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PREFACE.

WitHIN the last few years, the art of bridge-construction has
undergone many important changes. Engineers have been called
upon to construct bridges of unprecedented magnitude, whose
design and execution have presented a number of new problems,
or have invested old ones with an importance which they did not
before possess. At the same time, new points of interest have
arisen in connection with the introduction of steel, the adoption
of new forms of construction, and the employment of new methods
of research ; while the constant accumulation of experimental
facts has, in the meantime, added largely to our stock of practical
knowledge in regard to such subjects as the strength of materials
and the effects of wind-pressure.

The object of this book is to describe the modern practice of
Bridge-construction, and to set forth in the simplest language
the mechanical principles and experimental facts on which it is
based.

The design and arrangement of the work have been dictated
by a desire to render it as useful as possible, not only to engineers
or draughtsmen who may be engaged in the work of bridge-cal-
culations and bridge-construction, but also to students. With
this object, the earlier chapters of the work are devoted to a
simple demonstration of those mechanical principles which must
of necessity form the beginning of any study of the subject ; and
which are more fully developed and applied in later portions of
the book. As the result of practical experience, I have found
many advantages in employing a geometrical method of investiga-
tion ; and I have here applied it—not as a mere translation from
the language of algebra, but as a parallel and independent method
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which is capable in itself of affording positive demonstrations, and
of yielding direct solutions for most of the problems that arise in
bridge-construction.

The First Part of the work contains a detailed application of
this method to the graphic determination of those bending-stresses
which take effect in all bridges; and this method of treatment
leads to a consequent classification of bridges, which is the subject
first treated in the Second Section.

In the next following chapters, the geometric method is ap-
plied, first to the calculation of the weight of bridges, and then
to the construction of a graphic theory of deflection, by which
the curve of the bended girder is geometrically traced. This con-
struction of the deflection curve is then employed as the basis of
a graphic theory of continuous girders, and afterwards as the
foundation of a graphic theory of columns, which is treated at
length in Chapter X.

This brings us to the Third Section of the work, which is
devoted to the practical question of the Strength of Materials,
and its application to the design and construction of tension
members and compression members.

The theoretical strength of columns, in cast iron, wrought
iron, and steel, having been compared with the results of known
experiments (including the most recent tests), the next chapter
treats of the application of these results to the actual design of
struts; and takes into consideration, not only the liability to
flexure in struts of small diameter, but also those practical con-
ditions which limit the diameter of the strut or the thickness of
the constituent plates or members.

Here I have endeavoured to supply a want which has long
been felt by practical men ; and instead of calculating the strength
of & strut from its assumed radius of gyration (which cannot be
ascertained beforehand), I have given for each of the most common
forms of cross-section, the required sectional area of the strut for
given loads and given lengths. These results are presented in
tables and diagrams, which in addition to their more immediate
purpose, afford also the means of estimating the weights and
the relative economy of rolled sections, built sections, and braced



PREFACE. vii

struts ; so that the student can appreciate at a glance the con-
ditions which render it advantageous or othgrwise to employ
secondary bracing.

The strength of tension members, and their practical construc-
tion, are treated in Chapter XII., which contains a great number
of recent experimental data in regard to the employment of steel,
and the strength and proportions of steel rivetted joints, as well
as other forms of connection.

The practical application of all such experimental data, how-
ever, depends upon the view that may be taken of the working
strength of iron and steel, and the proper working stress in bridges.
On this fundamental question a great deal has been said of late
years, and some advance has certainly been made towards its
determination upon a reasonable basis. Whatever may be thought
of the somewhat conflicting theories which have been advanced by
German and other writers, it is certain that the subject demands
the attention of all bridge engineers; and there can be little
doubt that the rules which have hitherto governed the practice of
bridge-construction must receive some important modification in
this direction. The subject is discussed at some length in Chapter
XIII. from a purely practical point of view. A complete solution
of the question cannot be expected until some definite conclusions
shall have been reached in regard to the intrinsic nature of that
change which is known as the * fatigue” of metals; and the
objects aimed at are chiefly to set in order the facts and principles
affecting the question, and to deduce such reasonable and safe
rules as may serve for present purposes.

The facts, rules, and principles which have thus far been
collated and exhibited, are applied in the Fourth Part to the
practical work of designing bridges of various types of construc-
tion; and in every case the calculations are so arranged and
tabulated that the required sectional areas of the various members
can be readily determined by the old rule, or by either of the
newer methods for fixing the working stress.

The various types of parallel girder are considered in Chapters
XX]. and XXII., together with a direct method of calculating
their weight as part of the dead load ; while the ensuing chapters
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deal in a similar manner with bowstring girders, bow-and-chain
bridges, arched ribs, suspension bridges, and cantilever bridges.

The concluding chapter of the work is devoted to the question
of wind-pressure,—a subject whose importance has only recently
been fully realised. It is well known that, on this question, fur-
ther experiments are urgently needed, and it is to be hoped that
they will in time be forthcoming ; but in the meantime engineers
are obliged to carry on their work with such materials as they
possess, and the most that can be done is to take the experi-
mental facts that have been actually ascertained, and to study
their real bearing upon the questions at issue.

Throughout the work, I have of course consulted on all occa-
sions the most recent experiments and deductions, and have
endeavoured, to the best of my knowledge, to mention in their
proper places the authors of recent discoveries or improvements,
and to refer to scientific papers which have furnished sources of
information.

T. C. F.

‘WESTMINSTER, October 1887.
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CONSTRUCTION OF BRIDGES.

INTRODUCTION.

Lines of communication are among the first necessaries of civilisation,
and it is therefore probable that the art of bridge-construction has, in
some elementary form, been practised from the earliest ages.

‘Within historic times, the art has assumed a number of different
forms, which appear to have been determined chiefly by the nature of the
materials that have been available for its purposes. The beam, the sus-
pension-bridge, and the arch, have long ago been developed as distinct
types of construction, resulting naturally from the employment of timber,
of flexible ropes, and of masonry, as materials of construction.

The greatest road-makers and bridge-builders of the old world were
certainly the Romans, and the numerous remains of their bridges and
aqueducts afford abundant evidence of the great practical skill evinced by
these early architects in dealing with such materials as were at their
disposal.

The permanent bridges of antiquity, as distinguished from boat-
bridges, were for the most part built either of masonry or of timber.

In the former class of work, it is worthy of notice that the construction
of semi-circular arches was so well understood by the Romans, that very
little change has been made, since their time, in this particular form
of bridge-construction. Indeed, if we take the Cabin John Bridge as
illustrating the most recent American practice, we shall hardly find
any feature of real structural importance by which this modern arch
of masonry can be distinguished from the great bridges of the Emperor
Trajan, some of which are still in existence.

The timber bridges of antiquity have of course disappeared; but if
we may credit the description of the great bridge erected by the same
Emperor across the Danube, and consisting of laminated timber arches, it
must be admitted that, in this material also, the Romans were accustomed
to the execution of works upon a scale that has hardly been surpassed at
any later time.

But since_the introduction of iron and steel, the art of bridge-con-

A



2 CONSTRUCTION OF BRIDGES.

struction has attained proportions that were unknown to the ancients,
and has moreover undergone an essential change in its character. It
is, perhaps, not surprising that with these superior building materials
engineers have succeeded in constructing spans of much greater width
than any that had been previously attempted, and have thus carried
their lines of communication across rivers and estuaries which could
never be spanned by any bridge of stone or timber. These results,
however, have not been accomplished by the mere substitution of one
material in place of another; but they have been achieved by the adop-
tion of new forms of construction, adapted to the capacities of the new
materials, and conceived in accordance with the indications of Mechanical
Theory.

It is true that, in one sense, the girders of the Forth Bridge and the
arched rib of the Douro Viaduct may be regarded as the direct lineal
descendants of the simple beam and the masonry arch ; but the modern
structures which have been developed from these primitive types are
examples of a higher organisation. The essential functions of the
structure, which may at first sight appear to be very simple, have been
duly analysed into their component parts or elements ; and these elemen-
tary functions have been allotted to separate members, each of which is
specially adapted to the particular duty it has to perform. Thus the general
course of progress has been from simplicity to complexity of structure,
and from an unknown complexity to a defined simplicity of function.

This “ development of species” has in fact proceeded by a course of
““natural selection,” and the variation from the parent type has been
continually widening. At the first transition from an architecture of
wood and stone, the ideas of designers were naturally moulded in the
familiar forms of the older styles—the iron girder was merely an improved
beam, and in some cases iron arches were built of radiating blocks or
voussoirs, in close imitation of their masonry prototypes; and so long as
experience or precedent was wholly relied upon, it is difficult to see how
any other result could be expected. But more suitable forms of con-
struction were gradually adopted as men began to perceive the inadequacy
of past experience, and to apply in practice the carefully tested reasoning
of Mechanical Theory.

In the practice of iron-bridge construction, and still more in its future
development, theory must always be regarded as an indispensable guide,
if only for the reason that there is always a point beyond which experi-
ence will not carry us. At the present moment the trustworthiness of
theory is so fully recognised, that no one would think of determining the
proportions and details of an iron bridge without reference to theoretical
calculations, or by the mere exercise of that indefinable quality which is
known as the * judgment ” of practical men. The time has therefore gone
by when it was necessary to protest against that unreasoning objection
to theory which can only have arisen from a mistaken notion as to the
real meaning of the word. In fact theory, in its broadest and truest
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sense, is universally employed in all mechanical designs and operations ;
and the so-called “ practical ” man who will have nothing to do with it,
is unconsciously in the position of the bourgeois, in Molitre’s comedy,
who would not believe that he had been all his lifetime speaking and
writing in prose.

For example, a London builder may perhaps find by experience that
a timber prop 6 ins. x 3 ins. is strong enough to carry a certain weight.
This discovery would constitute one of those experimental facts on which
all theory and all practice must necessarily be based. But if now he has
to provide a support for a load of double that weight, his facts are of no
use to him until he calls in the aid of reasoning. Proceeding, then, in a
rough and ready fashion, he may perhaps decide to use for his purpose a
prop 6 ins. x 6 ins. ; but in doing so he acts upon theory. The theory
which he unconsciously employs is no doubt a crude and imperfect one,
but still it is theory. In the same way every mechanical operation that
demands the exercise of reason is conducted upon theory of some sort ;
and therefore all constructive practice (except that of the lower animals) is
necessarily directed by theory—just as all useful theory is based upon
practical experiment.

It will be seen, therefore, that in attempting to study this question of
bridge-construction, the choice does not lie between a * theoretical ” and a
“¢ practical ” method of examination, as neither of them can be employed
without making use of the other ; but the only questions will be as to
the limits within which theory may be rightly and profitably used, and
as to the form of theory to be chosen for the purpose.

And in regard to these more important questions it may be remarked
that theory does not consist in the employment of algebraical symbols,
but in the employment of reuson ; and therefore the best kind of theory
is that which is most clearly understood by the person engaged in it, and
the worst possible kind of theory is that which is not understood at all

It is really a matter of no consequence whether the reasoning is
carried on by the use of words and figures, or by the aid of diagrams
or algebraical symbols,—so long as the operator knows what he means
by the terms or symbols he is working with. But on the other hand
there is no form of theory that can be safely accepted ; and the most
unsafe and unreasonable proceeding that can be adopted is that which
consists in taking a formula on the authority of some engineering text-
book, and proceeding to make use of it without examining the reasoning
by which it is arrived at, or the assumption in which it begins, or the
limits within which it is intended to be applied.

But even when theory is rightly applied, it is certain that engineering
calculations can at the best be only approximately correct, and therefore
there are certain common-sense limits to the degree of accuracy that should
be aimed at. For example, we know that the ratio of the circumference
of a circle to its diameter cannot be correctly expressed by any finite
number of figures; but most people think that when the quantity is
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given in four places of decimals, it is near enough to the truth for all
ordinary purposes. Science is measurement, and measurement should be
accurate, but there is no practical advantage in a refinement of calculation
which costs more than it is worth. One of the chief objects of bridge-
“theory is economy. of construction, or the art of applying materials in the
most scientific manner, so as to obtain the requisite strength of the struc-
ture with the least expenditure of material ; and when the only object to
be gained is the saving of a small quantity of material, it would certainly
seem that the amount of labour bestowed on such calculation should bear
some reasonable proportion to the value of the objects to be gained.

This very practical view of the matter is, however, sometimes apt to
lead to a habit of mind which may be described as the philosophy of
erring on the safe side, and which consists in using as little theory as
possible, and relying chiefly on a broad margin of safety; but in design-
ing bridges upon a large scale such a habit may very easily be carried so
far as to defeat its own objects; for it is necessary to consider not only
the costliness of iron and steel, but also their great weight ; and if such
materials are lavishly employed, they will not only weigh heavily upon
the finances of the undertaking, but what is sometimes of more import-
ance, they will weigh heavily upon the bridge itself. Even with the
strictest economy it will generally be found that, in very large spans, the
weight of the material forms the chief portion of the total load, and
therefore every ton of iron that is injudiciously employed, or employed
in the wrong place, contributes not to the strength, but to the weakness
of the bridge.

In such a case, the ill-considered notion of ‘‘ erring on the safe side”
might in reality be a dangerous error. Broadly speaking, its effect may
perhaps be described as follows: In a bridge of 50 feet span it would
perhaps be harmless ; in a span of 500 feet it would be ruinously expen-
sive, without adding to the durability of the structure; and in a span
1500 feet it would probably be fatal

This illustrates the practical value of accuracy in the detailed calcu-
lations as applied to bridges of different spans; and the same remarks
will apply with still greater force to that wider employment of theory
" by which the economy of different forms of bridge-construction may be
examined and compared. The relative value of two designs, of which
one is more economical than the other, depends upon the magnitude of
the bridge—if the span is a small one, the superior economy of one design
means only that it would be a little cheaper than the other; but in
bridges of the largest span, it means that the one is a safe and practicable
design, while the other could never be safely carried out with any possible
expenditure of money and material.

¢ Economy” in bridge-construction is therefore something very different
from a mere saving of cost, and has nothing in common with that sort
of economy which consists in reducing expenditure at a corresponding
sacrifice of efficiency, or strength, or fitness. On the contrary, it insures
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the highest possible efficiency by making the best use of the given
material, and without it the safe construction of very large bridges would
be impossible.

Thus, the value of theory increases with the magnitude of the work.
The larger the bridge, the more difficult does it become to find any
experience that is applicable to the case, and at the same time the greater
is the commercial value of correct theory and of accurate calculation.

In such works theory must of necessity be consulted in every line of
the design ; and every member, joint, and connection must be adapted
to the particular duty which theory assigns to it. At the same time all
this has to be done with due regard to the practical processes by which
iron and steel are manufactured, and by which plates, bars, and castings
can be produced in forms more or less suited to the required purposes;
while the actual erection of the bridge, and the preparation of its founda-
tions, will present a number of practical questions, varying in each indivi-
dual case, and calling for the exercise of skill and ingenuity as well as
theoretical knowledge.

The object aimed at in the following chapters will be to examine the
practice of bridge-construction, and the experimental facts on which it
is based, in the light of reasonable theory—and to state the theory of
bridge-construction in such a practical form as will be most useful for
the purposes for which it is employed ; regarding the theory simply as
a means to a practical end, and not as a field for the employment of
mathematical research.



PART I
ELEMENTARY STATICS.

CHAPTER L

DEFINITIONS OF FORCE, EQUILIBRIUM, STRAIN, STRESS,
AND STRENGTH.

1. Force.—In considering the theory of bridge-construction, we shall
very often be engaged in measuring the forces which act upon different
parts of the bridge ; but the word force,” as applied in Mechanics, has
been defined in two or three different ways, and has been used in as
many different senses; and it may be well to define the sense in which
it will be employed in the following pages.

It is generally agreed that the presence of force is to be inferred from
the effects which it produces; and also that force produces three recog-
nisable effects by which its presence may be inferred and its magnitude
determined, viz, :—

1. By accelerating, or changing in some way, the motion of bodies ;

2. By opposing and balancing other known forces ; and

3. By producing a visible and measurable strain or deflection in
elastic bodies.

Each one of these effects is used every day as a means by which
force may be measured; and each one of them is manifested in an iron
bridge under the action of the rolling load; but for most practical
purposes we shall be chiefly concerned with the opposition of balanced
forces, and with the strain which they produce in an elastic body, while
it will seldom be necessary to refer to the motion which may be pro-
duced by an unbalanced force.

The tendency to cause motion, or change of motion, is sometimes
regarded as the distinguishing characteristic of force; but when forces
are engaged only in opposing each other, or in producing strain, it is not
necessary that all of them should possess this tendency, and it is often
doubtful whether they really do possess it. Thus the equilibrium of
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every bridge may be said to depend upon the balancing of the upward
and downward forces, and amongst these the upward pressure of the
foundations must evidently be included. It must not be understood
that this supporting pressure, or reaction, has any tendency to produce
an upward motion—it may have such a tendency if the foundation is
elastic, or if the bridge is carried upon the head of a hydraulic ram—but
whether the foundations are elastic or not, their upward pressure will
have the same effect in opposing the downward forces, in maintaining
the equilibrium of the bridge, and in producing strain throughout its
structure.

Therefore, when we are considering the opposition of balanced forces,
it will be unnecessary to enter upon the delicate inquiry as to whether
this “tendency to cause motion ” exists in every case ; and we may con-
veniently regard the upward pressure of the foundations, or any such
reaction or resistance, as a force exerting a definite action upon the body
in question, and producing the effects which have been mentioned as the
second and third in the list.

On the other hand, when we are considering the first effect of force,
there can never be any doubt about the ‘Zendency” to cause motion ;
for when a force is not opposed in its action by any contrary forces it
immediately begins to produce a visible effect upon bodies by urging them
forward in the line of its action, and with an accelerating velocity,—or if
the body is already moving in a contrary direction, by retarding that
motion—or if the body is moving across its line of action, by changing the
direction of that motion. In either case, the velocity, measured in the line
of the force’s action, is changed ; but to produce this change, force requires
time for its action. The change is only effected at a certain rate, which
is proportional to the magnitude of the force; and in order to produce a
certain acceleration in a given time, the force must also be proportional
to the mass of the body to be moved.

¢ Momentum ” is the mass of the body multiplied by its velocity, and
therefore the magnitude of the force must always be proportional to the
time-rate of the change of momentum.

Force can only act upon matter—and we know nothing of force that
does not act—so that in speaking of any individual force, it is always
necessary to connect it with the body on which it acts. At the same
time, every force is an action between fwo bodies, and it is necessary to
distinguish between them ; for the action upon one of these bodies is
exactly opposite to the action or reaction upon the other. Thus, if we
call the bodies 4 and B respectively, the force which A exerts upon B is
always accompanied by an equal and opposite force which is exerted
upon 4 by B.

This necessary equality between action and reaction has nothing
whatever to do with the “ balance of forces,” which is a totally different
question relating to the comparison of the several forces acting upon
any given body. Thus, the body B may perhaps be subjected to no
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other force except a direct pressure exerted upon it by 4 ; and the effect
of this “ unbalanced ” force will be to change the motion of B, either by
increasing its velocity in the direction 4—B, or by retarding its velocity
in the direction B—A. For example, the momentum of an approaching
railway-waggon may be gradually checked and its motion ultimately
reversed by the spring of a fixed buffer-stop. Here the change of momen-
tum goes on continuously, not only during the retardation, but also
during the subsequent acceleration of the waggon’s motion, and at every
moment is the exact measure of the force acting upon the railway-
waggon, and also of the contrary force acting upon the spring.

In this case the change of motion may be regarded either as the
effect of the force exerted by the spring, or as the cause of the force
exerted upon the spring.

However, we have chiefly to deal with the effects of force; and, to
prevent confusion, it will always be well to consider the action of force
upon one body at a time, and to keep steadily in view the particular
body whose condition and behaviour are the subject of examination for
the time being. We shall therefore regard change of motion, or the
commencement of motion, in any body, as the direct effect of some un-
balanced force acting upon that body, and as the visible evidence of the
presence of such a force.

2. Balanced Forces.—A body, while remaining at rest, may be
pressed or pulled in different directions at the same time by two or more
forces, which may be so evenly matched that neither of them producesany
motion, or commencement of motion, in the body. In this case, the mutu-
ally opposing forces are said to be ¢ balanced,” and the body itself is said
to be in * equilibrium.” The visible proof of its being in equilibrium
lies in the fact that it does not begin to move, which demonstrates the
entire absence of any unbalanced surplus of force in any direction ; and
this fact will enable us to calculate the value of some of the unknown
forces when the magnitude and direction of the remaining forces are
known.

Thus the second effect of force, viz., that of balancing other forces,
affords another means of measuring its magnitude, and one which is
independent of any change of motion, so that in this case the * tendency ”
to cause motion does not really affect the question. If the body is in
equilibrium, the forces acting upon it cannot actually exhibit their power
of producing motion, and we may think what we please of their *ten-
dency ” to do so. Every one of the mutually opposed forces may have
this tendency, and it would appear that one of them at least must possess
it; but if the remainder should happen to be nothing more than the
reaction of dead resistances, their opposition would be none the less
effective.

3. Equilibrium of Structures —From the previous definitions it
follows, without argument, that the equilibrium of a framed structure
demands the fulfilment of the following conditions, viz :



STRAIN, STRESS, AND ELASTICITY. 9

1. The forces exerted on the whole structure by external bodies must
balance each other, or else the whole structure will begin to move.}

2. If any part of the structure be separately considered, the external
forces acting upon it must balance each other,—no matter whether the
part in question be a large or a small portion of the structure, or a single
bar of the framework, or a single particle of the bar. If the forces acting
upon any bar of the frame do not balance each other, the bar will move
and distort the figure of the frame; and if the forces acting upon any
particles of a bar are not balanced, the particles will move and alter the
form of the bar.

4. Strain.—When a bar of iron, or any other material, is acted upon
by two equal and opposite forces in the direction of its length, their
effect upon the bar is to strain it, and the bar is accordingly strained ; .e., if
the forces are a pair of equal and opposite pressures, the bar is compressed ;
or if they are a pair of equal and opposite pulls, the bar is stretched or
extended. *Strain,” therefore, is an alteration of length or of form,
which has been produced by the application of force, and it is to be
measured, not in tons, but as a geometrical quantity.2

5. 8tress is the name properly given to that internal force which is
exerted by the material in resisting strain. It follows that when every
portion of the strained bar is in equilibrium, the internal stress exerted
at any imaginary section taken through the bar, is equal and opposite
to the straining force. Thus, if the bar is compressed by a pair of equal
and opposite external forces, the strained material is exerting at any
section a stress, which is itself a force acting upon either half of the bar,
and resisting and balancing the external force which acts upon that half.
Such a stress, although it may be due to a repulsion between the particles
of the bar, is termed a ‘‘ compressive stress,” because it acts upon either
half of the bar as a compressive force, balancing one of the external
compressive forces.

6. Elasticity.—Every substance in nature yields in some degree to
the impress of force, and therefore suffers strain, and this property is
sometimes called ¢ elasticity ; ” but, strictly speaking, elasticity is the pro-
perty of recovering from strain, and its existence can only be proved by
removing the straining forces, and then watching the recovery of the
body to its original form and dimensions, If that recovery is perfect,
the body is said to be perfectly elastic, but the elasticity is imperfect if
there remains any “ permanent set” or permanent strain from which it
does not recover. In this sense it is said that no solid bodies are per-
fectly elastic, but the elasticity of wrought iron and steel may be regarded
as practically perfect, so long as they are not strained beyond the so-called
“ limit of elasticity.”

1 Among the downward forces, we must of course include the weight of the structure
itself, or the force of the earth’s attraction.

3 The word ‘‘strain” is very often used to express the same meaning as ‘‘stress,”
and the words * tension ” and *‘ compression ” are often appropriated for the same pur-

pose ; but some economy of words appears to be really necessary, and we shall endeavour
to confine the use of the word to the sense above defined.
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Of course, this elastic recovery is motion, and therefore its commence-
ment must be regarded as the visible effect of some unbalanced force
acting upon the moving parts or particles. That force is to be found in
the internal sfress which, at any section, is exerted by the strained
material, and which becomes an unbalanced force at the moment when
the external load is suddenly removed.

In the same way, when the external force is suddenly applied, it is at
first an unbalanced force, for there can be no stress without strain ; but
when equilibrium has been established by the compression of the elastic
body, the resisting stress is, of course, equal and opposite to the straining
force.

7. Measurement of Strain and 8tress.—Each kind of stress is
attended by its own particular kind of strain, and although these effects
are really somewhat complex, yet for practical purposes the different
kinds of stress and their accompanying strains may be distinguished as
follows, viz. :—

Straining Force or Stress. Strain.

1. A direct pull or a tensile stress, Producing extension or elongation.

2. A direct thrust or a compres-
sive stress,

3. A shearing force or a shear-
ing stress,

} Producing compression or shortening.

} Producing angular distortion.

A direct stress will be measured in pounds, or in tons; but a direct
strain, in inches and parts of an inch.

If the stress is evenly distributed over the whole sectional area of the
bar, the “intensity of stress” will be uniform, and will be expressed in
pounds per square inch of sectional area. ~And if the stress is unevenly
distributed, the stress-intensity may be considered as having a certain de-
finite value for each fibre or layer of the bar, although it may be different
in the different fibres.

In measuring direct strain, regard must be had to the length of tho
strained bar. If a bar is subjected to a moderate tensile stress acting
through the whole of its length, every part of its length will be strained
to the same degree; 7.c., every lineal foot of its original length will be
extended by a certain fraction of a foot, and every, lineal inch by the
same fraction of an inch. This fractional ratio, or the extent of the
strain per unit of length, is commonly called the ‘ unit strain.”

Within certain limits to be hereafter discussed, it is found that the
direct strain in a bar of iron or steel is very nearly proportional to the
stress ; i.e., the “unit strain ” is always proportional to the ¢ intensity of
stress,” whatever may be the dimensions of the bar. Thus, if a vertical
tie-rod of wrought iron, 10 feet in length and one square inch in section,
is loaded with a suspended weight of one ton, it will be elongated by
about y35th of an inch, or yz35yth part of its original length. A load
of two tons would produce an elongation of twice that amount, and so
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on ; and whatever may be the value of the load, the length of the bar,
or its sectional area, each ton-per-square-inch of tensile stress will stretch
the bar by yz35oth of its original length.

This proportionality between stress and strain affords another means
of measuring the magnitude of force, and one which is in fact employed
every day in the spring-balance, the pressure-gauge, and the aneroid
barometer 5 and in the theory of bridge-construction it is sometimes
necessary to use the very small elongations and compressions of the
different members in the same way, as affording a visible and mensurable
indication of the intensity of stress.

The proportionality between stress and strain is only true within the
so-called * elastic limit,” or “limit of elasticity ; ” but if it were uni-
versally true, it is evident that a stress-intensity of 12,000 tons per
square inch would stretch the wrought iron tie-bar to double its original
length ; #.e., the strain would then be equal to the original length of the
bar; and this imaginary and impossible intensity of stress is termed
the ¢ Modulus of Elasticity ” for the given material. Thus, to find the
stress intensity in a bar of any material, it is only necessary to multiply
the modulus (for the given material) by the fraction which represents
the observed * unit strain ;” and the result will be sufficiently correct for
all strains within the elastic limit.

8. 8trength.—The strength of any material is commonly understood
to mean the measure of its capacity to endure stress, or to exert stress
in resistance to strain. The “ ultimate strength ” is, of course, the ulti-
mate or extreme capacity of the material in this sense. The ultimate
strength of a structure must mean the greatest load, or the greatest
force of any specified nature, that can be applied to the structure with-
out causing faslure of some kind in any of its parts. The strength of a
structure is, therefore, defined by the strength of its weakest part, con-
sidered in relation to the stress produced in that part by the given load
upon the structure. But it is necessary to define what is meant by
“ failure,” as otherwise it will be impossible to specify the magnitude of
the load or stress that would produce it.

Elastic deformnation cannot be regarded as failure—or if it is, the
ultimate strength of any and every structure will be nothing. The
absolute failure of a tie-bar takes place when the bar is torn in two, but
the failure of a strut cannot be so simply defined. A long column may
probably be regarded as a structure, whose strength is determined by the
strength of its weakest or most heavily strained part. Its failure will
generally take place by a lateral flexure and ultimate crippling, which
may perhaps produce fracture or disintegration in a cast-iron column,
but not so in columns of a semi-plastic material, such as wrought iron or
steel In such columns, failure can only be regarded as consisting in a
certain flexure or local erippling which is something more than mere
elastic deformation.

But when the proportions of the strut are reduced to those of a cube,
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or a short cylinder or wafer, there can be no such lateral flexure of the
whole strut, and it becomes still more indispensable to define what is
meant by failure. If it is to consist in the annihilation of the wafer, or
its disappearance from between the squeezing surfaces, then the strength
of a short strut will be almost infinite, and cannot be determined by
either theory or experiment. But no such phenomenon can be produced
in a column of any proportions; and it would appear that the ultimate
strength of a cube or short strut must rather be regarded as the greatest
weight that it will carry without exhibiting either a splitting of the edges
or a bulging or crippling of the sides ; for between that and absolute
reduction to nothingness, there seems to be no intermediate phenomenon
sufficiently marked to be regarded as the failure of the cube.



CHAPTER 1IL

ON THE OPPOSITION AND BALANCE OF FORCES.

9. Force is commonly measured in units of weight because our ideas
of force are most frequently associated with the weight of heavy bodies;
and we usually compare these familiar forces by weighing the bodies, one
against the other. To ascertain the load resting upon the bridge, we
weigh the locomotive, the carriages, the permanent way, &c. ; and in the
same manner we shall weigh the other external forces acting upon the
bridge, and also the internal stresses which take effect in its members, by
using the bridge itself as the scale-beam or steelyard.

The balance of a number of forces, when referred to three rectangular
axes of co-ordinates, forms a problem which is treated at considerable
length in mathematical works; but in bridge-building the forces acting
in different planes are in most cases provided for separately in the design
of the structure, and it will be sufficient to consider the balance of forces
acting in one plane, All these cases may be referred to a few simple
principles, and in discussing them it will be easy to illustrate the action
of the various forces by a geometrical diagram upon the plane of the
paper.

A force becomes defined in every particular as soon as we have deter-
mined its magnitude, the direction of its action, and the point at which
it is applied ; and all these may be illustrated at one time if we represent
an individual force by a straight line, and suppose the length of the
line to be a measure of the magnitude of the force, upon a scale of so
many tons to the inch.

10. Thus in Fig. 1, the body A4 is subjected to the action of a direct
pull represented by the line ¢, and at the same time to the action
of an equal and opposite pull represented by de, the forces being ¥
applied at the points b and d respectively. f

By this direct oppusition of equal forces, the body is evi-
dently held in equilibrium, and the same result would follow [D
if the forces were applied at any other points situated in the (4
straight line ec; but if one of the forces were applied at a point »
situated on either side of that line, the equilibrium would be
destroyed, for there would then be a tendency to turn the body
round in a right-handed or left-handed direction.

11. The tendency of any force to rotate the body about a given axis

c
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or centre of motion, is measured by the “ M ” of the force about
that axis—i.e., the magnitude of the force multiplied by its effective
leverage ; the effective leverage or arm of the moment being the perpen-
dicular distance from the assumed centre of motion to the line of action
of the force. In order that a body may be in equilibrium, it is necessary
that any “moments” tending to turn it in a right-handed direction
should be balanced by equal moments acting in the
opposite or left-handed direction.

A familiar example of this opposition of moments
is illustrated in Fig. 2, which represents the common
scale-beam, with two equal arms, AC and BC, hung
upon a delicate centre at C. Suppose C to be the
centre of motion—then the moment of the force or
weight Bb acting about the arm BC in a clockwise
4 > *'&B direction, is balanced by the contrary moment of the
¢ equal force Aa acting about the equal arm AC.

In the case of the steel-yard illustrated in Fig. 3,
the arms of the beam are of unequal length, and consequently the weights
are unequal ; for in order to preserve the balance the contrary ¢ moments ”
must be equal, t.e.,—

Force Aa x arm AC = force Bb x arm BC, or Force Aa = Bb x fg

With regard to the upward and supporting force Ce, it may perhaps
be sufficiently evident that, in each of these cases, its magnitude must be
equal to the sum of the two downward forces; but this will be demon-
strated if we suppose the centre of motion to be shifted (as it may be) to
some other point in the beam, such as 4, but leaving the upward force
still applied at the point C. For in order that the beam may not turn
about the centre A, it is necessary that the moment Cc¢ x CA should
be equal to the contrary moment Bb x BA, therefore

_ AC .
Bb = Cc x B and in the same way

_ CB
Aa=Ce x i therefore

AC+CB
4da+ Bb=Cc x V] )—Cc.

If the diagram is regarded as a ground-plan, so that all the forces act
in a horizontal plane while the lever is pivoted upon a vertical axis, it
is evident that the weight of the lever will not affect the balance of
forces ; but when forces acting in a vertical plane are under considera-
tion, the weight of the lever must of course be considered as a distri-
buted force acting upon the lever like any other forces; but it will be
more convenient to take this into account at a later stage, and for the
present to assume that the weight of the lever is nothing.

12. The “law of the lever,” which has just been stated, may be
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demonstrated by reference to the Conservation of Energy, or the equality
between energy expended and work performed ; but the principle is so
familiar that any demonstration is unnecessary, and we shall therefore
proceed to make use of the scale-beam in comparing the magnitude of
balanced forces. The form of lever above illustrated will be sufficient
for the comparison of parallel forces, and we have only to refer to one
or two other alternative forms which may be used in comparing forces
that act at right angles, or in any oblique directions.

Fig. 4 represents a bent lever in which the centre of motion is at C,
and the arms AC and BC are at right angles to each other, and perpen-

dicular to the lines of action of the respective forces. The contrary
moments about the axis at C are of course equal, so that

Bb x BC=Aa x AC, as before.

Instead of a bent lever, we may employ a rectangular plate A0BC,
as illustrated in Fig. 5, and if we continue the lines of action a4 and
bB until they intersect in the point O, it will be evident that, so long as
the plate does not change its angular position, the respective forces may
be applied at any point along these lines of action without affecting the
balance. Therefore we may, if we please, apply both the forces at the
point O, and in this case the rectangular plate of Fig. 5 may be replaced
by a straight diagonal bar OC:

This alternative is shown in Fig. 6, in which the balanced forces are
represented by the lines OA and OB. In this modification the balance-
lever has only one physical arm; but it will be remembered that the
effective arm or leverage of each force is, not the length of the lever OC,
but the perpendicular distance CA or CB from the centre of motion to
the line of action of each force. The moments therefore remain the
same as before, and O4 x AC=O0B x BC; so that if we know the
inclination of the lever OC or the rectangular co-ordinates CA4 and CB,
we can find the value of a force 04 which will balance a given force OB,
as these forces must be proportional to the sides of the rectangle AOBC ;
and conversely if we know the ratio of the forces we can find the inclina-
tion at which the lever will be in equilibrium, for if the two forces are
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represented by the sides of any rectangle AOBC, the diagonal OC repre-
sents the required angular position of the lever.

Referring now to the forces which hold the plummer block in position
at C, we may revert for a moment to the rectanguiar plate of Fig. 5, and
suppose that the point 4, at the upper corner of the plate, is the centre of
a possible rotary motion—then to prevent the plummer block from
sliding back, the moment of Bb about the arm OA must be balanced by
the contrary moment of a force dC about the arm CA4, and it will be
seen that dC'= Aa. In the same way if B is taken as a centre of motion,
a vertical force eC'must be applied at C to support the axis, and eC'= Bb.
The axis at C requires, therefore, the support of both these forces,
but it will presently be shown that their action may be replaced by the
action of a single inclined force which would have the same effect and is
called the *resultant” of the two rectangular forces.

It only remains to notice that when the two forces Aa and Bb act
at an acute or obtuse angle, they may be weighed upon a bent lever by
making the arms of the lever perpendicular to the lines of action of the
respective forces, as in Fig. 7; but whatever their inclination may be
they can always be weighed upon the single-armed lever already described
" and again illustrated in Fig. 8. In this case the moments of the
two forces are found by continuing their lines of action OA and OB, and
drawing Cf and Cy perpendicular to
the lines of action produced ; then the
right-handed moment will be OB x Cg,
and the left-handed moment will be
04 x Cf.

It was found in Fig. 6 that the
forces balanced one another when they
were proportional to the sides of the
rectangle of which the lever formed the diagonal, and in Fig. 8 it will be
found that the forces are balancéd only when they are proportional to the’
sides of the parallelogram A4O0BC, in which the lever OC forms the
diagonal ; for the moments OB x Cg and O4 x Cf are then each of them
, represented by the area of the parallelogram A4OBC,
and are, therefore, equal to one another.

13. We have hitherto considered the equilibrium of
forces balanced upon a lever or scale-beam, and this
method of comparing them is really sufficient, but it is
sometimes more convenient to make use of the theorem
known as the * parallelogram of forces” for the resolu-
tion and composition of inclined forces acting through
the same point. This theorem states that if any two
inclined forces are represented in magnitude and direc-
tion by the sides OA and OB of the parallelogram AOBC
in Fig. 9, their “resultant ” will be represented by the diagonal OC i.c.,
their combined action upon the point O is equivalent to the action of a
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single force OC, and would be balanced by the application of a force OC|,
directly opposite and equal to the resultant. To demonstrate this im-
portant theorem several different methods have been proposed, but it will
be seen that the theorem is almost demonstrated by the results already
obtained with the single-armed lever illustrated in Figs. 6 and 8, and we
may easily complete the proof of its accuracy by the aid of this weighing
instrument ; for the law of the lever really includes the theorem of the
parallelogram of forces.

The manmner in which this theorem is most commonly applied in
questions of bridge-construction may be illustrated by referring to the
case of the triangular brackets shown in Figs. 10 and 11. Fig. 10 repre-
sents a bracket consisting of a horizontal tie-rod, A0, and an inclined
strut or jib, CO, supporting at O a load or a downward force represented
by the vertical line OB. In Fig. 11 the same letters indicate similar
parts, the only difference being that the tie-rod is here inclined. In such
mechanical structures it is commonly assumed that the tie and the jib
{especially if they are jointed at the ends) are only capable of exerting a
direct pull or a direct thrust along the lines of their respective lengths,
so that the action of the vertical force OB
upon the pin O must be balanced by a
force of some unknown magnitude in the
direction 04, and another force of unknown
magnitude in the direction CO. The direc-
tion of these two forces being thus fixed,
or assumed, their magnitudes are found
by completing the parallelogram of forces
AOBC, drawing BC parallel to 04, and CA4 parallel to BO. Then by
the theorem of the parallelogram, if the side OB represents on a certain
scale the load carried by the crane at O, the pull of the tie-rod will be
represented by length of the side OA4, and the thrust of the jib by the
length of the diagonal CO, the resultant of the forces OA and OB being
the diagonal force OC equal and opposite to the thrust CO.1

This is the solution as given by the theorem, and to demonstrate its
accuracy we have only to consider the jib CO as a single-armed lever
capable of turning upon the centre C, but held in equilibrium by the
contrary moments of the forces OB and O4 ; and we have already found
that (whether the tie-rod is horizontal or inclined at any angle) these
balanced forces are proportional to the sides OB and OA of the parallelo-
gram AOBC, which at once proves the correctness of the theorem as
regards the value of the force OA. Again, if we consider the rod AO as
a single-armed lever centred at 4, the thrust of the jib on the line CO
will be determined in the same manner by the fact that its moment

1 In the same way the force OB is equal and opposite to the resultant of the two
forces 04 and CO; either one of the three balanced forces is of course sufficient to
exactly balance the other two, and is equal and opposite to their resultant; and either

one of the three coincides in length and direction with the diagonal of a parallelogram
whose sides are represented by the two remaining forces.

Fig.10. Fig.11.

B



18 CONSTRUCTION OF BRIDGES.

about A must be equal and opposite to the moment of the force OB,
which latter moment is represented by the area of the parallelogram
AOBC ; the thrust of the jib must therefore be equal to that area divided
by the perpendicular arm A%, and must therefore be equal to the length
of the diagonal CO.

14. The principles of equilibrium are chiefly useful in determining
the unknown magnitude of certain forces which must be exerted in order
to balance certain other forces which are known to be in action. So far
as results are concerned it matters nothing whether, for this purpose, we
weigh the forces against one another by the method of moments, or
whether we determine them by applying the theorem of the parallelogram,
which, as we have seen, is only a particular example of the general law
of the lever; and in any given case we may choose the method which
seems to offer the readiest means of coming at the desired result.

One of the most useful applications of the parallelogram is in resolv-
ing an inclined force into its vertical and horizontal components. For

example, let Fig. 12 represent the first fow

D bars of an open truss or girder, and suppose

B that in this diagram @B represents the

direct thrust of the strut AB ; then if from

a we draw the horizontal line ac intersect-

ing the vertical line Bc in the point ¢, we

4 may consider the inclined thrust as being

¢ composed of a horizontal force ac propor-

tional to the horizontal base of the triangle aBc, and a vertical force
B proportional to the vertical height of the triangle.

These are called the horizontal and vertical components of the
inclined force, and in trigonometrical language their values are expressed
as follows :—

Fig.13

Let S =the inclined force aB,
V =its vertical component ¢B,
H =its horizontal component ac,
and let 6=the angle caB:
then V=S sin. §=H tan. 6 = ,/S?-H?
H=8 cos. §=V cotan. 0 = /52— V2
8=H sec. §="V cosec. § = \/H?+ V3.

In the figure, the strut 4B is connected by a pin at 4 with the hori-
zontal tie AC, and also with a shoe by which this end of the truss is
carried upon its abutment. If the shoe is carried upon frictionless
rollers upon a horizontal bedplate, it can offer no resistance in a hori-
zontal direction, but only a vertical support; the horizontal component
ac must therefore be borne by the tie AC, and represents the value of
the tensile stress in that member; while the vertical component BC
represents the load carried upon the shoe at 4, and the equal and oppo-
site upward force exerted upon the truss by the abutment. Again, the



DISTRIBUTED FORCES. 19

strut AB is connected by a pin at B with a vertical tie, BC, and also
with an inclined strut, BD, the forces acting upon the pin B must
balance each other, and it needs no demonstration to show that the sum
of the forces acting vertically downwards upon it must be equal to those
acting vertically upwards, and in the same way that the contrary hori-
zontal forces acting on opposite sides of the pin must also be equal to
one another. The vertical tie BC can exert no horizontal pressure upon
the pin, and therefore the inclined force dB must have a horizontal
component eB equal to the horizontal component ac.

In the same way if any number of bars meet at one joint, the alge
braical sum of their horizontal components of stress (reckoning opposite
directions as positive and negative) must always be =0, and the sum of
the vertical components acting downwards must also be equal to the
sum of the vertical components acting upwards. This consideration will
often enable us to obtain the horizontal and vertical components of the
stresses acting in the adjacent members of a truss by stmple addition and
subtraction, and the direct stresses are then easily determined.

It is hardly necessary to show that the results we have just obtained
by the resolution of inclined forces might have been obtained, and may
easily be verified, by the law of the lever. If we consider the bar
BC as a single-armed lever centred at C, the moment of the force aB
about this centre must be equal to the contrary moment of the force dB.
The perpendicular distance from C to the line of action of the force aB
is equal to BC x cos. 6, and the moment of this force is therefore equal
to S cos. @ x BC'; but S cos. 0 represents the value of the horizontal com-
ponent ac, so that the moment of the inclined force aB about the point
C is equivalent to the moment of its horizontal component acting with
the full leverage of the vertical arm BC. In the same way, it will be
seen that the contrary moment of the inclined force dB is equal to the
moment of its horizontal component eB acting with the same leverage
BC; therefore the horizontal components ac and eB are equal.

Thus the bar BC may serve as a lever on which the thrust of the bars
AB and DB may be weighed against each other; and by taking some
other bar as an equilibrated lever, the other forces named in the last
article may be successively ascertained in the same manner; and whether
the process be conducted in this way or

by the theorem of the parallelogram, it Jeis. l l I l |

will generally consist in a multiplica- (f )

tion by the same or equivalent ratios in 6 T

either case. 4 ;
15. Hitherto we have only con- — c r 4 1

sidered the balance of moments pro-
duced by the action of single forces; O Figla, /I:
but it is obvious that if we apply on

one arm of the scale-beam a number of weights or parallel vertical forces
as indicated in Fig. 13, the weight that must be put in the opposite scale
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will be the sum of the weights which would be required to balance
each of the forces separately ; in other words, the moment at C' produced
by the whole group of forces upon the right arm, will be the sum of the
moments due to each force separately.

When a distributed load of varying intensity is applied to the beam,
as illustrated in Fig. 14 by the irregular mass defg, we may divide the
irregular figure into a number of narrow vertical strips of equal width,
and consider the weight of each strip separately. Thus if the ordinates
de, &c., represent the intensity of load per unit of length, the area of
each strip de x ek, &c., will represent its weight, which, if the strip is
very narrow, may be considered as a force acting at the centre of the
strip; and having calculated the moment of each strip about the fulcrum
C, we can find the moment of the whole distributed load.

The moment of the distributed load about any axis C is the same as
though the whole load were concentrated at its ¢ centre of gravity ;” the
position of the centre of gravity G of the load is therefore found by
adding together the separate moments of its constituent parts (or strips),
and dividing the total moment by the total weight of the load, which
gives the length of arm, z, about which the load must act in order to
produce that moment. For this purpose it is of no consequence what
position may be chosen for the axis C', for whatever position may be
taken, the length z being measured from that position, will always
terminate at the same point in the figure defg, viz, at the centre of
gravity of the figure.

By analytical methods which are practically equivalent to that above
described, the position of the centre of gravity has been found for a
great number of regular geometrical figures, of which the most useful
for our purposes will perhaps be the triangle, and the spaces bounded by

_ a parabolic curve and its chord, or
“ its tangent. :

In the right-angled triangle
ABC of Fig. 15, the horizontal dis-
~]---.iz tance of the centre of gravity @
from the apex 4 isz=$ AB.

Also in the scalene triangle
ACD of Fig. 16, which is simply an oblique projection of Fig. 15; the
side DC being vertical, the horizontal distance of the centre of gravity &

from the apex A is again two-thirds of

e D?"“ the horizontal length AB.
— i In Fig. 17, the area enclosed between
&Y . the parabolic curve ADB and its chord
I e AB is equal to two-thirds of the rec-
— iy tangle AB x CD. The figure being sym-

metrical, the centre of gravity, S, of the
whole area is situated in the axis CD, and at a height above the chord
=CS=y=2CD.
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The area of the half segment ACD is of course two-thirds of the
rectangle 4C x CD ; the centre of gravity S, is at the same height above
the chord, viz., y=3% CD ; and its horizontal distance from the axis is
z=§ AC=y5 AB. The supplementary area ADE contained between
the curve and its tangent ED, is of course one-third of the rectangle
ACED , the centre of gravity S, is situated at a depth below the tangent
=y=2 CD, and its horizontal distance from the axis isz=¢ ED=§ 4B.
The centre of gravity of a rectangle is of course in the centre of its
length and of its height; and with the aid of the figures here given it
will generally be easy to find by calculation the moment and the centre
of gravity of any complex figure or irregular load.



CHAPTER III,
ON BENDING STRAIN.

16. Perhaps the oldest form of bridge is that very elementary one,
which consists simply of a beam of timber thrown across the opening to
be spanned. Thus a primaval savage, seeking for some means of crossing
a ravine, might easily establish the desired line of communication by
making use of the trunk of some fallen tree ; and he would probably
regard the structure, when completed, as a very simple one, calling for no
special exercise of thought to understand its principles. But the modern
engineer looks at the same structure in a different light, and from his
point of view there are few forms of bridge-construction which are so
hard to understand.

The stresses that take effect in a large and complex lattice girder may
be easily measured, but if we try to discover the stresses and strains in this
log of timber, we shall find the problem to be very difficult—indeed, it
is one which has not yet been solved in a manner that reasonably accords
with the known strength of the beam as found by actual experiment.

But if we cannot arrive at a complete analysis of the strains, it will
nevertheless be useful to obtain some idea of what takes place in a beam
when it is bent under transverse forces, as, for instance, when the beam
is supported at each end, and carries a load in the middle, as shown in
Fig. 18, or when it is supported in the middle, and loaded at each end as
in Fig. 19. :

In order that the beam may be balanced in the latter case, it must of
course be loaded with the same weight at each end, and the supporting
force in the middle will be equal to the sum of the two loads (leaving
the weight of the beam itself out of account). It is also obvious that
the central load in Fig. 18 will be equally divided between the two sup-
ports 4 and C, and that the supporting force at each end will be equal
to half the central load, so that the two cases shown in Fig. 18 and Fig.
19 are the exact converse of each other. Moreover, it is obvious that
the two halves of the beam situated respectively to the right and left of
the centre, are placed under precisely similar conditions, and either half
may be considered separately, as though it were fixed at BD, and loaded
at its extreme end, as shown in Fig. 21.

17. When the beam is bent under the application of these transverse
forces, we perceive at once, and without much reasoning upon the subject,
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that the fibres on the convex surface of the beam are stretched, and those
on the concave surface are compressed ; so that in Figs. 20 and 21 the
fibres in the upper part of the beam are undergoing a tensile strain, while
the fibres in the lower part are suffering compression.

‘We have already seen that the direct stress or resisting force exerted
by a strained rod, or by any strained fibre, is nearly proportional to the
lineal extent of the strain; f.e., proportional to the degree to which the
rod or fibre is extended or compressed ; so that strain is a kind of pres-
sure-gauge indicating visibly the intensity of the internal stress, In
order, therefore, to find the relative intensity of stress in different parts
of the beam, we may first examine the relative strains, and for this
purpose it is usual to make the following assumption :—Suppose that

¥ig18.

D_ & fi

=

before the beam was bent, we had drawn upon its side a number of
parallel horizontal lines dividing the beam into so many imaginary
layers, and also at right angles to these a number of vertical lines dividing
the beam into so many rectangular compartments, as shown at e'kl, f123,
&c., in Fig. 19—then it is commonly assumed that when the beam is
bent these latter lines will remain straight and at right angles to the
beam, forming in the bended beam a series of radial lines like the joints
of an arch, as shown at ek, fI, &c., in Figs. 20 and 21. If this assump-
tion is correct, it is easy to see that the length of the several curved
layers of the beam decreases in regular arithmetical proportion from the
top to the bottom ; but the gradation will be effected partly by extension
and partly by compression ; the topmost layer will be the most severely
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extended, while the lowest layer will be most severely compressed ; and
at some intermediate point there will be a layer or line NN which retains
its original length unaltered.

This line, which suffers neither extension nor compression, is the
so-called ‘“neutral-axis ;” and whatever may be its exact position in the
beam, the several layers which lie above and below it will be extended
or compressed in proportion to the distance of each layer from the
neutral axis.

To make this quite clear, consider the compartment De,k, B in Fig. 19,
which assumes the form DekB in Fig. 21 when the beam is bent. The
length of the neutral axis Nm, in the latter figure, will represent the
original length of every layer; and if we set off De, and Bk, each equal
to N, the line ek, parallel to DB, will serve to measure the original

L]

G

length of each layer; so that the space intercepted between the lines
e,k, and ek will represent the elongation or compression that has taken
place in the length of each layer. The topmost layer is extended by the
amount eg,, and so on with the other layers; and as the lines cross each
other at , it is evident that each layer is strained to an extent which is
proportional to its distance above or below the neutral axis; and the
intensity of stress being in the same proportion, these several intensities
may be represented by the arrows contained in the triangles DNt and
BNp.

But the total stress upon each layer of the beam will be equal to the
sectional area of the layer multiplied by the intensity of stress upon that
area; and this distribution of force may be represented by the wedge-
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shaped solids shown in Fig. 214, in which DB is the depth, and DZ the
breadth of the beam ; so that the surface DZNN is the area on which
the tensile forces are acting with an intensity which varies as the hori-
zontal length of each layer in the triangle DNt. Therefore the solid
contents of each layer in the wedge will represent the total stress acting
in that layer, and the solid contents of the whole wedge DN¢ will repre-
sent the sum of the tensile stresses, while the compressive stresses will
be represented in like manner by the lower wedge BNp. Also if the
stress due to a given strain is the same in tension as in compression, the
triangles DNt and BNp will be similar triangles,

Thus far, the relative stresses have been considered as depending
upon the relative strains; but now consider the half-beam DBSC as a
body in equilibrium under the several forces acting upon it, including
of course the stresses which are exerted upon it at the section DB by
the other half of the beam. And first it will be seen that there are no
horizontal forces acting upon the body anywhere except at the section
DB, so that the horizontal forces acting at this section must balance
each other, 7.e., the total thrust must be equal to the total pull. It follows
then, that the solid contents of the two wedges DNt and BNp must
be equal, so that if the beam is rectangular in section the triangles DNt
and BNp must be of equal area ; and as they are assumed to be similar
triangles, the sides VD and NB must be equal, and the sides D¢ and Bp
must be equal. Therefore, in the rectangular beam, the neutral axis is in
the centre of its depth, and the maximum tensile stress has the same
intensity as the maximum compressive stress.

Again, the unequal distribution of stresses represented by each of the
wedges may be considered as equivalent (in each wedge) to a concentrated
force of the same total magnitude, acting at the respective centres of
action r and v, whose vertical distance from the neutral axis will in each
case be equal to two-thirds the height of the triangle, so that the vertical
distance rv between their lines of action is equal to two-thirds the total
depth of the beam.

Each of these opposite forces, or elastic resistances, acting about IV
as an axis, exerts a moment in an anti-clockwise direction, and the sum
of their moments about N must balance the clockwise moment of the
weight W. But the-sum of their moments about IV will be the same
thing as the moment of either force about the whole vertical arm rv,
which is equal to two-thirds the depth of the beam.

Let I =the horizontal length of the half-beam BC ;

d =the depth DB ;
b =the breadth DZ;
Jf=the maximum intensity of tensile stress in the topmost fibre
(represented by Dt).
Then the average intensity of tensile stress in the upper half of the sec-

tion will be g, and the sum of the distributed tensile stresses, repre-
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sented by the wedge ZDNt, will begx b2'—i=$ ; and their moment

about the point v will be the * moment of resistance,” or—

=Tx§=—6—.....(l)

On the other hand, we have the  bending moment,” produced by the
weight W acting with the leverage BC=1, and the bending moment

‘W1 must be balanced by the moment of resistance, or M ="WI =fb6—d2.

Therefore to find the maximum intensity of tensile stress due to any
load W, we have—

6W!
f=7&iT.......(2)

and to find the load that the beam will carry with any given maximum
intensity of stress f, we have—

W-J'(’;—;'E N € )}

If L denotes the total length of the beam AC in fig. 18, and W, the
weight of the central load, the “ bending moment” at the centre of the
beam will be—

M=Wo, L_W,L

22 4

which, as before, must be balanced by the moment of resistance, or

V_V‘iol‘ =f_b_:2, therefore in this case we have—
3 WL
f=§_ E;f Coe e e e (2a)
or, Wy=2. L”;‘f e . (80)

18. The simplicity of this theory would be very satisfactory if it
could be regarded as a true and complete statement of the facts; for
nothing could be easier than to calculate by the last formula the weight
required to produce any given tensile stress; and if we know the ulti-
mate tensile strength of the material, it would seem that we ought to be
able, by this means, to find exactly the load that will break the beam.
But if we take a rectangular beam of cast-iron and put the calculated
breaking load upon it, the beam will show no symptoms of tearing at the
stretched fibres, and no inclination to yield in any way ; and as a matter
of fact it will not break until we have increased the load to about 2}
times the amount calculated.
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To account for this disappointing result, numerous explanations have
been offered from time to time ; but most of them appear to be either incon-
sistent with known mechanical principles or contrary to experimental facts.
Some writers have supposed that the extreme stress in the topmost layer
of the beam is in some way relieved, and a portion of it taken up by the
less severely strained layers below, by means of the lateral adhesion
between the layers. This view, however, appears upon examination to
be quite untenable ; we shall see that the lateral adhesion does indeed
play an important part in the resistance of the beam, but its action is
exactly opposite to that which is implied in the terms of this supposition;
and so far from tending to alleviate the stress in the outer fibres, it is the
very agency which is instrumental in] causing the great stress that takes
effect in those fibres. If there were no adhesion between the layers,
there would be no longitudinal stress at all in any of them ; and this
may be seen at once if we suppose the beam to be composed of separate
layers, like a pack of cards, without any adhesion between them ; in
which case we know that the flexure will take place in the manner shown
in Fig. 22—not by extending or compressing the individual cards, but by
a small sliding motion of each card over the other. This is sufficient
to show that without lateral adhesion there would be no longitudinal
strain, and therefore no longitudinal stress ; but the exact effect of lateral
adhesion in producing the great stress in the extreme fibres of the beam
will be still more clearly seen when we come to consider the equilibrated
forces acting upon separate layers and separate particles of the beam.

This lateral adhesion is in fact only one way of regarding the resist-
ance offered by the solid material of the beam to a certain ‘ shearing
Jorce,” which we shall find to be in operation in every description of
girder—for without its agency the wvertical forces, impressed upon the
beam by the load and by the supports, could not be transformed into
horizontal stresses.

19. The theory of flexure described in the preceding articles, although
it cannot be regarded as an entirely correct and complete statement of
the facts, is yet sufficient to show that, in the solid rectangular beam, a
great deal of the material is doing very little work in comparison with
what it is capable of doing, and even that little is done to a great dis-
advantage. The only fibres that are acting up to their full capacity are
the extreme topmost fibres, while those layers which are situated near
the neutral axis are almost idle, and the feeble stress which they exert is
exerted at such a short leverage that their efficiency in resisting the
bending moment of the load is almost nothing—the relative efficiency of
the several layers for this purpose varies, in fact, as the square of their
distance from the neutral axis.

The solid beam is therefore an extremely bad form of girder, and in
bridge-construction it is very seldom used except for such subsidiary parts
of the structure as the planking and joists of a timber platform; and
if we want to get the greatest possible strength with a given amount of
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material, it is already evident that we must first adopt a liberal depth of
girder, and then we must place the chief portion of the material at the
points where it will act to the greatest advantage, namely, at the upper
and lower edges. Such a girder is illustrated, for example, in Fig. 24,
which represents the cross section of a cast-iron or a rolled wrought-iron
girder, composed of an upper and lower * flange ” ab and cd, united by a
central “web” ; or, again, the girder may be built up of separate plates
and angle-bars, as shown in Fig. 23, and rivetted together. In girders of
this section, the metal which is intended to resist the direct longitudinal
strain is placed in the flanges, where it acts with the greatest leverage.
The depth of the flange-plate being small, all the fibres in the flange are
practically at one distance from the neutral axis, and the intensity of
stress may be considered as being uniform throughout the whole section
of each flange, and practically equivalent to the maximum stress of the
extreme fibres; while the web, unless it is unusually thick, will render
very little assistance to the flanges in the way of sharing the direct stress.
If the web is thin, it is the usual practice of English engineers to assume
that the flanges (including the angle-bars) have to bear the whole of the
direct horizontal stress ; but if the thickness of the web is considerable,
it is usual to calculate the moment of resistance of the whole section

Figas Pig.24 Figas Figasa

(web and flanges) by means of the theory of relative strain which we
have just applied to the rectangular beam, and by which it was shown
that the intensity of stress in each fibre is proportional to its distance
from the neutral axis.

Let the girder be sawn through transversely by a vertical section bnd
in Fig. 25, and again by an inclined section &nd, intersecting the first
section at the neutral axis # ; then we shall obtain a pair of wedges, or
solid bodies, of the forms sketched in Fig. 25a, and in these bodies the
horizontal length of any fibre (such as dd,) will represent the tntensity of
stress in that fibre, while the actual value of the stress in any fibre, or
the intensity multiplied by the sectional area of the fibre, will be repre-
sented by the solid contents of that fibre intercepted between the two
inclined sections. Thus the whole sum of the tensile and compressive
stresses acting at right angles to the vertical plane bd will be represented
by the contents of the two wedges.
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Again we may use the illustration still further, for if we lay the upper
solid flat upon its face, abn, the moment of its weight about the point n
will represent, on a certain scale, the moment of the tensile stresses about
the neutral axis; and treating the lower solid in the same way, we have
a similar representation of the moment of the compressive stresses, and
the sum of these two moments will represent the moment of resistance of
the girder. :

In order to effect the calculation, however, we must first find the
position of the neutral axis. As before stated, the neutral axis must be
so situated that the tensile and compressive stresses are equal to one
another, or in other words, the contents of the two triangular solids in
Fig. 25 must be equal ; and this consideration fixes the position of the
neutral axis at once as being coincident with the centre of gravity nn of
the entire cross-section in Fig. 24 ; for whatever may be the figure of the
cross section, if the moments about nn of the two areas above and below
that line are equal to each other, the solid contents of the two wedges
in Fig. 25 must also be equal. The centre of gravity of the entire
section indicates therefore the position of the neutral axis; while the
centre of gravity of each triangular solid indicates the centre of action of
the distributed tensile and compressive stresses.

The calculation of the Moment of Resistance for a beam of any
section will then resolve itself into a computation of the solid contents
and centre of gravity of a pair of wedges. In making this calculation it
is evident that the solid contents of each wedge, and also its moment
about the axis nn, will be proportional to the inclination that may be
arbitrarily chosen for the inclined;section 4,d,, or to the ratio Zb’_”b' This
ratio represents the rate at which the stress-intensity increases with
increased distance from the neutral axis, and is equivalent to the

ratio 'f, in which f is the intensity of stress in the extreme fibre and y

the vertical distance of that fibre from the neutral axis.

Suppose the inclined section b,d; to be taken at an angle of 45°;
then b)]=05n, and as the intensity of stress in any fibre will then be
measured directly by its distance from the neutral axis, the moment of
the stress in any fibre will be measured by the sectional area of the fibre
multiplied by the square of its distance from the neutral axis. The
sum of these products (for all the fibres) is the so-called “Moment of
Inertia” of the beam, and will be represented by the aggregate moments
of the two wedges whose surfaces are inclined at the supposed angle
of 45°

The Moment of Inertia is therefore a quantity depending only on the
form of cross section, and the calculation of this quantity is a step towards
finding the; moment of resistance: thus assuming provisionally that the

ratio :% or 5 is equal to unity, we may first calculate the “ Moment of
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Inertia” (I) for any given form of cross-section, without reference to any
known or unknown value of the stresses; and then to find the moment
of resistance, M, we have only to multiply the moment of inertia by the

actual value of the ratio '5, or—

I
M=I1<2 . . . .. . ... 4
Yy *)

Therefore if it is known that the external forces exert a certain
bending moment, M, we may find the maximum intensity of stress in the
extreme fibre by the expression—

My
I )

If we assume that the girder will break when the tensile stress in the
extreme fibre is equal to the ultimate strength of the material, and if on
this assumption we calculate the breaking weight by means of the above
formula, we shall find the result to disagree with experiment exactly as
in the case of the rectangular beam. But the extent of the disagree-
ment will depend upon the thickness of the web. The thicker the web
the greater is the error; but if the web is made very thin the error
becomes very slight, and it vanishes altogether when the girder is made
without any web, as it may be if lattice bracing is used in the place
of it.

20. Proceeding now to the case of a plate-webbed girder of I section,
let it be assumed that the web is so thin that it bears no appreciable
share of the horizontal stresses, so that the flanges have to bear the whole
of those stresses. This assumption will greatly simplify the question of
bending strain, and the distinct functions of the web and of the flanges
will then be clearly defined.

In Fig. 26, let DBSC represent a thin-webbed cantilever girder fixed
in a wall at DB, and loaded at its extreme end with a given weight W.
The opposite horizontal stresses or forces acting at the section DB must,
as before, be of equal magnitude ; but instead of being distributed over
the whole height of the section, they will now be confined to the flanges ;
and as the thickness or depth of the flanges is very small in comparison
with the depth of the girder, the tensile and compressive stresses may be
assumed to act in single lines Dr and By, at the centre of each flange;
and the several forces must then be balanced in the same way as in the
right-angled lever of Fig. 4 or the rectangular plate of Fig. 5. Thus, if
the point B is taken as an assumed fulerum or axis of motion, the
moment of the weight W about that axis mwst be balanced by the
moment of the tensile stress Dr; or if the point D is taken as a fulcrum,
the moment of W must be balanced by the moment of the compressive
stress Bo.



BENDING STRESS IN A PLATE GIRDER. 31

Let I=the length of the cantilever (BC).
d=the depth (DB) measured from centre to centre of the
flanges.

+ H=the horizontal stress in either flange, being a compressive
stress in the lower and a tensile stress in the upper
flange.

Then the bending moment at the section DB will be M,= Wi, and
dividing this moment by the depth DB=d, we have the compressive
stress at B or the tensile stress at D, which is required to balance the
nmoment of the weight, or tHo=]%i’=v7w. The fotal horizontal stress
is the same in both flanges, and to find the tnfensity of stress in either
flange we have only to divide the stress H by the sectional area of the
flange in question.

In the same way we may go on to consider the equilibrium of any
arbitrary portion of the girder, such as the portion egSC lying to the
right of a vertical section eg, whose horizontal distance from the weight
‘W is expressed by the variable quantity .

The moment of the weight W, either about the point ¢, or about the
point g, will be expressed by the general equation M =Wz, and this
moment must be balanced by the moment of the tensile stress in the
upper flange acting about g as a fulerum, and must also be balanced by
the compressive stress in the lower flange acting about e as a fulerum ; so
that the horizontal stress in either flange will be expressed by the general
Wz

d
point in either flange, measured from the point where the weight W
is applied. This equation gives the horizontal forces, or flange-stresses,
which are required at each point for the equilibrium of the structure, and
it will be noticed that the flange-stress increases gradually from S to D,
and from C to B. The varying value of the flange-stress may be con-
veniently represented by a diagram as shown in Fig. 27, but before
considering this diagram, it will be well to refer to the vertical forces
concerned in the equilibrium of the cantilever.

Leaving out of account the weight of the girder, the equilibrium of the
whole cantilever requires that it shall be supported by an upward vertical
force equal and opposite to the downward force W, and this upward force
must, of course, be applied to it at B by the masonry of the abutment.
The equilibrium of the portion egSC demands in like manner that s shall
be supported by an upward force equal and opposite to W, and the
only external body that can apply this force is the contiguous portion
of the girder DBeg. Therefore at any vertical section eg there is a
downward shearing force acting upon the surface to the left of the
section, and an upward shearing force acting upon the surface to the right
of the section. This action and reaction of the vertical force may, per-
haps, be more clearly seen if we suppose the girder to be actually cut

equation + H=_"_T", in which z represents the horizontal distance of any
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through at eg, as shown in Fig. 28. The flanges may be connected by
hinged links as shown in the figure, and the transmission of the hori-
zontal stresses will then be left unimpaired ; but the horizontal action of
the flanges will not be sufficient alone to support the weight W, unless
at the same time an upward force is applied to the body egSC, and
this force can only be applied by the lateral adhesion” of the web-
plate taking effect somewhere along the vertical plane eg.

It will be seen, therefore, that while the horizontal flange-stress in-
creases regularly from C to B, the vertical shearing-stress has the same
value at every section between those points.

21. For many purposes it is very convenient to represent the varying
bending moments, or the varying stress in different parts of a girder,
by means of a geometrical diagram. Such a diagram, illustrating the
variations of stress from point to point of our cantilever, is shown in
Fig. 27, which may be taken in the first place as the * Diagram of
Moments ” for the load in
question. The horizontal

L rlg-ﬁe.

D ‘ . .

«—«f - S line bc represents, on a con-
[F

venient scale of feet, the
: ; ¢ length (BC) of the canti-
' ~, lever; while the bending
@ moments at the various
sections DB, fh, eg, &c.,
are represented by the cor-
responding ordinates ab,
rn, km, &c. In the pre-
sent case we have only to
deal with a single weight
W, and the bending mo-
ment being simply pro-

L ., T s portional to the horizontal
L A distance 2, the diagram

will obviously consist of a

[ 7t triangle abe, in which the

@ vertical height is every-

where proportional to z.

Thus the ordinate ab will be drawn to represent on a certain scale of

foot-tons the moment M,= W, and by drawing the straight line ac the

diagram will be completed, and the height of any ordinate #m will then
represent, on the same scale, the bending moment M = Wz.

The triangle abc will thus be the “ Diagram of Moments ” for the load
in question, irrespective of the depth or figure of the girder. But to
find the horizontal flange-stress at any point, we have only to divide the
bending moment by the depth of the girder, and in Fig. 26 the depth is
uniform throughout. Therefore the flange-stress will vary exactly asthe
ordinates in the triangle abc. Thus, if ab is drawn to represent, on a
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certain scale of tons, the maximum flange-stress H0=Y‘;—l, the height of

any other ordinate ~m will represent on the same scale the flange-stress
H= v%?, which will be a tensile stress in the upper flange ¢ and a com-
pressive stress in the lower flange g.

Making use of the diagram in this sense, consider now the equi-
librium of the short piece of upper flange ef, contained between the two
sections fh and eg. At e the tensile stress will be represented by the
ordinate km, while at f the stress will have the greater value 7n. The
bar fe is therefore pulled towards the left at f by a greater force than
that which acts at e pulling it in the contrary direction ; and the differ-
ence must be made up by some other force pulling, or pushing, or drag-
ging it towards the right. The only body which can possibly exert such
a force upon the bar fe is the web to which it is attached, and it follows
that a horizontal force equivalent to the ordinate ro, or the difference
between the ordinates 7z and %m, must be applied to the bar fe by the
lateral adhesion between the upper margin of the web and the conti-
guous metal of the flange.

Again, if we subdivide the length fe into any number of equal parts,
and find (by the same rule) the force which must be applied upon each
fractional part, we shall see at once that the force ro does not act upon
the flange at any one point, but is uniformly distributed along the whole
length fe ; so that equal increments of tensile stress are added to the
top flange at each unit of its length.

The tendency of this force between the web and the flange is evi-
dently to shear the one from the other; and the amount of this ¢ shear-
ing force” per unit of length of the upper flange will be measured by the
force ro divided by the length fe, and will therefore be proportional to

the fraction %‘, or the tangent of the angle of inclination of the line ac

in the stress-diagram. In most cases that occur in bridge-construction,
the line of the stress-diagram is a curve, so that the ratio :’%varies from
point to point ; but whatever may be its curvature, the slope of its tan-
gent at any point in the curve, or the trigonometrical tangent of its angle
of inclination, will always be a measure of the shearing force exerted per
unit of length at that particular point in the girder; and if we take the
shearing force exerted per lineal inch, and divide it by the thickness of
the web in inches, we shall obtain the intensity of the shearing stress
per square inch of horizontal section at the upper margin of the web.

In the case before us, however, the line ac of the stress-diagram is a
straight line, so that its inclination is the same throughout, and therefore
the shearing force is uniformly distributed along the whole length of the
upper margin of the web, while its total amount is evidently equal to the
total flange-stress at D ,; for at this point we have a force (namely the

0
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maximum flange-stress V_dll) pulling the flange DS towards the left, while

at the opposite end S we have no force whatever pulling it towards the
right ; but from this point the web begins to apply its lateral dragging
force, and in each successive unit of length (fowards D) adds a corres-
ponding increment to the tensile stress, which thus accumulates by the
addition of these successive increments, until at D it reaches the maxi-

mum value of V%l Thus the whole of the tensile stress in the upper

flange is due to the force brought upon it by the web, by means of its
lateral adhesion with the flange ; and if we examine the equilibrium of
the lower flange in the same manner, we shall find precisely the same
result, the compression of the flange being entirely due to the force
which [the web exerts upon it in a direction opposite to that which
was found in the case of the upper flange.

22. Consider now the equilibrium of any panel of the web-plate, such
a8 fehg in Fig. 26. The forces exerted by the web upon the upper and
lower flanges in the manner above described, are of course accompanied
by equal and opposite reactions upon the web itself ; thus the panel, at
its upper edge, is pulled towards the left by the upper flange with a force
which is uniformly applied along the margin fe, while its lower edge
is thrust towards the right by the lower flange with an equal force
applied uniformly along the margin kg, as represented by the arrows in
Fig. 29.

This ““ couple,” or pair of contrary forces, if acting alone, would exert
upon the panel a rotating tendency; and the turning moment of the
couple would be measured by the value of either single force multiplied
by the depth d, which is the perpendicular distance between their lines
of action ; and this moment must be balanced by an equal moment tend-
ing to turn the panel in the contrary or clockwise direction. Or to put
the case in other words—the fact that the web-plate is pulling the top
flange towards the right, and thrusting the lower flange towards the left,
indicates that it must itself be operated upon by some other forces tend-
ing’to give it a rotation in a clockwise direction.

‘We have already seen that, a the vertical section f&, the portion of
girder to the left of the section is applying to the left side of the panel a
supporting force equal to the weight W, and also that the panel itself
must apply at its right side eg a similar supporting force to the remaining
portion egSC; which means the same thing as saying that the right edge
of the panel is subjected to a downward force equal to the weight W.
These opposite vertical forces may again be represented by the vertical
arrows in Fig. 29, and they will constitute exactly the pair of forces that
is required to balance the turning moment of the horizontal forces applied
by the flanges.

For if we use the symbol Az to express the horizontal length of
any panel or piece of web fe, the moment of the vertical shearing
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forces will evidently be W x Az; and, on the other hand, we shall
have the value of each horizontal force, or the stress-ordinate 7o in Fig.
27-rn-km=W{ z*’dM - % } =WA§’ and multiplying this force by
the perpendicular arm d, we have the turning moment of the horizontal
forces = WAz, as before.

This example will serve to show the general character of the so-called
“sghearing ” force. It will be seen that, in the web of a girder, there is
no such thing as a shearing force acting in one direction only; on the
contrary, any opposite tan-
gential stresses acting along

Fig 20 Fig s
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the vertical edges of a rect- ~;

angularplate must be balanced 5! L c
by the contrary moment of a o)
pair of tangential stresses act- i"«-------......__! er

ing along the horizontal edges; | R
and these forces will in all | ~"Tteee—. L..._..__,___
cases be proportional to the Fi2.30 G

respective sides of the rect-
angle—the horizontal shearing force acting along ef, will be to the ver-
tical shearing force acting along eg, as the side ef is to the side eg.

This necessary condition of equilibrium applies also to every portion
of the plate ; and if we divide the panel fehg into any number of square
or rectangular compartments, as in Fig. 31, each individual rectangle will
be subjected on every side to a shearing force proportional to the length
of that side. It follows that the infensity of shearing stress is exactly
the same along each one of the four sides ef, eg, Af, and kg, and in the
case before us the intensity is the same at every horizontal or vertical
section that can be taken through the web anywhere between the weight
‘W and the fixed end of the girder.

As regards the straining effect produced upon the rectangular plate
JSelg by these opposite shearing forces, their tendency is to distort its-
rectangular figure in the manner shown in Fig. 30, and the extent of the

angular distortion, or the fraction :—;l is taken as the measure of the shear-

ing strain. Thus the diagonal ek will be shortened, and the diagonal fg
will be extended ; the shearing stress will produce no extension or com-
pression of the horizontal or of the vertical fibres, but all fibres sloping in
the direction ek will be shortened, and all fibres sloping in the contrary
direction will be stretched.

It is perhaps permissible to conceive that the resistance which a solid
body offers to such a distorting strain, is really due to the direct resistance
of its particles to tensile and compressive strains in diagonal directions;
at all events it is easy to see that the special function of the web, in
transforming vertical forces into horizontal stresses, can be just as well
performed by a series of diagonal bars uniting the two flanges and crossing
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each other, and that in this case each bar would have to exert merely a
direct tensile or a direct compressive stress.

23. We may now revert for a moment to the solid rectangular beam
illustrated in Figs. 20 and 21; and applying the same reasoning in regard
to the equilibrated condition of each portion and each layer of the beam,
we shall find the same shearing force in operation but distributed in a very
different manner from what we have seen in the case of the thin-webbed
girder. Of course, the bending moment in each case is proportional to
the distance z, so that the direct stress in the topmost layer of the beam,
as in the top flange of the girder, must theoretically increase regularly
from S towards D; and as there is no force at S pulling the layer
towards the right, the whole of the tensile stress or straining force at D
must be due entirely to the lateral adhesion between this layer and the
one below it, whose action at every point between S and D is to drag
the top layer towards the right, or to prevent it from sliding back in
the manner shown in Fig. 22. This proves in the most conclusive manner
that the lateral adhesion does not alleviate the tensile stress at .D in the
manner erroneously supposed by some writers ; for its action is evidently
exerted in doing exactly the opposite thing.

Again, if we consider the equilibrium of the #wo topmost layers taken
together, we find in the same way that the lateral adhesion, or the shear-
ing force between the second and third layers, is answerable for the
whole of the tensile stress in the two topmost layers at D, and will,
therefore, be nearly twice as great as between the first and second layer—
but not quite twice as great, because the tensile stress in the second
layer is somewhat less than in the first. Thus at each successive
horizontal division, from the top of the beam down to the neutral axis,
the shearing force will be greater than in the division above it, but
greater by a difference which is constantly diminishing.

At the fixed end of the beam, let the varying stresses in the different
layers be represented by the horizontal ordinates in Fig. 32; then the
shearing force between the several layers will
be represented by the corresponding ordinates
/. , in Fig. 33, in which every ordinate ss is pro-
1/ portional to the area D¢rr in Fig. 32. Thus
y, M if DNt and BNp are similar triangles, the
diagram in Fig. 33 will be a parabolic curve;
the shearing force will be greatest at the
neutral axis (where the direct stress is zero) ;
and at the top and bottom of the beam, where the direct stress is
greatest, the shearing force will be nothing; while its average value
throughout the depth of the beam will be two-thirds of its maximum
value NS. At every vertical section of the beam, the total vertical
shearing force must, as in the case of the girder, be equal to the weight

Fig. 84 Fig33
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'W; its average. intensity will, therefore, be g, and as its intensity at any
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point in that section must be the same as that of the horizonal shear-
3w
2av’
which will also be the intensity of the horizontal shearing force along the
neutral axis. :

24. In conclusion, this elementary examination has shown that
bending strain takes place in the simple beam, not by a simple but by a
complex operation. The direct longitudinal strains illustrated in Fig. 21
do not by any means represent the real condition of internal stress in the
beam ; on the contrary, these strains could not be produced by the vertical
external forces, except through the intervention of that shearing force
whose action was most clearly to be seen in the case of the thin-webbed
girder. In that girder, the flanges and the web perform two nearly
distinet functions, the chief function of the web being to change the
direction of the vertical shearing forces. But in the solid beam, every
particle combines in itself the separate functions of web and flange, and
it is perhaps not surprising that the material behaves in a different
manner from that which is observed under a single and direct straining
force.

The difference between the actual breaking weight of a beam, and
that which theoretically produces the ultimate tensile stress, may per-
haps be partly explained by a certain shifting of the neutral axis, which
probably takes place to a small extent when the stress exceeds the elastic
limit ; but this can never account for more than a small part of the dis-
crepancy which is observed in practice, and which has never yet been
explained.

The true explanation may perhaps be obtained at some future time;
but in the meantime we can only determine the strength of a beam of
any given material by direct experiments upon cross-breaking. These
experiments seem to show that the ultimate tensile stress on the extreme
fibre, at the moment of fracture, varies to some extent according to the
figure of the cross-section, being greatest in beams which are very thick
at and near the neutral axis. But in beams of similar cross-section the
ultimate fibre-stress is nearly the same for all dimensions of beam.

It is satisfactory to know that the ambiguity which we have here
noticed, exists only in the case of the simple beam, and that it disappears
entirely in the more efficient forms of construction which are now gene-
rally adopted for bridge-work.

ing force, it will have at the neutral axis a maximum intensity of
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CHAPTER 1V.
THE GRAPHIC REPRESENTATION OF BENDING MOMENTS.

25. Every conceivable form of bridge-construction must possess at
least one feature which is common to all bridges alike, viz., that while
the load is distributed along the whole length of the bridge, the supports
will occur only at certain fixed intervals; so that in all bridges, the ver-
tical lines of action of the several weights and of the contrary supporting
forces are separated by considerable horizontal distances, and conse-
quently these forces exert upon the structure certain turning or “ bending
moments.”

The moments of these vertical forces may be conveniently repre-
sented by diagrams, and the geometrical figures thus produced will be
well worthy of our careful study. They will illustrate very clearly the
leading principles of every class of design, whether the structure be a
girder, an arch, a suspension-bridge, or any kind of truss; and they will
throw some useful light upon the comparative economy of these various
types of construction. They will indicate the figure which is given to
the bridge itself in certain types and classes of comstruction; or if the
bridge is to consist of straight parallel girders, these diagrams will indicate
the stress that must be provided for at different points in the girder. Again,
if the girder is to be made of uniform strength at all points, the diagrams
will exhibit the sectional area required at each point, and the mass of
metal required in the several members; or, if the girder is made of
uniform section, they will measure the varying intensity of stress. In
the last-named capacity the diagrams will virtually form the groundwork
of the theory of deflection, and therefore also of the theory of continuous
girders; and in all ordinary cases they present the most valuable infor-
mation that the engineer can have at his hand for the practical work of
designing the outlines and structural details of the bridge.

The diagram representing the moments of the contrary vertical
forces, will of course depend only upon the magnitude and distribu-
tion of those forces, and will be quite independent of the structural
character of the bridge; so that when the distribution of the load and
of the supporting forces is known, the diagram of moments will be
applicable to any possible form of bridge that can be designed or proposed
for the purpose of carrying the given load.

The load will in general consist of two parts—the dead weight of the
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‘structure itself, and the weight of the rolling load or other traffic which
the bridge may be intended to carry. But in addition to the actual dead
and live load, we must also include, among the downward forces, any
artificial load which may be induced at any point in the structure by
anchoring it down to a fixed abutment.

The actual amount and distribution of the load must, of course, be
carefully estimated in each individual case ; but there are certain elemen-
tary distributions of load which are most generally taken into account,
and the most important cases are—first, when a single concentrated
weight is applied at any arbitrary point in the structure, and secondly,
when the bridge is covered for the whole of its length, or for any
arbitrary portion of its length, by a distributed load of uniform intensity;
and these cases will afford a solution for any other case that can arise in
practice.

26. Case 1. Diagram of Moments for a Single Force.—In Fig. 34
let BC represent a cantilever fixed in a horizontal position by being built
into a wall at B, and let the cantilever be subjected at C to the action of
a vertical force P. This case has already been considered in Art. 21 ;
and the bending moment which takes effect at any point in the beam is
simply the moment (at that point) of the force P.

Let I denote the length of the cantilever BC, and let a vertical
section eg be taken at any point whose horizontal distance from C is
denoted by . Then the bending moment at the section eg will be

“M=Pz . . . ... ... ()

and the greatest bending moment will of course occur at B, where
- MD = Pl e e s s s e s e . (la)

To construct the diagram of moments, Fig. 35, let bc represent the
length of the cantilever, and at b set off the ordinate bd to represent, on
any convenient scale of foot-tons, the moment
— M, =PI and draw the straight line dc. A ‘““"" Y
Then at any other section eg the bending * |
moment — M =Pz will be represented by ”
the corresponding ordinate mk. “

This triangular diagram represents the
moments produced by any single force at
different horizontal distances (z) from its Figas
own vertical line of action ; and the diagram
for every other case may be constructed by
simply superposing the elementary triangular diagrams proper to each
of the forces, in such a position that the vertical ordinates can be
geometrically added or subtracted, according as the force in question
acts in a downward or an upward direction. In the case illustrated the
force P is a load or downward force, and the ordinates mk, bd, &c., are
accordingly set off downwards below the base line ; and in the same way

o]
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when we have to deal with an upward force acting on the right-hand
side of the section eg we shall represent its moment by an ordinate
measured upwards,

In all cases it will only be necessary to consider the moments of
those forces which are applied on one side of the section, because the
moments of the remaining forces must necessarily be equal and opposite.
‘We may therefore imagine that the portion of the beam lying to the left
of any section is held as a fixture, and we may then consider the moments
of the upward and downward forces which are applied on the right-hand
side of the section, treating the moments of upward forces as positive,
and the moments of downward forces as negative.

27. Case II. Graphic Summation of the Moments of Parallel
Forces.—Let the cantilever BC in Fig. 36 be fixed at B as before, and
subjected to the action of any number of parallel vertical forces applied
respectively at the distances X, X, X, &c., from the fixed point B.
Then the bending moment at B will be the sum of the moments due to
each force separately ; or if the forces are so many loads P,, P,, P,, &c.,
the moment will be

-M=3PX=PX,+PX;+ PX;+&c . . . (3)

To find the moment at any other section eg we have first to measure the
distances ,, «,, &c., from the section in question to each of the weights
lying to the right of that section, and the moment will be

~M=32Pzr=Pz, +Ppy+&e. . . . . . . (4)

and at each new section these quantities will have new values.

But the diagram, Fig. 37, will exhibit at once the bending moments
at any and every section; and may be constructed by superposing the
triangles proper to each force, as follows :—

Let the verticals Pyc, P,p, Pss, be drawn at the line of action of each

Figse force, and let the triangular dia-
X, gram bdc be drawn to represent
L" . the moments of the force P,, as in

v’ ¥’ the last example, making db equal

C to the moment P,X,. Also set off
df equal to the moment P,X,, and

i Jr equal to PyXs; and draw the

) N T straight lines fp and 5. Then the
® Ji -t ) pol;('lgonal line 7spc will be the line
—~ or diagram of moments for the

d /. " Figan whole load, and the bending
/ % moment at any section eg will be
given by the corresponding ordi-

! nate mn. The triangles frs and
fdp will be the diagrams for the forces P; and P, respectively; and in
the latter triangle it is evident that the ordinate %n (parallel to df) will



GRAPHIC REPRESENTATION OF BENDING MOMENTS. 4I

represent the moment P,z,,; while mk represents as in the last example
the moment P,z,. Therefore mn=mk + kn = Pz, + Py,

It has already been mentioned that the tnclination of the line of
moments is a measure of the shearing force, and in this diagram it will
be noticed that the inclination at any point % is a measure of the total
load lying to the right of that point, which is of course equal to the
shearing force at the section eg. That is to say, if 6 denotes the angular
inclination of the line with the horizontal, then tan. @ is equal to the
shearing force. Thus at any point between p and ¢, the shearing force is

equal to the load P,, and P, _bid =tan. 0 ; again at any point between s
1

and p, the shearing force is P, + P, -"-(bd + Y\ tan. 6.

Therefore at » the inclination of the lme of moments must always be
a measure of the whole load upon the cantilever; and if the line s is
continued until it intersects the base-line &c, the point of intersection ¢
will indicate the position of the centre of gravity of the whole load ; so
that if the whole load were concentrated at its centre of gravity, the
triangle br¢ would be the diagram of moments.

For br=3PX, and—g-: =tan. § = 2'P; therefore bt is the distance from

b to the centre of gravity of the whole system of weights, and represents
the algebraic fraction EE—P—PX

28. Case III. Moment of a Uniformly Distributed Load.—A load
uniformly distributed may be considered as equivalent to a number of
equal weights placed along the cantilever at equal and very short inter-
vals, so that this is only a particular
example of the last case, and may
be treated in the same way.

In practice, the distributed weight
of the bridge-platform is very gener-
ally conveyed to the girder by cross-
girders fixed at uniform intervals, as
shown in Fig. 38 at S, S;, Sy, &c.
The weight (P) of each panel of the
floor may be supposed to be car-
ried by short intermediate detached
bearers, which will transfer one half
of the panel-weight to each end of
the panel. Thus the load on the

extreme cross-girders at B and C will be equal to g, but on each of the

Py

intermediate cross-girders the load will be equal to the panel-weight P.
The value of the several forces being thus determined, the diagram
of moments, Fig. 39, may be constructed in the same way as in the last



42 CONSTRUCTION OF BRIDGES.

example, and will form a polygonal line ¢, 8, 8, 8,—r, 88 shown in the

figure ; and it will be found that every one of the points, &, &, &c., is

situated in a parabolic curve whose vertex is at ¢; 8o that the line of

moments is & polygon inscribed in that parabolic curve. In fact, the

method of constructing the diagram of moments for this case is one of
the methods by which any number of
points in a parabolic curve may be
traced.

If we now suppose the cross-
¢ girders to be fixed at much shorter
intervals, thus subdividing the load
into proportionately smaller elements,
it is not difficult to see that the poly-
gonal line of moments will approxi-
mate still more closely to the true
parabolic curve cr, as in Fig. 39a,
which is the diagram of moments for
a load uniformly distributed along the
cantilever.

If a tangent 7 is drawn to the parabolic curve at 7, it will intersect
the base-line ¢ in the middle of its length, which point coincides, of
course, with the centre of gravity of the whole distributed load.

Let p denote the intensity of the load per foot lineal, or per unit of
length, so that pl is the weight of the whole distributed load. The dis-

tance (bt) to the centre of gravity of that load is % ; and therefore the
moment at B is

Pig.ssa

%

pe,

,,
/
o| o 1

% S
<

-M=E L)

In the same way, if  denotes the horizontal distance of any section from
the extreme end C of the loaded cantilever, the moment at that section
will be given by the general expression—

-m=P .
M=Z . (®)

It is evident that this expression will also give the value of the bend-
ing moment at any section taken af the point of attachment of either
cross-girder in Fig. 38,

In either case the shearing force at any point in the cantilever will
be the sum of the weights lying to the right of the section. In Fig. 38
this force receives a certain increment at each cross-girder, as shown by
the sudden alteration of slope at each angle of the polygon in Fig. 39.
But in Fig. 384, the shearing force will be simply denoted by pz ; and
according to the well-known property of the parabola, this quantity will
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be represented by the slope of the curve in Fig. 394, or tan. 6. Thusat
B the shearing force will be pl 2 II:—: =tan, 6.

There are several geometrical methods of describing the parabolic
curve of Fig. 394, but in practice there is nothing simpler than to set off
a convenient number of ordinates below the tangent b¢, making mk equal

2
top_;—ineach case,

29. Any irregular load upon the cantilever may be treated in the
same way by superposing the dia-
grams proper to each portion of the
load.

Case IV.—Let the cantilever in
Fig. 40 be covered with a uniform
load of intensity p, and at the same < v
time weighted at the extreme end by

a concentrated load P. Then to con- ? - e
struct the diagram of moments, Fig. 1-/
41, make the triangle dbc to repre- | Figal

sent the moments of the force P as
before, and treating dec as a new base-
line, set off below that tangent the -

ordinates kn equal to%" * The parabolic segment cnr will then be the

Y
Fig40 v

R
&

curve of moments, and at any section eg the bending moment will be

r

given by the ordinate mn=mk + %n ; or expressing the same thing alge-
braically, we have generally

—M=P:c+%z? LW
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and at B the moment will be
M=P2E @)

The shearing force is represented in the diagram as before, and is
algebraically expressed by P + pz.

Case V.—If the cantilever is loaded with any irregular mass, as
indicated by the figure dkfh in Fig. 42, the case may be treated on the
same principles if we divide the mass into thin vertical slices. The
weight of each slice will be represented by its area in the figure, and its
centre of gravity may be taken as coinciding sensibly with the centre of
the slice. The diagram Fig. 43 being then constructed as before, the
polygonal line ¢r will form a series of tangents to the actual curve, and
will practically coincide with that curve if the slices are taken sufficiently
thin.

30. Graphic Summation of the Moments of Contrary Forces.—The
diagram of moments has hitherto been traced only as far as the abutment
wall in which the cantilever is supposed to be fixed ; but it is evident
that beyond this point there must be other forces and bending moments
in operation ; for if we regard the beam as a lever in equilibrium, it must
evidently be held down at the *tail-end ” by a weight sufficient to counter-
balance the load upon the projecting arm, and it must be supported by a
force equal to the sum of all the downward forces. In all cases the
diagram is correct as far as it goes, but it is necessary now to complete
the diagram to the left of the point B.

Casg VL. —Let the cantilever be supported at B as in Fig. 44, and held
down at the point 4 by an anchorage fixed in the masonry. The down-
ward force P,, applied by the anchorage, may be found algebraically by
equating the moments about the fulerum B, which must of course balance
each other ; thus if the external load is a single weight P,, the anchorage-
force will be P, =P, x ;-’; and the bending moment at the section eg will

1
then be given by — M = P2, the distances %, Z,, and z being measured as
- shown in the figure.

But the geometrical method is simpler, and the diagram of moments
may be completed without calculating the unknown force P,. In Fig.
45 let bde represent the diagram for the external load (whatever it may
be), and continuing the base-line, make ba to represent the length of the
arm BA, and join ad. The diagram will then be complete for the whole
length of the balanced cantilever, and the bending moment at any section
eg will be given by the ordinate mk For it is evident that if bd repre-
sents the moment exerted at B by the forces applied to the right of that
point, it must also represent the contrary moment of the force P,, what-
ever may be its unknown magnitude, and therefore the triangle abd must
be the diagram of moments for that unknown force.
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But it will be noticed that this method of calculation or construction
reverses the previous order; for we have considered the arm AB as a
cantilever fixed at B, and loaded at its lef¢ extremity; and it will be
more consistent to adhere to the general rule, and to determine, at every
section throughout the beam, the moments of all forces applied on the
right-hand side of the section.

At the section eg, therefore, we have the moment of the weight P,
acting at the horizontal distance z,, and from this we have to subtract
the moment of the upward force P, acting at the distance 2,

The supporting force P, may be found by equating the moments

about 4 as a fulerum; or algebraically, P, =P, £, and then the bend-
ing moment at eg will be expressed by - M = P‘.'r:l - Py,

But the diagram of moments may be constructed on the same prin-
ciple, and without calculating the unknown force P,. For if the
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straight line e¢d is continued to v, the triangle avc will be the entire
diagram of moments for the force P, and the moment av must be
balanced by the moment of the force P,; therefore joining ad, the
triangle vad will be the diagram of moments for the upward force P,,
the ordinates nk, &c., being measured upwards from vd, and subtracted
from the ordinates mn, &c.

Thus the bending moment at eg will be given by the ordinate mk=
mn —nk, or—M=Pzx, - Pz, The bending moments are of the same
negative character throughout the entire length of the beam, and their
tendency is everywhere to produce a hogging curvature,

31. Case VIL Beam supported at each End and Loaded with a
8ingle Weight.—If the beam A4 C is now supported at 4 and C, as in Fig.
46, and loaded at B with the single weight P,, the case will be the exact
converse of that which has just been considered. For if we disregard the
merely instinctive ideas connected with gravitation, and look at the
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diagrams, Figs. 44 and 46, as ground-plans of a beam under the action
of lateral forces P,, P,, and P, we shall see at once that the two cases
are really identical.

If the forces are merely reversed in direction, and unaltered in mag-
nitude, the bending moments must, of course, have the same value as
before, but will be of the opposite character ; s.e., they will tend to pro-
duce a curvature of the beam which (in the elevation) would be described
as a sagging curvature.

The diagram of bending moments, Fig. 47, will therefore be pre-
cisely similar to Fig. 45, and would be constructed in the same way as
before if the force P, were known; but in practice the weight of the
load P, is generally the only force known, and the value of P, is found

Fig40 .
L >

" ° Figar

algebraically by equating the moments about 4 as a fulerum. Thus
P.L=P,], and P,=P, I’_: In Fig, 47 let the verticals Aa, Bb, C, repre-

sent the lines of action of the three forces ; and at a set off the upward
ordinate av to represent the positive moment of the upward force P,;
making av equal to P.L=P,J;. Draw vc intersecting the vertical Bb in d,
and join ad. Then the triangle ade will be the diagram of moments, and
the bending moment at eg will be given by the ordinate mk =mn — nk,

oo M=Pz,-Py;. . . . . . . (9
The greatest bending moment takes place at B,

where M,=PJ,=P,,.% e 1)

32. If the weight P, in the last example, is placed successively at
different points b,, b, by &c., along the beam, the diagram of moments
will assume successively the form of the several triangles ad,c, adye, &c., in
Fig. 48. Each triangle is constructed by setting up the ordinates av,, av,,
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&c., proportional to the distances ab,, aby &c., i.c., proportional to the
moment P,J,, Then completing the triangles as before described, it will
be seen that the apex d is always situated in a parabolic curve ady,
whose vertex is at the centre of the beam. In fact the method of con-
struction is one of the known geometric methods by which that curve
may be described.

It will be seen that at any given point in the beam, the greatest
bending moment occurs when the weight is placed at that point; and if

°
Sl

the beam is intended to carry a single weight rolling across it, the greatest
bending moment will take place at the centre, where we have—

oL o L
M=P.g=Ppg . . . . .. (1)

At any other point, the greatest bending moment will be—

M='PJ,=P,,.I£? N ()

33. Case VIIL Beam Loaded with two or more Weights and
supported at each End.—Let the beam AC in Fig. 49 be loaded with
two or more weights P,, P, &c., placed at the distances X,, X,, &c., from
the left abutment.

Then at each section eg the bending moment will be the algebraical
sum of the moments of all forces applied to the right of that section, or—

M=Pz-(Pz,+P) . . . . . (13)
The supporting force P, is found as before by balancing its moment
at 4 against the moments of the downward forces, or—
PL=PX, +PX,
Draw the verticals Aa, B)b,, &c., as before, and in the diagram of

moments, Fig. 50, set off the upward ordinate av to represent the moment
of the upward force P, making av=PL=PX, +PX,; also make
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yf=PX, and fa=P,X,. Then drawing vc, we have the triangle awc
denoting the moments of the upward force P, and giving at the section
eg the moment mn due to that force. Join fp and as; and the polygonal
figure aspc will be the diagram of moments.

The triangles vfp and fas will represent the moments of the down-
ward forces P, and P, respectively, and their ordinates being measured
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downwards or subtracted from the positive moments Pz, the bending
moment at any section eg will be given by the ordinate mo =mn — (nk + ko)
or M =Px— (P2, + Psz,).

The same method may evidently be extended to any number of
weights placed between 4 and C.

34 Case IX. Beam covered with a uniform Load and supported
at each End.—This important case may be treated by an extension of
the method last described.

In the first place let the uniform load be conveyed to the main
girders by cross-girders fixed at uniform intervals, as shown in Fig. 51 at
8,Sy &c.  Then, P being the weight or distributed load on each panel,

the load on the extreme points 4 and C will be '};’ but the downward

force at each intermediate point (or cross-girder) will be equal to the
panel-weight P.

The upward supporting force P, will be found as before by balancing
the moment of all the downward forces about A4, against the moment
P.L; and it is evident that P, will be equal to half the entire load.

In the diagram of moments, Fig. 52, make av (=P.L) to represent
the moment of the upward force P, ; and drawing ve, the triangle avc will
be the diagram of moments due to that force alone.

Then subtract the moments of the downward forces, by setting off the
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triangles vde, dd,s,, &c., in the manner already described in Art. 28, and
the polygonal line ¢3,8, . . . a will be the line of moments.

The first triangle vdc will represent the moments of the load 12: applied
to the girder at C, but if that load is carried directly by the masonry
abutment and not by the main-girder, the supporting force P,, acting upon
the underside of the girder, will of course be reduced by the same amount ;
and in that case the triangle adc will be the diagram for the upward
force P, and the first triangle of
moments to be subtracted will then
be the triangle dds, for the load
at S;. It is evident, therefore, that
whether the extreme loadg is car-
ried at C by the main girder or by
the abutment itself, the diagram of
moments will be the same in either
case.

All the angles of the polygon
will be situated in a parabolic curve
asc, whose vertex is at the centre
of the beam; and the shorter we
make the intervals between the
cross-girders, the more closely will the polygonal line of moments approxi-
mate to that curve.

Let the cross-girders be now placed close together, so that the beam
AC is uniformly loaded along its whole length, as in Fig. 51a; and let
the intensity of load per unit of length (or per foot lineal) be denoted by
D, 80 that the weight of the whole load is pL. Then it is evident that
one-half of this load will be carried by each abutment ; and the support-

ing force P, is therefore equal to %I-‘, while its moment at 4 will be

PL=2
At any section eg whose distance from C is denoted by z, the

moment of this upward force will be Px = PLz ; but the weight of the

2
distributed load lying to the right of this section will be pz, and the

horizontal distance to its centre of gravity will be Z so that the moment
gravity 3

of that distributed load will be P%’ Therefore the bending moment at
the section eg will be—

2 -
M=P.z-11;,=p“_(L2_’”) e U
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The greatest bending moment takes place at the centre of the span,

where 2= %‘, and where

M,,_-.’_’BE T ¢ )
At A the bending moment is of course nothing, for at this point the
moments of the upward and downward forces are balanced.
In the diagram of moments, Fig. 524, draw av to represent the

2
moment of the upward force P, making av=P.L =%; and drawing ve

the triangle ave will be the diagram due to the single force P, acting upon
a cantilever fixed at 4. Then subtract the contrary moments of the
Figsta uniform load acting upon the same
[T, cantilever, as described in Art. 28,

[4 = c] te, below .the' tangent ve set off
P']| [fr. the parabolic d.mgmm of downwarc'l
moments vasc, making every ordi

e nate nk equal to the moment P-;

A (as in Fig. 39a). The parabolic
N segment asch will be the required
diagram of moments ; and the
kg bending moment at any section
eg will be given by the ordinate
Fighaa " mk=mn-nk; or M=P;c—2;1

The shearing force is indicated, as in every diagram, by the slope of
the curve, At each section the vertical shearing force acts in an upward
direction on one side of the section, and a downward direction upon the
other side ; the two opposite actions being, in fact, the action and the
reaction of the same dragging force exerted between the meeting edges
of the web-plate. The upward or downward inclination of the curve
towards the left indicates the upward or downward force acting, at any
section, upon the vertical edge of web-plate to the Zeft of the section ; and
vice versd. Thus at C the shearing force is equal to the upward force

P = Z—Z =tan. 6. At any other section the shearing force (upwards on the

left edge) is given by P, — px,; thus at the centre of the span the shear-
ing force is nothing, and beyond this point it reverses its direction, as
shown by the inclination of the curve of moments.

35. If a section is taken at any one of the panel-points such as S, in
Fig. 51, it will be seen that the bending moment at that section is not at
all affected by the manner in which the length z may be subdivided by
the intervening cross-girders. With a uniform load of given intensity p,
the supporting force P, must always have the same value ; and whatever
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may be the number and position of the cross-girders between S and C,
the moments of the downward forces to the right of S, must always

have the valnep—;’: For the weight P of any entire panel S5, will be

equally divided between the points S, and S,, and the sum of the moments
of the two halves will always be equal to the moment of the whole load
P distributed over the panel.

It follows that we may divide the span 4 C into any number of equal
or unequal panels, and in every case the diagram of moments will be a
polygon, having a corresponding number of sides, and inscribed in the
same parabolic curve.

Thus the bridge may be constructed by dividing the span into two
equal panels, A B and BC, the floor being carried by detached bearers resting
upon a central cross-girder at B.! Then if the curve ase, in Fig. 53, repre-
sents the parabolic diagram of moments for the uniform load, the diagram
for the panelled bridge will
be the triangle asc, inscribed ,,i\ Fiess
in that curve ; and the bend- S S AN
ing moment s, in the centre /{/" = ~
of the span, will be exactly = 2= : AN
the same as though the uni- 4
form load were spread along
the main-girders, although
the actual load carried by . s
the girders will be only one- | .- X3
half of the total distributed . .
load. o N

In the same way, if the ; ; A
bridge is divided into three
equal panels, the diagram of moments will be the polygonal figure as,s,c of
Fig. b4, inscribed in the same parabolic curve, asc.

It appears, then, that this method of dividing the span into wide
panels, although it reduces the load on the main-girders, does not really
alleviate the bending stress, except to a small extent between the panel-
points; and even here, it may be remarked, that if we have to carry a
given uniform load, the bending stress represented by the parabolic
curve, must at every point be resisted in some way, if not by the main-
girders. Thus the segmental diagrams s,8s,, &c., contained between the
curve and the sides of the inscribed polygon, represent in the panel-
bridge the respective diagrams of bending moments for the several inter-
mediate longitudinal bearers b,b, &c., considered as detached beams.?

1 It will be remembered that we are considering only the moments due to some
external load (in this case a uniformly distributed load) placed upon the floor of the
bridge ; and not the moments due to the weight of the bridge itself.

3 If the intermediate longitudinals are formed as continuous girders, they will bring

upon the central cross-girder (in the case represented in Fig. 53) a load greater than half
the entire load. The diagram of moments for the main-girders will then be the triangle
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36. Casg X. Beam strained over one of the Supports.—If the
beam AC is not merely supported at the ends, but is strained over one
of the piers, as shown in Fig. 55, the action of the external load or force
at D may be considered separately, and the moments due to its separate
action may be added to or subtracted from the moments produced by any
load upon the span AC.

Suppose the beam to be prolonged beyond the pier C, and in the first
place let the projecting arm or cantilever CD be loaded at the extreme
end with a single weight P;. It has already been shown in Art. 30
that if there is no other load placed upon the beam, the diagram of
moments will be the triangle agd in Fig. 56, in which the ordinate cg
represents the moment of the right-hand force P,, and also the counter-

balancing moment of the
T 4| downward force which

N — must, in that case, be

4 N c b applied by the anchorage
f P, b m P 'd at A.
I Y The beam being in

- this condition, if the
span AC is now loaded
‘\ with a single weight,

or with any system of
weights, the diagram of
moments due to that sys-
tem of weights upon the
detached span AC may
be superposed upon the
line ag as a new base-
line, and the curve of
moments being thus constructed, the bending moment at any point will be
given'by the ordinate measured above or below the original base-line acd.

Ifjthe span is loaded with a single weight P, as in the figure, the
diagram for the detached span will be the triangle asg in Fig. 56, and the
bending moments for the actual case of the strained beam will be given
by the ordinates in the shaded diagram.

To treat the case algebraically we must first find the value of the
supporting {force P, At the fulerum A, the moments of the three
forces must balance each other; f.e, P.L-(P[L+2%]+PX)=0, or
PL=P(L+1L)+P,X; and P, being thus determined, the bending
moment at the section eg will be

M=Px - (P, +P). . « . . (16)
In the diagram of moments, considering first the balance of moments
at A,jthe ordinate a¢ represents the moment P, (L +7,), while va repre-

ade, and the spaces contained between the sides of that triangle and the parabolic curve
will represent the positive and negative moments in the continuous intermediate
bearers.

S
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sents, as before shown, the moment P;X. Therefore v must be the
moment P,L of the unknown supporting force at C'; and joining vg and
as, the line asrgd will be the line of moments, and the bending moment
at eg will be given by mk=mno — (mn + ok).

From a to r the moments are positive or sagging moments, and from
r to d they are negative or hogging moments, 7 being the point of con-
trary flexure of the beam. But in some cases the diagram may lie
wholly below the base-line, so that the beam may be subject to a
negative bending moment at every point. This question will depend
upon the direction of the force applied to the beam at 4, which again
will depend upon the relative magnitude of the loads P, and Pp If
P, is an upward force, the line as will have an upward inclination
towards the right, and some portion of the span AC must then be subject
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to a positive moment ; but if P, is a downward force, the whole length
of the beam will be subject to a negative bending moment.

This will be easily seen if we turn the beam end for end, as shown
in the disgrams, Figs. 57 and 58. Referring to these diagrams, it will be
seen that the unknown forces cannot be found by equating the moments
about Z, but if we consider the beam as a lever balanced upon the ful-
crum 4, and weighted on each side by the loads P, and P,, it will be
ovident that to preserve the equilibrium of the lever, the vertical force at
O must either be an upward or a downward force, as may be required
in order to redress the balance.

In Fig. 58, let the triangle afz represent the moments due to the
weight P, upon the left-handed cantilever AZ, making af equal to the
moment PJ,. Then if vf represents the moment P,X, the ordinate av
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will be the moment of the unknown force that must be applied at C to
redress the balance; and joining ve and fs, the line zfsc will be the line
of moments.

If vf is greater than af, or if P,X is greater than P,J,, as in Fig. 58,
the ordinate av will be an upward or positive ordinate, and the force
P, will be an upward force ; its value being P, = PX EP'!‘-; but if of is
less than af, or P,X less than P/, the ordinate av will be measured
downwards as in Fig. 58a, and the force P, will be a downward force,
which must be applied by an anchorage ; its value being P, = P, ;JP—"X .

In the latter case it is evident that the bending moments will be
negative throughout the beam.

In either case, the upward or downward inclination of the line ev will
represent the shearing force P, ; and in either case the diagram might
have been constructed by erecting upon the base-line fc the triangular

diagram of moments fsc for the beam AC, considered as a detached
8

37. Case XI. Beam strained over both Piers,—If the beam is
prolonged on each side beyond the piers 4 and C, and if the projecting
arms AZ and CD are each loaded at their extreme ends, as in Fig. 59, the
supporting force P, must be determined, as in the last case, by balancing
the contrary moments at the fulerum 4. At this point, we know that
the negative bending moment will be— M,=P[,; and the sum of the
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moments of the three forces to the right must have the same value, or
P,L+L)-PL+PX=P],

In Fig. 60, let afz be the triangular diagram of moments for the
left-handed cantilever AZ, so that af represents the negative bending
moment PJ;, and let at represent as before the moment P, (L +17,).
The next force is the supporting force P, whose value is not known;
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but above the point £, set off uf, equal to the known moment P,X ; then
¢v must be the moment of the force P. For as above,

PL=P;(L+%) + P,X-PJ,
or tv= a + of- af

Therefore draw vg to complete the triangle of moments fvg for the
upward force P,; and draw fs to complete the triangle vfs for the down-
ward force P,. The line 2/sgd will then be the line of moments.

If there had been no load upon the span AC, the diagram of moments
for the two external loads would have been the line zfgd, and the dia-
gram for the actual case may be constructed by erecting upon the line fg
the triangular diagram of moments fsg for the loaded beam AC, con-
sidered as a detached span.

38. Case XII. Beam uniformly Loaded, and Strained over ome
Pier.—Let the beam ZAC in Fig. 61 be loaded at the left extremity
with the weight P,, so that the triangle zfc is the diagram of moments

Fig.6l

Al

due to that load when counterbalanced at C by an anchorage ; and if now
the span AC is covered with a uniform load of intensity p, the moments
will be determined upon the same principle as before, and the diagram
of moments, Fig. 62, may be constructed by erecting upon the line fe the
parabolic segment fsc as for a detached span, making the central ordinate

b8 equal to the moment 1%12, and generally making mk equal to

2. z(L z) The bending moments for the actual case will then be

given by the ordinates in the shaded diagram, measured above or below
the horizontal base-line zac.

Considering the beam as a lever balanced upon the fulcrum 4, the
equation of moments will be expressed algebraically by—

-M,=p;=P_pL
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_ In the diagram, vf represents the moment p-];i of the uniform load

lying to the right of 4, and therefore av represents the moment of the
unknown vertical force applied at C.

For P.L =1£2;3 ~P1,

or av = of - af.

The vertical force at O will be either an upward or a downward force,
according as uf is greater or less than af, in the first case, the bending
moments will be partly negative and partly positive, as shown in the
figure; but in the second case the parabola will lie wholly below the
base-line ac, and the moments will everywhere be negative.

The triangle avc represents, of course, the moments of the upward

force P,; and subtracting the downward ordinate =%, &c., equal to p_;c_”

the remainder, mk, is the bending moment at the section eg. That is
mk=mn —nk, or M=Px - I_’f This last algebraical formula must

be true in any case, whatever load may be applied at Z, but the value
of the force P, will depend upon the load P,.

The diagram shows how the bending moment at any point in the
beam may be made to vary by applying a variable weight at Z, the
moment of that weight (at the pier A) being represented by any variable
ordinate such as af or vf.

Thus, first, if P,=0, the beam will be merely supported at 4, and
the bending moment will be m,k measured above the line fe.

Again, if P, is great enough to exert the moment uf, balancing the
whole distributed load, the beam will be a balanced cantilever, and the
bending moment will be nk measured below the line ve.

But if P, has some intermediate value producing the pier moment af;,
the bending moment at any other point will be mk, measured above or
below the line ac.

In the first case the supporting force P, will be equal to half the

entire load, or —21‘ ; in the second case it will be nothing; and generally

the upward force P, will be less than 2L by the amount of the anchorage-
force which would have to be apphed at C to counterbalance the weight
P,; t.e., the upward force will be P, =1—-—-_"¢, The bending moment
at any section eg may, therefore, be expressed by

- P PO _Ple_ oz pt w(L -2 _M.2
M-Ptz 2 —2' MGL 2 P Mﬂ (17)

or mk=mn—-nk=mn- mm-nk= mk —mm.
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39. Case XTIL. Beam uniformly Loaded and Strained over both
Pjers.—This case, which is illustrated in Figs. 63 and 64, may also be
treated by adding or subtracting the moments due to the several forces,
or summating the moments due to the several loads and their reflex
actions at the two supports, and the summation may be effected by
different algebraic or geometric methods.

If the extreme loads P, and P, are considered first, the diagram of
moments for the beam under this load will be the figure zfgd ; and then
whatever may be the distribution of load upon the span AC, if we erect
upon the base fg the corresponding diagram of moments fsg, as for a
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detached span, the moments for the whole system of weights will be
given by the ordinates in the shaded diagram.
For the uniform load upon AC, we may, therefore, make the central

ordinate 5,8 equal to’%”, and each remaining ordinate m.%k equal to

» a:(Lz—z , and the parabola fsg will be the required line of moments

This is perhaps the simplest method, but we may arrive at the same result
by other means,

Considering the balance of moments at 4, we have—

~M,=PJ,=P(L+1)-PL+EZ.
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In Fig. 64, af is the moment P,J;, and at¢ is the moment Py(L +1,).
Then making vf equal to the known moment £ p LA , the ordinate fv will

represent the moment of the unknown force P¢, as already demonstrated
in Art. 36. Therefore draw vy to complete the triangle of moments tvg
for the upward force P,; and below vg set off the ordinates nk, &c.,

equal to P—;f The parabolic curve fsg will be the required line of

moments.

In this diagram cg represents, of course, the pier moment at C due to
the external load P, ; and if we join fc a8 in the last example, we shall have
L z

mym = =M,%; and in precisely the same way we have mm,=M..

L
in fact, the latter ordinate represents the negative moment superadded by
the imposition of the weight at D, just as the former represents a similar
moment caused by the weight at Z. Therefore if we know the value of
~ the pier moments af and cg, we may measure the bending moment at
any section eg by the ordinate

mk=  mk —mm; — mmy
—AL-2) ez _yL-z
or M=p 3 M“L M, T (18)

So far as the span AC is concerned, it matters nothing whether the
pier moments M, and M, are really produced by single weights, as shown
in the figure, or whether they are caused by any other loads or forces
external to the span.



PART II.

THE GENERAL PRINCIPLES OF BRIDGE-
CONSTRUCTION.

CHAPTER V.
THE COMPARATIVE ANATOMY OF BRIDGES.

40. The art of bridge-building, like other branches of architecture,
" has assumed from age to age a great variety of forms which have been
successively evolved or modified under the influence of new conditions ;
and it would no doubt be interesting to trace the history and progress of
their development, However, we have to regard these structures, not
merely as examples of different styles or ages of architecture, but rather
as means employed for the attainment of a definite end, and more or less
perfectly adapted to their purpose. Therefore, if we attempt to classify,
in some sort of order, the various forms of bridge-construction, we must
divide them into groups, genera and species, according to the distinctive
mechanical features of their structure, considered as means for the accom-
plishment of a definite object.

In designing a bridge there are, of course, many practical objects to
be kept in view, and some of these will vary according to the local con-
ditions of each case ; but supposing the number and width of the spans
to have been determined by reference to such local conditions, we may
say, broadly, that the duty which every bridge has to fulfil is that of
carrying a certain load across a span or spans of certain defined width.

If we accept this as a general statement of the problem, we may still
more closely define its terms by saying that the function which every
bridge has to perform is, to resist the “bending moments” due to the
given load. In the last chapter we examined the moments which are
produced by certain dispositions of the contrary vertical forces acting
upon the bridge, viz, the weights acting vertically downwards and the
supporting forces acting vertically upwards; and it was remarked that
these moments are' quantities which depend only upon the magnitude
and disposition of the forces themselves, and not upon the structural
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character of the bridge. Therefore, whether the bridge is to have the
form of a girder, an arch, or a suspension-bridge, or to be constructed on
any principle yet unknown, the moments will have the values that have
been already found, and the bridge will have to resist these moments by
one means or another. In the case of a beam or girder, the “ moment of
resistance” at every vertical section, must be equal to the bending
moment ; and we have only to consider in what way the necessary
““moment of resistance” can be made up by varying either of its com-
ponent factors, viz., depth of girder and stress of flange. On the other
hand, if the bridge is to have any other form than that of a girder, we
must inquire by what forces or internal stresses the same moments are
to be resisted.

For the purpose of this classification, we shall consider only the
moments due to & uniform load ; leaving the variable rolling load to be
dealt with later. In bridges of moderate dimensions, the dead-weight of
the structure itself, and of the roadway or railway which it supports, may
generally be taken as uniformly distributed ; therefore, the results now
to be found may be taken as applying to the dead load only, or to the
total dead and live load uniformly distributed.

41. Girders.—Taking first the large and well-known family of girders,
we can hardly omit to mention the solid beam, which appears to be the
oldest representative of the family. In the solid beam, the “moment of
resistance ” is made up of the separate moments produced by the stress of
each individual fibre acting at its own distance from the neutral axis;
but this fact renders it such a very inefficient structure that we can
hardly include the solid beam in our catalogue of bridges. In every
modern girder, the resisting fibres (at each vertical section) are concen-
trated as far as possible in a pair of thin flanges at the extreme top and
bottom of the section, so that in each flange all the fibres are acting
practically at one distance from the neutral axis. The horizontal stress
in the two flanges will then have the same total value in each, and the
“moment of resistance” will be simply the horizontal stress of either
flange multiplied by the vertical depth of the girder.! Therefore, if we
divide the bending moment at any vertical section by the depth of the
girder, we have the horizontal component of the stress in either flange.

Looking now at the diagram of moments for any given distribution
of load, it will be seen that the moment varies at different points in the
span, and the varying moment of resistance may be provided by either
of two opposite methods—we may have a uniform depth of girder and a
varying strength of flange, or we may have a varying depth of girder and
a uniform horizontal stress at every point in each flange.

1. If the girder is formed with straight parallel flanges, or if the

1 This is a broad statement of a general rule, which is modified in some cases owing
to the fact that the web or bracing will sometimes take a share in resisting the bending
moment. The rule, however, is practically correct when the web consists of thin plate,
or of numerous lattice bars inclined at equal angles in opposite directions.
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depth of the girder is uniform, the flange-stress will be everywhere propor-
tional to the bending moment, and we may take the diagram of moments
as representing, on a certain scale, a diagram of flange-stress.

2. On the other hand, if we take the diagram of moments as indicat-
ing on a certain scale the varying depth of the girder, or in other words
if we make the depth of girder everywhere proportional to the bending
moment, the horizontal stress in each flange will be uniform throughout
the length of the girder.

By way of illustration, let Fig. 66 be a parabola representing the
diagram of moments for the uniform load, drawn to any convenient
scale ; and let this figure be cut out of a board of uniform thickness,
thus producing a solid of the shape sketched in Fig. 66a, whose eleva-
tion and plan are shown in Figs. 65 and 66.

Every transverse section of the model (like that shown in dotted
lines) will be a rectangle, whose area may be understood to represent the
bending moment, while the height and breadth of the rectangle represent
respectively depth of gir- Figes

der and stress of flange ; Flgsos :

and whichever way we I i ]
turn the model, we may

take its vertical side m Figse
to represent the outline \
elevation of the girder,

and its ground plan to
represent the diagram of stress. As it stands in Fig., 66a, the vertical
side represents the elevation of a straight parallel girder, and the vary-
ing flange-stress is represented (on a certain scale) by the varying width
of the model ; but we can turn it up the other way, and its vertical side
will then represent either a parabolic bowstring or an inverted bowstring,
and the uniform width of the solid will measure (on the same scale as
before) the uniform horizontal stress in the flange.

'We may do the same for any other distribution of load, and for any
other distribution of the supporting forces, and it follows that all the
diagrams traced in the last chapter will represent so many bridges, can-
tilevers, or trusses; and generally every diagram of moments represents
the outline of a framed structure which will carry the given load with a
uniform horizontal stress in the principal members.

Woe shall first divide the family of girders into two principal groups
in accordance with these distinguishing features.

42. Division A. First Group. Parallel Girders.—In the first
instance we shall suppose the uniform load to be continuously supported
by the main structure of the bridge. The several forms of construction
which may be employed for this purpose, together with their correspond-
ing diagrams of flange-stress, will be found illustrated in tabular form
in Plates A and B at the end of this chapter, and will constitute the
bridges of Divisions 4 and B.
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In every Division the First Group will consist of parallel girders
with a thin plate web.

Referring now to Plate 4, we have in Example No. 1 the case of a de-
tached girder of uniform depth, supported at each end. The stress-diagram
for this case will be a parabolic curve similar to the diagram of moments
found in Art. 34. The moment at the centre of the span was found to

be M, =?%iz, in which p is the intensity of the uniform load, and L the
width between the supports. Therefore, if d represents the depth of the

girder, we have the maximum flange-stress +H, =%; and at any other

point in the span, the stress will be + H =p¢(];d" z) ; being a compressive
stress in the upper flange, and a tensile stress in the lower flange. These
stresses are represented by the parabolic diagram of stress, which, as in
every example, is drawn immediately below the elevation of the girder.

In Example No. 2, we have a parallel girder of the same depth,
carrying the load across the same span AC, but under very different
conditions of stress, owing to the fact that the girder is not merely sup-
ported at A and C, but is also held down at I and J, or counterbalanced
by the weight of the side spans; so that each half of the bridge is
balanced upon the pier, and becomes a cantilever projecting out from the
pier to the centre of the opening. The girder may, indeed, be actually
divided at the centre, each cantilever being entirely independent of the
other.

The moments for each cantilever were found in Art. 28; and the
stress-diagram for the whole span 4 C will consist of the same parabolic
curve as that employed in Example No. 1; but the curve will be wholly
below the base-line, the vertex of the parabola touching the base-line
at the centre of the span. At the centre, therefore, the stress will be
nothing, but at the supports 4 and C it will have the maximum value

FH,= :Hc=’—’81‘7’, being a tensile stress in the upper flange, and a com-
pressive stress in the lower flange.

Example No. 3 represents another class of cantilever-bridge, in
which the cantilevers project from each pier towards the centre of the
opening, but do not quite meet ; the gap left between them being crossed
by a detached girder resting upon the ends of the cantilevers. If the
bridge is constructed throughout with girders of one uniform depth, it will
still belong to the First Group in which the stress-diagram is a reproduc-
tion of the diagram of moments. As explained in Art. 39, the diagram
will again consist of the same parabolic curve as in the two previous
examples ; but instead of being wholly above or wholly below the base-
line, the curve will be cut through by that line at the two points of
contrary flexure T'T, and at these points the stress will, of course, be
nothing, The central detached span 7'7' may be treated as in Example
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No. 1; and if I represents the length T'T, the flange-stress at the centre
will be +H, =p£; and then we shall have the stress at either of the

8a
piers 4 or C, FH,= :;H,=%I§-H,

The stress at either pier added to the stress at the centre must always
make up the same sum, their united value being represented by the total
height of the parabola. Thus, if we make the central detached girder
longer or shorter, the effect will merely be that the straight datum-line of
the diagram must be drawn at a lower or a higher level ; and in this way
the stress-diagram may be made to take any form intermediate between
those of Example No. 1 and Example No. 2. Again, if the girder is
‘continuous across the three spans, we may produce the same variations
of stress, if we arbitrarily increase or diminish the “pier moments” by
increasing or diminishing the load upon the ends Zand J. In fact, the
example here illustrated, may be taken as the type of several kinds of
bridge in which these variations of stress are produced—either arbitrarily
or in accordance with the laws of elasticity, as in the case of continuous
girder-bridges.

43. 8econd Group. Parabolic Girders.—The bridge-structures form-
ing the Second Group of our classification will be derived from the girder-
bridges of the First Group by the simple process of conversion referred to
in the earlier part of this chapter. That is to say, in each example of
the parallel girders we shall take the stress-diagram for the new elevation,
and the rectangle which formed the elevation of the parallel girder
will then be the new stress-diagram.

The resulting forms of bridge-construction are those illustrated upon
the second line in each of the Plates 4, B, C, and D.

It will be seen that this group includes a number of structures of
widely different forms; but in Plate 4, which we are now considering,
all the girders of this group will have a parabolic outline.

Turning to the first column of Plate 4, we have immediately below
No. 1, the derived form illustrated in Example No. 4, which represents
the well-known parabolic bowstring. The girder corresponds in figure
with the stress-diagram of No. 1, and consists of a curved upper member
or “bow” erected upon a straight chord or tie. Under the uniform load,
the horizontal stress in either member of the parabolic bowstring will be
the same at every point in the girder, and the stress-diagram will there-
fore be a rectangle as shown in the Plate ; it being understood that the
height of this rectangle represents the direct stress in the lower flange, or
the horizontal component of the inclined stress at any point in the curved
bow. If D denotes the maximum depth of the girder, the uniform hori-
zontal stress will be :H:%.

If we proceed to treat the cantilever-bridge (No. 2) in the same way,
we shall obtain a pair of parabolic cantilevers meeting at the centre of
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the span, as shown in example No. 5, in which the figure of the bridge
corresponds with the stress-diagram immediately above it. Therefore, as
the depth of the cantilevers is everywhere proportional to the bending
moment, the horizontal stress in each flange will be uniform throughout,
and will have the value FH= ’!g%)lf’ in which D represents the maxi-
mum depth of the cantilever, or the height of the parabolic curve.

Referring now to girder-bridge No. 3, consisting of a continuous
girder with two points of contrary flexure, or consisting of two canti-
levers with a detached girder between them, we may again take the
stress-diagram as the outline elevation of a bridge, which we may call a
continuous girder of varying depth, or a cantilever-bridge with a central
bowstring. This form of construction is illustrated in Example No. 6 ;
and as the depth of girder or cantilever is everywhere proportional to the
bending moment, the horizontal stress throughout each flange of the
whole structure will be uniform.

Now if D represents as before the total height of the parabola, or in
this case the sum of the heights of the cantilever and of the bowstring,
the horizontal stress in each flange will again be represented by the same
formula, or + H = %I—]‘;, being of uniform value throughout the span;
but in this case the straight member will be everywhere in tension, and
the curved member everywhere in compression. In this parabolic form
of design it will be seen that the stress does not depend upon the width
which may be adopted for the intermediate bowstring ; we may make the
central bowstring as narrow as we please until it vanishes (as in No. 5);
or as wide as we please until it covers the whole span (as in No. 4); but
if we adhere to the same total height of parabola, the uniform horizontal
stressin the curved member, and the uniform stress in the straight member
will always have the same value.

44. The two groups of girder-bridges are broadly distinguished from
each other by the different way in which the stress is distributed along
the flanges ; but they are perhaps even more clearly distinguished by the
very different manner in which the shearing force is resisted. In straight
parallel girders the stress of the flanges is exerted in a horszontal direction,
so that the vertical shearing force can only be resisted by the vertical
component of the diagonal stresses in the lattice bars or web; and it is
the horizontal components of these same diagonal stresses which produce
the difference between the successive values of the flange-stress at two
different points along the flange. Therefore, without the lattice bracing
or web, these parallel girders would be quite incomplete, and totally unable
to carry their own weight or any load whatever. The flanges could suffer
no horizontal stress, and could offer no resistance to the vertical forces,
except through the intervention of the diagonal bars. In other words,
the compressive and tensile stresses which are shown in the stress-diagram
are entirely due to the horizontal pull or push of the lattice bars, or of the
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plate web ; for it will be observed that the stress is not carried through
the flanges from end to end, as in a strut or tie, but is picked up gradually
on the way from each end towards the centre, being derived from the
force which is applied continuously, at each step of the way, by the web.

But in parabolic girders, and in all girders or trusses of the Second
Group, these conditions are reversed. It has been [shown that in all
bridges the vertical shearing force is measured by the snclination of the
curve of moments at each point in the span. In structures of the Second
Group, the inclination of the curved member is everywhere equal or pro-
portional to that of the curve of moments; and the consequence is that
the vertical shearing force is exactly met and resisted by the vertical com-
ponent of the stress in that curved member, so that none of it remains to
be borne by the diagonal bracing.

Again, we have seen that the horizontal stress in each flange runs
right through from end to end, and is uniform along the whole length ;
therefore none of it is due to any local action of the bracing, but the
whole of it is derived from the horizontal force which, at each end of the
flange, is exerted upon it by the other flange. Thus, referring to the
bowstring girder in the first column of Plate 4, the uniform tension
throughout the tie is due entirely to the horizontal force exerted upon it
at each end by the thrust of the bow; or we may say that the horizontal
compression of the bow is due entirely to the force exerted upon it by
the pull of the tie.

The same remarks apply also to the parabolic cantilever bridgs, and
the cantilever-and-bowstring bridge, illustrated in the second and third
columns of the Plate.

It follows, therefore, that in structures of the Second Group, under the
uniform load, all the essential functions are performed by the two flanges
of the girder without the aid of any web or lattice bracing. The two
principal members really form the complete structure, with the exception
that if the roadway is to be carried across at a uniform level, it must
of course be suspended from or supported upon the curved member by
vertical rods or pillars. Under the uniform load, the diagonal bracing
has no function to perform, and might in fact be dispensed with if the
load were subject to no variations.

45. Third Group. Arches.—We have just said that in the parabolic
bowstring girder, the diagonal bracing might really be dispensed with so
far as the uniform load is concerned, and we may now add that the hori-
zontal tie may also just as well be dispensed with, if in place of its
action we substitute the horizontal resistance of a pair of solid abut-
ments. In fact, the essential function of the tie is to receive the
horizontal thrust of the bow at each end; and if we make the ends of
the bow to abut against the masonry, the thrust will be received by the
abutments, instead of by the tie. Thus, if we slide the bowstring girder
down between two vertical walls, as shown in example No. 7, we may
safely proceed to disconnect one end of the tie from its attachment to

E
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the bow, and its office will then be just as well performed by the resist-
ance of the abutment-walls; the tie will be doing nothing and may be
removed, and the structure will then become an * equilibrated linear arch.”

No demonstration is needed to prove that the parabolic arch will be
in equilibrium under the uniform load ; for we have seen that the para-
bolic bow of the bowstring will support that load without the aid of any
tie or any diagonal bracing, and therefore will be in equilibrium under
the forces impressed upon it by the abutments and the vertical suspend-
ing rods, and this is exactly what ¢ meant by an equilibrated arch. We
may note, however, that the reason why the arch is in equilibrium is
because it corresponds in figure with the curve of moments for the given
load ; the parabolic bowstring was made to conform in figure with the
diagram of moments, and the result was that the horizontal stress in the
bow was uniform throughout, and this uniformity of horizontal stress is
the necessary condition of any equilibrated arch or ¢ funicular polygon.”
The same result will follow if any other distribution of load is treated in
the same way ; and generally the curve of moments, for any given load,
represents the figure of a linear arch which would be in equilibrium under
that load.

It will be noticed that in the arch of No. 7 nothing has been done to
affect in any way the vertical forces acting upon the bridge ; the disposi-
tion of the load and of the supporting forces remain unaltered, and at
every point in the span the moment which we have called the *bending
moment” has to be resisted as before ; but in the arch the resisting couple
consists, not of a pair of opposite stresses, but of the horizontal stress of
the arch and a horizontal force acting along the line of an imaginary
straight member, i.e., along the dotted chord line joining the two ends of
the bow. In fact the only difference is that the latter force, instead of
being exerted at each point by the tensile stress of a strong and heavy tie,
is invisibly carried across the span in thin air, and without the employ-
ment of any metal whatever.

The arched structures forming the Third Group of our classification will
therefore be derived from the girders of the Second Group, by simply taking
away, in each case, the straight horizontal member of the girder. The
resulting forms are illustrated upon the third line of Plates 4 and C.

‘We have already discussed the transmutation of the bowstring No. 4
into the single arch of No. 7 ; and referring briefly to the parabolic canti-
lever bridges Nos. 6 and 6, it may be remarked that in each case the
curved member is perfectly adapted to carry the uniform load alone, as an
equilibrated arch, if it is only abutted against solid masonry piers at the
springing, or is in some way subjected at each end to the necessary hori-
zontal compressive force ; and the straight member then ceases to be of
any use. In the purely cantilever bridge (No. 5) the straight member
acts simply as a tie between the crowns of the two semi-arches which
spring in opposite directions from each pier; but if the semi-arches are
allowed to come together in the centre of the span, the horizontal com-
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pressive stress at the crown of the arch will take the place of the force
exerted by the tie; and a series of such equal-armed cantilevers may
therefore be transformed into a series of arches, as shown in No. 8, by
simply taking away the straight member. The load will then be carried
by the curved member, as an arch, without altering the stress in that
member ; the opposite thrusts of the semi-arches will balance each other
at the crown without the aid of the straight tie, and the opposite thrusts
at the piers 4 and C will also balance each other, so that under the
uniform load these piers will only have to afford a vertical support to the
superstructure ; but of course the necessary horizontal compressive force
will have to be supplied by the reaction of the extreme abutments at each
end of the series of arches.

Again, the parabolic cantilever-and-bowstring illustrated in No. 6 may
in like manner be transformed into an arched bridge, as shown in No. 9,
provided that the thrust of the arch be taken up by the horizontal resist-
ance of solid abutments.

The tensile stress of the straight member, acting on the line I.J, may,
if we wish, be exactly reproduced by a horizontal force acting in the sams
line, and produced by the reaction of fixed abutments at Iand J, for,
under the supposed uniform load, the thrust of the side arches will be the
same as that of the central arch. However, so far as the central span
AC is concerned, it is evident that the same object may just as well be
attained by applying the reaction at the springing of the arch; z.e., by
making the piers 4 and C as fixed abutments,

Looking at the three examples, Nos. 7, 8, and 9, it will be seen that
the structure which carries the load across the span AC is the same in
each example, and the arch is in each case subjected to the same stress,
although the three examples have been derived from three different types
of girder-bridge, by employing in each case the curved member of the
girder alone, and dispensing with the horizontal tie. The roadway may
in each case be carried at the level of the dotted line representing the
position of the original straight member; and if this is done the straight
member may remain as a portion of the suspended roadway platform ;
but it will have no direct stress under the uniform load ; and it is obvious
that the roadway may be carried at any higher or lower level as may be
most convenient.

46. Division B.—If we invert all the bridge-structures which have
been described in Division 4, we shall obtain another series of designs
possessing very similar features, except that the inversion of form is
accompanied by a corresponding reversal in the character of the stress.
Thus turning once more the imaginary model upon its opposite side, we
have the several forms of structure illustrated in Plate B, together with
the corresponding stress-diagrams for each case.

The parallel girders of Group 1, which are shown at the top of each
column, remain of course unaltered in form, and the stresses have the
same value as before ; but the stress-diagrams are drawn in their inverted
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form ; and if the diagrams of Plate 4 are taken to represent the stress
in the upper flange, the inverted diagrams of Plate B may be understood
as representing the opposite stresses in the lower flange of the parallel
girders.

47. Passing on to the parabolic girders of Group 2, we have in No. 10
an inverted parabolic bowstring, in which the straight horizontal member
is subjected to a uniform compressive stress (under the uniform load),
while the curved member suffers a tensile stress whose horizontal com-
ponent is uniform throughout the span, the value of the stress in each
member being exactly the same as in the upright bowstring of No. 4, but
of the opposite kind.

Again, in No. 11, we have the diagrammatic representation of a pair
of parabolic cantilevers meeting in the centre of the span, in which the
depth of girder is everywhere proportional to the bending moment, the
figure of the bridge being derived from the stress-diagram above: and of
course the horizontal stress in each member is again uniform throughout,
and has the same value as in the cantilevers of No. 5. ‘

Referring now to the cantilever-and-bowstring of No. 12, it will be
seen that if we make the elevation to correspond exactly with the stress-
diagram of the continuous girder above, the central girder will be an
tnverted bowstring ; but if we wish to preserve a uniform height of clear
headway under the bridge, we may erect the central bowstring in an
upright position, and if we do not alter its depth the stresses will still
have the same value ; and the depth of girder being everywhere propor-
tional to the bending moment, the horizontal stress in each flange will
again be uniform throughout the span, and will have the same value as
in the upright form of No. 6.

In all the upright parabolic girders of Plate 4, without exception, the
straight member was everywhere in tension and the curved member
in compression ; and in the inverted bridges of Plate B the reverse will
be found to take place throughout every example, if in the case of No. 12
the central girder is an inverted and not an upright bowstring.

48. Continuing the classification upon the same principle, the Third
Group of Plate B will naturally consist of Suspension Bridges; and these
forms will be derived from the several examples of Group 2, by simply
removing the straight horizontal member of the girder.

In the inverted bowstring of No. 10, the straight member only per-
forms the function of a strut, and if the two ends of the curved tie or
chain are made fast to the masonry abutment, or tied back to a heavy
and solid anchorage, the strut may be removed and the curved tie will
become a suspension chain which is in perfect equilibrium under the
uniform load. The chain will be in equilibrium because its figure corre-
sponds with the inverted curve of moments for that distribution of load ;
and generally the tnverted curve of moments, for any given load, represents
the figure which would be assumed by an equilibrated flexible chain under
that load.
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In the same way the curved tension member of the Cantilever Bridge,
No. 11, is perfectly capable of supporting the load without the assistance
of the lower compression member, if the curved members are only coupled
together at the centre of the span, and at each abutment are tied back to
a solid anchorage ; and the bridge then becomes the ordinary suspension
bridge of No. 14.

Referring, lastly, to the cantilever-and-bowstring of No. 12, it will be
easily seen that if the central portion is an #nverfed bowstring, and if the
curved member of that bowstring is coupled at each end to the tension
member of the cantilever, the whole will form a continuous parabolic
chain, which, without undergoing any change of stress, would carry the
load across the whole span as a suspension bridge. Therefore if at each
abutment we tie back the tension member of the cantilever, as in
example No. 15, the straight member will be relieved of the whole of its
stress, and may be dispensed with, or employed only as a portion of the
roadway platform.

It may here be remarked that, in this and in every example of Group 3,
the straight member, if retained in the position shown, may be connected
to the curved member by diagonal bracing exactly as in the correspond-
ing girders of Group 2; and if this is done, the bracing will have the
same function to perform, namely, that of securing the rigidity of the
bridge under the rolling load, and will perform that function in the same
manner as in the girders of Group 2. This need not affect the general
character of the structures as arches or suspension-bridges, provided that
certain conditions are observed in their construction,; but these we shall
have to consider further, when dealing with changes of load and changes
of temperature.

49. Division 0.—The primary object of the bridge (from our present
point of view) is to support a uniformly distributed load, but this load,
instead of being attached directly to the main structure, as in the previous
examples, may be carried upon short bearers, which in their turn are sup-
ported by the main structure ; so that the load actually carried by the
latter consists of a number of concentrated weights applied at certain
intervals,

It has been pointed out in Art. 35, that if the subsidiary bearers
are so many detached spans (and not continuous beams), the effect of this
subdivision will be to change the diagram of moments from a parabolic
curve to a polygon inscribed in that curve. It follows, of course, that in
the parallel girders of Group 1, the stress-diagrams will be correspondingly
changed, as illustrated in Plate C.

In this Plate, the examples shown in Nos. 16, 17, and 18 represent
parallel girders of the same span and depth, in which the length is
divided respectively into two, three, and four panels or subdivisions, by
cross-bearers ; the load being carried by subsidiary longitudinal beams
resting upon the cross-bearers. The diagrams of flange-stress will then
become polygons of two, three, and four sides respectively, inscribed in
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the same parabolic curve ; and at each cross-bearer, the flange-stress will
have the same value as though the load were supported continuously by
the main girder,! because each angle of the polygonal diagram exactly
touches the parabolic curve.

Again, adhering to the method of classification before described, we
may use these stress-diagrams as the outline elevations of a series of
bridge-trusses forming the girders of Group 2; while the rectangular
elevation of each parallel girder will become the stress-diagram for the
principal members of the truss. Thus, in the examples of Group 2,
shown in this Plate, we have in Nos. 20, 21, and 22, illustrations of poly-
gonal trusses consisting of two, three, and four panels respectively. Ineach
of these trusses or g'i.rgers, the principal members are a horizontal tie and
an upper compression member of polygonal form, whose angles or joints,
in each case, touch the circumscribing parabolic curve; and if D is the
height of that curve, the horizontal stress throughout each flange or
principal member will again be expressed by the formula +H =£81]—‘;.

If the span is divided into an even number of equal panels, D will
represent the central depth of the truss or polygon ; but if the number is
odd, the central panel will of course be somewhat less in height than the
vertex of the parabola, because the upper member will form a chord to
that segment of the curve. Thus, for example, in the three-panelled
truss 2 of No, 21, the height of the truss is evidently less than the height
D of the parabola.

It is obvious that the larger we make the number of panels, the more
closely will the polygon approach to the parabolic curve, and even in the
four-panelled truss of No. 22 we have a girder which differs but slightly
from the parabolic bowstring of No. 4. It is worthy of notice, however,
that when the parabolic bowstring is constructed with open panels or bays
of diagonal bracing, the load is not really applied uniformly along the
bow, but, on the contrary, the entire load (except the mere weight of the
bow) is concentrated at the joints of the bracing; and strictly speaking,
therefore, the proper form of the bow or arch is not the parabolic curve
but the inscribed polygon.® Thus all the curves of the several examples
in Tables 4 and B will have to be changed into polygons if the uniform
load is really subdivided and concentrated at the joints.

1 This is not striotly true unless the bearers are detached beams ; if they form con-
tinuous beams, the effest of continuity will be to’increase the load carried by some of the
cross-bearers, and to diminish that portion of the load which is transferred directly to
the abutments.

3 The three-panelled truss is included here in the classification consistently with the
general rule ; but in practice the stresses in such a truss may be found by other methods
more conveniently, than by the formula above given, in which D represents no real
dimension of the truss; and the same remark applies also to the derived forms, Nos.
25, 29, and 33.

3 If the load is uniformly distributed along the lower flange, the subdivision of the
load and its concentration at the panel-points, are effected by the lower flange itself,
acting as a series of continuous bearers, or discontinuous bearers, according to the form
of the flange.
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In very large bridges, however, the weight of the bow becomes a
considerable item, and when the panels are wide it becomes necessary to
go to a still greater refinement of calculation, treating the weight of the
bow itself as a uniform load, and the remaining weight of the structure
and roadway as a load concentrated at the joints. In this case, it is not
difficult to see that the proper line for the bow (or chain or arch) will lie
between the polygon and the circumscribing curve, forming a series of
flat curves instead of a series of straight chords.

Amongst the panelled or subdivided bridge-structures of the present
division, the Third Group will naturally consist of polygonal arches, which
are derived from the trusses of Group 2 by leaving out the straight tension
member. These are shown on the third line of Plate C, in examples
Nos. 24, 25, 26, and 27 ; but it will be unnecessary to discuss these forms
in detail, as they are all derived in the eame way as the parabolic arches
of Plate 4, and mutatis mutandis the same principles will apply to both
divisions alike.

50. Division D.—For the reason just stated it will be sufficient to
glance briefly at the examples of Plate D, which are simply inverted
repetitions of the structures last considered. The arrangement of the
groups is carried out on the same principle as before. In the First Group
of parallel girders, the stress-diagrams are drawn in their inverted form ;
these diagrams are then used as elevations of the inverted polygonal
trusses of Group 2; and lastly, by removing the straight horizontal
member, these several trusses are transformed into so many straight-link
suspension bridges, and constitute, in that form, the Third Group of the
Division. : ‘

51. The list of bridge-structures is already tolerably extensive, and so
far as we have yet gone, it will be noticed that all these forms of con-
struction are connected by a sort of family relationship, so that they can
all claim to be descended from the simple girder of No. 1 and its diagram
of stress. In fact we have really sketched the genealogical tree. Some
of the examples here shown are merely ideal forms, or structures in their
embryonic stage ; and every one of them must be taken as representing no
more than a single type of a class which is capable of many variations in
detail.

Thus we maytake the First Group as including all the different varieties
of parallel girder, which will severally be distinguished according to the
arrangement of the web or bracing. It has been shown how, with a
plate web, the stress-diagram was modified by the subdivision of the
load, or spacing of the cross-bearers; and when we abandon the con-
tinuous plate web, the diagram will receive another modification depend-
ing upon the special arrangement of the diagonal bracing which takes its
place.
The Second Group will include all girders or trusses in which the
depth is made proportional to the bending moment under the uniform
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"load ; and therefors, in addition to the forms shown in the tables, it will
also include such structures as the “sickle” girder shown in Fig. 67, and
the *Saltash” type, or bow-and-chain bridge, sketched in Fig. 68. In
each of these figures, the two principal members are supposed to form
parabolic curves, and therefore, the depth being everywhere proportional
to the bending moment, the horizontal stress will be uniform, and will
be expressed by the same general formula as before, the depth D being
understood to be the maximum depth of the girder.

Again, the two curved members of the ¢ Saltash” bridge may be set
back to back as shown in Fig.369, or made to intersect each other as in

Fig. 70, thus producing in the one case a

gl pair of cantilevers and in the other a canti-
m lever-and-girder bridge; but if the same
curved members are used in each case with-

Fig68 out altering their form, the stress under the
<iz> same uniform load will be the same (in each

case) as in the ‘¢ Saltash ” bridge.
‘We shall also have another class of girders

‘o Fieeo ‘a of varying depth, coming between Groups

1 and 2. Thus, in the case of a detached

span, the girder may have a * hog-backed”

<>,g°><>_ form, as in Fig. 71, intermediate between

the rectangle and the parabola, which are

shown in dotted lines, and which represent a parallel girder and a bow-

string of the same maximum depth. In the same way cantilevers may

be formed as shown in Figs. 72 and 73 ; so that the depth is somewhat

reduced at the points where there is no bending moment, but is not

reduced at those points to absolutely nothing—as it would be if the depth
were made proportional to the bending moment.

If we compare either of these forms with a parallel
girder of the same maximum depth, it will be seen that
. the flange-stress in the centre is exactly the same, but
near the ends it is greater than in the parallel girder,
and as a natural consequence the stress throughout the
bracing will on the whole be less than in the parallel
girder. On the other hand, if we compare them with
the parabolic girder of the same maximum depth, the
flange-stress in the centre will be the same, but near the
ends it will be less than in the parabolic girders, and
consequently the stress in the bracing will be greater.
Throughout all the parabolic and polygonal girders of Group 2, the stress
in the bracing is{nothing under the uniform load; but in this interme-
diate group of girders and cantilevers, the uniform load will produce stress
in the diagonal bracing.

These local variations of depth are of considerable importance in the
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case of cantilever bridges. Near the ends of the cantilever, the bending
moment is very small, and in the parallel girder the depth at this point
is out of all proportion to the vanishing sectional area of flange, while in
the parabolic girder the same disproportion exists in the opposite direc-
tion; and it may readily be imagined that a via media may be found
which offers greater advantages than either of the extreme types.
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CHAPTER VL

THE COMPARATIVE ANATOMY OF BRIDGES (condinued)—
COMBINED OR COMPOSITE BRIDGES.

52. In addition to the forms of construction enumerated in the last
chapter, we still have to notice a certain class of bridges whose design
appears to have been based upon a different idea. In these bridges, the
duty of carrying the whole distributed load, or of carrying the series of
panel-weights into which the load may be divided, is not performed by
a single main structure, but by a combination of structures or systems,
each of which is designed to perform a certain portion of the duty.

‘When the functions of each system are clearly distinct, there is no
difficulty in finding the stress and the necessary strength of each member;
but sometimes the systems are so combined together, that two or more of
them offer their support to the same element of the load ; and in this case
a doubt arises as to which of them is to carry it, or in what proportion
they will divide it between them ; and generally the question can only
be decided by reference to the laws of elasticity.

‘We may designate as “ Composite” structures those which are com-
posed of separate systems, each carrying its own portion of the load ; and
“ Combined ” structures will be those in which two or more systems offer
their combined support to the same element of the load. Referring to
the former class, we may again distinguish between bridges which are
composed of independent parallel systems, and those which consist of a
number of systems superposed one upon the other. Some examples of
each kind are illustrated in Plate E, and it may be remarked that in each
case the structure illustrated may be inverted without altering the value
of the stress in any member, but only reversing its character.

53. Division E.—In the first example (No. 36) the span is divided
into any arbitrary number of equal panels, and the load at each panel-
point is supported by a separate triangular truss extending the whole
length of the span. This construction is seldom employed in the upright
form, but the inverted figure represents in principle the American
“Bollman” truss. The straight horizontal member AC, which forms
the tie in the upright form, and the compression boom in the Bollman
truss, is common to all the triangles ; aud the stress in this member is
the sum of the horizontal stresses due to each triangle separately. The
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stresses may easily be found by the method of moments. In Fig. 74 let
AbC represent any one of the triangular trusses, and let P represent the
load upon the panel-point whose distance from A is denoted by . Then

the upward reaction at 4 will be P LI"' %, and the moment at the sec-

tion eb will be P”LLL;“’). Therefore if D is the depth eb, we have the

horizontal stress + H,=P m(]li)
pressive stress in the upper member due to this particular element of the
load, and also the horizontal component of the tensile stress in the bars
Ab and 5C. But in the case of such trusses we shall arrive at the result
still more simply by the resolution of forces; for the vertical reaction at

; which represents the direct com-

-z
L

in the bar 45, and the horizontal stress in the same bar must be equal to
that quantity multiplied by % ; or again, if we multiply the vertical

force at C by the ratio eg LD % we arrive at the same value for the
horizontal stress of the bar Cb ; viz,, ~H=P ”(II";)"‘)

If N represents the number of panels, or bays of equal width, into
which the span is divided, the weight

on each panel-point will be P = < 2 ._.

which p is the intensity of the unlform \L/I
load. Therefore the horizontal stress in Pr
any one of the triangular trusses will be—
rAl-2)
+H, XD N )

while the number of trusses will be N - 1.

The compressive stress in the boom AC will be the sum of all these
horizontal stresses, or—

_ . pr(L-2)
H=3 22025,

P!‘ 74

T )

This formula gives the following values of H for the given number
of bays or panels.

For N= 2, H= %.p_Iﬁ_’
N=3 H= '!‘f- ”
N=4¢, H= '55!" ”»
N=6, H=4%. ,,
N=38, H=8%. ,,
N=ow,H= } ,,
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and generally, the compressive stress in the boom AC will be—
12
HP (I‘Tﬁ A )

64. Instead of a series of triangles, the bridge may be composed of a
series of trapezoids, as in example No. 37, which represents an old-
fashioned truss often used in carpentry. Each pair of panel-points right
and left of the centre is carried by a trapezoidal truss; but if there is an
even number of panels, the central point is carried by a triangular truss
as in the figure.

Let Fig. 75 represent any one of the symmetric trapezoidal trusses,
and let P denote the panel-load imposed upon eack of the two joints b
and f, whose horizontal distance from the nearest abutment is in each
case denoted by . Then P will represent the vertical reaction at each
abutment, and also the vertical component of the stress in the inclined

ties Ab and Cf, while the horizontal stress in those bars will be P%;

and this will be the value of the direct compressive stress in the boom

AC (due to the pair of weights), and also the value of the tensile stress
in the bar bf.

To compare this trapezoid with the two triangles which are employed

P P in the Bollman truss to carry the same

<--a>--a1 . l«---»--, pair of weights, we may draw the dotted

“ — T" lines Af and Cb crossing each other at

. / k, and representing the two bars of the

: Ir S>> “Bollman” truss which take the place

Pig7s of the single bar 5f, then referring to

the formulea above given, it will be seen that the stress in the bar 4f is

less than the sum of the horizontal stresses in Af and Cb, in the propor-

tion of ]2:—‘ to (L-x); t.e., in the proportion gi =%§. Of course the com-

pressive stress in the boom AC is also less in the trapezoidal than in
the “ Bollman ” truss, and in the same proportion.
IfN denotes, as before, the number of equal bays, the panel load

will again be P =B and the horizontal stress in each trapezoid will be

N
~prL
:tHND...........(l)

The stress in the boom AC will be the sum of all the horizontal stresses.
If the number of bays is even, there will be a central triangle, and the
stress in the main boom will be—

pL3

For N =any even number, H =2 S IR 2)
On the other hand, if N is an odd number, the systems will be all trape-
zoids, and

pxL
HZND...........(3)
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This formula gives the following values for the stress in the main boom:—
For N=3, H=}-PL

D
N=5, H=2%",,
N=7, H’—‘Iel'.n
N=o,H=}" ,,
and generally—
L3 1
H-2X(l-m) -~ - o oo @

Comparing this value with the formula (3) given in the last Article,
it will be seen that under the same uniform load, the horizontal stress in
the combination of triangles is greater than in the trapezoidal systems in
the proportion of 4 to 3.

85. Each of the two forms of truss that have been considered above
may be transformed into a corresponding straight-link suspension bridge,
by simply removing the boom AC, and substituting in its place the
horizontal pull of a pair of backstays which are taken over the towers
and secured to an anchorage at each abutment. Example No. 38 illus-
trates the suspension bridge derived from the “Bollman” truss; while
No. 39, which represents in principle the * Ordish ” suspension bridge,
may in like manner be derived from the trapezoidal truss. In each
case the stress in the inclined ties is the same as in the corresponding
members of the truss; while the horizontal stress in each backstay has
the same value as the compressive stress in the boom of the parent
truss.

These values have already been given in the two preceding articles,
and the formuls show that the backstays and abutments of No. 38 would
require to be 33 per cent. stronger than those of No. 39, in order to carry
the same uniform load.

56. The practical object of combining together a series of triangular
or trapezoidal trusses, is to support the roadway at a convenient number
of points at sufficiently short intervals ; but the same thing may be done
by employing secondary trusses to carry the wide panels of the primary
truss, and the panels of the secondary system may be subdivided in the
same manner. This method is illustrated in example No. 40, which
represents the American “ Fink ” truss, consisting of primary, secondary,
and tertiary systems. The primary truss is an inverted triangle which
only supports the roadway at one point in the centre of the span, thus
dividing it into two equal bays. Each of these bays is in like manner
crossed by an inverted triangle dividing it into two secondary panels,
and so on. The boom AC serves as the upper member of all the
triangular trusses ; its compressive stress under the uniform load will be
uniform throughout its whole length, and will be the sum of the hori-
zontal stresses due to each of the three systems.

By this method of subdivision, the ultimate number of panels must
always be some power of 2, and is generally N=23=8, The several
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triangles are generally made of equal depth (D), and the load is applied
upon the upper member.
If N=2, the bridge is a simple triangular truss, and under the

uniform load, the weight on the central post (No. 4) is then L, and the

horizontal stress in the boom AC or in the two inclined ties is—
2
;tH_-sﬁ.......(l)

The subdivision of the two panels by the secondary and tertiary
trusses does not alter the load upon the central post, and the stresses in
the primary truss will, therefore, always have the value above given,
whatever may be the number of subdivisions.

If N=4, we have only to consider the stress in the two secondary

triangles, each of which will have a span of ll=I§‘, and a central load

equal top—lé; therefore, the horizontal stress in each of the secondary
triangles will be—
pL’
+H =41 8D =} A 1)

This will represent the honzontal component of the stress in each of
the inclined ties attached to the foot of post No. 2 and of post No. 6,
and will also represent the additional compressive stress inflicted upon
the boom AC by the employment of the secondary trusses.

The further subdivision of the secondary panels will ‘not affect the
stresses produced by the uniform load in the members of the secondary
trusses, as given in formula (2).

Therefore, if N=8, we have only to consider the third series of
triangles shown in dotted lines in the figure. Each of the four triangles

will have a span of l2 =1 and the horizontal stress will evidently be—
plz =P
iHSDTSD""(s) ‘
For the different values of N, therefore, the compressive stress in the
boom AC will be as follows—

_poL?
For N=2,H=H =%D
N=4,H=H,+H, -—(l })
N=8 H=H,+H,+ Hy= (l+}+n)

In each case the stress is exactly the same a8 in the boom of the
¢ Bollman ” truss, considered in Art. 53.

The value of the vertical compressive stress in the several posts
will be—
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In post No. 4, V, =2

In posts Nos. 2 and 6, V. =p_4£

In posts Nos. 1, 3, 5, and 7, V, =l’81'
and in each case one-half of this vertical force will be the vertical com-
ponent of the tensile stress in each of the two inclined ties attached to
the foot of the post in question.

57. The boom of the *“Fink” truss acting as compression member
for both primary and secondary systems, its stress is the sum of the
stresses due to its position in each system; and this fact suggests at
once that the principle might with advantage be Pig7e
reversed. Thus if we make the primary system an »
upright truss of any kind, and the secondary systems W
tnverted trusses, or vice versd, the member AC will
form the tie of the one system and the compression il
member of the other, as shown diagrammatically in m
Figs. 76 and 77. The stress in the member A C will
then be diminished by the application of the secondary system instead of
being increased ; and its value will now become H = (H, - H,).

58. Instead of subdividing the span by triangles within triangles, we
may have trapezoids within trapezoids, as illustrated in examples Nos. 41
and 43. In each case, the central system isa triangular truss 1, 7, whose
ends are supported upon the joints of a trapezoidal truss 2, 2, which in its
turn is carried at each end upon the joints of a wider trapezoid 3, 3, and
80 on.

In the first example the trapezoids are all tnwverted trusses with
vertical posts, and the combination represents in principle the * Pratt ”
or the “Linville” truss;! while in No. 43, the trusses are alternately
upright and ¢nverted trapezoids, and the structure becomes a * Warren ”
girder.

In either case the bridge is simply a parallel girder with a particular
arrangement of lattice bracing, and therefore the bending moments and
the varying values of the flange-stress may be found by the methods de-
scribed in the two previous chapters. But it has already been mentioned
that in applying those methods, the arrangement of the lattice bracing
will modify to a certain extent the stress in the flanges, and this effect
will be clearly illustrated if we proceed to consider the parallel lattice
girder as a composite structure, when the stresses under the uniform

load can be at once obtained by simple addition of the vertical and
of the horizontal forces.

1 Girders in which the web-bracing consists of vertical posts and inclined braces, are
known in Ameries under various names, such as the ‘‘Linville,” * Pratt,” ‘‘ Murphy,”
or ‘*“Whipple-Murphy ” trusses, accordirg to some variations of detail which are not
always to be easily distinguished.
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59. In the first place, suppose the span to be divided into an even
number of bays as in Fig. 78, which represents a girder of the Linville
type, consisting of eight equal panels. Let the width of each panel be

denoted by b= IITI‘; and if O represents the angle which each inclined tie
makes with the horizontal, let the ratio g=cotan. 0 be denoted by r.

The external force or load on each panel-point will be P=%II_‘ ; and we

shall first suppose these loads to be applied on the fops of the vertical posts.
As the number of bays is even, the central panel-point B, carrying the
load P, will be supported by a triangular truss 4,5,C,, which will transfer
one-half of that load to each of the points 4, and C], so that the vertical
component in the first brace b;¢; will be —}P. Adding the panel load
P which is imposed at C), the sum of the downward forces must be
balanced by the compressive stress 13P in the post C)c; while a similar
load will of course be carried by the post A,a;,. This pair of weights
being carried by the second system or trapezoidal truss A,a.,C,, the
vertical component of stress in the brace ¢,C, will be— 11P; and again
adding the panel load at C, we have the stress in the post Cyeq=2}P.
Proceeding in the same way, we obtain, by simple addition, the vertical
stresses or components written against each member in the right half of
the figure,—noting that the panel load upon the extreme point C; is only

g ; thus bringing up the total load upon the end pillar C,C, to the value

4P, or half the total load upon the girder.

The horizontal component of stress in each brace will be to the
vertical component as b:d. Therefore multiplying in each case by the
ratio , we obtain the series of horizontal components written against
each brace on the left half of the figure; and these values will represent
the horizontal compressive or tensile stress +H throughout the upper
and lower members of each trapezoidal system.

Let V,, represent the vertical reaction at either end of any system
due to its contained load, and — V, the vertical stress in the inclined
ties of that system.

Then in the 1st system, 4,C;, we have £V, = 1P, +H,= }Pr

2d ,, 4,06, , +V,=14P, +H,=1}Pr
3d ,, A0, 5, £Vy=2iP, +H,=21Pr &c
And generally—
In the nth system, +V,=(n-3)P, +H,=(n-3})Pr.

Now if the upper chords of the several systems are welded into one
member, and the lower chords welded into another member, we have
only to summate the values of +H, and we obtain the values of the
flange-stresses written against each portion in the left half of the diagram,
Fig. 78, and again represented in the diagram of horizontal flange-stress,
Fig. 79. In the latter diagram, the stepped outline, above the base-line
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AC, represents the positive or compressive stresses; while the negative
stresses are represented below the base-line, the dotted stepped line being
the diagram of tensile stress for the lower flange, and the shaded
rectangles being the diagrams of horizontal stress in the inclined ties or
braces. If we include the shaded rectangles at the ends of each hori-
zontal layer or strip of the diagram, it will be seen that the successive
strips are the diagrams of — H for the several component systems, and
form together a diagram similar to the positive diagram. But the
shaded rectangles represent, as before mentioned, the horizontal stress in
the ¢nclined ties, and have no reference to the horizontal flanges of the
girder; and if we exclude them from the diagram it is evident that, in
each bay of the girder, the compressive stress in the upper flange is
greater than the tensile stress in the lower flange.

Pl e o ﬂc:’- o o S e

4 4 g o sl e, o lo Mg
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‘We may now compare these results with the diagram of flange-stress
which has been constructed (in the previous chapter) for the case of a
panelled plate-webbed girder, and which is reproduced in Fig. 79 by the
dotted polygonal line touching the corners of all the successive steps of
the diagram. Taking a vertical section at any panel point whose distance
from A is denoted by z, we have seen that the flange-stress, by the method

of moments, is given by iH:p_z%d-_x). Thus, for instance, at the

2
section A4a,, the flange-stress will be + H=p. 5 ;Jb = pg'd& =3iPr. In

the same way the flange-stress at the next section 4,a; will be + H=6P»;

at the section 4,a, it will be + H="T74Pr; and at the central section it

will be + H=8Pr. Thus at all the panel points the angles of the polygonal

diagram coincide with the corners of the stepped diagram; but if the
F
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flange-stress is calculated by the method of moments for each panel point
of the Linville girder, it is evidently necessary to inquire whether the value
thus found is to be taken as applying to the pamel on the right hand,
or to the panel on the left hand of the vertical section. An inspection
(L - x)
2d
applies to the bar extending towards the nearest abutment; but in the
lower flange the same stress applies to the bar extending from the joint in
question towards the centre of the girder. Thus at the section 4,ay the
flange-stress + 6Pr represents the compressive stress in the bar 4,4,,
and the tensile stress in the bar aya,; and in the same way the flange-
stress + 33Pr will apply to the bars 4,4,, and a,a, respectively.

In any given arrangement of diagonals, a little consideration will show
to which bar the theorstic flange-stress at any joint really applies : and it
is obvious that in the present case it must be taken as applying to the
bars above-mentioned. For if we take the flange-stress at any section,
such as the stress +6Pr at the section A,a; and if we consider the
forces acting to the right and to the left of the pin ay, it will be evident
that, on the right hand, the stress 6Pr must be borne wholly by the bar
aga,; but on the left hand this horizontal pull will be resisted partly by
the direct stress in the bar aya,, and partly by the horizontal component
of the tensile stress in the diagonal a;4,. In this way all the horizontal
stresses may be found by the method of moments, if sections are taken
successively at each vertical post; and having written in the stress in
each bar of the flanges, the horizontal components in the diagonal ties
may then be found by simple subtraction.!

In regard to the vertical posts, the compressive stresses written in the
diagram are those which take place when the load is applied at the top
of each vertical. If the entire load is attached at the foot of each post,
the compressive stress in each case will be reduced by the amount P ; but
the stresses in the remaining members of the girder will be unaltered

60. If the span is divided into an odd number of panels as in Fig. 80,
all the systems will be trapezoids, and the stresses will be somewhat
modified. The first or central trapezoid 4,C; will carry a load P on eack
of the two verticals Ba, and Bc;, so that the vertical stress in the dia-
gonals 4,a, and Cje, will be equal to P, and therefore greater than in

the first system of the last example by the amount -g ; and the same dif-

ference is carried on through all the other systems. Thus we have the
vertical and horizontal stresses—

In the 1st system, 4,0}, +V,=P, +H; =Pr
2d , 4,0, +V,=2P, +H,=2Pr.

1 It may be observed also that at every vertical section the bending moment is repre-
sented by the polygonal diagram ; but if intermediate sections are taken between the
posts, it must be remembered that the diagonal ties take a share in the moment of
resistance, and must be considered as forming a part of the tension flange of the girder.

of the stress-diagram shows that, in the upper flange, the stress p-
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And generally—
In the nth system, +V,=nP, +H,=nPr

The vertical and horizontal stresses in the various members are written
against each bar in the diagram.

The “ Linville” truss is generally constructed by combining together
the odd and the even systems of panelling, in the manner represented in
Fig. 81, thus doubling the number of bays in a span of given width.
Let N represent the Zotal number of bays in the span, and b the width

of each bay ; then r=cotan. 6= %ﬁ But at each end of the truss there

will be one diagonal tie in which r, =cotan. 6, = 3; because the two sys-

tems are united at the extreme points 45 and C; by the employment of

diagonals Agay and Cyeg, inclined at a greater angle, as shown in the
diagram.

The truss shown in Fig. 81 is constructed by simply combining

" together the trusses of Figs. 78 and 80, and adding at each end of Fig.

78, the extreme triangles A;4,a,. In the combined truss, the width of
panel b is reduced to half its former value, and under the same uniform
load, the panel-weight pb is reduced in the same proportion. But what-
ever its value, let P represent the load on each panel point; then the
vertical and horizontal stresses in each separate system will be expressed
by the same multiples of P as those already found in the previous figures ;
and these values are written against each of the diagonals,

‘We may, however, number the successive systems in the order shown
in Fig. 81, making the primary ¢riangular truss 4,C, the first system,
and the primary trapezoidal truss 4,C, the second system, and so on.

Then in the 1st system, 4,C;, we have £V, =4P, +H,= }Pr
24 ,, 4,0, , £V,=1P, +H,= 1Pr
3d ”» A803’ ”» ivs = I%P, i H = l%Pr.

And generally—
In the nth system, :V,='2'. P, 1H,=§.Pr.
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The stresses in the upper and lower flanges are found by simply
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summating the values of +H in the same manner as before, and are

written against each bar in the diagram.
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‘When the “ Linville” truss is used as a *through ” bridge, or when
the roadway is carried upon the lower flange and between the two main
girders, the truss is generally terminated at each end by the inclined
struts A4, and CCj, as shown in Fig. 82, which represents in outline the
elevation of the Ohio River Bridge of 415 feet span, erected in 1871,
Between the joints 4, and Cj this girder is exactly similar to that shown
in Fig. 81, and we may say that the bridge consists of that truss suspended
at the joints Ag and Cj by the upright trapezoidal truss A4,C,C. The
total load suspended at each of those joints will be P(4 + 43 + 1) = 94P, as
shown at the right end of the diagram ; and the horizontal stress throughout
the final system or truss A4,C,C will therefore be +H =94Pr, =43jPr.
Adding this quantity to the stress in each bar of the flanges, we obtain
the stresses written upon the diagram. The dotted lines represent the
counter-braces which are necessary for the support of the rolling load, but
have no stress under the uniform load. Lastly, in regard to the vertical
posts, if we suppose the uniform load to be carried entirely at the lower
joints, the stresses will have the values written in the diagram ; but it is
obvious that, in practice, the weight of the upper flange and of the posts
themselves must be duly considered and added to the compressive
stresses due to the floor-load.

61. Referring now to the Warren girder, we will first suppose that
every joint is loaded with the same weight P, as illustrated for example

Figes P Y
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in the case of Fig. 83. In this truss the roadway is carried upon the
upper flange, which is divided into eight panels. Between the upper
joints or apices of the triangles, vertical posts are introduced by which
the intermediate panel-points aga,,c, and ¢4 are carried upon the lower
joints of the truss,

In the case illustrated, the first system A,C, is an upright triangle,
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and the succeeding systems 4,C,, 4,0, &c., are alternately inverted and
upright trapezoids, and we have —
+V,= }P, +H,= }Pr
+V,=1}P, +H,=1}Pr
+V,=(n-3)P, +H,=(n-1)Pr.

These vertical and horizontal components are written against each brace,
and summating the horizontal stresses we have the values of flange-stress
shown in the figure.

In the diagram of horizontal stresses, Fig. 84, the compressive and
tensile tresses are both shown on the upper side of the base-line 4C.
The full line is the stepped diagram of stress for the upper flange, and
the dotted line, which is the stepped diagram for the lower flange, is
erected above instead of below the datum. The shaded rectangles are
the diagrams of horizontal stress for the braces, and the dotted polygonal
line crossing these rectangles diagonally is the diagram of flange-stress
for the plate-webbed girder.

It is obvious that by using the method of moments, we may obtain
the same values of flange-stress by taking sections at each successive
joint of the girder. Sections at A; and at 4, will give us the stresses in
the upper flange represented by the corresponding ordinates of the poly-
gonal line ; while sections taken at 4, and at B will give the stresses of
the lower flange.

The diagram shows also that in each bay, the mean of the two flange-

stresses is equal to the

Figss.
™ A,l nl lc. o Gverage stress in the
= ~ flanges of the plate-
ir oA VAR WA girder ; and it may be
" 4 4 observed that the same
remark holds good in
igse. the case of the “Lin-

ville” truss.

R I The Warren girder
ST g, is often constructed,
!""" N e as shown in Fig. 85,

R without the interven-
s ingvertical posts which

were introduced in the
last example. In this case the load is entirely carried upon the upper joints;
the width of unsupported panel b will now be twice as great as before,
and the panel load pb will be twice as great. But let P represent the
panel load =pb, and let the slope of the braces be denoted as before by
r=cotan. 6= 2%1 The central load at B will be carried across the space
4,0, by the first system consisting of fwo trusses; viz., the triangle
a,Be,, and the inverted trapezoid 4,a,¢,C;. The second system will, in
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like manner, consist of the two remaining trapezoids, which carry the
pair of weights at 4, and C), across the span 4,C,.

The vertical and horizontal stresses in each truss of the several
systems will be as follows—

Trusses of 1st system, 4,C;, +V,= 4P, +H,= }Pr
w 24, 4,0, *V,=1}P, +H,=14Pr
»  mtho +V,=n-3)P, tH,=(n-3})Pr

Summating the flange-stresses in eackh truss of the several systems,
we have the values given numerically in the figure, and represented
geometrically in the diagram, Fig. 86, The latter diagram is drawn in
the same way as Fig. 84, and may be compared with it.

Each of the bridges shown in Figs 83 and 85 may be turned upside
down, and the roadway being in that case attached to the lower flange,
the stresses in the various bars will be unaltered in value but reversed
in character.

62. If we combine together the upright and the inverted forms of
the Warren girder, we obtain the lattice girders illustrated in Fig. 87
and Fig. 89. In the case of Fig. 87, the two systems are united by
vertical posts or ties at each panel-point, and a question then arises as to
how much of the panel load will be carried by those verticals ; for it will
be observed that we have here a combination of two systems, each offering
to carry the same element of the load.

Take for example the simple case illustrated in Fig. 91 ; in which
the girder consists of two bays only, and is
loaded with a central weight suspended as Fasl

in the figure. It is obvious that this weight R X y
may be carried by the triangle aBc, but the

inverted triangle AbC is equally capable of

carrying it. If we begin to inquire in what

proportions the load will be divided between 7 0

these two trusses, the first thing that we O

notice is that the upright triangle can re-

ceive no load at all except through the tension of the tie Bb, and the
strain or stretching of that tie will be the measure of its stress, and,
therefore, of the load suspended upon the apex B. But the strain of
each of the vertical members is bound up with the relative deflections of
the two trusses.

Leaving the question of elastic deflection for the present, we may
first suppose that, in Fig. 87, the panel-weights are attached in such a
manner that one half of each is carried by the upper joint of the truss
and the other half transmitted by the post to the lower joint. Then, if
we regard the lattice girder as composed of two Warren girders similar
to Fig. 83 (one upright and the other inverted), the load on each joint,
and the stress in each diagonal brace, will be exactly half the value
given in Fig. 83 ; and sumwating the horizontal components, as before,
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we obtain the flange-stresses written against each bar in Fig. 87 and
again represented in the diagram, Fig. 88, In the latter diagram, the
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dotted lines of the stepped figure represent the diagram of compressive
stress in the upper flange, and the shaded rectangles are the diagrams of
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horizontal stress in the diagonal struts. The negative or tension diagram
is exactly similar. Comparing this diagram with the polygonal line, it
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will be noticed that in every bay of this girder, the stress in each flange
is equal to the average stress in the flange of the plate girder.

‘We will now suppose that the vertical connecting members are totally
ineffective, or that they are omitted from the structure, as in the case of
the girder shown in Fig. 89. The system Bc,Cyc,C, Will be situated
under the same conditions as the girder of Fig. 85, and the stresses in
those diagonals may be written in accordingly. But the remaining
system BCc,Cyc, will be similar to Fig. 85 inverted and loaded at the
upper joints. The bars 4,5 and C} will have no stress; and the system
will commence with the trapezoid BC)¢c,. The vertical components in the
remaining diagonals being written in accordingly, and the horizontal
components summated in the manner before described, we obtain the
stresses given in the figure. The diagram of horizontal stress, Fig. 90,
may be compared with that given in Fig. 88 The entire diagram
(including the shaded rectangles) is the same on the positive and nega-
tive sides, as it must always be; but the stress in the lower flange is
greater than in the upper, although the mean value of the stress in the
two flanges is the same as before.

63. The same methods may be applied to other cases, in which the
span is divided into an odd number of bays, or to others in which the
bracing is reduplicated. The results obtained will vary a little in each
case, but in every instance the mean value of the stress in the two
flanges will, in each bay, be the same as that indicated by the polygonal
line inscribed in the parabolic curve. The mean height of the parabola
being two-thirds of its maximum height, the mean stress in the flanges
of the plate girder (continuously loaded) will be 227 and if N is the
number of panels (determined by the points of imposition of the load),
the mean height of the polygonal diagram (having N sides) will be
L _
12
flanges of every parallel lattice girder, and is exactly one half of the
stress in the boom of the * Bollman ” or “ Fink ” truss, and exactly two-
thirds of the stress in the trapezoidal truss illustrated in No, 37.

64. In the foregoing survey and classification of bridge-structures, it
will be observed that we have completed a sort of circular tour, begiuning
and ending with the parallel girder. In the first instance the girder
was considered as a simple structure or beam, carrying the whole uniform
load by its resistance to tranverse bending ; but in the present chapter it
has been regarded as a composite structure or truss. These two aspects
represent the ideas which have formed the basis of English and American
practice respectively. In England the simple beam was refined into a
plate girder, and the plate web was improved by the substitution of
diagonal bracing. But in America, bridge-construction was at first very
largely carried out in timber, or in combinations of timber and wrought
iron ; and these materials were framed together in various forms of truss,

Iql‘z)‘ This value, therefore, represents the average stress in the
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from which the wrought-iron trusses of the Linville, Whipple, and other
types have been developed.

The forms of lattice girder which have been reached by these two
opposite lines of progress, are practically identical in principle ; but the
same difference of fundamental ideas still marks the character of girder-
construction as carried out in the two countries. In American girders
(or trusses, as they are still called), each member is treated as having a
separate and simple function to perform; but in England, although the
subdivision of function is allowed in theory, yet in practice all the
members are rivetted up together so as to make the girder, as far as
possible, a rigid whole, resembling in some degree the solid beam from
which it is derived.
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CHAPTER VIIL
THE THEORETICAL WEIGHT OF BRIDGES.

65. For many purposes it is useful to have at our command some
means of estimating approximately the weight of metal that will be
required in the construction of a bridge of any given design, in which
the span and the total load are known or assumed beforehand. In any
case such a calculation may be used as the basis of an approximate esti-
mate of cost; but in the case of large bridges the calculation must be
made for the purpose of ascertaining what is the actual dead-weight to
be carried ; for in addition to the *useful” load (or the weight of train
and roadway) ! we have also to consider the weight of the girder itself as
part of its gross load. In the case of very large bridges the weight of the
structure itself becomes so great in comparison with the useful load, that
the calculation is of still greater importance as indicating the comparative
economy ¥ of different designs, and determining the question whether the
bridge can be built at all

It is obvious that the weight, or the cubic quantity of metal, in any
prismatic member will depend only on its length and the area of its cross
section ; the length of each member is given in the design itself, while
the sectional area is generally made nearly proportional to the stress which
each’particular member has to bear, subject to certain limitations to be
presently mentioned. 'We shall here consider only the duty of carrying
the uniform dead load, for which the stresses have been already found ;
but the same method of calculation will be applicable to the other distri-
butions of load that remain to be dealt with.

66. Diagram of Metal.—In the last division of our subject, the
bending moment was analysed into its two factors—depth of girder and
stress of flange ; and now we have to analyse in the same way the flange-
stress, which is the product of two quantities, viz, sectional area of
flange and intensity of ¢ working stress.” Here again there are two
opposite cases to consider,

First, We may have (in a parallel girder) a uniform section of flange

! By a curious, but very common, inversion of terms, the adjective ‘‘ useful” is
applied to that portion of the gross load which renders no assistance to the main girders
in the performance of their function. The use of the word indicates—not that the load
i‘:ﬂ:llp:einlly useful, but that the carrying of this load is the useful function of the

’gThe sense in which *‘ economy ” is here meant, and its value in bridge-construotion,
were referred to in the Introduction.
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throughout, and a varying intensity of stress; in this case the diagram
of flange-stress will represent, on a certain scale, @ diagram of stress-
intensity ; but the uses of the diagram in this capacity will be treated in
the next chapter.

Secondly, We may adopt a uniform standard intensity of working
stress, giving to the flange therefore a varying sectional area ; and in this
case the diagram of flange-stress will become a diagram of metal. ‘This
is the purpose for which we now have to employ the diagrams that have
been traced in the last chapter and in Chapter IV.

87. Weight of Metal in terms of Stress.—

Let S represent the actual stress in any bar, in tons.
t, the working intensity of tensile stress, in tons per square inch,
¢, the working intensity of compressive stress, in tons per square inch ;

then the sectional area that we must adopt for the bar will be at least ?

in the case of a tie, and % in the case of a strut.

In well-designed ironwork the areas will be made to approximate to
these values as closely as possible ; but there will always be some waste
which cannot be avoided, and we must therefore make allowance for the
following items, viz.—

1st. The loss of effective area by rivet-holes.

2d. The weight of the rivet-heads.

8d. The weight of cover-plates for the joints,

4th. The unavoidable excess of the actual section, in some places,
above the theoretic area, owing either to the impracticable thinness of
the theoretic section, or to the difficulty of producing in practice a
member of tapering form. This allowance may perhaps be extended so
as to include the weight of connections between the members,

We may allow for all these items of waste by adding a certain per-
centage, or by multiplying the net theoretic sectional area by a coefficient
x to be derived from actual examples.!

A bar of wrought iron, one foot in length, with a sectional area of one
square inch, weighs 3:34 lbs., or 0:03 cwt., or 0-0015 ton.? If a bar has
to bear a tensile stress of 1 ton, its net sectional area in square inches

will be %, and its gross sectional area in square inches, including waste,
will be equivalent to '-;; its weight per lineal foot will therefore be

7¢=0015 %; and in like manner, if the bar is a strut adapted to beara

compressive stress of 1 ton, its weight per foot lineal will be expressed
by 7, = 0015 ;.‘
1 The value of x will vary according to the construction of the member, and will be

considered hereafter.
_ 3 For steel, an addition of about 2 per cent. may be made.
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We shall use the symbols 9, and 7, for the practical weight of all
tension and compression members per foot lineal, and per ton of stress,
reserving for future consideration the proper values of the working
stresses ¢ and ¢,; and we shall keep separate the calculated weights of the
flanges and those of the web or bracing, so that a special working stress
may be taken for the bracing, if that should appear desirable. Therefore
if s represents the length of any member in feet, and S the direct stress,
the weight of the member will be Ssy,, or Ssy,, for struts and ties respec-
tively.

68. Btress and Weight of an Inclined Bar.—We have already
found, in each class of bridge-construction, the horizontal and vertical
components of the stress in the various members, and the values thus
found will apply to any girder or structure of the specified type, what-
ever may be the angle of the inclined bars, or the proportion of length to
depth of girder; but we have not worked out the actual numerical value
of the direct stresses in the inclined bars for two reasons—1st, because
the values so found would only be applicable to one particular case, and
will vary with every arbitrary variation in the proportions of the design ;
and 2dly, because it is a very simple matter to find the direct stress
in any given case, when the horizontal or the vertical component is
known.

In Fig. 92 let BC represent the inclined tie in any American truss,
or in the bracing of a girder, or in »
the chain of a suspension bridge; “_’ff"f_c L. Twes.
and let AC and AB be horizontal
and vertical lines drawn from its
extremities, In the usual order of
designing the structure, AC and AB
are first determined, and to find the
length of the inclined tie we have s2=A%+ 3. Also let Fig. 93 be a pre-
cisely similar triangle representing the direct stress S and the horizontal
and vertical components H and V. Then to find the direct stress, we
have S2=H32+ V3, or—

e-===D-m=-h
Voo

= /H+V2.=H2-V.*

8= JH3+ V2 —H.Z_V.a

Now if these two diagrams are drawn to the same dimensions, it will
be obvious, without any lengthy demonstration, that Ss=HP + V.

Therefore, we have at once the weight of any inclined bar in terms
of its horizontal and vertical components (of stress and length)
Sey,=9(Hh + Vv); and adding together the weights of the different
members as found by this formula, we may easily obtain the total theo-
retical weight of any bridge structure.

The products Hx are represented by the areas of the several diagrams
of horizontal stress which were considered in the last chapter; and it
would not be difficult to construct also diagrams of the vertical height
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and vertical stress, whose area should indicate in like manner the
second term of the above equation, or the products Vv.

69. Example.—To illustrate the general method of calculation, we
may take the girder shown in Fig. 78, in which the stresses have already

been considered. The horizontal length of every bar is h=5b= I%’ except-

ing the vertical posts in which 2=0. The vertical height of every bar
is v=D, excepting the flanges in which v=0. Then commencing with
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the tension members, and reading off from the diagram the horizontal and
vertical stresses, we have the following values for either half of the
girder, viz:—
Tension members. .
Inclined Ties 2° Hh=Prb(} + 14 + 24 + 33)=8Prd
2:-Vo=PD(} + 1} + 24 + 3}) =8PD
‘Weight = 9, P(87b + 8D)
Lower Chord 2*HA=Prb(7}+6 + 33)=17Prb
2-Vv=0
Weight = 9, P(17rb)

In estimating the weight of the compression members, we shall omit
the end-pillar 4,4, supposing the abutments to be carried up and the
girder to be supported at the upper joint upon a bed-plate ; then halving
the central post, we have for the half-girder 4,B .—

Compression members—

Vertical posts - Hh=0
2 Vo=PD(} + 1} + 2} + 3}) =8PD
Weight = .P(8D)
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Upper chord 2:Hkh=Prd(8+ 74+ 6 + 3}) =25Prb
2 Vv=0
Weight = y.P(257b).
It will be more convenient, however, to express the several weights
in terms of the whole dead load pL, the span L, and the depth D, or the

ratio of span to depth, viz., R= }:—'); and if N is the number of panels, we

i —'pI_‘ =B =£‘
have in the case before us, P__N = b N therefore—

L D

Pro=pL- 3% and PD=pL-2.

Then taking both halves of the girder together, the weights will be
as follows :—
Tension members—

Inclined ties, weight =7, pL(%‘i RL+2D)

Lower chord, w = g %RL-&- 0) )

Total weight of ties, =9, pL(%g RL+2 D)

Compression members—
Vertical posts, weight =y, pL( 0 + 2D)

Upper chord, ,, = , %_‘:Rm 0)

Total weight of struts =7, pr(%‘: RL+2D)

These values will apply to any girder of the type given, #.e., a parallel
girder of eight equal bays, with a single web-system of vertical posts
and inclined ties, whatever may be the ratio of length to depth.

70. It will be noticed that in the last example the total weight of all
the ties is expressed by the same numerical coefficients as those which
give the total weight of all the struts, and this is only one example of a
general rule which we may now briefly consider, as it will serve to sim-
plify the calculations.

Let all compressive stresses be taken as positive, and all tensile stresses
as negative, and proceed to consider their algebraical sum. At any ver-
tical section through the girder, 2-H=0; and as this must be true at
any and every vertical section, it follows that for any slice of girder con-
tained between two vertical sections, 2+ HA=0; and therefore for the
whole girder 3°Hh=0. This means that the entire positive and nega-
tive diagrams of horizontal stress must have the same figure and the
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same area—which indeed we have seen to be the case in each example.
Next imagine a horizontal section to be taken through the whole girder,
and consider the vertical forces, If the load pL is on the top of the
girder, while the supports are at the base, we shall have =V =pL; but
suppose the entire load (as well as the supporting forces) to be applied at
the lower horizontal flange of the girder, then 2°V =0, and 2*Vy=0,
and consequently 2°Ss=0. In this case, therefore, the sum of the pro-
ducts Ss for all the struts must necessarily be equal to the sum of the
negative products — Ss for all the ties. The same thing will be true if
the entire load and the supporting forces are applied at the joints of
the upper horizontal flange, as supposed in the calculation of Art. 69
for the bridge shown in Fig. 78.

It may be worth while to notice here that economy of construction
is often sought to be obtained by reducing the length and the stress of
the compression members; and it is perhaps sometimes imagined that
this may be done by some skilful arrangement of the parts of a girder;
but the rule above pointed out, and exemplified throughout the following
calculations, shows that it is impossible, by any arrangement of the parts
of a girder, to make the sum =‘Ss for the struts less than the sum
— 3-8s for the ties. This can only be done by subjecting the structure
as a whole to a pair of external opposite pulls, as in the case of a
suspension bridge, or in the case of a girder supported at the upper flange
and loaded at the lower flange. If the structure is nof subjected to such
external pulls, the theoretical weight of all the struts must be equal to
that of the ties, whatever may be the arrangement of the component
members.

Referring now to the vertical forces, it is obvious that the statement
2+ V=0 will only be true if the entire load is applied at those joints
which are at the same level as the bed plates. If the entire load is
applied at the top and the supporting forces at the base, the whole girder
is subjected to a pair of compressive forces, and =V =pL ; therefore we
have to add to the calculated weight of the vertical posts or compression
members the quantity . pLD; which, in the case of Fig. 78, represents
the weight of the two terminal posts 4,4 and C,C,; and generally when
the load is applied in this manner, its effect will be to add 1 to the
numerical coefficient of D in the expression for the vertical compression
members or vertical components ; while the expression for the metal of
the horizontal flanges will remain unaltered.

Again, if we wish to be very accurate in this calculation, it will
perhaps be hardly sufficient to assume that the whole load is applied at one
line of joints ; thus in the case of a * through ” bridge, although the weight
of the roadway together with that of the lower flange and wind-bracing
and about half the weight of the web, are actually applied at the lower
joints, yet there remains about half the weight of the girder itself, which
must be taken as a separate load applied at the upper joints. In very
large bridges it will be necessary to make this detailed calculation for




THE THEORETICAL WEIGHT OF BRIDGES. 97

each case; but in bridges of moderate dimensions the load may be
treated as applied wholly at the line of joints corresponding with the
level of the roadway, as this assumption will not sensibly affect the
estimate for the weight of metal.

71. Following the method described in Art. 69, the theoretic weight
of metal in any other type of bridge may be expressed in terms of its
load and its leading dimensions ; and, as in the example already worked
out, the expression for the weight of the ties will have the general

form—
' W, =7pL(«RL +BD)

and for the struts—
Wc = 7cPL(aRL + BD)

in which @ and 8 are numerical coefficients depending upon the type of
bridge-construction. The value of these numerical coefficients for the
different forms of bridge are given in detail in Tables 1 to 16. In each
Table the span is supposed to be successively divided into the number of
panels N, as indicated at the head of each column; and the coefficients
will apply to any bridge of the type specified and consisting of N panels,
whatever may be the angle of the inclined bars.

As regards many of these designs, it will not be difficult to express
the weight of metal by a general formula which shall be applicable for
any arbitrary value of N ; although in some cases the formula would be
somewhat cumbersome, and, therefore, less useful than the Tables. We
shall briefly refer to a few of the most important cases.

72. In the case of a parallel girder, with a plate web, and with a
load uniformly distributed, the average stress in each flange according to

the parabolic diagram is § xg-}‘)—’ =pL TR§ ; and therefore for each flange
the coefficient will be—

= I'-"» . . . . o . . . .« . (1)

If, however, the load is divided between cross-bearers spaced at equal
intervals and dividing the span into N equal bays, the diagram becomes
an inscribed polygon of N sides, whose area is equal to that of the para-

bola multiplied by (1 -I%) Therefore, for each flange, the coefficient
will be—

l -
¢=,1,(1-.N_, N )

In every parallel girder, the above formula (2) will give the mean value
of the coefficients for the two flanges; but when the ties of the lattice-
web are inclined at a different angle from that of the struts, the co-
efficient for one flange is increased, and the coefficient for the other
flange diminished.

e
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73. Table 1 refers to parallel girders with a single bracing of inclined
ties and vertical struts, and the coefficients will apply either to through
bridges or deck bridges, supposing the latter to be supported at the ends
of the upper chord. If the span is divided into an even number of
panels, the coefficient for the vertical posts is—

N
B-T"""""(3)
and the coefficients for the inclined ties will be—
_1 _N.
“‘m’“‘dﬁ‘Z N ()
" The coefficient for the upper flange will then be—
1 1
a=t(l-g gy + - - - - ©
and for the lower flange—
1 1
a=t(l-)-gx - - - - - ©

On the other hand, if N is an odd number, the values are slightly altered,
as shown in Table 1o. The formuls for this case are not difficult to
deduce, but the Table will probably suffice.

Table 2 gives the weight of metal in a Linville girder, with double
bracing ; while Table 3 refers to a Linville girder of the same general
type, but terminated at each end by an inclined strut instead of a vertical
post.

74. Table 4 relates to the Warren girder, used as a deck bridge.
Each main panel is subdivided by a vertical post, and N represents the
total number of subdivisions.

For the vertical posts—
B=¢ . . ... ... ..M
For the diagonal struts the coefficients will be—
_N-2 _N-2
= SN”MdB—T oo . (8)
On the other hand, the values for the diagonal ties will be—
N+2 _N+2
@=oNE’ and B——s— A ()]

The coefficients for the flanges will be—
1 1
Upperflange . . . a= I‘,(l - IT’) N (10)

1 1
Lower flange . . . “zﬁ(l_i‘f‘})—ﬁ@ ... (1D
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Table 4a gives the values for the same girder when inverted and used
as a through bridge ; the stresses being exactly reversed, the coefficient
for each member in its inverted position remains the same.

Table b5 refers to the Warren glrder without verticals ; and whether
this girder is used as a deck bridge, or in its inverted form as a through
bridge, the coefficients for the struts and for the ties have the same
value, If N is any even number, we shall have, for each flange—

1
a=,1,(1—ﬁ2) R ¢ 1))
and for the diagonal struts or diagonal ties the coefficients will be—
_XN
aam,andﬁ 3 - @

75. Table 6 refers to the lattice-girder with single intersections, and
the given values are calculated upon the assumption mentioned in Art.
62, viz., that half the load at each panel-point is transmitted through
the vertical member, so that the whole load is by this means equally
divided between the upper and lower joints ; and it is also assumed that
the load is attached to the girder at the same level as the supporting
forces, which may be either at the top or bottom of the girder or at any
intermediate level. It follows that the coefficient for the whole series of
vertical posts (including the end-pillars) will be—

_N-1
e P ¢
and the same for the vertical ties.
For each flange we shall have again—
1
a=f§(l—ﬁ) Y 0 1))

and if N is an even number, the coefficients for the diagonal struts or
diagonal ties, will be—
1 N
az..s_N,andﬁ-_g B ¢ ()
76. Turning to the *Fink” truss (Table 7) we have for the main
boom—

a=§(1_--) . .L..an

The coefficient « will also have the same value for the whole group of
inclined ties as already shown in Art. 56 ; while the coefficient 8 for
both ties and posts will have the values given in the Tables,

77. In the case of the Bollman truss (Table 8) and the straight link
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suspension bridge (Table 9), the coefficient for the inclined ties, as shown
in Art. 63, are—

a=i(1-g)ema B=T21 )

and the same values will apply respectively to the horizontal boom and
the vertical posts of the Bollman truss. In the suspension bridge there
is no boom, but we have to consider the metal of the end pillars or
towers ; and in every such case we shall only calculate the metal required
to carry the load of the central span, or the load pL * }Lﬁ—l, which is sus-
pended from the towers by the group of inclined ties. If the suspension
bridge consists of two side spans in addition to the central span, the
total load on the towers will be nearly double this amount because the
towers will have to support, in addition, the vertical component of the
stress in the backstays; but whatever vertical force may be impressed
upon the towers by the inclined backstays or chains of the side spans,
we shall suppose it to be carried by a separate column, or pillar, as
shown in the skeleton illustrations of No. 11 and No. 12 in Plate B ; and
the metal of this separate column will be treated as belonging to the side
span and not to the central span.

78. Referring now to Tables 10, 11, and 12, we may remark that
the coefficients for the inclined struts or ties have the same value in each
of the three structures therein referred to. Table 10 gives the calculation
for the members of an upright trapezoidal truss; while Table 11 refers
to the corresponding form of straight link suspension bridge, and Table 12
refers to the same type of structure when used as a purely cantilever
bridge ; the structure being supposed, in the last case, to be divided at the
centre into two halves, each of which forms an independent cantilever.

The coefficients for the inclined members in each of these three
designs will have the values—

1 1 N-1
@= 1o+ oNT and 5 - - (19)

For the boom of the cantilever bridge (Table 12) the value of « is
same as above given ; but for the upper boom of the trapezoidal truss
(Table 10), and the horizontal tie of the suspension bridge (Table 11),
that coefficient will have the value—

_1_1
a-ﬂ-s—-Ng.........(20)
It will be noticed that the coefficient for the horizontal tie of the
trapezoidal truss has the constant value—
a=3 . . . . .. 0L 0. .. (2
In each example given in the Tables, N is always an even number,
the central system being a triangle. If the span is divided into an odd
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number of bays the formule become slightly altered. The stresses in
these types of bridge were considered in Arts. 54 and 55.

79. Lastly, we may turn to the parabolic bowstring, and the equili-
brated arch and suspension bridge, forming the Second and Third Groups
illustrated in Tables A and B in Chapter V ; and to the series of poly-
gonal trusses and funicular polygons comprised in the same groups and
illustrated in Tables C and D.

Let N represent the number of equal bays into which the span is
divided ; then if N =2, the truss or polygon becomes a triangle; if
N =3, it becomes a single trapezoid ; and these forms of truss having
already been considered under different groups, it remains only to deal
with polygonal trusses of four or more sides.

In every case the horizontal stress in the several bars of the polygon
has the same value throughout, while the vertical stress in each bar is
proportional to the vertical height subtended by the bar, and summating
these vertical stresses and vertical heights, we obtain the values of 8
given in Table 13, which refers to polygonal bowstring girders. If N is
an even number, the depth of the truss D at the central joint will be
equal to the depth of the circumscribing parabola; and the horizontal

pL?

stress being H =21 = 5L - R the coefficient will bo—

e=%. . . . . .. 0. .. (22

which will apply to the horizontal tie as well as to the polygonal bow.
The total load carried by the vertical rods at the joints of the polygon
N+1

will be pL- 22 1 and their average height will be 2D x T2L Ther.
fore the coefficient for the whole series of verticals will be—
1
B=§(1-ﬁg) Y %)}

and the coefficient B for the inclined bars of the polygon will have the
same value.
On the other hand, if N is any odd number, the coefficient will be—

¢=§(1—1%-2)andﬁ=§. R ¢ 7))

The above values will apply not only to the bow of the bowstring,
but also to the polygonal arch, and the chain of the polygonal suspension
bridge, as shown in Tables 14 and 16.

In the case of the arch, if the roadway is carried at the level of the
crown, the coefficient for the vertical spandril pillars, including the ter-
minal pillars as shown in No. 8 of Plate 4, will be—

ForN=anyevennnmber,8=§(l+I‘-gz . . (25)
For N =any odd number, 8=% . . . . . (26)
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and in either case the coefficients for the arch and spandrils together
will be—
e=}andB=1. . . . . . . . . (27)

In the case of the suspension bridge the values for the chain are
precisely the same as those given for the linear arch; and the vertical
suspending rods take the place of the spandril pillars ; the extreme ver-
ticals at each end are, however, no part of the suspension system, but are
towers or columns bearing the whole suspended load. For the vertical
towers, therefore—

N-1 o

-T.........(28)

Finally, we may consider the parabolic curve of an arch or suspension
chain as being equivalent to a polygon having a very large number of
sides, each side of the polygon subtending the very short horizontal
length b=117‘f ; and making N a very large number, or N = oo, we have
for the weight of metal in the parabolic linear arch, or the parabolic sus-
pension chain, the coefficients—

a=}andB=2. . . . . . . . . (29)

Also if N = oo, the coefficient for the vertical spandril pillars of the
arch, or the vertical suspenders of the chain bridge, will be—

2 S )

80. It may be well to remark that the foregoing Formuls and Tables
must be taken only as representing the quantity which they profess to
give, viz., a summation of the lengths of the several members multiplied
by a theoretic sectional area proportional to the direct stress in each
member. We have traced out a simple and convenient method of
making this summation for each type of bridge, and in such a form
that the coefficients in each case are applicable to any arbitrary ratio
of depth to span. The quantities thus found must of necessity
form the first foundation of any study of economics in bridge-construc-
tion ; but it is quite obvious that before they can be applied to such
a purpose, or to the detailed computation of the weight of any proposed
structure, there are a number of questions that still remain to be con-
sidered.

In the first place the value of ¥, and 7, or the specific weight of
members per ton of stress, has yet to be considered ; and it will be found
that these are not always constant quantities for a whole set of members,
and this will be especially noticeable in the case of long struts carrying
a comparatively light load, as, for instance, in the central portion of the
web-bracing of any parallel girder.
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Again, the quantities that have been determined in this chapter relate
only to the mass of metal required to carry a uniform load, and when
the rolling load is considered it will be found that a somewhat different
set of stresses will have to be provided for. In some types of bridge,
as, for instance, in the Warren and single lattice girder, the new stresses
will necessitate only a certain alteration in the relative sectional areas
of some of the members; but in the Linville girder it will be necessary
to introduce, for the support of the rolling load, certain counterbraces
which are not required for the uniform load ; while the parabolic bow-
string will then require a whole system of diagonal bracing which is
theoretically useless for the uniform load, and has therefore not been
included hitherto in the estimated weight of metal.

In the same way the linear arch, which in theory is equilibrated
under the uniform load, must be regarded as merely an ideal structure
whose form and construction will have to be materially altered before
it can be adapted to the purpose of carrying a rolling load. On the
other hand, the common flexible suspension bridge may be considered
as being fully represented, for all practical purposes, by the parabolic
chain and vertical suspenders of Table 16, so far at least as these
essential members of the structure are concerned ; and the same may be
said of the Fink truss and the Bollman truss, illustrated in Tables 7 and
8, and also of the derived straight link suspension bridge of Table 9 ;
but the forms of straight link bridge treated in Tables 11 and 12 will
require some special consideration in regard to the effect of the rolling
load.

It will of course be understood that, in every case, the Tables and
Formulee refer only to the main girders or the principal longitudinal
superstructure of the bridge, and do not include any metal that may
be required for the cross-girders, stringers, or distributing girders, forming
the platform of the bridge. These details, as well as the construction of
the necessary windbracing, and the transverse stiffening of the structure,
must be considered separately for each type and variety of bridge ; and
it will also be necessary to treat separately each type of bridge-construc-
tion as regards the effect of the rolling load and the structural provision
that must be made for its support.

81. We may here illustrate the application of the Tables by taking
the case of a common suspension bridge having a span of 700 feet and a-
versine of 70 feet, or y;;th of the span, corresponding nearly with the
actual dimensions of the Clifton suspension bridge. Assuming, for the
sake of example, that the working stress is b tons per square inch in the
main chains, and 4 tons in the vertical suspenders, we may take it that
the percentage of “waste metal” in a chain composed of edge-links
with swelled ends will amount to about 20 per cent. including the
connecting pins; so that for the main chains we may estimate that

120 x - 0015 _

x=120and ;= —= 00036 ; while for the vertical rods we
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may perhaps take the same percentage of waste to include end connec-
1-20 x4'0015 = 00045,

Then if we have to provide for a total dead and live load of 2} tons
per foot lin., or a gross load of 2} x 700 = 1750 tons uniformly distributed,

the curve of the equilibrated chain will be a parabola, and the weight of
the whole chains from tower to tower will be—

00036 x 1750{(%® x 700) + (2 x 70)} = 581 tons,

tions, and 5, =

or say 166 cwt. per foot of span.

At the centre of the span the tensile stress will be 1750 x % = 21875
tons, requiring a sectional area of 4375 square inches; and adding 20
per cent. for waste metal, the weight of the chain at this point will be
525 x 0°03 =15756 cwt. per foot. But as we proceed from the centre
towards each tower, the direct stress increases with the increasing secant
of the angle of inclination, while the length of chain subtended by one
foot of horizontal length increases in the same proportion ; and if the
sectional area of the chain is at all points proportional to the direct stress,
its weight will be given by the above calculation.

If the roadway is carried in a horizontal line forming a tangent with
the parabolic chain, the average length of the vertical suspenders will
be § x 70 =2333 feet, and the weight of the whole series will be—

‘00045 x 1750 x { x 70 =18-375 tons,

This brings the total weight of chain and suspenders to 600 tons;
but it will be observed that we have taken the entsre load as attached to
the lower ends of the verticals, whereas the weight of the main chains
will, of course, form no part of their load ; and if we reduce the load on
the verticals by 581 tons, we may perhaps make a corresponding reduc-
tion of about 6 tons in the estimated weight of the verticals ; which only
amounts, however, to 1 per cent. upon the total estimate.
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TABLES OF THE THEORETIC WEIGHT OF METAL, FOR THE

DEAD LOAD ONLY.

Weight = W = 2ypL(aRL + 8D).

TaBLE 1.—Parallel Girders, with Vertical Posts and Inclined T'ies of the
Type shown in Fig. 201, Plate I

N=4. N=6. N=8. | N=10.
a|gla|B||a|B|als
STRUTS— - 5 o5
7
Upper flange s | - | B . 30
Vertical posts 1 1} 2 2}
7 22 50 95
Total a|ll]® 1 13| & | 2 l i | 2%
Tigs—
3 13 34 70
Lovwer fange - & B 0
Diagonal braces sltlslBlal2]S5]2
7 22 50 | 95
Total s|l|e|}|5|2|o|2

TABLE 1a.—Parallel Girders, with Vertical Posts and Inclined Ties,
divided tnto an odd Number of Panels.

N=3. N=5. N=T. N=9
a a l B a B a 8
STRUTS— 3 13 2 70
Upper flange ] 2 B 6 T 12 ] m
Vertical posts 3 5 T 3
3 2 13 6 M 12 70 20
Total F| 3|5 |B|T|®]|7
Tizs—
1 7 22 50
Lower flange ) & T E
. 2 | 2 6 | 6 || 12|13 20 2
3 2 13 6 A 12 70 20
Total Pl |slB|7T|®!79
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TaBLE 2.—Parallel Girders, Linville Type, Double Bracing.
Plate I, Fig. 208,

N=14. N=16. N=18. N=20.
a ' B a B a B a B8
iy 273 400 561 760
UM M’ 1—4' 'W oo W .on W eee
Vertical posts 2 2} 2} 2}
273 400 561 760 | o3
| Total 1w 2 || 2| w2 % | 2
res— 182 280 408 570
Lower fange 1w & St ™
. 91 120 153 190 | o3
Diagonal braces . in 2 i& 2} | 2% | 3 | 28
273 400 561 760
Total w2 |w| 8| w2 ||
TaBLE 3.—Linville Girders, with Inclined Terminal Struts.
Plate I, Fig. 213.
N=14. N=16. N=18. N=
a 8 a B a B a B
Sros 254 318 536 Ee)
Upper flange T | i | 18 208
. 18 | 13| 16| 15|l 17| 17 || 19 19
) 10 15 21 28
Total 267 | 23 || 308 30 || 683 | 88 | 751°| 47
¢ | 14 |16 | 16 |18 | 18 |28 | 20
302
Lower 200 3021 .. | 488 598
Jlange w| - | 1e = - 1= -
Diagonal braces . 66 | 21 || 91 | 28 | 120 | 86 || 153 | 45
| 13 | 16 1; 18| 18 |20 | 20
. 2 2 2
Vertical ties T 16 18 %
Total 267 | 23 | 398 | 30 || 663 | 38 f 7BL | 47
14 | 4 | Te* | 16 |18 | 18 || 209 | 20
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TaBLE 4.— Warren Girders, with Intermediate Verticals. Deck Bridge.
Plate I, Fig. 203a.

N=8. N=12, N=16. =20.
a B a B a B a B
STw “ 148 344 670
Upper flange . . ‘|l s = | - e | - 20 | -
. (] [ 15 | 15 || 28| 28 || 46 | 45
Diagonalstrats. . .| g | g || B[ 1|16 | 20| 2
Vertical . 4 8 8 10
poss 8 2 16 20
50 161 2 715
Total w ||| 1|2t w28
40 140 336 660
Imnrﬂom . . . ) e I e ie e 208 .
) . 10 | 10 | 21 | 21 || 38 | 36 || 65 | &5
Diagonal tics B 3| > |16 20| 2
o AR ERBEEREE
TaBLE 4A.— Warren Girder, with Intermediate Verticals. Through
Bridge. Plate I, Fig. 203.
N=8, N=12. N=16. N=20.
a B a B a B a B
STRUTS—
Upper Aange g 11;.% % %
, 10|10 21 |21 38|38 || 65| 856
Diagonal struts |3 ||| B|@®|D
- TR T FTAETY ECA P P
“ 146 344 670
Lower flange . s 1= i 28 208 | -
, [ 6 15| 16 || 28 4% | 45
Diagonal braces . B ||| 2|®|16| 2|2
s 4 6 8 10
Vertical ties . . 3 3 16 b
50 161 372
Total 13| B 14 | 32| 21 | 25| 24
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TaBLE 5.—Warren Girder, without Verticals. Deck Bridge or Through

Bridge. Plate I, Fig. 204.
N=4 N=6 N=8 =10
a B a B a B a B
Sravrs— 0 140 336 660
Usper flange ® by | - [
. 8 18 32 50
Diagonals . 3| 1| || %] 2| |2
48 158 368 710
Toul g |l |w| |2 |22
TiEs—
e 8] el e Tl
Diagonals . %, 1 i—g, 1} i’—; 2 % 2}
48 158 368 710
Total gl || |w|2 |2

TaBLe 6.—Single Lattice Girder (or
equally divided between Upper
Vertical Posts or Ties. Plate I, Fig. 206.

Double Warren Bracing), Load
and Lower Joints by means of

N=4 N=6 N= N=10

a B a B a B a B

STRUTS—
Upper flange g % % %
Diagonal struts . g % %_g' 1% ‘13_:' 1 % %
Vertical posts % ]% T7s' 2%
Total 656 7 176 | 14 | 400 | 28 || 760 | 34
8| 8 12| 12 |T65| 16 || 20°| 20

TIEs—

Lower flange %0 -11% % -g%
Diagonal braces . Pl n|%|t |23
Vertical ties % % 17_6 %
Total 8 | 7 1176 | 14 | 400 | 28 || 760 | 34
& 8 123 12 16 16 || 20° [ 20
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TaBLE 7.—Fink Truss. Plate E, Type No. 40.

N=2. N=4, N=8. N=16.
a B |‘a B a | B a ]
i 1 10 2 s
Upper boom . . | B > 168
1
Vertical posts . . . 5 1 1% 2
1 1 10 | 84 688
I AR AR AL AR K
Tms—

L 1 1 || 10 84 688
Inclined ties ? —_— | F 1 ﬁ li W 2
TasLe 8.—Bollman Truss. Plate E, Type No. 36.

N=4. N=6. N=8. N=10.
a B8 a B a | a a B

St® 10 35 84 ' 165
Upperboom . . . B & = . | -
. 3 5 7 9
Vertical posts . . . T 3 Y3 o
10| 3 |[ 85| 5 [ 84| 7 [[165] 9
Tl .« N F | T|F|5|F| 7T || 0
10 3 35 5 84 7 165 9
Incinedtis - - | F|7|®|s|®|F ™| ®

TaBLe 9.—Straight Link Suspension Bridge, Weight for Single Span,
exclusive of Backstays. Plate E, Type No. 38,

N=4 || N=6 N=8, N=10.
a B 1 B a B B 8
STRUTS—
Vertical towers? . .| 0 E:_ 0 % 0 % 0 i96
T=s—
Inclined ties . . . 14_2 ;;‘. "g % %ﬂ % %; %

! Towers only reckoned for the load of the single span, exclusive of side spans, or
load due to backstays.
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Tasre 10.—Trapezoidal Truss. Plate E, Type No. 37.

N=4. N=6. N=8. N=10.
a B a B a B a B

STRUTS—
Upper boom . . . 3.1.2 % e g e %2' e
N R EE
1 3 1 ] 1 7 1 9
Total 8|4 T | 6| ®| | FT]| 10
ortontal e T Y R
— HBEHEHEE
Total sle|s|s|5|%]5|n

TaBLE 11.—Straight Link Suspension Bridge. Metal for Single Span,
exclusive of Backstays. Plate E, Type No. 39.

N=4. N=6. N=8. | N=l0
a B8 a B8 | a I B I a B
STRUTS— |
. 3 5 I 7 9
Vertical towers . 0 T 0 3 0 + I 0 i
Tres— 1 8 20 40
Horizontal tie . 39 & & 108
- 3 (319|585 4|7 (8|39
Inclined links . 3—2 T i 6—’ ? . 8-? 3 10° 10
1 3 |1 5 1 7 1 9
Total . s|7 |8 |% |5 |F||F|m®

TasLe 12.—Straight Link Cantilever Bridge, divided in the centre.
Metal for Central Span, or for ome Double Cantilever. Plate E,
Type 45.

N=4. N=6. N=8 N=10
a B a B a ' B ‘ @ | B

STRUTS— 3 19 ‘ 85

44

Lower boom 3 & s 10|
_ 3 5 7 9
Vertical towers . T 1% ’ 3 | 10
Total . . .| 3|3 | 195 | 4« I T | >
2|7 6 | 6 8 | § | 10| 10
. . 3 3 19 |15 44 7 85 9
. 3 | 3 (|1®]|B (|47 |8]9
Inclined ties 33 r & 6 [ ‘ g | 10 10
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TaBLE 13.—Parabolic (Polygonal) Bowstrings.
Plate C, Type No. 22.

N=4. N=6. N=8. N=10.
a B8 a |8 a B a B
STRUTS—

1 5 1 35 1 21 1 33
Polygonal bow . . . 5 'y 7| 5 7 | = T %

Tres— 1 1 1 1
Horizontalstring . .| § 3 5 5
5 3% n 33
1 5 1 35 1 21 1 33
Total s 8|8 |m|B |7

TasLE 14.—Parabolic (Polygonal) Linear Arch, with Roadway carried at
level of Crown; Weight includes End Spandril Pillars. Plate C,
Type No. 27, and Plate 4, Type No. 8.

N=4, N=6. N=8 N=w
a B a B a B8 a B8
STRUTS— :

1 5 1 35 1 21 1 2

Polygonal arch . ER ERE Y AR N
. 3 19 1 1

Spandril posts . 3 5 33 3

1 1 1 1

Total K3 1 3 1 K3 1 K} 1
Tizs—None.

TaBLE 15.—Inverted Parabolic (Polygonal) Trusses. Deck Bridge.
Plate B, Type No. 10.

N=4. N=6. N=8. N=10.

a Bl « B a B a B

Sr= 1 1 1 1
Upper boom 3 e 5 e 'y e 3 e
Vertical posts . _g_ %2 % g
1 5 1 33 1 21 1 33
Total s | 8|5 |m|® |z T|5

Tigs—

Polygonal chain or tie _;. % % f,_:‘ %. g_}, % :_g
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TaBLe 16.—Suspension Bridges, of Parabolic or Polygonal Form
Weight of Single Span AC, including one half of each Tower.
Plate B, Type No. 14.

N=4., N=6. : N=8, | N=oo,
a | B a B | @ B a 8
Stm 3 5 7

Verticaltowers . . .| O T 0 s 0 T 0 1
i s lr|sl|aj1]z
° : * * 8 8 8 54 8 32 8 3
Verticalrods . . . 10 . (10 1 1
8 : 54 32 3
Total 1138 185171},

8 4 || 8 6 8 8 8

81a. These tables will serve to show approzimately the comparative
weight of metal required in different forms of bridge-construction, in
order to carry the same uniform load across the same width of span. As
might be expected from their mechanical principles, it will be seen that
the arch and the suspension bridge possess a very great economic advan-
tage (in theory) over other forms of bridge ; because, in these designs, we
are enabled to dispense altogether with one of the two principal members
of the structure. This advantage will have to be discounted to some
extent, when we come to provide for the effects of unequal loading; but
it constitutes, at all events, an enormous start to begin with. .
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CHAPTER VIIIL
ON DEFLECTION, OR THE CURVE OF A BENDED GIRDER.

82. The elastic deflection of a girder, or the way in which it bends
under its load, is a subject which, for many reasons, deserves careful con-
sideration ; and it must be remarked that the purposes for which the
study is chiefly useful are quite different from the mere calculation of
the quantity which is commonly termed the *deflection” of a beam or
girder. The calculated ‘“ deflection ” of girders, as given in the text-books,
is indeed liable to be seriously misapplied. It is not an uncommon
practice to ‘“test” a newly erected bridge by observing its deflection
under the passage of a heavy load ; and it may be well to state at once
that such a test affords no reliable indication of the strength of the bridge.
If it should so happen that the structure is seriously or even dangerously
deficient in strength, owing to any fault of design, of workmanship, or of
material, it does not by any means follow that the bridge would exhibit
any unusual deflection under the test load. On the contrary, it is quite
possible that while the inspector is noting with inward satisfaction the
moderate extent of the deflection, the bridge may be undergoing, at some
critical part, a stress which is almost within ‘“the last straw” of the
breaking point.!

But although deflection may not be used in this way as a fest of the
strength of bridges, yet there are many other purposes for which a study
of this question will be extremely useful ; and its importance must not
by any means be measured by the smallness of the quantities that it deals
with. It istrue that the change of form which accompanies a given stress
is a very small quantity ; but for that very reason a minute change of
form is in certain cases accompanied by a great alteration of stress. The
Britannia bridge carries its load safely across the Menai Straits ; but it is
only enabled to do so because these microscopic changes of form take
place in obedience to the laws of elastic deflection.

In studying these laws we shall chiefly keep in view their application
to the strength of continuous girders and the strength of long columns;
and consistently with these purposes our object will be, not merely to
find the deflection at one point, but rather to trace out the actual curve

1 In a later chapter some instances are recorded, in which bridges have actually

collapsed immediately after their deflection under the test load had been measured, and
had been found to amount only to & moderate and quite satisfactory quantity.
H
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of the bended girder, and to examine the relation that exists between the
bending stress and the bended form of a beam.

It will presently be shown that this relation may generally be
expressed by saying that the curve of deflection is derived from the
diagram of bending moments in precisely the same way that the curve of
moments is derived from a diagram of the load.!

83. Deflection of Parallel Girders.—The curvature of a bent girder
is almost entirely due to the stretching of one flange and the compression
of the other under the horizontal flange-stress. It is true that the strain
or deformation of the web contributes to the deflection ; but its effect is
8o small in comparison that it may generally be disregarded.?

The curvature of the bent girder may, therefore, be determined solely
by reference to the flange-stress, no matter what may be the particular
load or external forces by which that stress is produced ; but to fix the
ideas we may suppose that, in the first example, the girder is fixed at one
end as a cantilever, and loaded at’ the other end by a single weight, as
represented in Fig. 95.

Before the weight is applied, let the straight unstrained girder be
divided into a number of rectangular panels 4 Cac, &c., by parallel vertical
lines as shown in the figure. On applying the weight, the upper hori-
zontal bar of each panel will be stretched, while the lower bar will be
compressed, so that each panel will assume a tapered form, like the
voussoir of an arch; and if we put the voussoirs together we may con-
struct on paper the figure of the bended cantilever as indicated in
Fig. 97.

In all cases we shall assume that the girder is not strained beyond
the elastic limit ; and it has been already mentioned that within those
limits the linear extension or compression of a bar of wrought iron is
proportional to the tntensity of stress, and for every ton per square inch
amounts to yy3gyth part of the length of the bar. Therefore, to calcu-
late the altered lengths of the upper and lower member of each voussoir,
it is necessary to know the intensity of flange-stress at each panel. To
find that intensity we have only to divide the flange-stress at any point
by the sectional area of the flange; and this being done, the varying
stress-intensity may be represented by a diagram, such as Fig. 96, which
we will suppose to represent the stress-intensity in each flange of the
cantilever, so that ag, for example, represents the intensity of stress in
the first panel, in tons per square inch.? Then the upper bar of that
panel will be elongated by an amount which is expressed by the length
ac multiplied by the stress-intensity ag and divided by the modulus of

1 The method here adopted was first described by the author, in abbreviated form,
in a paper on ‘‘Continuous Girder Bridges,” contained in the Proceedings of the
Institution of Civil Engineers, vol. lxxiv,

2 Professor Rankine has shown that in a girder of ordinary proportions the deflec-
tion due to the web-strains does not exceed g;th of the whole.

3 The diagram will have the stepped outline, as shown in the figure, if the cantilever
is a single lattice girder with flanges of uniform section.
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elasticity E (or 12,000 tons per square inch). Let G, denote the area of
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the strip aghe ; then %—1 will express the elongation of the upper bar AC,

or the compression of the lower bar ac.
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The altered form of the panel is represented in Fig. 94, by the tapered
figure AC\ac, ; and the inclination of the line C\¢, (which was originally
vertical) will be measured by the linear extension of the upper bar AC'
divided by half the depth of the girder, or it will be measured by the
extension of AC+ compression of ac
depth of girder
2G,

ED’

Now if the remainder of the girder were not subject to any further
strain, this tapering of the first voussoir would in itself have the effect
of giving a downward inclination to the whole girder beyond the first
panel, as indicated by the lines C, B, and ¢,b, which in Fig. 94 are drawn
at right angles to C,¢,, and as indicated again by the line F,B, in Fig.
97. The slope of that line will in fact be equal to the inclination of the

line C|c, as above given ; in other words FB-ED - 1, ; 80 that to find

the offset or fall BB; we have only to multiply the gradient ¢, by the
horizontal distance #;B measured from the point of intersection F,.
It has already been mentioned that the effect of the web strain is really
inconsiderable,! and therefore neglecting any oblique distortion of the
voussoir A Cyac,, such as would be produced by strain in the diagonals,
it is evident that the point of intersection F; will occur at the centre of
the length 4C}, while the point f; will occur at the centre of ac,, the
line F,f, being the axis of the tapered voussoir. Therefore the offset
BB, will be proportional to the area G,, multiplied by the distance from
its centre to the point B, or, in other words, proportional to the moment
of that area about the point B, and if X, denotes the horizontal distance
F,B, we have BB, =215,

Proceeding now to deal with the second panel in the same manner,
we may denote the area of the corresponding strip in the diagmm by G, ;

ratio

, and it may, therefore, be

expressed by i, =

then the second voussoir will have a taper expressed by E_—I_)’ ; and from
this panel forwards the girder will receive an additional downward
inclination represented by the line F;B, in Fig. 97. Therefore at B the

girder will be depressed by an additional ? quantity B, B, = @E’g—&
Repeating the process for each panel in succession, we obtain the

1 The actual effect of the web-strain in the first voussoir, or the shortening of the
diagonal aC) and extension of the diagonal AC), will be to throw the point of intersec-
tion F, a little to the left of the centre; but the effect is so small that it is generally
neglected, and may here be left out of ascount.

2 It may perhaps be objected that the depression B; By ought to have been set off at
right angles to the line F, B;, as shown by the dotted line; but it must be remembered
that the diagram is necessarily drawn to a very exaggerated vertical scale. In practice
the slope of the girder is so small that the difference between the vertical and the
inclined offset is inappreciable, being seldom greater than yy¢5yyth, or rJysth per cent.
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curve of the bended cantilever AB, The inclination of the girder at B,
will be the sum of all the inclinations, and will be proportional to the
entire area of the stress-diagram; while the deflection at B will be the
sum of all the deflections, and proportional to the moment of the whole

disgram about the point B ie. BBy= s { G,X, + G.X, + &e. }

If we conceive the diagram of stress-intensity, Fig. 96, to represent
an tmaginary load, it will be evident that the curve of the bended girder
is nothing more than the curve of moments for that imaginary load. In
fact if the cantilever were loaded in that manner and fixed at B, as shown
in Fig. 98, the construction of the curve of moments, as described in
Art. 27, would follow step by step the same process by which the curve
of Fig. 97 has been constructed.

Thus if G denotes the entire area of the diagram, and X the
distance of its centre of gravity from the point B, the deflection will be
BBy=GXx 2

In the same way, it hardly needs any demonstration to show that
whatever may be the figure of the diagram of stress-intensity, the
deflection BB, at the extreme end of the cantilever, measured from the
tangent AB, must always be proportional to the moment of the area of
that dxagram' If the diagram has any irregular form, as it may have
in the case of a plate-webbed girder, we may suppose the girder to be
divided into a large number of narrow panels, and the diagram into a
corresponding number of narrow strips. The area G, of the first strip
(whatever may be the irregular form of its upper edge) will be an
accurate measure of the extension of the first bar in the upper flange ;
and the element of deflection BB, due to that extension, will be measured
by the moment G,X,, or BB, = g%;—{

Therefore, in the case of any parallel girder, we have the simple rule
that the curve of the bended girder is the curve of moments for an imaginary
load, whose varying intensity 18 represented by the actual intensity of stress
in the flanges of the girder.

‘We have hitherto assumed that the two flanges have the same sectional
area, 80 that the stress-diagram is the same for each flange, and we have

area of diagram . :
taken the Balf depth of gi rdor %8 as the measure of the slope; but if the
flanges are unequal and the diagrams consequently unequal, the slope
will still be measured by the united area of both diagrams divided by the
whole depth of the girder. Therefore if we make the diagram to repre-
sent the mean stress-intensity for the two flanges, we shall in every case
have the slope equal to ]25% , and the extreme deflection BB, = GX x f]—) '

84. Deflection of Girder under Uniform Working Stress.—By means
of the rule above given we may describe the deflection of any parallel girder,
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whatever may be the arbitrary variation of flange-section at different
points ; but we may now consider two principal cases, viz.,, first, when
the flanges of the girder are proportioned to one standard working stress
throughout ; and, secondly, when the
flanges are made of one uniform sec-
tion throughout.

In the first case it must be as-
sumed that the section of each flange
is everywhere proportional to the
bending moment ; thus, for example,
the flanges of the cantilever, Fig. 954,
may be formed with a different thick-
ness of plate for each panel, increas-
ing regularly from B towards 4, and
<——~X-§{-——> we may then represent the stress-
4 » intensity by a rectangle, as in Fig.
964, in which the height f represents
the uniform working stress in tons
per square inch.

If for a moment we regard this rectangle as representing an imaginary
uniform load, it will be evident that the corresponding curve of moments,
or the actual deflection curve, will be a parabola,! as in Fig. 974,

In that figure the horizontal line 4B represents the original line of
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the straight girder, and AB, is the deflection curve. The tangent gB, will
intersect AB at the centre, and the inclination of that tangent will be
expressed by

tany=Fl=gp=gp - - - -

1 The deflection being in all cases very small, ‘‘ the parabolic curve” and *the cir-
cular curve” are practically synonymous terms ; in the circle the tangent Ag is equal
to gB,, and in the parabola Ag = gB; and for all practical purposes gB = ¢gB,.
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while the deflection BB, will be equal to the length Bg multiplied by
that gradient, or
Deflection, BB, = 2%‘ - ﬁpn C (@

In the same way, if the girder is supported in the middle and loaded
at each end, we have the parabolic deflection curve of Fig. 97, each half
of the curve being similar to Fig. 974 ; and if the girder is supported at
each end, as in Fig. 970, and loaded by a central weight, or by any other
distribution of load, the deflection curve will always have the same para-
bolic form, provided that in every case the sectional area of flange is
made proportional to the bending moment, so that the stress-intensity f
is made uniform throughout. Therefore if L denotes the total length of
the girder, we have for the downward deflections 44, and CC, in Fig.
978, or the depression BB, in Fig. 97c, the value—

2 2
Deflection, 44, =BB, =00, =L TH . ()

85. Deflection of Beams or Girders of Uniform Section. — In
girders of uniform depth, the diagram of moments may always be taken
to represent, on a certain scale, the diagram of flange-stress for each of the
two flanges ; and if the sectional area of each flange is uniform throughout
the length of the girder, the same diagram will represent on another scale
the diagram of stress-intensity.

Therefore, in all girders of uniform section we have the following
rule for constructing the deflection curve for any given distribution of
load, viz. : Let the varying intensity of load be represented by a diagram
(a), and construct the diagram of moments (b) ; then treat diagram (b) as
representing the intensity of an imaginary load, and construct the cor-
responding curve of moments (c) for that imaginary load. The curve (c)
will be the curve of the bended girder.

The diagram of moments for each of the most important cases has
already been described in Chapter IV.; and treating it as a diagram
of stress-intensity we may at once proceed to trace the deflection curve
for girders of uniform section ; but in doing so we need not stop to fill
in all the details, because in every case the most essential features of the
curve will be defined by merely laying out the tangents and their points
of intersection ; and the details of the curve may easily be filled in after-
wards as occasion may require.

86. Deflection of Cantilever Loaded at the End.—This case is
represented in Fig. 99, while the diagram of moments, or rather the
diagram of stress-intensity, is represented by the triangle abf in
Fig. 100, The girder being fixed at B, the bending moment at that
point will be M,= —PL, and the stress-intensity, bf, will have the

value T-(%), in which A denotes the sectional area of each flange,
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or the mean of the two flanges. ~The area of the triangle will be
G =5 x5 while the horizontal distance of its centre of gravity from

the point 4 will be X = 3L.

In Fig. 101 the horizontal line AB denotes the original position
of the unbended girder, and may be taken to represent the neutral axis;
while the curve 4,B represents the curve of the bended girder. The
deflection 44, will be proportional to the moment of the triangular

stress-diagram, as demonstrated in the
last Article, and will be expressed by—

s 2GX=3 1
A4, =55 =3 ﬁ) R E))

The slope of the girder at 4,, or the
gmdxent AA‘ will be proportional simply
° to the area. of the stress-diagram, and

~r A4,

x= {1 Ag

-P

[

Fig.100

o

= tan. q,____w . (4)

It follows of course that the length
Ag=X; or in other words, the point of
intersection, g, is at the centre of gravity
of the stress-diagram. This will always
be the case ;2 and in order to draw the
containing tangents g4, and ¢B, for any
portion A, B of a deflection curve, we may first first fix the intersection of
the tangents at the centre of gravity g of the strip of diagram contained
between the two extremities @ and b, and then lay off the inclination of
the tangents, which will be proportional to the area of the same strip.

It is worthy of notice that if we continue the tangent 4,9 to B,, as
shown in Fig. 101, the vertical offset BB, will be only kalf the value of

AA,, because Bg= 2 ; therefore—

g\

2
BB,:},bfo{"_D ()

In fact, the ordinate B,B, and all vertical ordinates measured to the
curve below the tangent 4,B,, are proportional to the bending moments
in a cantilever fized at B and loaded with the imaginary wedge of Fig.
100 ; while all the vertical ordinates measured below the tangent AB
are proportional to the moments in a cantilever fixed at A and loaded
with the same imaginary load.

1 Expressing this formula in terms of the load we have—

Deflection, AA,-% i%l%z . . . . . (3a)

3 This is demonstrated in Art, 27, for the parallel case of the diagram of momentas.
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If it is desired to fill in the details of the curve, the simplest method is
to set off the vertical ordinates below 4,B, which are all proportional to 2°

87. Deflection of Cantilever under a Uniform Load.—If the canti-
lever is covered with a distributed load of uniform intensity p, as repre-
sented in Fig. 102, the moment at
any point whose distance from 4 is

: _p

denoted by z will be —M—7, and 3 Yo%
therefore the ordinate df in the dia- * S
gram of stress-intensity, Fig. 103, will

2
have the value F 2AD

The area of the parabolic stress-
d.iagmmwi]lbeG:lgfx%‘, while the

distance of its centre of gravity from
the point 4 will be X=3L1

Therefore in the deflection curve,
Fig. 104, we have the length Ag=
X =2L; the slope
AA, _2G _ .. L
zg—l-tan. =ED" 3 ) (5)
and the deflection offset
AA, =X tan. ¥,

o dA =R xEs. . ()
The last formula may again be expressed in terms of the load, or—
4
AA1=4—’"E1‘—D2...........(6¢1)

The offset BB, will be one-third of 44, ; and the curve may be
plotted by ordinates below 4,B,, which will be everywhere proportional
to 4.

88. Deflection of a Balanced Oantilever.—If a beam or girder of
uniform section is supported at the centre, as in Fig. 105, and if the
ends 4 and C are loaded with equal weights P, and P, the diagram of
stress, and the deflection curve for either half of the beam will be the
same as though each half were a cantilever fixed at B. This case is
therefore very simple, and exactly similar to that described in Art. 86.
Let the total length of the beam AC be denoted by L, and the length of
each cantilever by L. Then we have—

-
<

. o TS Pl _PL
Stress-intensity, bf = F iD= F oD
Length, Ag, = Cg, =31 = 1?:

1 In all cases vide Art. 15 for the position of the centre of gravity of the diagram.



122 CONSTRUCTION OF BRIDGES.

AA, _ CC — L

_—1 Ldfx — . . .
Slope, ng =tan. ¥ =} bf x ED )

. = B — L3
Deflection, A4, =CC =3 bf x ——=3bfx=— . (8)

ED ED

But now suppose the same girder to form part of a cantilever bridge,
the girder being loaded at A and supported at B, while the end C'is held
down to a fixed abutment, as illustrated in Fig. 108, If the load at 4
is the same as before, the downward force P, will also remain unaltered,
and therefore the stress-diagram and the curve of the bended girder will
be exactly the same as before. But we must now consider, not only the

Figao0e.
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Jform of the curve, but also its position in spacs, or its position relatively
to the fixed portion of the bridge.

We will suppose then that the abutment C has been carried up to
the same level as the pier B, and that the unstrained girder has been
fixed upon these two supports in a truly horizontal position, and anchored
down at C, and it is required to trace the curve of the deflected girder
when subsequently loaded with the weight P,.

The form of the curve 4,BC; in Fig. 107 will be unaltered, but the
end C, instead of being depressed as there shown, will remain at the
original level, so that the curve in that figure will be rotated upon the
fulerum B into the position shown in Fig. 110. In the last named
figure the line 4,C), which represents a tangent drawn to the curve at B,
will therefore he ¢nclined, and will be inclined at such an angle that the
height CC, is equal to the deflection CC, as before determined. For it
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must be remembered that the deflections which have been calculated are
deflections from a tangent drawn to the curve at B. Those deflections,
and the resulting form of curve, depend only upon the stress-diagram ;
but the position of the curve in space can only be determined by reference
to some two points in the curve which are fixed points; and in the
present instance the two points which fix the position of the curve are
the points B and C.

It follows, therefore, that if the two arms J, and , are of equal length,

¥ig.108.
-P,lf 3 >+ iy ‘{ P
| B
i
3
§
'I

R oo o om

the deflection 44, will be just twice as great as that previously calculated ;
and if those arms are nnequal we have the following values ; viz.,—

Offset, CC, = 35 x
CC’
Inclination at B= — = tan. = 3pf x - ED . 9
= Ll
Offset, A4, =1, tan, J;, =3bf x LD
o 4
Offset, 4,4, =3 bf x EID_
Deflection, 44, = A4, + 4,4,=37x 3G +H) (19
Inclination at A,:% xQ+E). . . . . . (D)
This matter has an important bearing upon the design and erection
of cantilever bridges ; and among other things it explains the cause of the

large deflection observed in the cantilever bridge recently erected across
the Niagara.
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‘When the girder is supported upon a rocking bearing at B, the in-
clination of the girder at that point is of little consequence ; but when it
has a wide bearing upon the pier or is supported upon two legs, the effect
of that inclination must be carefully taken into account. If it is desired
to give the girder a level bearing upon the pier B, that may be effected s
the case of any given load, by calculating the offset CC), and lowering
the tail end of the girder by a corresponding amount. It may be re-
marked, however, that if the bridge is designed to resist wind-pressure
upon the same cantilever principle, it is not possible to effect a cor-
responding lateral adjustment of the fixed end, as that adjustment
would require to be varied with the varying pressure and direction of
the wind.

89. Balanced Cantilever under a Uniform Load.—If the two arms

4y

of the cantilever are of equal length and are uniformly loaded, as in Fig.
111, the girder will be exactly balanced upon the pier B, without the
interference of any upward or downward force at C. Nevertheless the
position of the deflection curve will be determined by the two fixed points
B and C, while its form is determined by that of the stress-di
Each arm of the girder is of course a cantilever situated under the same
conditions of stress as those already described in Art. 87, and each half
of the stress-diagram in Fig. 112 is merely a repetition of that shown in
Fig. 103.

The deflection of each arm (BA; and BC) below the tangent A,BC,,
in Fig. 113, will therefore be precisely the same as that shown in Fig.
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104 ; and the points of intersection g, and g, may be fixed accordingly
upon the line A,C, at distances of Il to the right and left of the point B.

But the tangent A,BC; will be inclined as described in the last
example, its inclination being determined by the height CC;, or deflec-
tion C,C.

Thlerefore if the horizontal line ABC represents in elevation the
original position of the neutral axis, or represents in plan the centre line
of a cantilever, the elements of the deflection curve due to a uniform load
in the one case, or a uniform wind-pressure in the other case, will be as
follows,* viz.—

. o T 72
Stress-intensity, bf = F L_’I;&T)

— B
Offset, OC, = §3 x T

— co = 1
Inclumtxona.i‘.‘8=—l1=§bfxE P ¢ 3]

Deflection, 44,=2CC,=Fx g . - . . . (13)
- — B
Inclination at A;=3bf o IR (14)

It will be noticed that although the span BC is covered with a
uniform load, yet the girder is not depressed or sagged by that load, but
on the contrary is bowed upwards above the chord line BC. This arises
from the circumstance that the abutment C is really carrying no part of
the load, and unless that fact is borne in mind, the presence of the abut-
ment may easily give a misleading impression as to the true character of
the strains. The abutment exerts no force upon the girder, and affords
it no support ; but its presence merely determines the tilted position of
the deflection curve.

90. Beam supported at each End and Loaded in the Middle.—This
case being exactly the converse of the balanced cantilever of Fig. 105, the
stress-diagram and deflection curve of that cantilever require only to be
inverted, as shown in Figs. 115 and 116.

The central load P, takes the place of the supporting force at the
centre of the cantilever, and is equal to 2P,. The forces P, and P, are
now positive or upward forces, and the bending moments being positive,
the deflections of the points 4 and C from the tangent 4, B,C; will be
upwards instead of downwards, but the offsets 44, and CC; will have
the same values in terms of the stress-intemsity 7, or in terms of the
force P,

The position of the curve relatively to the fixed portion of the bridge
is determined in this case by the two fixed points 4 and C, and the

1 These values are deduced from formuls (5) and (6) ; and it is of course assumed that
the girder is of uniform depth and section, and is free to turn upon the fulcrum B.
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quantity commonly termed the ¢ deflection ” is the depression BB;, which
is equal to 44, or CC;. Therefore expressing the stress and deflection
in terms of the central load, we have—

P,L’
Stress intensity, bf = + i AbD
Deflection, BB, = ,‘,I_)}'x Ef) . . (15)

PIE
or BB, = 24]£AD2 .+ . (15a)

For some purposes it will be necessary to find the offset CC, measured
to the tangent Ag produced, and also the inclination! or angle %’C;’. The

former will be proportional to the moment of the whole triangle afe about

rigus  |-7,
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the point ¢, while the latter will be proportional to the area of the same
triangle ; therefore if G denotes that area —

cc, 26 - L
=tp=Tg5 - - - - . (0
Oﬂ‘set,co2__2E% &_lbf LD . ..an

It only remains to notice that all the vertical offsets measured to the
deflection curve from the chord line AC are proportional to the moments
in a beam supported at each end and loaded with the triangular mass gfe.

1 In all cases we may take the horizontal length C'B as practically equivalent to the
inclined length Cy; the difference being seldom greater than ygyzygth of the length.
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91. Girder supported at each End and Uniformly Loaded. —The
curve of the bent girder is always more clearly described by the deflection
of the curve from its tangent than by any other means; and therefore
in this case, as in the last, we may divide the stress-diagram abef of Fig.
118 into two equal areas by the centre line 4f, and then proceed to
measure the deflection of each half of the girder (right and left of the
centre) from the tangent 4,B,C; in Fig. 119. The moments being
positive the curvature will be concave upwards, and the deflection of the
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girder from the tangent will be an upward deflection as in the last
example.

The area afb of either half of the stress-diagram will be G, = glgfx =
while the horizontal distance of its centre of gravity from the point 4
will be X = $4B = %L

Therefore the elements of the deflection curve will be as follows,
viz.—

’

. . 1.2
Stress-intensity, bf= g’ D

.. AA 7. L
Inclination, -=1 = tan, +, = =— . . (18
da=ten b= ER= g . . 09)
Length, 4,9, =X =4L.

Deﬂection,BBl=AAl=,‘-‘5fxEI% N ¢ 1))
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‘When employing this curve for the purpose of further investigations,
it will sometimes be better to use the deflection offsets from the tangent
AC, The offset mym,, at any point, will of course be proportional to the
moment of the area ann; about the point n, ; and therefore the offset
C,C will be proportional to the moment of the whole parabolic area
about C. That area will be G = 25f x L ; therefore—

co,_26
g EbsbeD.........(zo)
Offset, CC, = 2Gx1‘_,17 C (@)

In this example, as in the last, it may again be remarked that if the
stress-diagram is taken to represent an imaginary load placed upon a
girder supported at each end, the moments in that girder would be pro-
portional to the ordinates BB,, mm,, &c., measured below the chord line
AC of the deflection curve,

92. Girder uniformly Loaded and Strained over one Pier.—The
form assumed by the loaded girder when it is not merely supported at
each end, but also strained over one or both supports, is of great import-
ance in the theory of continuous girders, and affords the only means of
finding the stress in such bridges.

Suppose the girder described in the last example to be prolonged
beyond the pier 4 as shown in Fig. 120, and to be loaded at I by a
weight P, The diagram of moments for this case was considered in
Articles 36 and 38, and is repeated as a diagram of stress-intensity in
Fig. 121, in which ac is the base line. The negative ordinate ak
represents the intensity of flange-stress at the pier A due to the pier
moment P, ; and drawing the straight line e, the parabolic curve Xfe is
erected upon this line, and is merely a parallel projection of the parabolic

diagram of Fig 118 8o that the ordinate b.f, for example, represents the
m, which would take place in the centre if the beam

were merely supported at each end. In the actual case the stress-
intensity at that point is denoted by the ordinate &7 above the base-line ;
and it will be evident that all ordinates above the base-line represent
compression in the upper and tension in the lower flange, and vice versd.
Therefore from A to 7' the girder will be deflected downwards, or hogged ;
while from 7' to C it will be sagged or deflected upwards; the point T'
being the “ point of contrary flexure;” and the deflection of the girder
at C below the tangent AC, will be proportional to the algebraical sum
of the moments of the positive and negative areas ¢fc and akt.

The position of the curve in space is fixed by the two points 4 and
C, but the curve itself is more clearly described by its deflection from
the tangents. Starting from 4, let AC] be a tangent to the curve. The
inclination of this tangent is not yet known, but it will be found when

stresa-mtenmty,



DEFLECTION OF CONTINUOUS GIRDERS. 129

the offset C,C is presently determined. Find the area and the centre of
gravity of the figure ak?, and dropping the vertical g,g, from its centre
of gravity, the point g, will fix the intersection of the tangents AC, and
9,0, The angular deflection C,g,C; will be proportional to the area akt,
and the downward offset or deflection C;C; will be proportional to the
moment of that area about C. Then drop the vertical g,g, from the
centre of the parabolic segment ¢fc, and drawing the tangent g,C the
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skeleton of the reverse curve is completed. The upward offset or
deflection C4C is of course proportional to the moment of the parabolic
segment ifc, and thus we have the required offset CC,= C,C;- C,C.
Therefore the offset CC, is proportional to the moment of akt, less the
moment of #fc, or, in other words, proportional to the moment of the
triangle ake, less the moment of the entire parabola kfe. The moments
of these two figures have already been found, and referring to formul®
(8) and (21), we have—

Offet, CC,=(3ak~T07) g - = = (22)

93. Girder uniformly Loaded and Strained over both Piers.—So
far as the deflection of the span AC is concerned, it matters nothing by
what load or forces the pier moments are produced, and therefore the last
example will apply generally to the end spans of any continuous girder
bridge ; while the present example will apply to the intermediate spans,
or indeed to any span of such a structure,

4
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Let the stress-intensities due to the pier moments”at 4 and C be
denoted by the ordinates ak and co in Fig. 124, and drawing the line
ko, the diagram will be completed by erecting upon that line the para-
bolic curve #fo, making the central ordinate b,/ equal to giLD

The deflection curve of Fig. 125 will be constructed upon the same
principle as before. Starting from A let AC; be a tangent to the curve,
whose inclination has to be determined by finding the deflection C,C.
Find the centre of gravity of each of the three areas ait,, ¢, /¢, and t,co,
and drop the verticals g,9,, 9,9, and g,g;. Then draw successively the
tangents g, C,, g,Cy, and ¢;C, making the offset C,C;, proportional to the
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moment of the first-named area, and the offsets C,Cy, and CyC pro-
portional to the moments of the second and third areas respectively.
The offset CC; will be equal to C,C,- C,C; + C;C; and therefore pro-
portional to the algebraic sum of the moments of the three areas ak?,,
t,ft; and Zco ; and therefore proportional to the moment of the trapezoid
akco less the moment of the parabolic area kfo. The trapezoidal area
may be divided into two triangles, ake and %co, for which triangular
diagrams the moments have been already found; and applying the
formuls (3), (5), and (21), we have the required offset CC; determining
the inclination of the girder at 4, or—

Offset, CC, = (3ak + }co — 2b,f

12
ﬁ. . . .

Inclmatxon, C (’alc + ,co - ’blf) .. (29)

(29)



DEFLECTION OF SOLID BEAMS. 131

94. The above diagrams and formulm relate, of course, to the deflec-
tion of a parallel girder consisting of two flanges united by a web;
but the same principles may without difficulty be applied to the deflec-
tion of a solid beam of uniform section; for in such a beam each pair
of fibres or layers, situated respectively above and below the neutral axis
by the vertical distance y, may be regarded as the flanges of a girder
whose depth is 2y ; and these flanges being subjected to a stress whose

intensity is f= yl—y, the deflection will be proportional to the moment of

the area of the stress-diagram for those fibres ; and the deflection will be
the same whichever pair of fibres is selected.

The beam being of uniform section, the diagram of stress-intensity for
any fibre will be similar to the diagram of moments for the whole beam ;
and if G denotes the area of the diagram of moments, and X the distance
of its centre of gravity from the extreme end of the beam, the deflection
at that point will be proportional to the moment or product GX.

Thus referring to the primary example of the cantilever illustrated in
Fig. 95, from which all the subsequent solutions have been derived, the
deflection of any solid beam will be given by—

Deflection, BB, = (-%-X P 1))
I
in which I is the moment of inertia of the beam’s cross-section.

It is worthy of notice that although the theoretic distribution of stress
in the fibres of the solid beam cannot be depended upon as indicating the
ultimate stress or breaking load of the beam, yet the same theory, when
applied to the elastic deflection of a solid beam, as above described,
appears to be in close accordance with the results of experiment ; and it
follows as a geometrical necessity that the longitudinal strain of the
extreme fibres must be very nearly equal to the value deduced by that
theory. It is geometrically impossible to reconcile the observed deflection
of a cast-iron beam with any smaller amount of longitudinal strain than
that deduced by theory, except by supposing that a much larger portion
of the deflection is due to shearing distortion than is usually believed.
To examine the question whether this shearing distortion can possibly
explain the divergence between the theoretic strength and the theoretic
deflection of a cast-iron beam, Professor Kennedy has recently made some
experiments at the author'’s suggestion, by which the inclination of the
originally vertical lines (Cy¢,, &c., in Fig. 94) was very accurately measured
by a ray of reflected light ; and it was found that in the bent beam those
lines are 8o nearly radial to the curve of deflection, that the value of the
longitudinal strain in the extreme fibres must certainly be very nearly the
same as that which is indicated by theory.

It will be remembered that in all cases the deflection spoken of is to
be understood as the deflection of the point in question above or below
a tangent AB drawn to the elastic curve at the point of origin of the

.
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diagram of moments, and representing the original line of the unstrained
girder as referred to that point.

95. The deflection of a beam or girder under any distribution of
upward and downward forces may easily be traced by the methods which
have been here described ; but it must be remembered that the method
which we have recently been dealing with will only apply to beams or
girders of uniform section. If the girder is made with flanges of varying
sectional area, the deflection, in many cases, can only be accurately found
by constructing a diagram of the actual sntensity of stress under the given
load.

Thus, for example, the main girders of a swing bridge recently con-
structed by the author, were proportioned—as such girders usually are—
to the maximum stress that can take effect under any of the varying
conditions of the structure; and when the bridge is opened, and sup-

ported only upon the turn-
w'o® -— table, as shown in Fig. 126a,
A 8| the intensity of stress in the
[T +tabie-o] Fig190e flanges varies at different points
i within very wide limits.

It was important, however,
to ascertain beforehand the pro-
bable deflection of the girders
in this condition, as the proper
adjustment of the work de-
pended upon it. The actual
diagram of moments, or dia-
J s gram of flange-stress, is given
in Fig. 1268, while the diagram
of stress-intensity is repre-
sented in Fig. 126c. The
moment of the latter figure
s about the point b having been

calculated, the theoretic deflec-
tion at B was found to be 2% inches, and the adjustments of the fixed
supports were made accordingly. When the girders were completed and
swung into position across the stream, the actual deflection was found to
be only about one-tenth of an inch less than had been calculated ; and
although so close a coincidence must have been partly due to accident,
yet it is certain that if the calculation had been made upon the hypo-
thesis of uniform section, or of uniform stress, the result could not have
been nearly so accurate—for in the former case the calculation would
be equivalent to a measurement of the moment of the diagram asb in
Fig. 126B; while in the latter case it would be equivalent to the moment
of the rectangle affb in Fig. 1260.

96. In conclusion, it may be remarked that the inmitial *cam-
ber” which is required in order to bring any proposed girder into a

8,

Flange-stress

Stress_intensity

¥ig.1960
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straight line when it is loaded, may easily be obtained by making
the initial length of each strut greater than its designed length in

the proportion of ( 1 +:]%) to 1; and at the same time making every

tie shorter than its designed length in the proportion of (l —%) to 1.

Thus if every member is designed with a working stress of 4 tons per
square inch of gross sectional area, the struts will have to be lengthened
in actual manufacture by yg45y=y.dosth of their designed length ;
while the ties must be shortened in like proportion. These small
increments or decrements of length are sometimes specified upon the
working drawings of the bridge.
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CHAPTER IX.

CONTINUOUS GIRDERS,

97. The problem of finding the bending moments in a continuous
girder has formed the subject of many learned and extensive treatises ;
and by the labours of Clapeyron, Bressé, Heppel, and others, a definite
mathematical theory of continuous girders has been successfully built
up. The formule deduced by these investigations are, however, very
lengthy—so much so, that the computation of the stresses becomes in
some cases a very tedious and laborious undertaking. Moreover, the
formuls are open to the objection that they do not exhibit, in their
construction, the line of reasoning on which they depend ; and therefore
no engineer can feel much confidence in using them, until he has him-
self followed out the complex processes of their construction,

These difficulties may, however, be removed by using geometrical
instead of analytical methods; and in working out the problem by this
means, the graphic diagrams will themselves illustrate the chain of
reasoning on which the solution of the problem must depend.

The main difficulty of the question arises from the fact that, when
a girder is supported at more than two points, the vertical reactions
or supporting forces cannot be found by the law of the lever. The
external forces are therefore not all known, and consequently the
internal stresses cannot be determined except by reference to the elastio
deflection of the girder.

To illustrate this, we may take the case of a continuous girder of
two equal spans, the girder being supported, as in Fig. 127, upon the
extreme abutments, Z and C, and upon a central pier at 4, and loaded
throughout with a uniform load. It is obvious that in this case the law
of the lever would be satisfied if the girder were balanced upon the
central pier without pressing upon the abutments at either end ; and
that it would be equally satisfied if the girder rested entirely upon the
two abutments without touching or without pressing upon the central
pier. Therefore, if the girder were inflexible, the smallest conceivable
elevation or depression of the central bedplate would have the effect
of either bringing the whole load upon the central pier, or leaving it
to be entirely carried by the two abutments.

In the first case, the girder would be subjected to a severe tensile
stress in the upper flange, and the diagram of stress would be represented
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by the curves 2k, and ck, in Fig. 128 ; while in the second case the stress
would be equally severe in the opposite direction, the diagram being the
parabola zk.c; and as this enormous difference of stress would be pro-
ducible by the slightest inequality in the level of the three bedplates,
it would be impossible to say what value (between these extremes) the
stress would really have, In fact, if the girder were inflexible, the pro-
blem would be insoluble.

But the girder is elastic ; and it is evident that neither of these

rigam
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extreme stresses could really take place unless the girder were bent to
the corresponding curvature, which could only happen if the central pier
were elevated or depressed by a certain appreciable difference of level,
corresponding with the upward or downward curvature,

For example, to examine these conditions more closely, we will
assume that the length ZC'=L =120 feet, each span having the length
1 =60 feet; also that the girder has a uniform depth of 6 feet, and each
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flange a uniform sectional area of 30 square inches ; and let the girder
be covered with a uniform load of 1 ton per foot from Z to C. Then the
exact results in each case will be as follows :—

First, If the central pier carries the whole bridge as a balanced can-

tilever, the tensile stress in the upper flange at 4 will be 26_3,6 =300 tons,

or just 10 tons per square inch, as denoted by the ordinate ak,; and
referring to formula (6) of the preceding chapter, it follows that each end
of the girder must deflect below the tangent Z 4,0, (in Fig. 129) by
the smount C;C'=} x 10 x iz,TG()O(:Té = 025 feet, or 3 inches.

Therefore this great tensile stress can only take place when the centra
pier is raised 3 inches above the true level as shown by the curve Z4,C.

Secondly, If the central pier carries no load at all, the girder being
supported only at Z and C, the upper flange at 4 will be subject to a
compressive stress of -813—0; =300 tons, or 10 tons per square inch ; and
referring to formula (19) we have the central deflection (in Fig. 129)

s 1202 _
Ady=s 10 % 1o 006~ 17

Therefore this latter stress can only take place when the central pier
is lowered 5 inches below the level of the abutments as shown by the
curve ZA,C.

Thirdly, If the three supports are adjusted at the same level, it is
evident that the stress will have some intermediate value between these
two extremes.

It will be observed that if the central pier is gradually raised, from 5
inches below, to 3 inches above its true level (through a total range of 8
inches), the flange-stress passes from + 300 tons to — 300 tons ; while the
pressure on the central pier increases from 0 to 120 tons. Now it may
be shown that all these changes really take place in the same proportion
throughout the range; that is to say, if the central bedplate is wedged
up inch by inch from its lowest position at 4,, each successive inch of
elevation will increase the pressure on the central pier by one-eighth of
the total load, and will diminish the compressive stress in the upper flange
by one-eighth of 600 tons ; so that if the bedplate is raised 5 inches (to
the position 4), the load on the central pier will be five-eighths of the whole
load, and the stress in the upper flange will be 300 - (§ x 600)= - 75
tons, or a tensile stress of 75 tons, equivalent to 24 tons per square
inch.

This statement is not a demonstration, but the example will serve to
illustrate the nature of the problem, and shows that the solution in any
case must depend on the elastic deflection of the girder, and will be
governed by the condition that the deflection curve must have such a form
as to bring the three points Z, A, and C to the same level. The relation
between the deflection curve and the stress-diagram was described in- the

feet, or b inches,
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last chapter, and this interdependence will enable us to construct the
stress-diagram by means of the deflection curve.

For the present we shall commence by making the usual assumption,
viz.,, that the girder is a girder of uniform section; and it will be re-
membered that for such girders the diagram of moments is at the same
time a diagram of flange-stress, and also a diagram of stress-intensity.

98. To carry on this examination, it will greatly facilitate matters if
we first arrange the stress-diagram in such a way that we can readily trace
the variations of form which it undergoes when the central pier is raised
or lowered—i.6., when the pier-moment at 4 is increased or decreased.
If the ordinate ak in Fig. 128 represents the unknown tensile stress in the
upper flange, the stress-diagram will be completed by drawing the two
parabolic curves ck and 2k, which will be segments of the same parabola
as the curves ck, and ck, ; in fact the only difficulty in any case is to find
the value of the pier-moment or the stress ak, and in order to determine
this variable ordinate by geometric methods it will be more convenient
to exhibit the variations in the stress-diagram by moving the straight
datum-lines as in Fig. 130, rather than by reconstructing the curves in
new positions.

In that figure, let the straight line zke be drawn as a provisional
datum line, and upon it erect the parabolic diagrams zgk and %fe, treating
each span as a detached girder supported at the ends; that is to say,
if p denotes the uniform intensity of the load, make the central ordinate
3 to represent the stress g_]l; or the stress-intensity 8’%%
as we can find the value of the pier-moment or the stress ak, we have
only to set off ka and draw the straight lines 2a and ae, which will be the
datum-lines in the diagram for the continuous girder. Thus by raising
or lowering the point a we can readily produce the entire stress-diagram
for any variable value of the pier-moment or stress ak.

Reverting now to the deflection curve of Fig. 129, it is evident that
the girder being symmetrical about 4, and symmetrically loaded, the
tangent ZAC, Z,A,C,, &c. (drawn to the curve at 4), will always be
parallel to the horizontal line ZC'; and if we measure all deflections from
that tangent, we must have an elastic curve which will give no deflection
at Z and at C. In other words, the reverse bending strains and reverse
curves of the girder must be such as to bring the two ends to the same
level as the central pier.

Now it was shown in Art. 92 that if the girder AC is uniformly
loaded and subjected to any variable bending stress over the pier 4, the
deflection at C will be proportional to the moment of the triangular stress-
diagram akc, less the moment of the parabolic area kfc, and will be ex-

Then, as soon

pressed by (,’,b-k—;l;f)—lE%. Therefore the solution is very simple, and
the required stress at 4 will be—
GE=TF . . .. ()
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for the height ak must be such that the moment of the triangle is exactly
equal to the moment of the parabola.

It follows, of course, that the flange-stress ak = flange-stress 7, and

bending moment ak% =bending moment bf.

99. Geometric Measurement of the 8lope.—In the last example the
problem was simplified by the circumstance that the direction of the
tangent 4,C was known beforehand ; but if the two spans of the con-
tinuous girder are of unequal length, or unequally loaded—or again if the
bridge consists of more than two spans, it must not be assumed that the
girder will lie in a horizontal position over the piers. Thus if Fig. 132
represents any span in a continuous girder bridge, the lines 4C, and C4,,
representing tangents drawn to the deflection curve at the piers 4 and C,
may have any inclination upwards or downwards. It has been shown,
however, in Art. 93, that these inclinations may be calculated from the
actual stress-diagram for the span AC, and as the solution of the whole
problem will depend upon this question, we shall now proceed to describe
a geometrical artifice by which the slope of the girder may be measured
directly upon the stress-diagram without further calculation.

Let the stress-diagram of Fig. 131 be drawn in the manner before

described ; f.6,, upon the

ru.:m provisional datum-line ko

o erect the parabolic diagram
RO kfo for the uniform load as

// - j for a detached girder sup-
[ - N\ ported at each end; and
- y ° whatever may be the un-

known value of the pier-

4"\‘________.—!27 moments, let ak and co

. ————=—=——iCage==— represent the stresses due
a . “ to those moments, and draw
Fig1se the straight line ac for the

datum-line of the diagram.

Divide the span ko into three equal parts, and at the points of
division P and Q set up the verticals PR, and QS, intersecting the
datum-line in R, and S,. Then, by the well-known property of the
triangles cak and kco, the height PR, will be equal to §ak + }co, while
the height @S, will be equal to §co + jak.

Now it has been shown in Art. 93, formule (23) and (24), that the
deflection C;C below the tangent AC] is expressed by—

-~ - Q— 2
C,0= (G + o0 - 307) g
the ordinates ak, &c., being measured as stress-intensities.

Therefore if we set off PR and QS each equal to §IE we shall have

RR, = 3ak + ico - 3b,f, and therefore—
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. w7 . L
Deflection, C,C = RR, x 0] (2)
oo 00 _pm . L
== 1 . . .
Inclination, l—LA o RR, x D (3)

By a repetition of the same reasoning we may also represent the
inclination of the girder at the pier C' by the ordinate S5S,, or—

ED

The points R and S may for the sake of distinction be termed the
¢ characteristic points” in the diagram. The stresses in the continuous
girder, as well as the inclination of the girder, will depend solely upon
their position in the respective diagrams of the several spans ; and it may
be noted that their position in the diagram is entirely independent of the
variable and as yet unknown values of the pier-moments; and having
drawn the simple parabolic diagram X%fo as for a detached span, the
characteristic points in that diagram may be fixed at once by simply
drawing the straight lines f% and fo, which will intersect the verticals
PR and QS in the two characteristic points R and S.

Then whether the diagram is considered as representing the moments,
the stresses, or the stress-intensities, the heights RR, and S8, will indi-
cate the slope of the girder at 4 and C respectively. If the movable
base-line ac passes above the point R, the slope of the girder at 4 will
be upwards towards the middle of the span ; while if it passes below that
point, the slope will be downwards; and measuring the height RR; upon
the scale of stress-intensities, we have the definite value of the slope at 4
expressed by RR, x EILD
either of the points R and .S, the girder must lie in a horizontal position
at the corresponding pier.

100. Continuous Girder of any Number of Equal 8pans.—To illus-
trate the general method of solution, we will first suppose that all the
spans are of equal length, and that the load is uniformly distributed over
each span, although the intensity of load may have different values for
the several spans. For example, Fig. 133 represents a bridge of three
equal spans, in which the spans AC and CE are more heavily loaded than
the span EZ. TUpon the provisional datum-line az in Fig. 134 construct
the parabolic diagrams ame, cne, &c., for each span as for a detached
girder, and let L,, L,, and L, denote the lengths of the spans 4C, CE,
and EZ. Divide each span into three equal parts, and at the points of
division in the first span erect the verticals PR and QS, each equal to § &m.
Also in the second span erect verticals at Wand Y, and on these verticals
set off WT and YU, each equal to § dn, and so on for each span of the
bridge, thus fixing in each span a pair of ¢ characteristic points” R and S,
Tand U, V and X,

» o AA| ==
Inclination, A_Cl =88 x L

If the datum-line happens to pass through
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The base-line of the diagram will consist of three lines ac,, ¢,e,, and

Sy

€% which can be drawn as soon as the pier-moments or stresses ¢,c and
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e, are determined ; so that all the stresses throughout the bridge will be
determined only when the points ¢, and e, have been fixed.

1f it so happens that the girder liesin a truly horizontal position upon
the two piers, the base-line must pass through the four points S, 7, U,
and V', but this must not be taken for granted, and indeed will not be
the case in the present instance. But let the straight lines 4,C%, and
C\EZ,, in Fig. 135, represent the tangents to the deflection curve at the
piers C and E; then, although we do not know the inclination of these
lines, we know that the upward inclination of CE, is the same as the
downward inclination of C4,; and it has been shown that the former is
measured by the height 7'7) and the latter by the downward or negative
ordinate SS; in the stress-diagram. Therefore we have the necessary
equation—

TT,xLy==(8$'xL) . . . . . (4

In the same way, at every pier of the bridge, we have a pair of “char-
acteristic points ” right and left of the pier, whose relative distances from
the movable base-line are expressed by the same equation ; thus at the
pier E, we have UU, x Ly= — (V¥; x L), and s0 on.

In the present case the spans L,, L,, L, are all equal, therefore—

TT,= - 88,; UU,= - V¥,

It will be observed that the characteristic points are already fixed,
and it is the position of the movable base-line ac,e,z which is determined
by these equations. It follows that this movable line must be so adjusted
at each pier, as to pass over ome point and under the other, and at equal
distances from both.

This reduces the problem to very simple terms, and it will be found
in practice that the movable base-line can be adjusted in a few minutes
by trial and error, so as to comply with this governing condition. The
engineer, who is accustomed to laying down the gradients upon a railway
section, will have no <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>