by a ray of
light coming from Fto 4 ; then for so small a distance we may suppose F4 to

be circular. Let m=sin. FAE, then A0= -g‘—c -1 known Now the effect

of refraction in altering the apparent altitude is the angle between A7 and the
chord drawn to the arc F4; for the latter is the direction in which F would be
seen if there were no refraction, and the former if seen by refraction; but this
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angle between the chord and tangent must be equal to %FOA: 21;‘40, but F4

=%-l, and AO:%%Q; hence, the refraction = —-.1‘:3[0=-]-1; of the angle ACM
Hence, any point situated 1n the line MF, and seen at A, has the same re-
fraction, for ‘it is independent of the altitude MF; consequently any object
situated.in a line perpendicular to the earth will not have its apparent length
altered by refraction, because each end will appear equally elevated by it.
Hence also, the terrestrial refraction varies as the distance 4 M. If therefore
MF be a mountain, and we want to find the altitude from' the given distance
AM, and the apparent angle of elevation M4, we must first correct this an-
gle by subtracting from it &y of 4CM. S

195. Hencel we may readily find the distance at which an object of a given
altitude whose top is depressed below the horizon, may be seen by refraction.
For take 4K ="7A4C, and with the center K describe the circle Ar, and the
point  will be seen by refraction; draw srvC, and Av is the distance at which
an object vr is visible ; draw also the tangent 4z. Now the angles 4Cv, AKr
being very small, and the arcs 4v, Ar very nearly equal, sr : sv:: AC : AK::

) 17, and vr : sv:: 6 : 7, therefore sv:-?%r; but sv = ﬁgi, the radius of the

. . 2 Jeyrrond
earth being unity; therefote—‘%) =72f, consequently Av=.14" _ /J7vr
5=

=
Hence, the distance at which an object can be seen, varies as the square root

of its altitude. _ -
196. If yw be perpendicular to the surface of the earth and equal to vr, the

object vr can be seen at y without refraction; but yw or vr-.;_g- ;3 hence, Ay

=,/2vr, therefore the distance at which an object can be seen by refraction =
. P e .

i ichi i ion °* Tor -
distance at which it could be seen without refraction::/ i N4

: /6, which is nearly as 14 : 18. ‘
197. An eye at r sees 4 in the direction of the tangent at , and therefore
it appears below the horizon at v by the angle formed by the two tangents to

> and v, or by the angle CrK. Now (195) Av, or the angle ACy, =/,
) k 8

and Kr : CK( 227 :6)::8in. 7CK or rCA : sin. CrK :: (on account of the small-
“12vr

] : “Tor . yE = .
ness of these angles) rC4, ory/ = OK=y/ — the depression of the

point 4 below the horizon. Hence, the depression below the horizon varies as
the square root of the altitude.

87
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198. Considering the arcs 4v, 4r as equal on account of the smallness of the
angle ACv, the sagittas sv, s» will be inversely as the radii; hence, sv : sr:: 7
: 1, therefore v : sv::6 : 7, and consequently the point » appears to be ele-

]

. A -
vated by a quantity equal to { vr or ! sv; but sv:-?v-, therefore sr(=}sv)

=fg: Hence, as the refraction remains nearly the same for all objects neatr
the horizon, this correction must be made in calculating the altitudes of such
ohjects from the apparent angles of elevation. All the above numbers are
for the mean state of the air.

- 199. Hence, we may find the altitude vr of a cloud at r, by observing the
instant when it ceases to be enlightened by the sun; for at that time calculate
the ‘depression of the sun below the horizon, and from it subtract the hori-
zontal refraction and you will have the true depression below the horizon, or
the angle between 4s and a tangent tg v, or the angle ACv ; hence we know
Av, and consequently vr. - This suppeses that the ray coming to the cloud is a
tangent to the surface of the sea, or to an horizontal plane at land.

200. Let SB be a ray of light falling on the atmosphere at B and refracted
in the curve BAE touching the earth at 4, and emerging in the direction EF,
meeting DC parallel to SB in F; to find CF. As Cv is a perpendicular upon.
the incident ray, and C4 upon the refracted ray, they will be as the sine of
incidence to the sine of refraction out of a vacuum into air of the same density
as that at the earth’s surface, or as 1,0002755 : 1; hence, put m =1,0002755=
Cv=Cr, n=the angle CFr=Fsz=rCv=24Cv, or twice the horizontal refrac-
tion, and CF =Cv x cosec. n= (if n=66") 58,1 radii of the earth. If the di-
rection of the ray of light be not parallel to DC but to dCf, and the angle
dCD be put=z, then the angle rCf=n +z, and Cf=v x cosec. n + .

201. If the line dC be supposed to jgin the centers of the sun and earth, and
the ray SB to come from the limb of the sun, Cf will be the length of the total
shadow of the earth, as all the umbra beyondf will have some rays of the sun
by refraction. Now let 2=16' the sun’s semidiameter, and Cfi=v x cosec.
82=41,94 semidiameters of the earth, which being very little more than 3 of
the distance of the moon, it appears, that in a total eclipse of the moon, some
rays from the sun must fall upon it, which is the cause of its being visible in -
that: sitpation.

202. Having thus fully explained the principles of reﬁ‘actlon, and the me-
thods of constructing the Tables for the mean refraction, it ‘will be proper to
give spmeaceount of the variations to which the air is subject, from 8 change
of temperature and density, for which proper corrections are given, except
when the observations are very near to the horizon, where changes frequently
take place which cannot be altogether accounted for, and for which therefore
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no correction can be applied; they probably arise from exhalations of various
kinds which are suddenly raised and suspended in the air near to the earth’s
surface, the causes of which do not sensibly affect the barometer and thermo-
meter. Hence, all observations made very near to the horizon must be subject
to a very considerable degree of uncertainty, and therefore Astronomers never
use them when great accuracy is required. -
208. TycHo, when he constructed his Table of refraction, knew that it was
subject to variation; but Cassint and Picarp were the first who measured
accurately the change. Picarp found, from the meridian altitudes of the sun,
that the refraction was greater in winter than in summer; he observed also, that
it was greater in the night than in the day. And from observing the horizontal
refraction of the upper limb of the sun when it first appeared in the horizon,
and then that of the lower limb, he found that in the time in which the sun
was rising, the refraction was diminished 25°. BouGUER observed in America,
that the refractions in the night were greater than in the day, by about ;' or
Dr. NeTTLETON measured the altitude of an hillin a clear day; and repeating
the observations in a cloudy day when the air was somewhat gross and heavy,
he found the angle considerably greater. He also observed, that the altitudes
of some of the hills which he measured appeared greater in the morning before
sun rise and late in the evening, than at noon in a clear day. At the time of
the great frost at Paris in 1740, MoNNIER observed, when the thermometer
was 10° below the freezing point, that at the apparent altitude 4°. 444’ the re-
fraction was 11'. 15"; but when the mercury stood at 24° above the freezing
point, the refraction at the same altitude was found to be only 9'. 20"; hence
there was a difference of 1'. 55" for 36°. of the thermometer. The barometer
was at 28 inches. From these differences of refractions in summer and winter,
in the day and night, it might be conjectured that the refractions would be
greater towards the north, where it is colder. But the French Academicians
in the year 1737, at Tornea on the borders of Lapland, where they were sent
to measure a base in order to determine the length of a degree of latitude,
found that the refractions agreed with those at Paris. M. de la CaiLLE how-
ever found that the refractions at the Cape of Good Hope, were about % less
than at Paris; from which small difference, he concluded that a Table of re-
* fractions might be constructed which would -answer very accurately for every
part of the temperate zone. In the torrid zone M. Boucukr found the hori-
zontal refraction to be 27; at 6° high, 7. 4'; and at 45° high, 44". Admit-
ting therefore the refraction to be less in climates warmer than at Paris, we
may conclude that it must be greater in those which are colder, and that it was
from want of a sufficient number of observations, or from their inaccuracy,

that the Academicians in Lapland did not find it so,.  *°
YoL. I N
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204. The refraction being thus found to vary in different states of the: air,
the next enquiry is, what allowance must be made for any varation of the
temperature and weight of the air, from any standard’ which we may make the
mean. Dr. BRapLEY made 29,6 inches the mean standard for the barometer,
and as Mr. Haukssee had determined from experiment that the.refraction
was-in proportion to the density of the air, it must also be as the altitude of the
mercury in the-barometer. Now in the mean state of the air,. that is, when
the barometer is- at 29,6 inches, and Fanrenarir’s thermometer at 50°, the
refraction (180) : 57"::tan. z—3r : 1; hence, at any altitude (a) of the mer-
cury, the refraction : 57"::a xtan. £—38r : 29;6. The refraction, thus cor-
rected for the variation of the weight of 'the air, agrees very well with observ-
ations. The next thing to be done is, to find how the refraction varies in dif-
ferent temperatures. M. de la CaiLLE found that the refraction was diminished
- part from an increase of 10° in the altitude of the mercury in the thermometer
of REaumMur. MAavYER observed: that the refraction varied about L part for 10°
of variation. M. BoNNER made some experiments in order to determine the
variation of refraction arising from that of the temperature; calling the refrac-
tion unity for the altitude 10° of the thermometer, he found the refraction to
be 0,92 at the altitude 30°, or diminished ;5 for a variation of 10°% and at 8°
below 0° he found the refraction to be 1,085 or . for a variation of 10°%
The mean of these differ but very little from the determination of Maver.
The observations upon which. Dr. BrabLey formed his rate of variation, have
never been published. He used Fanrexueir’s thermometer; and fixed the
mean temperature at 50% and if %° be any other altitude, he found that the

h° + 850°

refraction varied in the ratio of 400° : ° + 350°, or 1 : ——.  Hence,

allowing for the variation of temperature and weight, he found, the true re-
fraction : 57" :: —25?,6 x tan. z—3r : h—%%i(—)— And this agrees very accu-
rately with the Rule deduced by MavEr.

205. When the sun is in the horizon, the rays in passing very obliquely.
through the atmosphere are so far separated, that M. BouGuer, in a Work
entitled TYaité d’Optique sur la Gradation de la Lumidre, has concluded from
experiment, that the intensity of light is 1354 times less than when the sun is
in the zenith. M. de Mairax thinks that the weakness of the sun’s rays in the
former case is principally to be attributed to the quantity of vapours with which
the lower parts of the atmosphere are always filled.

206. It is owing to the atmosphere that we have any twilight in the morn-
ing and evening, which arises both from refraction and reflection of the sun’s
rays. It may be explained thus. Let AB be the surface of the earth, Sm a
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CHAP. VIII.

ON THE SYSTEM OF THE WORLD.

Art. 208. W HEN any effect or pheenomenon is discovered by experiment or
observation, it is the business of Philosophy to investigate its cause. But there
are very few, if any, enquiries of this kind, where we can be led from the ef
fect to the cause by a train of mathematical reasoning, so as to pronounce with
certainty upon the cause. Sir I. NEwron therefore, in his PriNcipia, before
he treats on the System of the World, has laid down the following Rules to dl-
rect us in our researches into the constitution of the universe.

RuLe I. No more causes are to be admitted than what are suﬂiclent to €X-

plain the pheenomenon.
Ruie II. Of effects of the same kmd the same causes are to be assxgned,

as far as it can be done.

Ruie III. Those qualities which are found in all bodies upon which experi-
ments can be made, and which can neither be increased nor diminished, may
be looked upon as belonging to all bodies.

Rure 1V. In Experimental Philosophy, propositions collected from pheeno-
mena by induction, are to be admitted as accurately or nearly true, until some
reason appears to the contrary.

The principles, upon which the application of these Rules is admitted, are,
the supposition that the operations of nature are performed in the most simple
manner, and regulated by general laws. And although their application may,
in many cases, be very unsatisfactory, yet in the instances to which we shall
here want to apply them, their force is little inferior to that of direct demonstra-
tion, and the mind rests equally satisfied as if the matter could be strictly proved.

209. The diurnal motion of all the heavenly bodies may be accounted for,
either by supposing the earth to be at rest, and all the bodies daily to perform
their revolutions in circles parallel to each other; or by supposing the earth to
revolve about one of its diameters as an axis, and the bodies themselves to be
fixed, in which case their apparent diurnal motions would be the same. . If we
suppose the earth to be at rest, all the fixed stars must make a complete revolu-
tion, in parallel circles, every day. But it will be shown in a future part of this
Work, that the nearest of the fixed stars cannot be less than 400000 times fur-
ther from us than the sun is, and that the sun’s distance from the earth is not
less than 93 millions of miles. Also from the discoveries which are every day

8
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making by the improvement of telescopes, it appears that the heavens are filled
with an almost infinite number of stars, to which the number visible to the na-
ked eye bears no proportion, and whose distances are, probably, incomparably
greater than what we have stated above. But that an almost infinite number
of bodies, most of them invisible except by the best telescopes, at almost infi-
nite distances from us and from each other, should have their motions so exactl
adjusted, as to revolve in the same time, and in parallel circles, and all this
without their ‘having any central bady, which is a physical impossibility, is an
hypothesis, which, by the Rules we have here laid down, is not to be admitted,
when we consider, that all the pheenomena may be solved simply by the rotation
of the earth about one of its diameters. If therefore we had no other reason,
we might rest satisfied that the apparent diuchal metions of the heavenly bodies
are produced by the earth’s rotation. But we have other reasons for this syp-
position. Experiments prove that all the parts of the earth have a gravitation
towards each other. $uch abody therefare, the greatest part.of whose surface
is a fluid, must, from the equal gravitation of its parts, form itself into a perfeet
sphere. But it appears from mensuration, that the earth is not a perfect sphere,
but a spheroid, having the equatorial longer than its palar diameter. Now if
we suppose the earth to revelve, the parts most distaut from the exis must, from
their greater velocity, have a greater tendency to fly off, and therefore that dia-
meter which is perpendicular to the axis must be increased. That this must be
the consequence appexars from taking an iron hegp and making it revolve swiftly
about one of its .diameters, and that diameter will be diminished and the diame-
ter perpendicular to it increased. The figure of the earth must therefore have
arisen from its rotation, which is further confirmed from the following conside-
ration. ‘There can be but one diameter about which the earth can revolve,
which can solve all the pheenomena of the apparent revelution of the heavenly
bodies; for if the diameter about which the earth is supposed to revolve were
changed, it would change the situation of all the bodies in respect to the hori-
zon and zenith; now ket diameter abont which the earth must revolve, in order
to satisfy all the pheenomena, is the diameter-which, from mensuration, is found
to be the 'shortest. Another reason for the earth’s rotation is from analogy.
The planets are opaque and spherical bodies like to our earth; now all the
planets, en which sufficient observations have been made %o determine the mat-
ter, are found to revolve about an axis, and the equatorial diameters of some of
them are visibly greater than their polar. When these reasons, all upon dif-
ferent principles, are considered, they amount to a proof of the earth’s rotation
gbout its axis, which is as satisfactory to the mind as the most direct demonstra-
tion could be. These however ave not all the proafs which might be offered :
the situations and motions of the bodies in aur .system necessarily require -this
motion of the earth.
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210 Besides this apparent diurnal motion, the sun, moen, and planets have
another motion ; for they are observed to make a complete revolution amongst
the fixed stars, in different periods. But whilst they are performing these mo-
tions in respect to the fixed stars, they do not always appear to-move in the
sasme direction, or in that direction in which their complete revolutions are
made, but sometimes appear stationary, and sometimes to move in a contrary
direction. We will here brieﬂy describe and consider the different systems
which have been. invented, in order to selve these appearances. Proremy
suppesed the earth to be perfectly at rest, and all the other bodies, that is, the
sun, moon, planets, comets and fixed stars, to-revolve about it every day; but
that, besides this diurnal motion, the sun, moon, planets and comets had a
motion in respeet to the fixed stars, and were situated, in respect to-the earth,
in the following order ; the Moon,. Mercury, Venus, the Sun, Mars, Jupiter,
Saturn. These revolutions. he first supposed to be made in circles about the
earth placed a little out of the center, in order to account for some irregularities
of their motions; but as their retrograde motions and: stationary appearances
could: not thus be solved, he supposed them to revolve in epicycloids, in the
following manner. Let 4BC be a circle, § the center, K the earth, abed ano.
ther circle whose center vis in the circumference of the circle ABC. Conceive
the circumference of the circle 4BC to be carried round the earth every 24
hours according to the order of the letters, and at the same time let the center
v of the:circle abed have a slow motion in the opposite direction, and let a body
revolve in this circle in the direction abed ; then it is manifest, that by the mo.
tion .of the body in this circle and the motion of the circle itself, the body may
describe such a curve as is represented by klmnop ; and if we draw the tangents
El, Em, the body would appear stationary at the points / and m, and its mo-
tion would be retrograde through lm, and then direct again. Now to make
Venus and Mercury always accompany the Sun, the center v of the circle abed
was supposed to be always very nearly in a right line between the earth and sun,
but more nearly so for Venus than for Mercury, in order to give each its proper
elongation. This system, although it will account for all the apparent motions
of the bodies, yet it will not solve the phases of Venus and Mercury ;. for in

this case, in both conjunctions with the sun they ought to appear dark bodies,

and to lose their light both ways from their greatest elongations ; whereas it ap.
pears from observation, that in one of their conjunctions they shine with a full
face. This system therefore cannot be true.

211. The system received by the Egyptians was this: The Earth is immove-
able in the center, about which revolve, in order, the Moon, Sun; Mars, Ju-
piter and Saturn; and about the Sun revolve Mercury and Venus. This dispo-
sition will account for the phases of Mercury and Venus, but not for the ap.

parent motions of Mars, Jupiter and Saturn.

95
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212 The . rgex; (Systam which we shall mention, though postenor in time to
the true, or Copermcan System, s it is usually called, is that of Tvcuo Brang,
a Pohqh Nobleman He was pleqsed with the Copemlean system, as solving all
the appearances in the most 1sm)ple manner ; but conceiving, from takmg the
hteral meaning of some passages in Scnpture, that it was necessary to suppose
the earth to be absolutely at rest, he altered the system, but kept as near to it
as possible. And he further objected to the earth’s motion, because it did not,
as he conceived, affect the motion of comets observed in opposition, as it ought;
whereas, if he'had made observations on some of them, he would have found
that their motlons cpuld not otherwise have been accounted for. Inhis system,
the earth is placed immoveable in the center of the orbits of the sun and moon,
without any rotation about an axis ; but he made the sun the center of the or-
bits of the other planets, which therefore revolved with the sun about the earth.
By this system, the different motions and phases of the planets may be solved,
the latter of which could not be, by the Ptolemaic system; and he was not
obliged to retain the epicycloids in order to account for their retrograde motions
and stationary appearances. One obvious objection to this system is, the want
of that simplicity by which all the apparent motions may be solved, and the
necessity that all the heavenly bodies should revolve about the earth every day;
also, it is physically impossible that a large body, as the sun, should revolve
about a much smaller body, as the earth, at rest; if one body be much larger
than another, the center about which they revolve must be very near to the
large body ; this will be proved when we come to the principles of physical
Astronomy. And this argument holds also agamst the Ptolemaic system. It
appears also from observation, that the plane in which the sun must, upon
this supposition, diurnally move, passes through the earth only twice in a year.
It cannot therefore be any force in the earth which can retain the sun in its
orbit, for it would move in a spiral continually changing its plane. In short,
the complex manner in which all the motions are accounted for, and the phy-
sical impossibility of such motions being performed, is a sufficicnt rcason for
rejecting this system ; especially when we consider, in how simple a manner
all these motions may be accounted for, and demonstrated from the common
principles of motion. Some of Tycno’s followers seeing the absurdity of sup-
posing all the heavenly bodies daily to revolve about the earth, gave a rotatory
motion to the earth, in order to account for their diurnal motion ; and this was
called the Semi-Tychonic System ; hut the objections to this system are, other,
wise, just the same.

213. The system which is now universally received is called the Copernican,
It was formerly taught by PyrHAGoRAS, who lived about 500 years before J. C.
and ParLoraiis, his disciple, maintained the same; but it was afterwards re-
)ected till revived by Corpernicus. Here the Sun is placed in the center of the
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System, about which the other bodies revolve in the followmg order; Mercury,
Venus, the Earth, Mars, Jupiter, Saturn, and the Georgian Planet, which was
lately discovered by Dr. HErscHEL; beyond which, at immense distances, are
placed the fixed stars; the moon revolves about the earth, and the "earth re-
volves about an axis. This disposition, and these motions of the bodies, solve,
in the most simple manner, not only all the phases, and the direct and retrograde
motions, but also every other irregularity belonging to them, and which motions
may also be accounted for upon physical principles. We may also further ob-
serve, that the supposition of the earth’s motion is necessary, in order to account
for a small apparent motion which every fixed star is found to have, and which
cannot otherwise be accounted for., The harmony of the whole will be as
satisfactory a proof of the truth of this System, as the most direct demonstra-.
tion could be; this System therefore we shall assume.

VOL. I. T ‘e
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CHAP. IX.

' ON KEPLER’S DISCOVERIES.
Art. 214. KEPLER was the first who discovered the figures of the orbits

- of the planets to be ellipses, having the sun in one of the foci. ProLEmMY sup-

posed that the orbits of the planets were circles, having the earth, not in the
center C, but at some other point §; and taking CB=CS, he supposed that
they revolved with an uniform angular velocity about B, called the Punctum
@quantis. 'This was his supposition to account for the equation of the planet’s
orbit, or the first inequality of its motion; but it was supported neither by
observation nor demonstration. TycHo altered this hypothesis, by placing B
at a different distance from C, by which he found his computations would
agree with his observations within a few minutes. Notwithstanding which,
KepLER suspected the hypothesis could not be true; -for, from the goodness of
TycHO’s observations, he believed that there could not have been so great a
difference between the computations and observations, if it were true. But in
respect to the orbit of the sun, or rather of the earth, the ancients, and also
Tycno, believed the motion was equable about the center C. From the equa-
tion of the orbit, TycHo computed the excentricity SB, which taken from A4S
gave a quantity B4 different from the radius AC at first supposed; whence he
concluded that the sun was not always at the same distance from C. This in-
duced KepLER* to suspect that the center was not the point about which the
motion was equal, but that it bisected the excentricity. To determine this
point he proceeded thus.

215. Let B be the point about which the motion is equable, S the sun, take
BC=_5C, and let D and E be the places of the earth when the planet Mars

' is at the same point M of its orbit. On May 18, 1585, and January 22, 1591,

he took the two places of Mars, found froni observation, and by calculation
reduced its places to May 80, and January 20, in the same respective years,
at which times the longitude of Mars seen from B, as calculated by Tycno,
was 6. 18°. 28/, and therefore he knew that Mars was in the same point of its
orbit; and the angles MBD, MBE were, each 64°. 23}, Now the longi-
tudes of Mars on May 30, and January 20, were, by observation, 5°. 6°, 87’
and 7°. 21°. 84/, the differences between which and 6% 18° 28, the heliocen-
tric longitude before calculated, are 86°. 51’ and 38°. 6 for the angles BMD,
BME; consequently BD isless than BE, and therefore B is not the center of
the circle. KEepLEr next calculated the value of BC, and found it to be
1887, AC being 100000. Now TycHo had found from his observations, that
the whole distance BS from the sun to the center of equality was 8584, there-
fore its half was 1792, which being so nearly equal to 1887, KepLEr immedi-
ately concluded that C bisected the excentricity.

- * See his Work, De motibus Stelle Martis.
8
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216. Having found that the center of the earth’s orbit bisected the excen.

tricity, he proceeded to examine the same in the orbit of Mars, in the following

manner. Let S be the sun, C the center of the circle; B the point about which
the meotion is equable; and let D, £, F, G be 4 places of Mars observed in
opposition; he then proposed the following Problem. To find the angles
FBA, FSA such, that the four points D, E, F, G may be in the circumference
of the circle, and C in the center between B and S. He resolved this by as.
suming the distance SB and the angles FBA, FSA4, and thence calculated
all the other parts, to find whether all the angles formed about § were together
equal to four right ones. He made 70 suppositions before he got one to agree
with observation, the calculation of every one of which was extremely long and
tedious: Si te Aujus laboriose methodsi pertesum fuerit, jure mei te misereat,
qui eam ad minimum septuagies fvi cum phurima temporis jactura, et mirari desines
hunc quintum jam annum abire, ex quo Martem aggressus sum, quamvis annus 1603
pene totus opticis inquisitionibus fuil traductus; pag.95. Having thus determined
the excentricity of the orbit of Mars, he calculated 12 oppositions observed by
TycHo, none of which differed more than 1. 47"; but he found that the hy-
pothesis agreed neither with the latitude observed in opposition, nor with the
longitude out of opposition, which differed sometimes 8' from observation.
The circle which so well represented the 12 oppositions had its excentricity
SB=18564, but he found SC=11332 and CB="7282, the mean distance of
the earth from the sun being 100000. From the want of agreement between
the observed and computed latitudes in opposition, and the longitudes out of
opposition, and from SB not being bisected in C, KepLER was persuaded that
the orbit of Mars was not a circle. He therefore computed, in the following
manner, three distances of Mars from the sun, with the corresponding helio-
centric longitudes, by which he could determine both the figure and magni-
tude of its orbit.

217. Let S be the sun, M Mars, D, E, two places of the earth when Mars
was in the same point M of its orbit. "When the earth was at D, he observed
the difference between the longitudes of the sun and Mars, or the angle MDS;
in like manner he observed the angle MES. Now the places D, E of the
earth in its orbit being known, the distances DS, ES and the angle DSE will
be known ; hence, in the triangle DSE, we know DS, SE, and the angle DSE,
to find DE and the angles SDE, SED ; hence we know the angles MDE,
MED ; therefore in the triangle M DE, we know DE, and the angles MDE,
MED, to find MD ; and lastly, in the triangle M.DS, we know M D, DS, and
the angle M DS, to find MS, the distance of Mars from the sun. He also
found the angle MSD, the difference of the heliocentric longitudes of Mars and
the earth. By this method, KepLER, from observations made on Mars when
in aphelion and perihelion (for he had determined the position of the line of

FIG.
43.

FIG.
44.




1o

ONSKEPLER’S IISCOVERIES,

the apsidés, by a ‘method which we shall afterwards explain, independent”of
the form of the orbit), determined the former distance from the sun to be
166780, and the latter 138500, the mean distance of the earth from the sun
being 100000 ; hence, the mean distance of Mars was 152640 and the excen-

- tricity of its orbit 14140. He then determined, in like manner, -three other

distances, and found them to be 147750, 163100, 166255. He next calcu-
lated the same three distances, upon supposition that the orbit was.a circle,

and found them to be 148539, 163888, 166605 ; the errors therefore of the
circular hypothesis were 789, 783, 350. But he had:too good an opinion of
TycHo’s observations to suppose that these differences might arise from their
inaccuracy ; and as the distance between the aphelion and perihelion was-too
great, upon supposition that the orbit was a cirele, he knew that the form of the

" orbit must be an oval ; Ilaque plané hoc est : Orbita plancte non est circulus, sed

ingrediens ad latera utraque paulatim, iterumgque ad circuli amplitwdinem in perigeeo
exiens, cujusmodi figuram itineris ovalem appellitant, pag. 218; And as of all
ovals, the ellipse appeared to be the most simple, he first supposed the orbit to
be an ellipse, and placed the sun in one of the foci ; and upon calculating the
above observed distances, he found they agreed together. -He did the same
for other points of the orbit, and found that they all agreed ; and thus he pro-
nounced the orbit of Mars to be an ellipse, having the. sun in ore of its foci.
Having determined this for the orbit of Mars, he conjectured the same to be

true for all the other planets, and upon trial he found it to be so. Hence he

concluded, That¢ the six primary Planets revokve about the Sun in ellipses, having

the Sun in one of the foci.
. v o

A TABLE

Of the relative mean distances of the Planets from the Sun, accordmg to
different Authors.

Planets | KepLER | STREET | HALLEY [M.de laLavpe Log. Dist.
Mercuty| 38806 | 38710 | 38710| 38710 9,5878221
Venus | 72418 | 72833 | 72333 | 72833,24 | 9,85938379)
Earth 100000 | 100000 100000 100000 0,0000000,
Mars 152849,5 152369 | 152369 | 152369,27 9,1828973 ’
Jupiter | 520000 | 520110 | 520098 | 520279,2 | 0,7162364
Saturn |951008,5| 953800 | 954007,4 954072,4;’ 0,9795818
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The rehhver mean. distanice of the Georgm Plhanet from the sw is: 19&8652,
according to M. dela Praets -0 . e o o L B
The logarithms are here put-dewn upon suppesitien that the mean. dxstanne
of theearth from the sun #s unity, this:. being. the.case in(all Astronomical:
Tables. . - The mean distances are nearly a8 4,7, 10, 15;:52, 95,192.. ~
R VER PN s . vl o ( .-, (S| '

218 Haying thus discovered the ralative mean dlsbo,nces of the pln.nets ﬁ'om
thesun, and knowing their periodie times, :he next endeavoured to'find if there.
was any; Jelation between them, havingdad a.strong passion for finding . analo-
giesin nature. , He saw- that: the: more distant a . planet was from the sun the
slower it.moved, $0.that on a doukle .account the periodic times of the more
distant .planets'would be imcreased. - Saturn, for. .example, is 93 times further
from the sun than the earth.is, and the circle described by Saturn is so much
greater .in proportion; and.:as theieasth.revolves in 1 year, if their velocities
were equal, the periodic time:af.Saturn. wauld be 94 years ; whereas its periodic
time is.near 90 years. The periodic times:therefore of the planets increase in a
greater ratio than their distances, but in a less ratio than the.squares of their dis-
tances ; for mpon- that suppositien the periodic time of Saturn would be about
904 years. . On March 8, 1618, he began to compare the pewers of these
quantities, and at that time he took the squares of the periodic times ahd coms
pared them with the cubes of the mean distances, but, from seme error inthd
calculatibn, they did not agree. But on May 15, having made the last compui
tations again, he discovered his error, and found an exact: agreement Hetiveen
them. Thus he discovered the famous Law, That the squares -of the periodic
times of all the planets are as the cubes of their mean distances from the sun. Sir
I. Newron afterwards proved that, this is a necessary : consequence of ‘the
motion of a body in an ellipse about the focus. Prm Phil. L:b L Sg% 2.
Pr. 15.

219. KepLER also discovered from observatxon, that the velocmes of the
planets, when in their apsides, are inversely as their distances from the sun;
whence it followed, that they describe, in these points, equal areas about
the sun in equal times. And although he could not prove, from observation,
that the same was true in every point of the orbit, yet he had no doubt. but
that it was so. - He therefore applied this principle to find the equation of the
orbit (as will be explained in the next Chapter), and ﬁndmg that his calcula-
tions agreed with observations, he concluded it was true in general, Zhat the
planets describe aboul the sun equal areas in equal times. Thisdiscovery was,
perhaps, the foundation of the PriNcIPIA, as it probably might suggest:to Sir
I. Newron the idea, that the proposition was true in general, which he after-
wards proved it to be. These important discoveries are the foundation of all
Astronomy. . AT
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220. He also speaks of Gravity as a power which is mutual between all
bodies ; and tells us, that the earth and moon would move towards each other,
and meet at a point as much nearer to the earth than the moon, as the earth is
greater than the moon, if their motions did not hinder it. He further adds,
that the tides arise from the gravity of the waters towards the moon. That the
reader may have a better conception of his ideas on this subject, we shall here
give his own words.

Vera doctrina de gravitate his innititur axiomatibus.

Omnis substantia corporea, quatenus corporea, apta nata est quiescere omni
loco, in quo solitaria ponitur, extra orbem virtutis cognati corporis.

Gravitas est affectio corporea, mutua inter cognata corpora ad unitionem
seu conjunctionem (quo rerum ordine est et facultas magnetica) ut multo magis

* terra trahat lapidem, quam lapis petit terram.

Gravia (si maxime terram in centro mundi collocemus) non feruntur ad cen-
trum mundi, ut ad centrum mundi, sed ut ad centrum retundi cognati corpo-
ris, telluris scilicet. Itaque wbicumque collocetur seu quocunque transportetur
tellus facultate sui animali, semper ad illam feruntur gravia.

Si terra non esset rotunda, gravia nom undiquaque ferrentur recta ad medium
terree punctum, sed ferrentur ad puncta diversa & lateribus diversis.

Si duo lapides in aliquo loco mundi collocarentur propinqui invicem, extra
orbem virtutis tertii cogmati corporis; illi lapides ad similitudinem duorum
magneticorum corporum coirent loco intermedio, thbet accedens ad alterum
tanto intervallo, quanta est alterius moles in comparatione.

Si luna et terra non retinerentur vi animali, aut ali§ aliqu4 eequipollenti, qus-
libet in suo circuitu ; terra ascenderet ad lunam quinquagesimi quarti parte in-
tervalli, luna descenderet ad terram quinquaginta tribus circiter partibus inter-
valli ; ibique jungerentur: posito tamen, qudd substantia utriusque sit unius et
ejusdem densitatis,

Si terra cessaret attrahere ad se aquas suas; aque maringe omaes elevarenmr,
et in corpus lunse influerent.

Orbis virtutis tractorise, quee est in luna, porrigitur usque ad terras, et pros
lectat aquas sub zonam tarridam, quippe in occursum suum quacunque in ver-
ticem loci incidit, insensibiliter in maribus inclusis, sensibiliter ibi ubi sunt latis-
simi alvei oceani, aquisque spatiosa reciprocationis libertas, quo facto nudantur
littora zonarum et climatum lateralium, et si qua etiam sub torrida sinus effici-
unt reductiores oceani propinqui. 1ltaque aquis in latiori alveo oceani assurgen-
fibus, fieri potest, ut in angustioribus ejus sinubus, modo non nimis arcté con-
clusis, aquee preesente luné etiam aufugere ab e4 videantur: quippe subsidunt,
foris subtracti copi4 aquarum. See the Introduction to the abovementioned Work.



CHAP. X.

ON THE MOTION OF A BODY IN AN ELLIPSE ABOUT THE FOCUS.

" Art. 221. A the orbits which are described by the primary planets revolving

about the sun are ellipses having the sun in one of the foci, and each describes
about the sun equal areas in equal times, we next proceed to deduce, from these
principles, such consequences as will be found necessary in our enquiries re-
specting their motions. From the equal description of areas about the sun in
equal times, it appears® that the planets move with unequal angular velocities
about the sun. The proposition therefore, which we here propose to solve, is,
given the periodic time of a planet, the time of its motion from its aphelion,
and the excentricity of its orbit, to find its angular distance from the aphelion,
or its #rue anomaly, and its distance from the sun. This was first proposed by
KzpLER, and therefore goes by the name of KepLER’S ProBLEM. He knew no
direct method. of solving it, and therefore did it by very long and tedious ten-
tative operations.

222. Let 4GQB be the ellipse described by the body about the sun at § in
one of its foci, 4Q the major, GB the minor axis, A4 the aphelion, Q the pe-
rihelion, P the place of the body, 4VGE a circle, C its center; draw NMPJ
perpendicular to 4Q, join PS, NS and NC, on which produced let fall the
perpendicular 87 Let a body move uniformly in the circle from 4 to D with
the mean angular velocity of the body in the ellipse, whilst the body moves in
the ellipse from 4 to P ; then the angle ACD is the mean, and the angle 4SP
the frue anomaly; and the difference of these two angles is called the Equation
of the planet’s center, or Prosthapheresis. Let p—the periodic time in the ellipse
or circle (the periodic times being equal by suppesition), and #=the time of
describing AP or AD ; then, as the bodies in the ellipse and circle describe
equal areas in equal times about § and C respectively, we have

area ADC : area of the circle:: ¢ : p, -
area ofthe ellipse : area ASP::p: ¢,

* For if AP be an ellipse described by a planet about the sun at Sin the focus, the indefinitely
smal) area PSp described in a given time will be constant ; draw Pr perpendiculer to Sp ; and, as the

area SPp is constant for the same time, Pr varies as b%; ; but the angle pSP varies as %’ and there-

fore it varies as-gl-;; that is, in the same orbit, the angular velocity of a planet varies inversely as the
square of its distance from the sun. For different planets, the arcas described in the same time are not

equal, and therefore Pr varies as w » consequently the angle pSP varies as ﬂe%i‘gff 5 that is, )

the angular velocities of different planets are as the areas described in the same ﬁzne dlrectly and the
squares of their distances from the sun inversely.

FIG.
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also, area of the circle : area of the ellipse:: area ASN : area ASP

~.area ADC: area ASP:.area ASN :area ASP ; hence, ADC = ASN ; take
away the area ACN which is common to both, and the area DCN =SNC;
but DCN = 4DN x CN, and SNC=481'xCN ; therefore ST= DN. Now
if tbe given, the arc 4D will be given; for as the body in the circle moves
uniformly, we have p : #::360° : AD. Thus wealways find the mean anomaly
at any given time, knowing the time when the body was in the aphelion;
hence if we can find S7', or ND, we shall know the angle NCA, called the
ezcentric anomaly, from whence, by one proportion (228), we shall be able to.
find the angle 4SP the #ruc anomaly. The Problem is therefore reduced to
this; to find a triangle CST, such that the angle C + the degrees of an arc equal
to S7" may be equal to the given angle ACD. This may be expeditiously done
by trial in the following manner, given by M. de la CaiLLE in his Astronomy.
Find what arc of the circumference of the circle ADQE is equal to C4, by
saying, 855 : 118::180°% : 57°. 17. 44,8 the number of degrees of an arc
equal in length to the radius C4; henceC4 : CS:: 57° 17. 44°,8: the degrees
of an arc equal to CS. Assume therefore the angle SCT, multiply its sine
into the degrees in CS, and add it to the angle SCT, and if it equal the given
angle ACD, the supposition was right; if not, add or subtract the difference
to or from the first supposition, according as the result is less or greater than
ACD, and repeat the operation, and in a very few trials you will get the
accurate value of the angle SCT. The degrees in ST may be most readily
obtained by adding the logarithm of CS to the logarithm of the sine of the
angle SCT and subtracting 10 from the index, and the remainder will be the
logarithm of the degrees of S7. Having found the value of AN, or the angle
ACN, we proceed next to find the angle ASP.

223. Let v be the other focus, and put 4C=1; then by Eucl. B. IL. P. 12.
SP* — Pv* =v8*+2v8 x vI = vS+2IxvS = 20v + 2vf x 35C =2Cl1
x28C; hence, SP+Pv:2CIl::25C: SP—Pv, or 2:2CI::25C: SP—"
2—8P, or 1:CI:: SC:SP—1, and SP=1 + C§xCI = 1+CS§ x cos.
¢ ACN. By my Trigon. Art. 94. 'iﬁ%% = tan. | 45+*. But SP,
or 1+CSxcos. ACN :rad.=1::81, or CS+CI, or CS+cos. ACN :

CS +cos. ACN ————  1—cos. ASP"
cos. A8 P=1" 7% cos. ACN" Hence,’ tan. 4 ASEN(=1 o5 dnr )=
1+CS x cos. ACN —CS —cos. ACN_1-CS + cos. ACN xC§ =1
1+CS x cos. ACN + CS + cos. ACN—I +CS + cos. ACN x -CT.T],:
SQ—cos. ACN xSQ 1—cos. ACN 8Q
SA+cos. ACN x84~ 15 cos. ACN *54= &

—_— S — —_—
tan. 4 ACN? x’—s—%; therefore /354 : /3Q::tan. 3 ACN : tan. 3 ASP, con.
sequently we get ASP the frue anomaly. ’

the above theorem in trig).
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Ex. Required the true place of Mercury -on Augist 26, 1740, at noon; the
equatwn of the center,. and its distance from tlre sun.” <= . - R
By M. dela CarLte’s Astronomy, Mercury -wad inits ~a}‘)hehon on! August

9, at 6A. 37.

Hence onr August 26, it had passed its aphélibn 16d. Yth. 295
therefore 87d. 28h. 15. 32" (the time of one revolution) :
860° : 68°. 26'. 28" the arc 4D, or méan anomaly. Now (according to this

16d. 17h. '28'::

Author) CA4 : CS5::1011276 : 211165 ‘(222):: 57°.17. 44,8 + 11°. 87. 50" =
43070, the value of CS$ reduced to the arc of a circle, the log. of which is

4,6341749. Also, 68°. 26. 28" =246388".

Assume the angle SCT to be 60°

=216000", and the operatlon (222) to ﬁnd the angle ACN will stand thus:

4,6341749 » -
9,9375306 log. of + .

4,5717055 - -

4,6341749
9,9287987

4,5629736

46841749
9,9297694 . - .

4,5689443 _ - - o

C o 4,6841749
- 9,9296626 -

4,5638?75

VvOL. I.

.- 216000=a

1
y 87300

253300
246388

6912=—5%

209088=q — =58, 4. 48"=¢

86557

245645
246388

743 =d 4 . \

2098381=c + d=58° 17. 11" =¢

36639

246470
246388

82=f
209749 =¢ —f=58°,

15. 49'=g

86630

246379
246388

~ '9=k; hence, as’ the difference
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between the value deduced from the assumption and the true valuve is now di-
minished about 9 times every operation, the next difference would be 1”; if
therefore we add % to g, and them subtract 1°, we get 58° 15" 57" for the true
value of the angle ACN, the excentrie anomaly Hence (223), find the true
anomaly 4SP, from the proportion there given, by logarithms thus:

Log. tang. 29°. 7. 58'% - - - 9,7461246
% Log. §Q=800111 - - - 29515751

12,6976997
3 Log. S4=1222441 - - - 38,0436141

Log. tang. 24°. 16. 15" - - 9,6540856

Hence, the #rue anomaly is 48° 382, 30". Now the aphelion 4 was in 8°. 18°,
54'. 30"; therefore the true place of Mercury was 10°. 2°. 27. Hence, 68°. 26
28" — 48°. 82. 30" =19° 58 58" the equation of the center. Also, SP=1+CS
x cos. £ ACN =1,10983 the distance of Mercury from the sun, the radius of
the circle, or the mean distance of the planet, being unity. Thus we are able
to compute, at any time, the place of a planet in its orbit, and its distance from
the sun ; and this method of computing the ezcentric anomaly appears to be the
most slmple and easy of application of all others, and capable of any degree of
accuracy.

224. As the bodies at D and P departed from A at the same time, and will
coincide again at Q, 4DQ, APQ being performed in half the time of a revolu-
tion; and as at 4 the planet moves with its least angular velocity (by the Note
to Art. 221.), therefore from 4 to Q, or in the first 6 signs of anemaly, the angle
ACD will be greater than 4SP, or the mean will be greater than the frue ano-
maly ; but from Q to 4, or in the last 6 signs, as the planet at Q@ moves with
its greatest angular velocity, the #rue will be greater than the mean anomaly.

225. When the excentricity, and consequently the angle NCD, is very small,
as in the orbits of Venus and the Earth, ND, considered as very nearly a
straight line, will be equal and parallel to ST, therefore SD is parallel to CN
and consequently the angle NCD=CDS. Now in the triangle DGS, we know
the two sides DC, CS, and the included angle DES, the supplement of DCA ;
hence we can find the angle CDS or DCN. If the angle DCN do not exceed 14°
the conclusion will be accurate to a second; and if it be greater, this method
will give a near value of it, and consequently we shall get a near value of the
angle ACN to-begin the operation with in the method already explained, which
will be better, perhaps, than guessing at first. In our Example, the angle
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DSC, or SCT nearly, would, by this calculation, have been found 58° 13 1,
whence ST would first have been found 10°. 10. 12", and after two more ope-
rations the accurate value would have been obtained. When the angle DCN
is not very small, M. Cassini, in his Elements of Astronomy, page 144, has
given the following method of finding it. ‘
226. Draw Dz perpendicular to S7, and T'% is the sine of the arc DN, con-
sequently Sz is the difference between the arc DN and its sine, or it may be
considered as the difference between the are of the angle CDS and its sine;
compute therefore the angle CDS (225), and by the following Table take out
the difference between the arc and its sine, and say SD : Sz::rad. : sin. SDz,

which subtract from the angle SDC and you have the angle sDC, or the alter-

nate angle DCN. The rest of the operation is the same as before.

A TABLE

Showing the Difference betweén the Arcs of a Circle and their Sines,
" Radius being 10000000.

Arc | Dif. “ Arc |Dift || arc |Dit. | arc | pif

1°. 06| 9|4°. 06| 567|7°. 06/3037{10°. 06| 8848

100 15 10| 641 1018259 10| 9299
20, 23 20| 72 20[3492 201 9755
80| 31 30| 807 30[3734 30| 10235
40| 42 40| 900 40/3989 40| 10730
50, 56 501 504255 50| 11241

10, 9 10/1222 1014822 10| 12812
20| 118 20/134 205122 20| 12873
30| 139 30(1474 30/5435 30| 13450
40| 169 401618 40,5761 40| 14042
50| 208 501759 5016100] 50| 14654
3. 00| 2396 . 119139 . 00l6450{12. 00 15278
10| 281 102077 106815 10| 15921
20| 328 202255 20[7194 20| 16585
30| 380 302432 307585 30| 17266
40| 437 40[2625 407985 40| 17964
50| 499 50l2827 508404 50 18680‘

2. 00| 715. OOIIOjHB. 00{4532}11. OO| 11767

10
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fering from the truth the ten thousandth part of a degree. In other cases it
may be necessary to take more terms..

Ex. Let the excentricity of the earth’s orbit be 0,01691, the mean distance
being =1, and the mean anomaly 30° to find the true anomaly
Log. of g - - - - 8,2281436
Log. sin. ofe=380° - . -  9,6989700
Log.ofr - - - - . 1,7581226

Log. of rge, orrz . - - - 9,6852362
Log. of a - . - - - 0,0063187

Log, of’;_f. - - - - 96789225 .. the natural

number corresponding to which, being a decimal, is 0°, 47744=—28". 38'—y,
which is true to a second ; therefore AN=29°. 31'. 22"; hence,

Log. tan. 14°. 45" 41° - - 9,4207651

4 Log. S5Q=98309 - - .  2,4962966

11,9170617
1 Log. §4=101691 - - - 25081412

Log. tan. 14°. 82'. 25" - - 9,4189205

Hence, the #rue anomaly is 29°. 4. 50"; consequently the equation of the
center is 55, 10"
229. When P and D are very near 4, the variation of PS§ will be very small;
now by the Note to Art. 221. the angular velocity of P at 4 about S : angular
. .area des. by P _area des. by D
velocity of D about C:: <P M D J
gular velocities will be nearly in a given ratio so long as P is near to 4; hence,
the difference of the angular velocities must vary nearly as the angular velocities
themselves; that is, the equation of the center varies nearly as the angular velo-
city of P about S, or as the true anomaly. The same is true at the perihelion Q.
230. The greatest equation of the center may be easily found from the Note
Art. 227, giving the dimensions of the orbit. For as long as the angular velo-
city of the body in the circle is greater than that in the ellipse about S, the
equation will keep increasing, the bodies setting out from 4 and z; and when
they become equal, the equation must be the greatest; this therefore happens

» and therefore the an-

when 1 1 __ ! or when AC x CE = SP?* hence, SP is known.

SP~ 5w+ 4C x CE’
Let SH represent the value of SP; then as we know SW, FW (=24C-SW)
. : 6
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will be known, and as SF is known, we can find the angle FSH the: irxe ano-
maly*. Hence (223), /3Q : /5S4 ::tan. } true anom. : tan. L ezeen. anom.
ACN or tan. L SCT; and as we know SC, we can find ST or ND; and to
convert that into degrees, say, rad.=1 : ND::57°. 17. 44,8 : the degrees m
ND, which added to, or subtracted from, the angle ACN gives 4CD the meun
anomaly, the difference between which and the frue anomaly is the greatess
equation. Thus we may find the equation at any other time, given SP. Or
the cos. ACN may in general be found thus. By Art. 228. SP=1 + C§ x cos.

ACN ; hence, cos. ACN= ASIZ 5 3 consequently log. cos. ACN =log. SP—1

~lg. CS.

231. The excentricity, and consequently the dimensions of the orbit, may be
found from knowing the greatest equation. For (230) the greatest equation is
when the distance is a mean bétween the semi-axis major and minor, and there-
fore in orbits nearly cireular, the body must be nearly at the extremity of the
minor axis, and consequently the angle NCA4 or SC7' will be nearly a right
angle, therefore $7'is nearly equal to SC; also NS4 will be very nearly equal
to PSA. Now the angle NCA— NS4 or PSA=SNC, and DCA-NCA=
DCN ; add these together and DCA —PSA=DCN + SNC, which (as NC'is
nearly parallel to DS) is nearly equal to 2DCN ; that is, the difference between
the #rue and mean anomaly, or the equation, is nearly "equal to twice the arc
DN, or twice ST, or very nearly twice SC. Hence, 57°. 17. 44",8 : half the

greatest equation::rad.=1 : SC the excentricity. But if the orbit be consi..

derably excentric, to this excentricity compute the greatest equatiow;. and then;,
as the equation varies very nearly as §C, say, as the computed équation : ex-
centricity found :: given greatest equation : true excentricity.

Ex. If we suppose, with M: de la CarLLE, that Mercury’s greatest equation
is 24°. 8. 5" then 57° 17. 44,8 : 12°. I'. 32",5.::1 : ,209888 the excentricity
very nearly. Now the greatest equation computed from this excentricity is

23°. 54, 28",5; hence, 23°. 54 28",5 : 24°. 38'. 5"::,209888 : ,211165 the true.

excentricity. M. de la LANDE makes the greatest equation 28°. 40’ and the
excentricity ,207745.

232. The converse of this Problem; that is, given the excentricity and true
anomaly to find the mean, may be very readily and directly solved. The ex-
centricity being given, the ratio of the major to the minor axis is knownt,
which is the ratio of NI to PI; hence, the angle 4SP being given, we have

* Let D—WS—SF then (Trig. Art. 131), sin. JFSW=4/7 X} (FW+D) x1 (FW—DN\, and

WS x F
log. sin. QFSW—Q (log. L (FW+D)+log. § (FW—D)+ar. co. log. WS+ ar. co. log. SF).

+ For as AC, CS are known, we have GC= y/ SG"—SC"= v AC*—SC>.

111
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PI : NI::tan. ASP : tan. ASN; thereforein the triangle NCS, we know NC,

C5 and the angle CSN, to find the angle SCN, the supplement of which is the
angle ACN or SCT; hence, in the right angled triangle $7 C, we know SC and
the angle SC7, to-find 87, which is equal to ND the arc measuring the equa-
tion, which may be found by saying, Radius : S7':: 57°. 17, 44",8 : the degrees
in ND, which added to 4CN gives 4CD the meananomaly. .

To find the hourly Motion of a Planet in its Orbit, havmg given the mean
hourly Motion.

233. The hourly motion of a planet in its orbit is found immediately from
the Note to Art. 227; for it appears from thence, that the angles PSp, W Sw,
described by the body at P in the ellipse and the body # in the circle in the
same time are as SW"' : SP*, or as AC x CE : SP*; hence, PSp=WSw x
AC x CE

Sp
mean motion of the planet in an hour. For extreme accuracy, SP must be
taken at the middle of the hour. Thus we may easily compute a Table of the
bourly motions of the planets in their orbits.

the hourly motion of a planet in its orbit, the angle W Sw being the

To find the hourly Motion of a Planet in Latitude and Longitude.

234. Let AD be the ecliptic, AE the orbit of the planet; and let Bm repre-
sent the hourly motion in the orbit; draw the great circles BC, mo perpendicu-
lar to AD, and the small circle Br parallel to 4D. Now by plane trigonom,

Bm : Bn::rad. : sin. Bmn or ABC, and

Bn : Co ::cos. BC : rad. (18)

cos. 4

<.Bm : Co ::cos. BC : sin. ABC; but sin, ABC=—_—p~; and (283) if a=

the semi-axis major, b the semi-axis minor of the orbit, #=the distance of the

planet from the sun; v=the mean hourly motion, then Bm=v x -:-?; hence,’

v x _.é. Co::cos.BC : —% t.heref'oreCo—-vxa'—z'-bt ;:—-%#"’"% x
cos. ”‘Cl' orb. to eck . hourly motion in Longitude.
cos. lat.*

Also, Bm : mn::rad. : cos. Bmn or ABC:: (because cos. B = cotan. 4B x
tan. BC divided by rad.) rad". : cotan. 4B x tan. BC; hence (radius being

unity), mn =v x -‘-;g x cotan. 4B x tan. BC=v x -a—-; x cot. plan. dist. node x tan.

lat. the hourly motion in Latitude. Hence we may construct Tables of the
hourly motions of the planets both in longitude and latitude,




CHAP. XI.
. >
ON THE OPPOSITIONS AND CONJUNCTIONS OF THL PLANETS.

Art. 235. THE place and time of the opposition of a superior planet, or
conjunction of an inferior, are the most important observations for de-
termining the elements of the orbit, because at that time the observed is
the same as the true longlf.ude, or that seen from the sun ; whereas if observa-
tions be made at any other time, we must reduce the observed to the true longi-
tude, which requires the knowledge of their relative distances, and which, at
that time, are supposed net to be known. They also furnish the best means of
examining and correcting the Tables of the planets motions,. by comparing the
computed with the observed places.

236. To determine the time of opposition, observe, When the planet comes
~ very near to that situation, the time at which it passes the meridian, and also
its right ascension (118 or 122); take also its meridian altitude ; do the same
for the sun, and repeat the observations for several days. From the observed
meridian altitudes find the declinations, and from the right ascensions and
declinations compute (124) the latitudes and longitudes of the planet, and
the longitudes of the sun. Then take a day when the difference of their longi-
tudes is nearly 180°, and on that day reduce the sun’s longitude, found from
observation when it passed the meridian, to the longitude found at the time (?)
the planet passed, by finding from observation, or computation, at what rate
the longitude then increases. Now in opposition the planet is retrograde, and
therefore the difference between the longitudes of the planet and sun increase by
the sumn of their motions. Hence the following Rule; As the sum of their
daily motions in longitude : the difference between 180° and the difference of
their longitudes reduced to the same time (#), (subtracting the sun’s longitude
from that of the planet to get the difference reckoned from the sun according to
the order of the signs):: 244. : interval between that time (/) and the time of
opposition. This interval added to or subtracted from the time (#), according
as the difference of their longitudes at that time was greater or less than 180°,
gives the time of opposition. If this be repeated for several days and the mean
of the whole taken, the time will be had more accurately. And if the time of
opposition found from observation be compared with the time by computation
from the Tables, the difference will be the error of the Tables, which may serve
as a means of correcting them.

Ex. On October 24, 1768, M. de la LaxpE observed the difference between
the right ascension of 8 Aries and Saturn, which passed the nieridian at 12
YOL. 1. Q
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" 17. 1’7" apparent time, to be 8°. 5. 7", the star passing first. Now the apparent

right ascension of the star at that time was 25°. 24'. 33",6, hence, the apparent
right ascension of Saturn was 1’. 3° 29'. 40,6 at 12h. 17. 17" apparent time,
or 12h. 1'. 37" mean time. On the same day he found, from observation of the
meridian altitude of Saturn, that its declination was 10°. 85. 20" N. Hence,
from the right ascension and declination of Saturn, its longitude is found to
be 1° 4°. 50. 56", and latitude 2°. 43'. 25" south. At the same time the sun’s
longitude was found by calculation to be 7°. 1° 19. 22°, which subtracted
from 1°. 4°. 50. 56" gives 6°. 8°. 81'. 34"; hence, Saturn was 3°. 31'. 34" beyond
opposition, but being retrograde must afterwards come into opposition. Now,
from the observations made on several days at that time, Saturn’s longitude was
found to decrease 4. 50" in 24 hours, and by computation the sun’s longitude
increased 59'. 59" in the same time, the sum of which is 64. 49"; hence, 64.
49" : 8° 31 34"::24h. : 78h. 20. 20", which added to October 24, 124. 1'. 37"
gives £7d. 18h. 21'. 57" for the time of opposition. Hence we may find the
longitude of Saturn at the time of opposition, by saying, 24k : 78h. 20. 20"::
4. 50" : 15. 47" the retrograde motion of Saturn in 78k. 20. 20°, which sub-

tracted from 1°. 4°. 50. 56" leaves 1°. 4°. 85. 9" the longitude of Saturn at the

time of opposition. In like manner we may find the sun’s longitude at the
same time, in order to prove the opposition ; hence, 24A. : 78h. 20. 20"::59'.
59" : 8°% 15. 47", which added to 7°. 1° 19'. 22°, the sun’s longitude at the
time of observation, gives 7°. 4°. 85. 9" for the sun’s longitude at the time
of opposition, which is exactly opposite to that of Saturn. Hence also we may
find the latitude- of Saturn at the same time, by observing in like manner the
daily variation, or by computation from the Tables after the elements of its
motions are known and the Tables constructed ; by which it appears, that in
the intervzl between the time of observation and opposition the latitude had
increased 6", and consequently the latitude was 2°. 43" 31",

237. This is the method which is now made use of to determine the time of
opposition of the planets. The method used by Tycmo, Heverius and
FrAusTEAD was the same, except that they determined the latitude and longi-
tude of the planet from observing its distance from two known fixed stars, in
the following manner. Let P be the pole of the ecliptic, @ and 5 the two stars,
m the planet ; then observe ma, mb. Also, Pa, Pb the complements of the
latitudes of @ and b, and the angle aPb the difference of their longitudes, are
known, from which find ab and the angle Pab; then in the triangle amd
we know all the sides to find the angle mab, which added to or subtracted from
the angle Pab, according to-the position of m, gives the angle Pam ; hence, in
the triangle Pam, we know Pa, am and the angle Pam, to find Pm the comple-
ment of the planet’s latitude, and the angle aPm the diffcrence between the
longitudes of the.planet and the star a. Thus also may the place of any news
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phanomenon, as a comet, be determined, if you have not an opportunity of
observing its right ascension and declination, which however is the most
accurate method.

238. The place and time of conjunction of an inferior planet may be found
in like manner, when the elongation of the planet from the sun, near the time
of conjunction, is sufficient to render it visible ; the most favourable time there-
fore must necessarily be when the geocentric latitude of the planet at the time
of conjunction is the greatest.” In the year 1689, Venus was in its inferior
conjunction on June 25, and it was observed on 21, 22, and 28; from which
observations its conjunction was found to be at 18k. 46" apparent time at Paris,
in longitude = 4°. 58" 40", and latitude 8°. 1'. 40" north. The time and place
of the superior conjunction may be also thus observed, when the state of the
air is very favourable ; for as Venus is then about six times as far from the earth
as at its inferior conjunction, its apparent diameter and the quantity of’ light
which we receive from it are so small, as to render it difficult to be perceived.
But the most accurate method of observing the time of an inferior conjunction
both of Venus and Mercury is from obscrvations made upon them in their
transits over the sun’s disc. This we shall explain, when we come to treat on

that subject.-
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ON THE MEAN MOTIONS OF THE PLANETS.

vation Saturn wanted 5°. 27. 19 of being up to the place at the first observation}
gives 29 common years 164d. 23h. 8 for the time of one revolution. Hence
say, 29y. 164d. 28h. 8' : 365d.:: 360° ; 12°. 18 23", 50" the mean annual* mo-
tion of Saturn in a cemmon year of 365 days, that is, the motion in a year if it
had moved uniformly. If we divide this by 365 we shall get 2. 0". 28" for the
mean daily motion of Saturn. If we had taken: the ‘mean annual metion of Sa-
turn answering to 12°. 36 58" in }y. 13d. 8h. 24,.it would have been found
12°, 10. 385", which dlﬂ'ermg only about: 8’ from the true motion, it follows that
Saturn was then moving with its mean velocity, very nearly, and consequently
was very near its mean distance. ‘The, mean. motipn thus determined will be
sufficiently accurate to determine the number of revalutions which the planet
must have made when we compare the modern with the. ancient observations,
in order to determine the mean . motion more accurately.

The most ancient observation which we -have of the opposition of Saturn
was on March 2, in the year 238 before J. C. at one.o’clock in the afternoon
in the meridian of Paris, Saturn being then in w 8°. 23', with 2° 50 north lat.
On ‘February 26, 1714, at 8. 15, Saturn was found in opposition in m 7°.
56. 46", with 2°. 8' north lat. From this time we must subtract 11 days, in
order to reduce it to the same style: as at. the first obseryatien, and consequently
this opposition happened on February 15, at 84. 15. Hence, the difference
between these two places was. only 26. 14".- Alsa, the opposition in 1715 was-

* If a be the mean place of a planet in its orbit, and 4 the mean place at the interval of a year (ab
being the order of the signs), thenabis called the mean annual metion, the number of complete revo-
lutions being rejected, if the planet have made one or more revolutions. Hence, if to the mean place
of a planet at the beginning of any year we add the mean annaal motion, it gives the mean place at the
beginning of the next year,. rejecting. 360° if the sum be greater. The mean anaual motion is that-
belonging to a common. year of 365 days ; therefore for a bissextile we must add the mean motion of
1 day in order to get the mean annual metion for that year. In like manner, if 4.and b be the mean
places at the interval of 100 years containing 25 bissextiles, ab is called the mean seculur motion ;
which added to the mean place of a planet at the beginning of any year, gives the mean place at the
end of the 100th year from that time. For instance, the mean annyal mation of Mars is 6. 11°. 17,
10' and.its mean place at the beginning of 1789, was 9%, 172. 22'. 29”; to this therefore add 6. 11°,

. 10" and (rejecting 360°) we get 32, 28°. 39'. 39”; the mean place at the beginning of 1790. As

dle mean daily motion, of Mars is 31°. 27", thc. mean annual moticn in a year ¢ of 366 days is 6% 11°,.
48. 37”. Now in.a bissextile, the year hegins on January 1, at noon, but in the common years it’
begins on December 31, at noen, hy.the civil account ; therefore the year preceding the bissextile has 366 -

days in the Astronomical Tables, Hence, at the beginning of 1787, the mean place of Mass being 8-,

24° 16’. 43", and the next year being bissextile, if we add 6. 11°, 48 37" it gives 3. 6°. 5. 20" for-

the mean place at the beginning of 1783. The mean secular motion of Mars is 2", 1°. 42" 10, which

added to 11* 22°. 2’/ 49" the mean place of Mars at the beginning of the year 1400, will give 1°, 23°.
44'. 597 the mean place at the beginning of tlie year 1500. If the 100 years contain only 24 bissex--

tles, as may sometimes happen, the mean secular motion will be 2'. 1° 10. 43", But of this we
shall have to say more, when we treat of the Construction of the Tables of the Planets motions..
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ON THE MEAN MOTIONS OF THE PLANETS:

on March 11, at 16k 55, Saturn being then in m 21°% 3 14", with 2°. 28
north Iat. Now between the two first oppositions there were 1942 years (of
which 485 were bissextiles) wanting 14d. 16k. 45, that is, 1943 common
years and 105d. 7h. 15 over. Also the interval between the times of the two
last oppositions was 378d. 8h. 40', during which time, Saturn had moved over
13°. 6. 28; hence, 13°. 6. 28" : 26. 14"::378d. 8k 40 : 18d. 14h. which
added to the time-of the opposition in 171&, gives the time when the planet
had the same lengitude as at the opposition in 228 before J. C. This quantity
added to 1943 common years 105d. 7. 15 gives 1943y. 118d. 21k 15, in

~ which interval of time Saturn must have made a certain complete number of

revolutions. Now having found, from the modern observations, that the time
of one revolution must be nearly 29 common years 164d. 234. 8/, it follows that
the number of revolutions in the above interval was 66 ; dividing therefore that
interval by 66 we get 29y. 162d. 4k. 27 for the time of one revolution. From
comparing the oppositions in the years 1714 and 1715, the true movement of
Saturn appears to be very nearly equal to the mean movement, which shows
that the oppositions have been ebserved very near the mean distance; conse-
quently the motion of aphelion cannot have caused any considerable error in
the determination of the mean metion. Hence, the mean annual motion
is 12° 18. 85" 14", and the mean daily motion 2. 0". 35”. Dr. HaLLEY
makes the annual motion to be 12° 18. 21. M. de Prace makes it 12°
18. 86',8. As the revolution here determined is that in respect to the
longitude of the planet, it must be a #ropical revolution. Hence, to get the
sidereal revolution, we must say, 2'. 0". 85" : 24, 42". 20" (the precession in
the time of a tropical revolution (148) )::1day : 12d. 7h. 1'. 57", which added
to 29y. 162d. 4h, 27 gives 29y. 1'74d. 11k. 28'. 57" the length of a sidereal year
of Saturn.

240.. In the same manner that we have determined the time of a tropical
revolution of Saturn from those oppositions which happen nearly in the same
point of the heavens, we may determine the periodic time of Jupiter and Mars;
we shall therefore select such observations from CassiNi, as may be proper for
this purpose. '

In 1699, Jupiter was in opposition at Paris on June 14, at 10%. 8'in ¢ 23°
§2. 40", with 0°. 23 7" north lat. In 1710 the opposition happened on May
17, at 18%h. 24 in’ 2 26°. 47. 47", with 1° 4. 50" north lat. In 1711 the
opposition was on June 20, at 6. 37'in 3 28°. 36 with 0° 15" 50" north lat.
From these bbservations, the time of a mean revolution comes out 11y. 3134.
16k. 5¢. Now the most ancient opposition is that observed by ProLemy on
May 15, 133 years after J. C. at 284. 8, Jupiter being in m 23°. 22. 22"
On May 12, 1698, it happened at 5k. 46  in m 22° 20. 32". On Juge 14,
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1699, it happened at 10k 8 in 3 28°.52. 42". From these observations,
proceeding as for Saturn, the time of a tropical revolution comes out 11y.
815d. 10k But from the mean of several observations Cassimvi determined
it to be 11y. 315d. 14h. 86. Hence, its mean annual motion is 30° 20.
31". 50", In his Tables he makes it 30°. 20. 34". Dr. HALLEY, in his Tables,
makes it 30°. 20", 38". M. de la PLace makes it 30°. 20. 317,7.

In 1715 Mars was in opposition on April 21, at 11A. in m 1°. 9. 30". On
June 11, 1717, the opposition happened at 9%4. 11’ in ¢ 20° 17, 15". Now
in this time, which was 2 years (one of which was a bissextile) and 50d. 22/.
11, Mars had made one revolution and 49°. 27. 45" over; hence, from these¢
two observations, we shall get a sufficient approximation to the time of a revo-
lution, by saying, 360° +49°. 27. 45" : 860°::781d. 22h. 11' : 687d. 11h. 15
the time of a revolution. Now, from the observations of Proremy, it ap-
pears that Mars was in opposition on December 13, at 11k 48 at Paris, 130
years after J. C. in o 21° 22. 50". In 1709 Mars was in opposition on
January 4, at 5h. 48'in @ 14° 18. 25". Between these observations there was
an interval of 1578y. 11d. 18h., and consequently the time of' a tropical
revolution comes out 686d. 22k. 16. From the mean of several results
Cassint makes it 686d. 22k. 18. Hence, the mean annual motion is 6°. 11°.
17.9%5. Dr. HaLLEY makes it 6°. 11°. 17. 10" in his Tables; and M. dela
LANDE makes it the same. The mean motions thus found may be considered
as sufficiently accurate to settle the place of the aphelion and excentricity of the
orbit ; after which the periodic time may be determined with greater accuracy..
Taking therefore the place of the aphelion and excentricity of Jupiter and
Mars as we shall afterwards settle it, we will proceed to show how we may
correct the periodic time already found, by allowing for the difference of the
equations at the different observations.

On May 15, 188 years after J. C. Jupiter was in opposition at 23h. 8’ in the
meridian of Paris, in m 28° 22. 22'; and the equation of the orbit being 5°.
12, 46", the mean place was m 28° 85. 8. On May 12, 1698, at 5k 46 in
the evening, Jupiter was in opposition in m 22° 20. 82", and the equation
being 3°. 51'. 21", the mean place was m 26°. 11. 53"; hence, the difference
between the mean places was 2°. 28. 15’, the time of deseribing which was

28d. 1'7h. 15 according to the mean motion already determined ; this added to-

the time of opposition on May 12, 1698, gives June 10, 114. 1" at which time
the mean place was the same as at the first observation. Hence, the interval
of these observations divided by 182, the number of revolutiens, gives 11y,

315d. 12h. 54 for the time of a mean tropical revolution. From the mean of

this and two other observations, Cassini finds the time to be 11y. 315d. 12k
33'; and consequently its mean annual motion 30°. 20.. 88". 56". Elem. d”

Adstron. p.431.
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=~ Secember 18, 130 years after- J. C. Mars, from the observations of

73X, wasin opposition -at 114. 48’ in n 21° 22. 50" and the equation
T = I 44, the mean place was n 14°. 20. 6". On December 11, 1691,
. = “he opposition happened in nm 19° 55.16"; and the equation being

3. "a, <ae mean place wasn9°. 89. 2", Now the difference of these
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the first observation; and as Venus ran through this space in 1d. 17k, 54,
Cassint concluded that on December 15, 1594, at 104. 36' Venus was in the
same place .as at the first observation, the interval of which times was 1458
common years 854d. 6k. 36, in which Venus had made 2370 revolutions;
hence, the time of one revolution is 224d. 16A. 89'. 4". 'This method would
be accurate, provided the earth was at the same point at both times, and the
orbit of Venus was fixed. Hence, the mean annual motion is 7°. 14°, 47 45"
Cassint in his Tables makes it 7. 14° 47. 29". Dr. HaLLeEy makes it 7°,
14°. 47'.28". M. de la LANDE makes it 7°. 14°. 47 80",

243. The periodic time of Mercury may be very accurately determined from
its transits over the sun’s disc; for as they have frequently been observed, we
have an opportunity of chusing such as will give us a very accurate conclusion.
From the observations of the conjunction of Mercury on November 6, 1631,
Cassini found the time of the conjunction to be at 19%4. 50, and the true
place of Mercury 1°. 14° 41'. 35". On November 9, 1723, at 5h. 29/, the
conjunction was in 1°. 16° 47'. 20°, only 2°. 5. 45" beyond the place at the
first observation. Now according to the Tables of Cassini, this difference is
just equal to the motion of the aphelion of Mars in the same time; conse-
quently Mercury was in the same place in its orbit at each time, and therefore
the equation was the same. Also, the conjunctions happening very nearly at
the same time of the year, the equation of time was very nearly the same, and
therefore the difference of the apparent times is the same as of the true. Hence
in the interval of 92 years (of which 22 were bissextiles) and 2d. 9/. 39', Mer-
cury (from first finding nearly the time of a revolution by 2 conjunctions near
each other) is found to have made 382 revolutions 2°. 5. 45"; hence, by propor-
tion, the time of a tropical revolution is 87d. 234, 14. 20°,9; and the mean
annual motion comes out 1°. 23°, 48, 11°. 39", CassInI, in his Tables, makes
it 1°. 28°% 48, 11", Dr. HaLLEY makes it 1°. 23°. 43. 2"; and M. de la Laxpg,

1°. 238° 43, 8",
On the Secular Motions of Jupiter and Saturn.

24.4. The time of a revolution of Saturn deduced from the niodern obser-
vations comes out greater than that deduced from a comparison of the modern
with the ancient observations. If therefore the modern obsecrvations could be
depended upon to give the time of a revolution nearer than that difference, it
would prove that the length of Saturn’s year is increasing. Now although
observations made at a sm'ﬂl interval of time, could not be sufficient to esta-
blish this point, yet from a comparison of our observations with those made by
TycHo, it appears that this is the case. The length of the year therefore when

VOL. I. )13

121



122

ON THE MEAN MOTIONS -OF THE PLANE?TS.

ascertained for one time will afterwards want a correetion, and the quantity of
this correction is called the Secwlar Equation.

945. KepLER first observed this circumstance, from examining the observa-
tions of ReciomoNTANUs and WaLTHERUS; for he constantly found Jupiter
forwarder and Saturn backwarder than they ought to have been from the mean

:motions determined from the observations of ProLEMy and Tycmo. He said
the same of Mars; but M. de la Laxpe observes, that he cannet find there is
-any secular equation wanted for that planet. FrLaMsTEAD also observed, that
in all the best Astronomical Tubles, the mean motions of Saturn were too
-swift, and of Jupiter too slow; whence it came to pass, that the computations
: gave those conjunctions which happened when the planets were direct, some
days sooner, and when retrograde, some days later than the time from obser-
-vation; Phil. Trans. N°. 149. HEevEL1us also observed the same. M. MARALDI
“perceived also that the mean motions of Saturn, if we suppose them uniform,
-would not agree both with the observations of TycHo and these of this age.
Dr. HaLLEY, in his Astronomical Tables, applied a secular equation of 9°f
‘for 2000 years to Saturn, and 8°. 40 to Jupiter, but he does not give the ob-
-servations from which he deduced these conclusions. M. de la Lanpg, from
comparing the oppositions in the years 1594, 1595, 1596 and 1597 with those
in 1718, 1714, 1715, 1716 and 1717, found the mean motion of Satura to be
12°. 18, 19", 14" which is 16" in a year less than that given by CassiNi; and

* the duration of the revolution greater by near 4 days. He chose those opposi-

tions which happened near the mean distance (as Cassin1 did also), because the
true and mean motions being then equal, the conclusions would be more

-accurate. He also chose other oppositions at the distance of about 120 years,

and when Jupiter and Saturn were in similar situations, so that no error was to
be apprehended from their mutual attraction, this being the same in each case.
Now if with the mean motion found in 120 years, the place of Saturn, from
where it is now found to be, be computed for the time of the abservation be-
fore mentioned in the year 228 before J. C. the longitude will be found to be
too great by 7°% this therefore is the secular equation for 2000 years, according
to this mean motion. But from other observations he concluded the mean mo-
tion to be 12° 13, 26°,558. With this mean motion he finds the secular
equation to be 47" in the first century from which this motion was deduced ;
for with this mean motion and secular equation, the calculations best agree witl
the ancient observations. From the theory of attraction it appears, that sup-
posing the aphelion of Saturn and Jupiter to be fixed, the secular equation va-
ries as the square of the time, which M. de la Lanpe thinks may be de-
duced from this consideration, that the velocity lost by Saturn in consequence
“of the cause which produces the equation being so very small, may be consi-
6
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dered eqﬁal in equal times; whence from the principle of the law of falling bo-

dies, the space lost must vary'as the square of the time. Now from five obser- .

vations of ProLemy, he found the secular equation for the first 100 years to
be 47°; hence, 100° : #*:: 47" : the secular equation for ¢yecars. Now the lo-
garithm of 47 minus the logarithm of 100 is 7,6720979; hence, if to this con-
stant logarithm we add twice the logarithm of #, we shall have the logarithm of
the secular equation for ¢ years from the commencement of the 100 years, to

be subtracted from the mean longitude.

246. But besides the secular equation, the mean motion of Saturn is also
subject to other irregularities, which are found to follow from the attraction of
Jupiter. Dr, HaLLgy, in his Astronomical Tables, observes that Jupiter from
his opposition in 1677, to that in 1689, was found, from indubitable observa-
tions, to be 12’ slower than in the preceding or subsequent revolutions.” Also
the periodic time of Saturn between the years 1668 and 1698 was nearly a week
shorter than its mean revolution; and the periodic time between 1689 and
1719 was mearly as much greater, so that between the two revolutions there
was a differenice of miore than 18 days. This Dr. HaLLEY supposes to arise
from the attraction of the greater bodies in the system being different in dif-

ferent positions. For he observes, that in 1683 there was a conjunction of .

Jupiter and Saturn, when from the position of the apsides, the planets ap-
proached nearest to each other, and Saturn was most urged towards the sun
and Jupiter from it; so that Jupiter’s velocity being increased and its force ta
the sun diminished, its orbit was increased and consequently its periodic time;
on the contrary, Saturn’s velocity being diminished and its force to the sun in-
crensed, its orbit, and consequently its periodic time, was diminished. Now,
says he, if the sane thing should happen again, that is, if a conjunction should
take place again in the same point of the Heavens, .and the same effects should
follow, we may hope that it can be accounted for. from the Laws of gravity ;
but if; in like circumastances, the same effects are not found to take place, other
extraneous causes are to be sought for. But M. de la Prack has discovered,
that these inequalities, as well as the secular equations; may be represented by

wn equatlon, from Jupiter’s attraction, of 48, which depends on 5 times the °
longitnde of Saturm minus twice that of Jupiter, of which the period is 918 °

years. “For this we must employ the mean annual motion of 12°. 13'-36",81.
Thus all the irregularities of Saturn’s motion are confined to a certain period,
after which they all:rgtum .again. In-the years 1701 and 1760 the errors of
Dr. HarLey’s Tables were 84’ and 214, according to M. de la LaNDE, so that
the motion of Saturn was greater by 18', and its periodic time was shorter by 6}
days, than in its revolution between 1686 and 1745. Now the mean anomaly
in 1701 and 1760 was 8°. 1, and the angle at the sun between Jupiter and Sa-

turn was 19° in 1701 and 30° in 1760, so that the error in the mean motion
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could not arise from any dissimilar situations of Saturn in its orbit, by which
the elements of the motions might err; nor from the different situations of Ju.
piter, that difference not being sufficient to cause such an error.

- 247. The motion of Jupiter requires also a secular equation, as Dr. HaLLEY
observed, who made it 3° 49'. 24" for 2000 years, or 34",4 for the first century,
supposing it to increase as the square of the time. M. MaraLDI also observed,
that the modern observations gave the motion of Jupiter greater than the an-
cient. M. de la Lanpe found by comparing the observations made 240 years
before J. C. with those in the year 508, that Jupiter’s secular motion in 83 years
was 2. 04". And comparing the observations in 508 with those in 1508 and
1504, we find nearly the same result. But if we compare the conjunction of
Jupiter with Regulus on October 12, 1623, with the like observation made in
1706, we find it 21’ for 83 years, Dr. HALLEY, in his Tables, fixed it at 12"
26" for 83 years, which makes the revolution 8 hours shorter than that deduced
from the ancient observations. The oppositions from 1689 to 1698 compared
with those in 1749, give a mean motion equal to that in.the Tables of Cassint;
which Tables give the place of Jupiter 1’ too much in 508. These conclusions
indicate a great irregularity in Jupiter’s motions; and this irregularity is further
confirmed, if we consider that M. WARGENTIN makes the secular equation for
the first 100 years to be 18”; M. BaiLLy makes it 12}"; and M. de la Lanps
fixes it at 801" for the first 100 years, or 8° 23" 20" for 2000 years, admitting
it to increase as the square of the time, which agrees nearly with Dr. HaL-
LEY’S determination. M. de la GraneE, from the theory of gravity, finds it
to be 8. 18, which, as M. de la LanDe observes, agrees very well with the
observations from 1590 to 1762, but not with the ancient observations. EuLer
determined it from theory to be 2. 23". M. de la LaNDE says, that his own se-
cular equation, with the mean secular motion of 5°. 6°. 27'. 80", agree as nearly
as possible to all the observations. M. de la Prace found in 1786 an ine-
quality of 20' from the attraction of Saturn, the period of which equation is
918 years, as in Saturn. Thus he made the secular equation disappear, it be-
ing only an irregularity whose period is 918 years. This supposes a secular
motion of 5°. 6° 17. 838". The secular equation being determined for 100
years, it may be found for any other time, as it was for Saturn, by takmg itin
proportion to the square of the time.

The longitude of the sun requires a sccular equation of 12 for 2500 years,

arising from the diminution of the precession of the equinoxes, accarding to
M. de la LanpE.
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REVOLUTIONS OF THE PLANETS

According to M. de la La~pe.

. . RN

According to Dr. HaLLEY.

Planets |Secular motion| Tropical Revolution. | Sidereal Revolution. |Mot. diur. trop.
Mercury|2'. 14°. 4. 20" 87% 23", 14, 82',7] 87° 2815, 48',644°. 5. 32,57
Venus [6.19.12.25| 224.16.41.27,5 224.16.49.10,6(1. 36. 7,8
Earth 0. 0.46. O 365. 5.48.48 365. 6. 9.11,60. 58. 8, 39|
Mars [2. 1.42.10| 686.92.18.27,4 686.23.30. u.ﬁ% . 81. 26, 66
Jupiter |5. 6.17.33) 4380.14.89. 2 | 4332.14.27. S.m_o . 4. 59,26
Saturn [4.93.31. 36 (10746, 19. 16. 15, 510759 . 1.51. :,a_o. 2. 0,6
Planets Tropical Revolution Sidereal Revolution Sec. movement
Mercury]| 87 28" 14\, 34",4 87%, 28", 15. 45",52". 14°. 2. 28"
<@==W ww*o Ha-*ﬂouo‘a s*oumc*wo H*oh@c H@omﬂ- hw
686.22. 18. 18, 8 686.23.30.34, 7y | Lo g0
Mars w or 1'. s21. ,Ms. 1",  s91.
. 4330, 8.85. 4 4332. 8.28. 1,1 o o9 4,
Jupiter .mon 1. 3815. we. 1. 815. ’
‘ 10750. 18. 14. 42,1 10762.20.88. 41, 1|, o5 & o
Satirn Moq 29. 165. Mo_. 29. 177. R

The secular motion

1NOX.

t to the equi

"The secular motion of tlie Georgian Planet in respect to the equ
18°. 16. 55" its tropical rcvolution is 83y. 52d. 4h. its sidereal revolution is

838y. 150d. 18k ; and its tropical diurnal motion is 42°,678026.

1S M respec

.

inox is 2°.

.

Dr. HaLLey made the length of a tropical year 365d. 5h. 48'. 55" FraM-
sTEAD and Sir I. NewTon made it 57°,5; Mayer. 51”;. and M. de la CarLLE in.

his Tables 49",

By our dctermination, 57"

2
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*CHAP. XI1IIL

"ON THE GREATEST EQUATION, EXCENTRICITY AND PLACK OF THE APHELIA ~
OF THE ORBITS OF THE PLANETS.

‘Art. 248. HH AVING determined the mean motions of the planets, we pro-
.ceed next to show tlre method.of finding the greatest equation of their orbits,
and from thence the excentricity and place of their aphelia. For although,
in order to determine the mrean motions very accurately, these things were
supposed to be known, yet without them the mean motions may be so nearly
ascertaimed, that thesc clements may from thence be very accurately settled.
249. Let A be the aphelion, § the focus; take SW a mean proportional be-
tween the semi-axis :major and minor, then (280) when the planet comes to
the points ¥ and /7 the equation is the greatest ; at which times let the mean
‘places be ‘at v and w, then the difference between the true¢ and mean mo-
tions_from ¥V to W is the sum of the angles Vv, WSw, or 2/¥Sw, the
‘half of which is the greatest equation. Now to find when this happens,
‘observe the true places of the planet when at / and /7, take the difference of

- .the two places, and compute the mean motions for the same time, and half

the difference is the greatest equation. But as it is impossible to fix upon the
times when the planet is accurately at ¥ and ##,.several observations must be
made about each time, and comparing them two by two, find those where
the difference between the true and mean motions is the greatest, and half
the difference is the greatest equation. The observer will easily find when
the planet is got near to the mean distance, by comparing his observations for
several days, and observing whether the true motion be nearly equal to the mean
‘motion. Hence, if we bisect the interval it will give the place 4 of the aphelion. -
Having found the greatest equation, the excentricity will be known (231).
Or_the greatest equation may be found thus. Having made two observations
near to ¥ and W, find the equation corresponding, and from thence the plce
.of the aphelion and excentricity; then compute for the two times of observation
the equations corresponding, and also the greatest equation; and the difference
between half the sum of the computed equations for the times of observation
and the computed greatest equation shows the error arising from the observation;

which added to the equation found from observation gives the greatest equa-
tion. '
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. Ex, To find the greatest equation of the sun. From the observations of

M. de la CamLLE I 1751, on ,
October 7, sun’s place observed was - 6%, 13° 47. 13",7

March 28, 1752 - - - - O. 8. 9.25,5

5.24.22.11,8
Mean motion by calculation - - 5.20.81.48,2

3. 50.28,6

The half of which 1° 55. 14",3 is the greatest equation, if no correction be
required. But if we take the place of the aphelion and excentricity from this
‘equation, considered as the greatest, and calculate the equations for these two
times, half the difference will be’ the supposed greatest equation, compute
also the greatest equation, and we shall find that these differ by 18",6, which
‘shows that the greatest equation deduced from these two observations differs

. “from the greatest equation itself by that quantity; this therefore added to 1° .
‘55, 14",3 gives 1° 55. 32",9 for the greatest equation. From the mean of

‘several observations M. de la CaiLLE makes it 1° 55'. 32",

In the year 1717 on March 21, the sun’s place on the meridian at Paris, by
"Cassint’s Astronomy page 191, wasin « 0% 47'. 28" and on September 23,
in « 0% 15, 50". Hence, the true motion in 185d. 23h. 45’ was 5°. 29°. 28
22”, and the mean motion in that time was 6°. 3°. 19'. 12", half the difference
of which is 1° 55. 25". By thus comparing the observation on September 23,
1717, with the observation on March 21, 1718, the equation comes out 1°
55 16"5. If we compare the observation on March 28, 1717, with that on
September 27, following, the equation comes out 1° 55'. 37°,5. And if we
compare the observation on March 28, 1718, with that on September 27,
1717, the equation is found to be 1°. 56'. 8",5. The mean of all these is 1°. 55.

' 85”,5 for the greatest equation, differing only 8',5 from the other; but Cassiyg,
in his Tables, makes it 1°. 55. 51. In the Tables of Maver it is 1° 55.
31",6. M. de LAMBRE, from the observations of Dr. MAsSKeELYNE, makes it
1°. 55. 30°,9 in 1780; for on account of the diminution of the excentricity

of the earth’s orbit, the greatest equation is subject to a diminution.
g q )

250. To find the place of the aphelion A, observe the interval of time
from mton, two opposite points in the orbit; and if that be equal to half the
anomalistic revolution, or the time from 4 to Q, the points m and »# must
coincide with 4 and Q ; for the whole area can only be bisected by the line 45Q

"passing through S, and consequently the time of half a revolution about § can
never be equal to half the time of one whole revolution but from 4 to Q, the
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Aareas being in proportion to the times (219). Now the difference () between
the times from A to Q, and from m to » must, by taking away the time from
m to Q which is common to both, be equal to the difference between the times
through Am and Qu. Put ¢=the time from 4 to m, and let m and 7 be the

angular velocities about § in 24 hours at 4 and Q ; then n : m::¢: - =the

times through Qn, the time of describing equal angles being inversely as the
. t .

angular velocities; hence, t—’:-i-: d, consequently n—m : n::d : t. Now if the

observation be made at m when the sun is past 4, the time through mQn must
be less than the time from 4 to Q, because the area ASm being greater than
QSn, the area AmQ described about S mustbe greater than that of mQn ; and
the contrary if' m be on the other side of 4.

Ex. On December 80, 1743, at Ok. 8. 7" mean time, M. de la CaiLLE found
the sun’s longitude to be v¢ 8° 29. 12°,5; and on June 30, 1744, at Ok. 3'it
was o 8% 51. 1°,5; the interval of these two places is 180° 21, 49". Now
reckoning, with M. dela CaLLe, the annual progressive motion of the apogee
of the earth’s orbit to be 1. 8", the distance of the apogee from the perigee is
180°. 0. 31”,5; but the sun had described 180° 21'. 49", which exceeds 180°.
0. 31,5, half an anomalistic revolution, by 21. 17,5; and the sun’s motion
on June 30, being 57. 12" in 24 hours, 57. 12" : 21'. 17",5:: 24k : 8h. 56
the tim¢ of describing 21'. 17",5, which subtracted from June 80, Ok 8’
gives June 29, 15h. 7 when the sun wasin = 8° 29'. 43" at the distance
of 180°. 0. 81,5 from the place where it was on December 30, at OA. 8. 7°;
the interval of these two times is 182d. 15h. 3. 58", which being less than
182d. 15h. 7. 1", half the time of an anomalistic revolution (150), by 8. 8"
(=d), the sun was not come to its apogee on June 29, 15k 7. Now the
sun’s motion on June 80, was 57. 12"in a day =m, and on Dccember 30, 61'.
12"=n; hence 4 : 57. 12"::8. 8" : 44 48", which added to June 29, 15A.
7' gives June 29, 15h. 44. 48" when the sun was in its apogee, at which time

the sun’s place wasin » 8° 81. 21", which therefore was the place of the
apogec.

251. To find the excentricity, we have (281) 57° 17. 44,8 : 57. 45,5 (the
half of 1° 55" 30,9 the greatest equation according to M. de LAMBRE) ::1 :
,01681 the excentricity, the mean distance being unity., As the orbit is very
nearly a circle, the correction is unnecessary.

- 252. The above method of finding the place of the aphelion from the greatest
equation is very applicable to the case of the sun and moon, but it cannot be
applied with the same success to the plancts, because they do not revolve about
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the earth, and therefore their velocities near the apsides, in respect to the
sun, cannot be obtained in like manner. M. CassiNnt ("Elem. &’ Asiron. pag.
866.) therefore proposes the following method. Having found the greatest
equation, by obeerving the angle described between the mean distances B and

D through the aphelion A, observe the planet at » near to 4, and the angle -

BSr will be the true angle described between B and 7 ; then from the time of
describing this angle compute the mean motion ; and if the difference between
the true and mean motions be equal to the greatest equation, then r is the
aphelion; if it be less, the planet is not got to its aphelion. Make then another
observation at m, and if the difference between the true and mean motions
be now greater than the equation, the planet is got beyond 4. Hence say, as
the sum of the equations at r and m : the equation at r:: the angle rSm : the
angle 54 the distance of the point r from the aphelion; for (229) when the
distance from the aphelion is small, the equation varies very nearly as the true
anomaly. This may be corrected, if necessary, by calculating, from the
place of the aphelion, whether the body be found at r and B when it ought.
And to find the time of coming to the aphelion, say, as the sum of the equations
at r and m : the equation at r:: time of describing rm : time of describing r4.

Ex. To find the greatest equation, place of the aphelion and excentrieity of
the orbit of Saturn. Between the opposition in 1686 and 1687 Saturn had
moved through 12°. 88. 20", and its mean motion in that interval being 12°.
39'. 34", Saturn was then very near its mean distance. Now Saturn wgs in
opposition in

1686, March 16, 10k 28'in - - 5. 26° 47. &
170‘, S@pfﬁmbel' 16, 'gbo in - A d ll . '23 . 21 . 16
Interval 15y. 186d. 15h. 32 - - 5.26.34.10
Mean motion in this interval - . - 6. 9.86. O

Greatest equation . . - - 6.380.55

To find the place of the aphelion, and the time of coming to it. Saturn was
in opposition in \

VvOL. 1. N 8
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1686, March 16, 10k . 28'in - - - 5% 26° 47. 6
1698, June 9, 194.32'in - - - 8.19. 54.41

Interval 7y. 87d. 92. 4 - - - 2.23. 7.35
Mean motion in this interval - - 2.28.29.27

‘ 5.21.52
Greatest equation - - - - 6.30.35

Equation at » - - - - - 1. 9. 8

Hence, Saturn was not come to its aphehon in opposntxon 1693. Now the
opposxtlon happened in :

1686, March 16 10h. 28'in - . 5% 26° 47. 6"
1694, June2l, 19k, 80'in - - - 9. 1. 6.40

. Interval 8y4.994.10k. - - - 8. 4.19.34
‘Mean motion in this interval - - 8.11, 6.51

6.47.17
Greatest equation. = - - - . - 6.30.55
Equationatm - . - . 16 . 22

‘Therefore Saturn had passed its aphelion in opposition 1694. Hence, 1°..
9, 8" +16. 22"=1° 25, 25" : 1° 9. 8"::11° 12 (the angle described between
the oppositions in 1693 and 1694) : 9°. 3\ 20", which added to 8°. 19° 54 41"
glves 8'. 28° 58 for the place of the aphelion. And to find the time, we have
1° 25. 25" : 1° 9. 8"::376d. 23h. 58 (the time between the oppositions in
1693 and 1694-) : 805d. 16h. which added to 1693, June 9, 19Ak. 32' gives
1694, April 11, 11k 82 the time when Saturn was in its aphelion. Dr.
HaLLEY, in his Tables, makes the greatest equation 6° 82 4°. CassINI
makes it 6° 81. 40°. M. de LamBre makes it 6°. 26. 42" in 1750, and
supposes that it is diminished 1°,1 in a year, according to the determination of
M. de la Prack. From the mean of six excentricities, determined (281) from
the greatest equation, Cassini found the excentricity to be ,56515, the mean
distance of the earth from the sun being unity. .

253. The same method may be applied to find the greatest equatxon, place
of the aphelion and excentricity of Jupiter’s orbit, although we cannot so readily
meet with observations made in the proper places, because we have fewer oppo-
sitions of Jupiter in one revolution than of Saturn. The following however are

proper for our purpose (Elem. d’ Astron. page 423.) In 1728, on June 25, at
5 - ‘
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4h. Jupiter was in opposition in v 3°. 21', 22", near its mean distancé ; on De-

cember 22, 1728, at 3k. 9' the true place of Jupiter-in opposition was'® 1° 8.

2". The difference of these places is 5'. 27° 46. 40°; and the mean' motion

being 5°. 16°. 50 15", the difference is 10° 56'. 25", the half of which is 5°. 28"

12",5 the greatest equation from these observations. On September 5, 1725,

at 14h. 44’ Jupiter was in opposition in x 18°. 18'; this compared with the op-
position in 17283, gives 2°. 9°. 56'. 38" for the true motion of Jupiter in the in-
terval ; and the mean motion being 2°. 6°. 47'. 24", the difference is 8% 9. 14,
which subtracted from 5°. 28" 12" gives 2° 18'. 58" the equation at 7. On Oc-
tober 13, 1726, at 6k. Jupiter was in « 20°. 4. 10" in opposition; this compared
with the opposition in 1728, gives 3°. 16° 52 48" for the true motion in the
interval; and the mean being 8°. 10°. 15'. 89", the difference is 6°. 37'. 9, from
which subtract 5°. 28. 12" and the remainder is 1°. 8. 57" the equation at m.
Hence, 2°. 18 58" +1° 8. 57"=8° 27. 55" : 1° 8. 57"::86° 46. 10" (the
angle described between the oppositions in 1725 and 1726) : 12° 15, which-
subtracted from « 20°. 4. 10" gives « 7°. 49. 10" the place of the perihelion.
The time of opposition is also found by saying, 8°. 27'. 55" : 1° 8, 57":: 872d.
15h. 16" (the interval of the oppositions in 1725 and 1726) : 134d. 5k. 5', which
subtracted from the opposition in 1726 on October 13, at 6k. gives the time at
which Jupiter was in its perihelion to be on June 1, Ok. 55", Also, the excen-
tricity is found to be 0,04774, the mean distance of Jupiter from the sun being

unity. It must be here observed, that the accuracy of this method depends

upon the proximity of r and m to the aphelion or perihelion. Cassini, in his
Tables, makes the greatest equation 5°. 81'. 17". Dr. HALLEY makes it 5°, 31’

86°. M. de Lamsre finds'it to be. 5°. 80. 87",7 in 1750, and to increase 55,36 -

in 100 years.
As in the ancient observations of Mars mentioned by ProLEmyY, there are

only three which were made in opposition, and as they-are not in proper places’

for the application of the last method, we shall give another Rule to determine
the greatest equation, the place of the aphelion and the excentricity, from any
three heliocentric places of a planet, and its mean motion. This is resolved in

the following manner, first upon the supposition of the simple elliptic hypotkem ,

(227), and then correcting it.
254. Let S be the sun, B, C, D three places of the planet observed in oppo-
sition, F the other focus, A the aphehon, Q the perihelion ; with the center F

and radius FM equal to the major axis describe a circle, and produce FB, FC,

FD to the circamference, and join SG, SH, SE. Now the angles BSC, CSD

are known from observation ; also, upon supposition of the simple elliptic hypo-
thesis, equal angles are described about F in equal times ; therefore the angles

BFC, CFD are known, by taking them to four right angles as the intervals of .
time between the first and second, second and third observations, to the periodic.

o
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time. Now as FG=FB + BS, therefore SB=BG ; for the same reason S€=
CH and SD=DE. Heunce, 2FGS=FBS=BFA—~ BSA ; also, 2FHS=FCS
=CFA ~CSA ; therefore 2FGS + 2FHS=BFC— BSC; hence, FGS+ FHS
is known ; but AGS= BFA4 -S4, and FHS=CFA~HSA ; therefore FG$
+ FHS = BFC-GSH, whence GSH is known. For the same reason HSE is
known. Hence, the angles GSH, HSE, GSE, and BFC, CFD, BFD are
known. Produce ES to L, and join HL, HG, GL, and assume SH of any
value in order to get the relative values. of the other parts of the figure. Then
in the triangle SHL, we know SH, the angle HSL (which is the supplement
of HSE ) and the angle H LS (which is half the angle HFE ) ; hence we know
8L; therefore in the triangle SLG, we know SL, the angle LSG (which is the
supplement of GSE ) and the angle SLG (the half of EFG); hence we know
8G ; therefore in the triangle GSH, we know GS, SH and the angle GSH ;
hence we know HG and the angle SHG ; therefore -in the isosceles triangle
HFG, we know HG and the angle HFG ; hence we know FH=FC+CS the
major axis, and the angle GHF, which taken from the angle SHG leaves the
angle SHF .which is therefore known; therefore in the triangle SHF, we know
SH, HF and the angle SHF, from whence we know SF twice the excentricity,
and the angle HSF, from which take the angle HSC (which =SHF ) and we
get the angle CS4, the distance of the aphelion 4 from the observation at C.

255. This method, being the simple elfiptic hypothesis, supposes that the an-
gles described about F are proportional to the times, which will be sufficiently
accurate for orbits whose excentricity is small, as that of the earth and Venus;
for the orbits of the other planets it may be thus corrected.

256. Having determined, from the three observed places m, », r, of the pla-
-net, the place of the aphelion and the excentricity from the simple elliptic hypo-
- #kesis, with the distances &, b, ¢, of the planet from the aphelion so found, calcu-
~ late (232) the equation upon the true or KEpLER’s hypothesis, and you will get

the mean anomalies &, &, ¢ upon the true hypothesis. Then with these mean
anomalies @, b, ¢, find the true anomalies 4", 5", ¢", upon the simple elliptic
hypothesis, and the difference between @ and 4”, b and 5%, c-and ¢” shows the
difference of the places upon the two hypotheses. To the place of the aphelion
first found add the distances a’, &, ¢", and you get the places of the planet in
the simple elliptic hypothesis answering to the trae place upon KerLER’s hypo-
~thesis. Then with these three places compute, as at first, the place of the
aphelion and excentricity upon the simple elliptic hypothesis, and you will have
the distances 4, B, C, from the aphelion upon the simple elliptic hypothesis, to
these apply the differences of the two hypotheses before found, adding or sub-
tracting them according as the simple elliptic-hypothesis gave the place less or
greater than Kzrnxr’'s hypothesis, and you will have the distances from the
sphelion upon the true or KzprLEr’s hypothesis; subtract these from the cor-
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responding places m, n, r of the planet observed, and youa will have the place
of the aphelion once corrected, and also the excentricity. In like manner the
correction may be made as often as may be found necessary. Elem. d’ Astron.

page. 184. :
In 1694 on January 17, at #k. 20. Mr. FLaMsTEAD observed the place of

Mars to bein « 28° 12'; in 1698 on March 26, at 17h. 55'in = 7° 4. 18",
and in 1702 on July 8, at 12A. 58 in v¢ 16° 10. 238". These observations rec-
duced (268) to the orbit of Mars give the three places in o 28°. 12. 34", & 7°
3. 26", and w 16° 11. 9". Hence, by KepLER’s. hypothesis, the place of the
aphelion is found to be in m 0°. 89'. 2" with the excentricity ,09292, the semi-
axis major being unity ; and the greatest equation 10° 89'. 29". Elem. d’As-
Iron. page 474. \

The same method may be applied to Venus from the conjunctions observed
in the years 1715, 1716 and 1718 ; from which it appears, that the places of
Venus seen from the sun upon the ecliptic were in 1715 on January 26, at 8.
84/, mean time, in @ 6°. 22. 58”; in 1716 cn August 28, at 16k. 36. 42" in x

5°. 49, 2”; andin 1718 on April 8, at 10A. 15 11”. in a 18°. 42". 18”; which

places reduced to the orbit of Venus will be a 6°. 25'. 527, x 5° 49 53" and

o 18°. 89. 24”. Hence, by the simple elliptic hypothesis, the true place of
the aphelion in 1716 is found to be x 6° 50'; the greatest equation 49'. 8”;
and the excentricity 0,00716. As the orbit of Venus differs but very little ﬁ'om
a circle, there is no occasion for any correction. Elem. d’Astron. page 562.
Cassing, in his Tables, makes the greatest equation 49.6”. Dr. HALLEY makes
it 48°. M. de la LanxDe makes it 47", 20”.

- Upon the same principle we may deduce the place of the aphelion, excentri-
city and equation of the orbit of Mercury; but as the proper observations for
this purpose bappen at a considerable distance of time from each other, it will
be proper to allow for the motion of the aphelion in the intervals, which Cas-
siNI assumes (from what he was best able to collect from the observations be-
fore made) at 1’. 20” in a year, by which means the motion is reduced to the
orbit as immoveable. In 1661 on May 3, at 4. 48'. 28” mean time, the true
place of Mercury was found to be in m 18°. 88'. 27" in respect to the ecliptic,
and 13° 89. 10" on its orbit. In 1690 on November 9, at 184. 6. it was in
¥ 18°. 20 46" in respect to the ecliptic, and 18°. 22. 28” on its orbit. In 1697
on November 2, at 17A. 42’ it was in ¥ 11°. 88. 50" in respect to the ecliptic,
and 11°. 89. 80" on its orbit. Now between the two first observations the mo-
tion of the aphelion was, by supposition, 89. 20'; and between the first and
last it was 48, 40"; these subtracted from the second and third observations
give the places in the orbit ¥ 17°. 48, 8" and ¥ 10°. 48" 50" in respect to the first
observation, the orbit being supposed at rest. Hence, by subtracting m 18°.

33, 10" from ¥ 17°. 43’ 8", we have 6. 4°. 9. SQ" for the sum of the two true
4
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anomalies of Mercury between the first and second observations, the aphelion
lying between the two observed places; and by subtracting ¥ 10°. 43. 50" from
% 17°. 4S. 8', we have 6°. 59. 18’ for the difference of the true anomalies be-
tween the second and third observations.  Also, if we subtract 89'. 20" from 6°.
26°. 20. 35 the mean motion between the two first observations, and 48, 40
from 6°. 21°. 51. 7 the mean motion between the.first and third observations,
we shall have 6°. 25° 41'. 15" and 6°..21°. 2. 27 for the sum of the mean ano-
malies in these intervals; hence, 4°. 38 48" is the mean anomaly corresponding
to the two last observations, answering to 6°. 59’ 18” of true.anomaly. Hence,
from the simple elliptic hypothesis, the aphelion of Mercury at the second obser-
vation is found to be in # 10°. 51’ 50", excentricity 0,21574, the mean distance
being unity ; and the greatest equation 24°. 55\ 4". This corrected several
times gives the true place of the aphelion on November 9, 1690 in ¢ 12°. 22'. 25,
thie excentricity 0,20878 and the greatest equation 24°. 8. Cassivg, in his
Tables, makes it 24°. 2. 58". Dr. HaLLEY makes it 23°. 42. 36". M. de la
Laxpe makes. it 28° 40 _ .- i
257. Besides these methods .of determining the position and excentricity of
the planetary orbits, we shall explain another method, which may be sometimes
very successfully used, and is moreover strictly geometrical. By Art. 217, we
may find the distance of a planet from the sun in any point of its orbit. The
Problem therefore is, given in length and position three lines drawn from the
focus of an ellipse, to determine the ellipse. - ~
258. Let $B, SC, SD be the three lines; produce CB, CD, and take SB :
SC:: EB: EC, and SC: SD::CF : DF, then SC~SB: SC:: BC : EC=
igifg, and SC— SD : SC::‘DC: CFzgg:fDC Jq_in FE, and draw DK,
CI, BH perpendicular toit. Now by similar triangles, /C : HB:: EC : EB::
(by con.) SC : SB; also, IC : KD::CF : DF:: SC : $D. Hence, the propor-
tion of IC, HB, KD is the same as §C, SB, SD,: consequently EF is the di-
rectrix of the ellipse passing through B, C, D. ‘Through § draw 4SQG per-
pendicular to FE; take GA : AS::CI : CS, and GQ : SQ::CI : CS; then
C1+CS:C8::GS <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>