THE TEXAS-CALIFORNIA ARC OF PRIVARY TRIANGULATION

be
BY
TVILIIAM BOWIE
Inspector of Geodetic Work, and Chief of the Computing Division, Coast and Geodetic Suriey
SPECIAL PUBLICATION NO. 11

WASHINGTON

DEPARTMENT OF COMNERCE AND LABOR
 COAST AND GEODETIC SURVEY
 O. He tittinanin
 SUPERNTENDENT

GEODESY

THE TEXAS-CALIFORNIA ARC OF PRIDIARY TRIANGULATION

BY
WIMIIAM BOWIF
Inspector of Geoletic Work, and Chief of the Computing Division, Coast and Geodetic Survey

SPECIAL PUBLICATION No. 11

WASHINGTON
GOVERNMENT PRINTING OFFICE
1912

Digitized by the Internet Archive in 2007 with 君等ding from Microsoft 200 orporation 4166
1912

CONTENTS.

Page.
General statcment 5
Reconnoissance 6
Instructions for reconnoissance. 7
Character of figures 7
Strength of figures 7
Lengths of lines. 9
Frequency of bases 9
Base sites and base nets. 9
Statistics of reconnoissance 10
Signals. 10
Progress of observing:
Season of 1908-9. II
Season of 1909-10 12
Season of rgion 1 13
Methods of observing employed. 13
Program of occupation of stations I4
Stations occupied. 15
Connections made with stations previously established 18
Statement of costs 19
Statement of adjustments. 20
Adjustment of the discrepancies in latitude, longitude, and azimuth. 20
Abstracts of horizontal directions and elevation of telescope above the station mark. 2 I
Kyle-McClenny to Stanton base 21
Stanton base to Deming base. 24
Deming base net to San Jacinto-Cuyamaca. 29
Condition equations:
Kyle-McClenny to Stanton basc 31
Stanton base to Deming base. 32
Deming base net to San Jacinto-Cuyamaca. 34
Accuracy as indicated by corrections to observed directions. 36
Table of corrections to observed directions-
Kyle-McClenny to Stanton base. 36
Stanton base to Deming base 38
Dcming base net to San Jacinto-Cuyamaca. 40
Accuracy as indicated by corrections to angles and closures of triangles. 42
Tables of triangles-
Kyle-McClenny to Stanton basc. 43
Stanton base to Deming base 47
Deming base net to San Jacinto-Cuyamaca. 52
Accord of bases. 58
Accord of azimuths 59
Study of crrors 59
High, low, grazing, and refraction lines. 60
Corrections to directions obscrved in a single period and in two or more periods 61
Accuracy of day and night observations. 62
An example of great lateral refraction. 62
Accuracy of primary triangulation in the United Statcs.
Page.
Sections of triangulation in order of accuracy 63
Explanation of positions, lengths, and azimuths and of the United States Standard Datum 65
Tables of positions. 68
Principal points:
Kylc-McClenny to Stanton base 69
Stanton base to Deming base. 70
Deming base net to San Jacinto-Cuyamaca 72
Supplementary points:
Kylc-McClenny to Stanton base. 73
Stanton base to Deming base. 75
Deming base net to San Jacinto-Cuyamaca 78
Deseriptions of stations 83
Principal points:
Kyle-McClenny to Stanton basc. 85
Stanton base to Deming base. 92
Deming base net to San Jacinto-Cuyamaca 99
Supplementary points:
Kyle-MeClenny to Stanton base 103
Stanton base to Dcming base. 103
Deming base net to San Jaeinto-Cuyamaca 106
Computation, adjustment, and aceuracy of the elevations:
Kyle-McClenny to Stanton base 114
Stanton base to Deming base. 116
Deming base net to San Jaeinto-Cuyamaea. 118
Elevations. 120
Table of elevations:
Kyle-McClenny to Stanton base. I2I
Stanton base to Deming base. 122
Deming base net to San Jacinto-Cuyamaca 123
Sketches. I25-134
Index to positions, descriptions, sketches, and elevations 135
ILLUSTRATIONS.

1. Sixty-foot signal 10
2. Signal at Burson on the ninety-eighth meridian triangulation 10
3. Box heliotrope used on primary triangulation. 10
4. Large acetylene signal lamp 12
5. Small acetylene signal lamp 12
6. Twelve-inch theodolite with electric light for illuminating the cross wires. 12
7. Vertical circle used in trigonometric leveling and for making time obscrvations 124
8. Standard triangulation station marks. 124
9. Index map 125
10. Triangulation, Kyle-MeClenny to Allen-Boyd 126
i1. Triangulation, Allen-Boyd to Stanton basc. 127
11. Triangulation, Stanton basc to Round-Toyah 128
12. Triangulation, Round-Toyah to Black-Quitman 129
13. Triangulation, Black-Quitman to Deming base 130
14. Triangulation, Deming base nct to Whitetank-Maricopa 131
15. Triangulation, Nogalcs and vieinity 132
16. Triangulation, Whitctank-Marieopa to San Jacinto-Cuyamaca. 133
17. Triangulation, Yuma and vicinity 134

THE TEXAS-CALIFORNIA ARC OF PRIMARY TRIANGULATION.

By Whliram Bowie.
Inspector of Geodetic Work and Chief of the Computing Division, Coast and Geodetic Survey.

GENERAL STATEMENT.

In September, 1907, the Coast and Geodetic Survcy began the reconnoissance (selection of stations) for an arc of primary triangulation to extend westward from the line Kyle-McClenny of the ninety-eighth meridian triangulation in central Texas to the line Cuyamaca-San Jacinto of the Pacific coast primary triangulation in the southern part of California. The reconnoissance was ended in February, 1908. The erection of signals was begun at the eastern end of the arc immediately after the complction of the reconnoissance, and the observing began in the fall of 1908 . The observing was done in three seasons and was completed in February, 191. The observing party also measured the bases to control the lengths in the triangulation, and it observed such astronomic azimuths as were needed along this are for geodetic purposes.

The length of the primary triangulation of this arc, along the axis of the scheme, is 1207 miles (1942 kilomcters), and the length of subsidiary schemes, secondary in character, is about 70 miles (113 kilometers). The latitudes of the two stations already established in Texas from which the are started are $32^{\circ} 49^{\prime}$ and $32^{\circ} 27^{\prime}$. The latitudes of the two old stations in California to which the new work was joined are $32^{\circ} 57^{\prime}$ and $33^{\circ} 49^{\prime}$. In longitude the arc extends from $98^{\circ} 12^{\prime}$ to $116^{\circ} 4^{\prime}$. The range in latitude is $3^{\circ} 5^{\prime}$. The area in the main scheme is 49220 square statute miles.

There were 115 stations occupied for horizontal observations, 92 in the main scheme and 23 in the subsidiary schemes.

The Texas-California are has been completed with greater rapidity and at a lower cost than any previous arc of primary triangulation in this country. It probably has not been excelled in rate of progress or low unit costs in any other country. This publication gives the details of the field and office work connected with the triangulation, together with the geographic positions and the descriptions of the stations.

The engineer intent only upon sccuring the neccssary information to enable him to extend this triangulation or to base other surveys upon it will find the information he desires on pages 68 to 112 , commencing with the explanation of the table of posi-
tions, lengths, and azimuths. The index printed on pages 135 to 141 , used in conncetion with the sketches at the end of the publication, will cnable him to find quickly the data for any given locality.

Several members of the Computing Division have taken part in the preparation of this report. The preparation of the descriptions and positions of stations was made by Mr. C. H. Swick. Mr. A. L. Baldwin had immediate direction of all the computations and adjustments connected with the are, and he prepared the text and tables dealing with the adjustments. Mr. Walter F. Reynolds assisted Mr. Baldwin in directing the computations and adjustments.

RECONNOISSANCE.

The rcconnoissance was donc in one single season by a single party, which consisted of the writer, who was in charge; Signalman Jasper S. Bilby, who had previously had much experience in reconnoissance for primary triangulation; and a teamster. The equipment of the party consisted principally of five horses and mules, one freight wagon, one spring wagon, two riding saddles, two 9 -foot center-pole tents, bedding for three men, a small amount of supplies and tools for making repairs, two draw telescopes, several binoculars and prismatic pocket compasses, a pocket tape line, a 4 -inch transit with vertical circle, an odometer, and a small case of drawing instruments. Before going to the field copies of all Government and commercial maps were procured, as well as all available data relating to previous surveys in or near the area to be covered by the reconnoissance.

It was planned that the new triangulation should extend from a line of the ninetyeighth meridian primary triangulation, just to the westward of Weatherford, Tex.; follow the Texas \& Pacific Railroad to El Paso, Tex.; cross the southern parts of New Mexico and Arizona as close as practicable to the international boundary; and then cross the State of California and connect with a line of the Pacific coast triangulation to the eastward of San Diego.

It was also planned that the new work should connect with existing triangulation by the United States Geological Survey, the California and Nevada boundary survey, the United States and Mexican boundary survey, and with monuments of the international boundary at El Paso, Tex., Nogales and Yuma, Ariz., and at other places where practicable.

Signalman Bilby arrived at Weatherford, Tex., on August 25, 1907, and began purchasing and preparing the outfit. On September 17 he began actual field work. The writer arrived on the field and took immediate charge of the party on September 24. The reconnoissance for the entire are was completed on February 8, 1908, a total period of only 145 days.

The length through the axis of the main scheme, the area covered, and the number of stations selected are given on page 10 .

The general instructions under which this reconnoissance was done were as follows:

INSTRUCTIONS FOR RECONNOISSANCE.

CHARACTER OF FIGURES.

(1) The chain of triangulation between base nets shall be made up of completed quadrilaterals and of central-point figures, with all stations occupied. It must not be allowed to degenerate even for a single figure to simple triangles. There must be two ways of computing the lengths through each figure. On the other hand, there must be no overlapping of figures and no excess of observed lines beyond those necessary to secure a double determination of every length, except that in a four-sided centralpoint figure one of the diagonals of the figure may be observed.

STRENGTH OF FIGURES.

(2) In the chain of triangulation between base nets the value of the quantity $R=\left(\frac{N d-N c}{N d}\right) \sum$ $\left[\hat{\partial}_{\mathrm{A}}{ }_{\mathrm{A}}+\partial_{\mathrm{A}} \partial_{\mathrm{B}}+\hat{\partial}_{\mathrm{B}}{ }_{\mathrm{B}}\right]$ for any one figure must not in the selected best chain (call it R_{1}) exceed ${ }_{25}$, nor in the second best (call it R_{2}) exceed 8o, in units of the sixth place of logarithms. These are extreme limits never to be exceeded. Keep the quantities R_{1} and R_{2} down to the limits 15 and 50 for the best and second best chains, respectively, whenever the estimated total cost does not exceed that for a chain barely within the extreme limits by more than 25 per cent. The values of R may be readily obtained by the use of the "Table for determining relative strength of figures in triangulation." (See p.8.)

In the above formula the two terms $\frac{N d-N c}{N d}$ and $\Sigma\left[\grave{\delta}^{2}{ }_{A}+\hat{\partial}_{A} \delta_{B}+\grave{\delta}^{2}{ }_{B}\right]$ depend entirely upon the figures chosen and are independent of the accuracy with which the angles are measured. The product of these two terms is therefore a measure of the strength of the figures with respect to length, in so far as the strength depends upon the selection of stations and of lines to be observed over.

In the following table the values tabulated are $\Sigma\left[\hat{\delta}^{2}{ }_{A}+\delta_{A} \hat{\partial}_{\mathrm{B}}+\hat{\delta}^{2}{ }_{\mathrm{B}}\right]$. The unit is one in the sixth place of logarithms. The two arguments of the table are the distance angles in degrees, the smaller distance angle being given at the top of the table. The distance angles are the angles in each triangle opposite the known side and the side required. δ_{A} and δ_{B} are the logarithmic differences corresponding to one second for the distance angles A and B of a triangle.

The square of the probable error of the logarithm of a side of a triangle is $\frac{4}{3}\left(d^{2}\right) \frac{N d-N c}{N d} \sum\left[\dot{\delta}^{2}{ }_{\Delta}+\right.$ $\partial_{A} \partial_{\mathrm{B}}+\partial^{2}{ }_{\mathrm{B}}$], in which d is the probable error of an observed direction. $N d$ is the number of directions observed in a figure and $N c$ is the number of conditions to be satisfied in the figure. The summation indicated by Σ is to be taken for the triangles used in computing the value of the side in question from the side supposed to be absolutely known.

The strength table is to be used in connection with the values of $\frac{N d-N c^{1}}{N d}$ to decide during the progress of the reconnoissance which of the two or more possible figures is the strongest and to determine whether a sufficiently strong scheme has been obtained to make it inadvisable to spend more time in reconnoissance.

[^0]Table for determining relative strength of figures in triangulation.

LENGTHS OF LINES.

(3) No line of the primary triangulation outside of the base nets should be less than 6 kilometers long. There is little if any advantage in so far as accuracy is concerned in making the lines much longer than this. Therefore endeavor, in laying out the triangulation scheme, to use the economic length of line; that is, endeavor to use in each rcgion lines of such lengths as to make the total cost of reconnoissance, building, and triangulation a minimum per mile of progress, subject to the limitations stated in these instructions.

FREQUENCY OF BASES.

(4) If the character of the country is such that a base site can be found near any desired location $\sum R_{1}$ between base lines should be made about 130 . This will be found to correspond to a chain of from 15 to 35 triangles, according to the strength of the figures secured. With strong figures but few base lines will be needed and a corresponding saving will be made on this part of the work. If topographic conditions make it difficult to secure a base site at the desired location, $\sum R_{1}$ may be allowed to approach but not exceed 200. There will be danger when this is done that an intervening base may be necessary; for if in any case the discrepancy between adjacent bases is found to exceed x part in 25000 an intervening base must be measured.

BASE SITES AND BASE NETS.

(5) In selecting base sites keep in mind that a base can be measured with the required degree of accuracy on any site where the grade on any 50 -meter tape length docs not exceed io per cent, and that narrow valleys or ravines less than 50 meters wide in the direction of the base are not obstacles to measurement. The length of each base is to be not less than 4 kilometers. In each base net great care should be taken to secure as good geometrical conditions as possible. There should be no hesitancy in placing the base on rough ground, provided the roughncss is not greater than that indicated above, if by doing so the geometrical conditions in the base net are improved. Each base net should not be longer than two ordinary figures of the main chain between bases. The base net may also be strengthened by observing over as many lines betwcen stations of the nct as can be made intervisible without excessive cost for building or cutting. Caution is necessary in thus strengthening a base net by obscrving*extra lines to avoid naking the figure so complicated as to be excessively difficult and costly to adjust.

Kyle and McCienny ${ }^{1}$ were the two stations of the ninety-eighth meridian triangulation which were used as the beginning of the new arc. It was found to be practicable to locate most of the stations within reasonable distances of a railroad, and thus the expense and time of transportation for the observing party on the triangulation were kept small in amount. The reader is referred to the illustrations at the back of this volume, which show the scheme of triangulation with the numerous connections made with existing triangulation stations and boundary monuments.

The first 330 miles at the eastern end of the arc runs through a partly wooded, rolling country, with an occasional isolated butte or hill (usually flat topped). In this section it was necessary to elevate the instrument at most of the stations. To the westward of the stations Ingle and Sist (see illustration No. 12 at the end of the volume) the country was mountainous and no structures were needed for elevating the instrument except at the Deining base. (Illustration No. 14.)

During the first part of the season the party remained together and the writer and Mr. Bilby went out from the camp together to nearly all of the selected stations. During the greater part of the season the party operated in two separate sections; the writer, with a saddle horse, teamster, and freight wagon, while Mr. Bilby used a spring wagon. After dividing, the party met only at Sierra Blanca, Tex.; El Paso, Tex.; Hermanas, N. Mex.; Tucson, Ariz.; and Yuma, Ariz. At each of these places the scheme was adopted from the stations located by the two observers.

No day or night signals of any kind were used during the entire season. The success of the reconnoissance is attested by the fact that no reconnoissance station was

[^1]abandoned during the subsequent triangulation. Onc station was moved about onehalf milc on a flat-topped ridge in order to avoid elevating the instrument 16 feet, and the north end of the Deming base line was moved northward about 2 miles to improve the base net. In only a few cases was it necessary to elevate the instrument more than planned by the reconnoissance.

In the following table are given in condensed form the data regarding the progress and cost of the reconnoissance for the Texas-California arc. The cost includes all salaries, even that of the chief of party while at the office preparing for ficld work and after his return from the ficld while making out his final report on the reconnoissance. The cost also includes 25 per cent of the cost of five horses and mules and two wagons which were used about 20 months on this arc by the building and observing partics and only about five months by the reconnoissance party. In this table only the stations, the arca, and the length of the main scheme are considered, although subsidiary stations located added to the total cost of the season.

Statistics of reconnoissance.

Date of beginning actual field operations	Sept. 17,1907
Date of ending actual field operations	Feb.
Total length of season by months	4908
Cost of work, including salaries	47
Number of principal stations sclected	$\$ 4855$
Length of main scheme in miles	92
Area in main scheme, in square miles	1207
Cost per station selected	49220
Cost per mile of progress	$\$ 53$
Cost per square mile covered	$\$ 4.02$
Progress in miles per month	$\$ 0.10$
	260

On page 168 of Appendix 4, Report for 1911, there is given a table of statistics of reconnoissance done during threc seasons on the nincty-eighth meridian. The mean cost per station varied from $\$ 19$ to $\$ 39$. The average cost per mile of progress varied from $\$ 3.90$ to $\$ 6.90$, and the mean cost per square milc covered varied from $\$ 0.40$ to $\$ 0.90$. The reconnoissance on the Texas-California are cost more per station selected than the nincty-cighth meridian reconnoissance. Its cost per mile of progress is about the same as that for the season's reconnoissance on the ninety-eighth meridian in Texas -in the winter of 1904-5. The cost per square mile of area covered is but slightly more than one-fourth of the lowest cost on the ninety-cighth meridian. The higher cost per station and the lower cost per square mile are duc largely to the much longer lines used in the new triangulation. It is believed that the relative economy of two pieces of reconnoissance done under similar conditions (so far as ease of transportation and character of country are concerned) should be judged by the cost per mile of progress rather than the cost per station selected or square mile of area covered.

SIGNALS.

The signals used on the Texas-California triangulation were similar to those used on the greater portion of the ninety-eighth incridian triangulation, which are described in detail in Appendix 4 of the Report for 1903. Illustration No. 2 is taken from that report. When only one obscrving party is opcrating, as was the case on the TexasCalifornia are, the top platform shown on the signal in illustration No. 1 is omitted. The superstructure shown on the signal in illustration No. 2 is used to elevate the helio-

No. 1.

SIXTY-FOOT SIGNAL.

SIGNAL AT BURSON ON THE NINETY-EIGHTH MERIDIAN TRIANGULATION.
trope and lamp at each end of an obstructed line. Signals at nearly all of the stations occepied during the first season. were erected during the spring and fall of 1908 and before the beginning of the observing. Several signals were erected just before the close of the first observing season. The building party was under Signalman J. S. Bilby.

During the spring of 190836 signals of an aggregate height of 1015 feet (309 meters) were erected at a total cost of $\$ 3600$. This includes the material for station and reference marks and the cost of putting them in place. This made the cost per vertical foot $\$ 3.55$. The cost of building signals in 1902 on the ninety-eighth meridian triangulation was $\$ 3.20$ per vertical foot, and it is believed the average cost for all the building on the ninety-eighth meridian done subsequently to 1902 was very close to that amount. The higher cost per vertical foot on the Texas-California triangulation is due to the higher cost of lumber on an average and to the lower average height of signal, only 28 feet. At I_{3} of the 36 stations under consideration, only stands about 3.3 feet high were erected. It is evident, therefore, that the signal building was done with the same high efficiency that obtained on the ninety-eighth meridian triangulation.

At the stations occupied during the second and third seasons the telescope of the theodolite was elevated only to the height of the observer's eye (except at the two stations at the ends of the Deming base). During each of these two seasons Signalman Bilby and one other man, each working along a side of the scheme, preceded the observing party and prepared the station for occupation. This consisted in putting in the station and reference marks and building the stand to support the theodolite. In most cases they transported the heliotroper from the nearest railroad station and posted him at his triangulation station.

PROGRESS OF OBSERVING.

SEASON OF I908-9.

The first horizontal observations on the triangulation of the Texas-California arc were made on November 6, 1908, at station Kyle, at the eastern end of the arc, and during the first season the observing was extended westward to stations Ingle-Sist. The party was under the direction of the writer while occupying the first 19 stations of the scheme, that is, until early in January, 1909, when it was transferred to Assistant J. S. Hill. The chief of party in both cases was also the observer.

In addition to the chief, the observing party during the first season consisted of Signalman Bilby, a recorder, and a teamster. The camp equipage and means of transportation were practically the same as were used in the reconnoissance (see p. 6). With a light outfit quick moves could be made between stations, and the work about camp was reduced to a minimum. The members of the observing party lived in the tents and, wherever practicable, obtained board at farm and ranch houses. Where this was not convenient, a small emergency cooking outfit was used by the party in preparing meals.

The observing was done entirely on heliotropes and acetylene signal lamps. The usual form of heliotrope is shown in illustration No. 3. The lamp used on most of the Texas-California triangulation is shown in illustration No. 4. The smaller lamp, used on nearly all the ninety-eighth meridian triangulation and at a few stations of the new triangulation, is that shown in illustration No. 5.

Five light keepers were used by the triangulation party, and they were direeted by letter and by eode signals, sent in a modified Morse alphabet, using the lamps and heliotropes in signaling ${ }^{1}$. The light keepers lived in tents, prepared their own meals, and moved from station to station with teams hired for the individual trips. Eaeh was supplied with a sketeh of the triangulation and also with deseriptions of the stations. They had no diffieulty in moving from station to station, and only in rare instanees did they have any trouble in getting the direetion to the observer's station. With few exceptions, the same men were retained as light keepers throughout the season. It is essential to rapid progress to have a trained eorps of light keepers who can operate without assistance from the observing party.

Between November 6 and Deeember 3o, inelusive, the writer oeeupied and completed all observations at 19 primary stations. In addition, primary azimuths were observed at 3 stations during that period. The observing at the remaining 32 stations of the first season was done by Mr. Hill, beginning with station Patterson. Mr. Hill also observed 4 primary azimuths and measured a primary base line at Stanton, Tex. ${ }^{2}$ A table showing the days on whieh primary horizontal directions were observed at the several stations is given on page 15. The first season's observations ended with the stations Ingle and Sist (see illustration No. 12, at end of volume), and the last observing was done on April 8, 1909.

The country traversed during the first season was rolling, with oecasional hills standing well above the general level of the country. The average length of the lines of the triangulation was about 15 miles (24 kilometers). The land was partially settled and the roads were fair. Very little diffieulty was eneountered in getting water for the party and stoek.

SEASON OF 1909-10.

The seeond season's observing began on September 7, 1909, at the station Toyah, Texas (see illustration No. 13, at the end of the volume), and ended at the Deming base net, New Mexieo, on January 7 , igio. Owing to the faet that the eountry to be worked over was arid, mountainous, and with few settlers, a somewhat different organization of party was used during this season.

The observing party eonsisted of the ehief (who was the observer), a reeorder, and a teamster. The eamp equipage was reduced to a minimum. Seven heliotropers or light keepers were employed throughout the season. They were usually posted by the signalman and his assistant, who also prepared the stations for the observer and set the station marks. When a light keeper took a station he remained there until all observations on that station were eompleted. He was also at the station and assisted the observing party while the station was oeeupied for observations. The movements of the light keepers were, as usual, direeted by signaling. When eaeh of the light keepers was through with his work at a station he was moved to the nearest railroad station by a teamster, who was employed throughout the season for that purpose, and the light keeper traveled by train ahead of the observer and was posted as noted above. The teamster, whose work it was to move the rear light keepers to the railroad, usually communieated with the men on the mountain peaks by signaling with a heliotrope or lamp.

[^2]No. 4.

No. 5.

small acetylene signal lamp.

TWELVE-INCH THEODOLITE WITH ELECTRIC LIGHT FOR ILLUMINATING THE CROSS WIRES.
.

It was found to be necessary in most cases to haul water to the stations for the light keepers. As a rule, when he was posted, enough could be taken to a station to last until the observing party rcached the station. Each of the several freight wagons was equipped to carry about 70 gallons of water in specially constructed cans. These cans werc fastened to the outside of the wagon.

The camp equipage of the observing party and of the light keepers was taken to the station, or some point near it, by pack mules or horses. It was only occasionally that any hand packing was done.

At the end of the season the party measured the Deming base with invar tapes. ${ }^{1}$

> SEASON OF IgIO-II.

At the close of the second season's work there remained to be done about 600 linear miles of the arc. The stations at the eastern end of this section in New Mexico and Arizona are on high mountain peaks, and the three stations at the extreme western end of the section are also on high mountains. It was desired that all of this section be done in one observing season, and in order to do this the high mountain stations must be occupied during the summer months in order to avoid the snows of the early fall. The plan adopted and carried out was to complete the observations first at the stations forming the extreme western quadrilateral of the arc, then return to the vicinity of the Deming base net and work westward through the remainder of the scheme. The last one of the high peaks (Catalina) was occupied on November 1. The observations for this season began on July 6, 1910, and they ended on February 22, 1911. Neither the observing party nor the light keepers were seriously interfered with by snow during the season.

The organization and equipment of the party were the same as those of the preceding season and the management of the work was not changed in any material way.

METHODS OF OBSERVING EMPLOYED.

The obscrvations for the primary horizontal angles were made in accordance with the General Instructions for Primary Triangulation, as given on pages $170-174$ of Appendix 4, Report for 191.

All the horizontal angle measures were made by the direction method, using the 12-inch (30-centimeter) theodolites made in the Instrument Division of the Survey, one of which is shown in illustration No. 6. Thesc instruments are described in Appendix 8, Report for 1904 . The telescope used has a clear aperture of 61 millimeters and its focal length is 74 centimeters. The circle is graduated to five-minute spaces and is read by the micrometcr microscopes to single scconds.

The telescope of the theodolite has two parallel vertical wires, about 20 seconds apart, for making the pointings for horizontal angles. The results from a number of seasons' work indicate that this arrangement of the wircs in the telescope is more satisfactory than either the single vertical wire or the oblique cross. The double wirc is especially effective when the image of the light or heliotrope is large and unsteady.

In making the measurcments of horizontal directions each direction in the main scheme was measured 16 times. A direct and reverse reading was considercd one meas-

[^3]urcment, and 16 positions of the circle were used, corrcsponding approximately to the following readings upon the initial signal or station :

Num- ber	0	,	\prime	Num- ber	0	,	n
1	0	00	40	9	128	0	40
2	15	01	50	10	143	01	50
3	30	03	10	11	158	03	10
4	45	04	20	12	173	04	20
5	64	00	40	13	192	00	40
6	79	01	50	14	207	01	50
7	94	03	10	15	222	03	10
8	109	04	20	16	237	04	20

When a broken series was observed, the missing signals were observed later in connection with the chosen initial or with some other one, and only one, of the stations already obscrved in that series. With this system of observing no local adjustment was necessary. Little time was spent in waiting for the doubtful signal to show. If it was not showing within, say, one minute of when wanted, the observer passed to the next. A saving of time results from observing many or all of the signals in eaeh series, provided there are no long waits for signals to show, but not otherwise.

In selpeting the conditions under which to observe primary directions the observer proceeded upon the assumption that the maximum speed eonsistent with the requirement that the closing error of a single triangle in the primary scheme shall seldom exceed three seconds, and that the avcrage elosing error shall be but little greater than one second, was what was desired rather than a greater accuracy than that indicated with slower progress. This standard of aeeuracy used in connection with other portions of the general instructions defining the necessary strength of figures and frequency of bases will in general insure that the probable error of any base line, as computed from an adjaeent base, is about I part in 88000 and that the actual diserepaney between bases is always less than I part in 25000.

The limit for rejection of observations upon directions in the main seheme was $5^{\prime \prime}$ from the mean. No observation agreeing with the mean within this limit was rejected unless the rejection was made at the time of taking the observation and for some other reason than simply that the residual was large. A ncw observation was substituted for the rejected one beforc leaving the station, if possiblc, without much delay.

The number of observations at supplementary stations and on intersection stations, as well as the number of vertical angle observations, conformcd to the requirements of the General Instructions. It is not necessary to specify them here.

The stations were all well marked and adequately dcscribed, as is indicated ori pages 83 to 112 of this volume.

PROGRAM OF OCCUPATION OF STATIONS.

In the following three tables the primary stations occupied during the several seasons are arranged in the order of thcir occupation. The second column of each table indicates the days on whieh primary horizontal observations were made, and the third column the number of such days. The letters (az.) after the name of a station indicates that observations for primary astronomic azimuth were made at that station.

STATIONS OCCUPIED.

Assistint William Bowie, Chief of Party and Observer, until Dec. $3^{\text {I }}$, 1908. Assistant J. S. Hill, Chief of Party and Obscrver, after Dec. 31, 1908. Season of 1908-9.

Station	Days on which observations of primary horizontal directions were made	Number of days
	1908	
Kyle	Nov. 6, 7	2
McClenny	Nov. 11, 13, 14	3
Rattlesnake	Nov. 16	1
Iacasa (az.)	Nov. 18, 19, 21,23	4
Pierce	Nov. 24	1
Flat	Nov. 25, 26, 29	3
Hearn	Nov. 30, Dec. 2	2
Lamb	Dec. 4	1
Springgap (az.)	Dcc. 7, 8	2
Hitson (U.S.G.S.)	Dec. 10	1
Clyde	Dec. 11	1
Kennard	Dec. 12	1
Clayton	Dec. 14, 15, 16, 17	4
Buzzard	Dec. 18	1
Morrison	Dec. 21	1
Sears (az.)	Dec. 22, 23, 24	3
Hale	Dec. 26	1
Royd	Dec. 28, 29	2
Allen	Dec. 30	1
	1909	
Patterson	Jan. 1, 2, 4	3
Lloyd	Jan. 5	1
Bench	Jan. 6, 7, 8	3
Wolf	Jan. 9	1
Bynunı (az.)	Jan. I3	1
Cuthbert	Jan. 15, 16, 17, 18	4
Top	Jan. 19, 20, 21	3
Signal	Jan. 23	I
Williams	Jan. 25	1
Evart	Jan. 26	1
Stanton (az.)	Jan. 27, 29, 30	3
Epley	Feb. 2, 3	2
Stanton north base	Fcb. 5	1
Stanton south base	Feb. 6	1
Elkins ${ }^{1}$	Feb. 24	1
Dunn	Feb. 25	1
Morris	Feb. 26, 28	2
Scar	Feb. 27	1
Bates	Mar. 1	I
Odessa	Mar. 2	1
Smith (az.)	Mar. 3, 4, 5	3
Dublin	Mar. 6, 7, 8, II	4
Douro	Mar. 13	1
Curtis	Mar. 15	I
Harris	Mar. 17	1
Aroya	Mar. 19, 20	2
Estes (az.)	Mar. 24, 25	2
Lee	Mar. 29, 30	2
Johnson	Mar. 3 I, Apr. I	2
Hays	Apr. 2,3	2
Sist	Apr. 6	1
Ingle	Apr. 7,8	2

[^4]STATIONS OCCUPIED-Continucd.
Assistant J. S. Hill, Chief of Party and Observer. Season of 1909-10.

Station	Days on which observations of primary horizontal directions were made	Number of days
	1909	
Toyalı	Sept. 7, 8	2
Round (az.)	Scpt. 9, 10	2
Newman	Sept. 14, 15	2
Scay	Sept. 17, 18	2
Reynolds	Scpt. 20	1
Krousc	Sept. 21, 22	2
Chispa	Sept. 27	1
Eagle (az.)	Scpt. 30, Oct. 1, 2	3
Diablo	Oet. 5	1
Quitman	Oct. 11, 12	2
Blaek (az.)	Oct. 15, 16	2
Corduna	Oct. 20, 21	2
North Franklin	Nov. 5, 6, 9, 16	4
Jarilla (az.)	Nov. 20, 22	2
Kent	Nov. 24, 25	2
Cooks (az.)	Dec. 8, 9, 10, 12	4
Florida	Dce. 16, 19	2
Hermanas	Dec. 28, 29, 30	3
	1910	
Red	Jan. 4, 5	2
Deming north base	Jan. 6	1
Deming south base	Jan. 7	1

The Deming base was measured just aiter the completion of observations at the station Deming south base.
Assistant J. S. Hill, Chief of Party and Obscrver. Season of 1910-11.

Station	Days on which observations of primary horizontal directions were made	Number of days
	1910	
$\begin{aligned} & \text { Amcrican (U. S. } \\ & \text { G. S.) } \end{aligned}$	July 6,7	2
Butte (az.) ${ }^{1}$	July ${ }_{5} 5$	1
Cuyamaca	July $25,26,28,29$, Aug. 4	5
San Jacinto (az.)	Aug. 11, 12, 16, 17	4
Burro (az.)	Aug. 27, 29, 30, Sept. 1, 2	5
Line (U. S. G. S.)	Scpt. 6, 7	2
Graham (U. S. G. S.) (az.)	Sept. 12, 13, 16, 17	4
Chiricahua (az.)	Sept. 24, 26, 27, 29, 30	5
Baldy (U. S. G. S.)	Oct. 16, 17	2
Catalina (az.)	Nov. 1	1
Superstition (U.S. G. S.) (az.)	Nov. 9, 10	2
Table	Nov. 21	1
Maricopa	Nov. 25	1
Whitctank (az.)	Dec. 5	1
Harquahalla (az.)	Dec. 14, 15, 20	3
Mohawk (az.)	Dec. 28, 29	2
	1911	
Kofa (az.)	Jan. 4, 5	2
Butte (az.) ${ }^{2}$	Feb. 2, 4	2
Chemehuevis	Feb. 11	1
Powell	Fcb. 18, 19	2
Pine (az.)	Feb. 22	1

The season of 1908-9 is notable for the large number of stations at which primary observations were completed on a single day. This occurred at 27 of the 51 stations occupied during that season. It is also notable for the rapid rate at which stations were completed. During a period of 27 consecutive days between December 4 and December 30 , twelve stations were completed by the writer. During a period of 25 consecutive days between February 24 and March 20, twelve stations were completed by Mr. Hill.

In the second and third seasons a number of subsidiary stations were occupied but they have not been considered in the rates of progress given in the table below. Nor have the azimuths observed been considered.

Each of the stations "American" and "Butte" was occupied twice during the third season. At the second occupation of "American" only secondary directions were observed. Each occupation has been considered as a separate station.

The following table gives the essential facts for each of the three seasons and for the whole arc:

									-els sad scep jo joqumu asedasy	
Season of 1908-9	16	91	51	1. 8	4	. 1	2.0	0. 8	2.7	II. I
Season of 1909-10	16	43	${ }^{1} 21$	2.0		1	2.6	3.4	5.8	${ }^{2} 5.2$
Season of rgro-II	16	49	${ }^{3} 22$	2. 2	5	1	3. I	7.8	10. 5	2.9
Whole arc	16	183	94	I. 9	5	1	2.4	2.9	5. 3	5. 7

${ }^{1}$ Eight supplementary stations were occupied during this season in addition to the 21 primary stations.
The 17 days occupied in measuring the Stanton base are deducted from the total number of days in the season before computing the rate of progress.
${ }^{3}$ Fifteen supplementary stations were occupied during this seasonin addition to the 22 primary stations. The second occupation of stations "Butte" and "American" are each counted as a separate primary station, although only secondary directions were observed at the second occupation of "American.'

The first season's work was in a country very similar to that found on the southern portion of the ninct y-eighth meridian and not very different, so far as ease of transportation and weather conditions werc concerned, from the northern portion of the ninetyeighth meridian. A comparison of the statistics for the first season with those of the ninety-eighth meridian triangulation executed after 1901, shown on page 180 , Appendix 4, Report for 1911, shows that the average number of days per station on which primary observations were made was 1.8 for the season of 1908-9 and 2.6 for the ninety-eighth meridian. The average number of days at a station between the first and last primary observations was 2 against 3.2 ; while the progress in stations per month was in.I against 7.8. The weather conditions were somewhat better during the first season on the Texas-California are than on the ninety-eighth meridian, but the principal causes for the increased rate of progress were a better signal lamp, a reduction of the correspondence

$$
4957 \mathrm{I}^{\circ}-\mathrm{I} 2-2
$$

and computing by the observing party, the very light camp equipage of the observing party and the fact that there were five light keepers in the party. With this number of light keepers the observer was enabled usually to make all the obscrvations at a station on a single day.

The statistics in the preceding table for the second and third season show that the number of days per station on which primary observations were made is, in each case, only slightly greater than for the first season but the number of days at the station is, in each case, materially greater. The work was in a mountainous region where transportation of the light keepers was difficult and the weather (at the mountain stations) was not as favorable as during the first season. The time between the last observations at one station and the first at the next station was consumed by packing the outfit down one peak, up the peak at the next station, and in traveling by teams between stations. Considerable time was also used in traveling to and between the subsidiary stations and in observing at them. A comparison of the rate of progress in stations completed per month on this work and on the ninety-eighth meridian triangulation would give no idea of the relative economies of the two. A comparison may be made from the data given in the table on page 19 , which shows the progress in linear miles per month and the cost per mile.

Mr. Hill, the chief of party and observer during the second and third seasons, deserves great credit for conducting so successfully the operations in an arid region where transportation was difficult and wherc water and provisions were not easily accessible. Mr. Hill in his reports on his work speaks highly of the assistance rendered by Mr. Bilby in helping to plan the operations of the parties, in preparing the stations for occupation, and in posting the light keepers.

CONNECTIONS MADE WITH STATIONS PREVIOUSLY ESTABLISHED.

The Texas-California primary triangulation connected with the triangulation of the United States Geological Survey near the eastern end of the arc on stations Hitson, Wasp, Abilene standpipe, and Cisco astronomic station; also in western Texas at stations Newman, Diablo, Quitman, Cerro Alto, and North Franklin; in New Mexico on stations Line and Corduna; in Arizona with stations Graham, Baldy, Benedict, Huachuca, Mule, Burro, Superstition, and Maricopa northwest base; and in California with stations American and Picacho.

Connections were made with the triangulation of the United States and Mexican Boundary Survey at El Paso, Nogales, and Yuma. Besides the monuments at each of those three places, international monuments Nos. $31,32,39,40$, and 91 were connected with the triangulation.

A connection with the triangulation of the California-Nevada boundary was made in the vicinity of Needles, Cal.

Conncctions made with precise leveling bench marks need not be mentioned here. They are referred to in the discussion of elevations on page 1 I 3.

STATEMENT OF COSTS.

The following table gives a statement of the unit costs of the three seasons' work separately and also the costs of the are taken as a whole. The amounts stated include the salaries of the observer while on the field and during the limited times before and after each season while planning the work and making reports, etc.

Season and name of observer.	Number of months of ob-servations.		$\left.\begin{array}{\|c\|} \text { Sta- } \\ \text { tions } \\ \text { occu- } \\ \text { pied } \\ \text { per } \\ \text { month. } \end{array} \right\rvert\,$	Total feld expenses.	$\begin{gathered} \text { Cost } \\ \text { per } \\ \text { station } \\ \text { ocur- } \\ \text { pied. } \end{gathered}$	Total points determined	$\begin{array}{\|c\|} \text { Cost } \\ \text { per } \\ \text { point } \\ \text { deter- } \\ \text { mined. } \end{array}$	$\begin{array}{\|c\|} \text { Num- } \\ \text { ber of } \\ \text { miles of } \\ \text { prog- } \\ \text { ress. } \end{array}$	$\left\lvert\, \begin{gathered} \text { Cost } \\ \text { per } \\ \text { mile of } \\ \text { prog- } \\ \text { ress. } \end{gathered}\right.$	Area in main scheme in square miles.	$\begin{array}{\|c\|c} \text { Cost } \\ \text { per } \\ \text { square } \\ \text { mile. } \end{array}$
1908-9, W. Bowie and J. S. Hill 1909-10, J. S. Hill.... . 1910-11, J. S. Hill.	$\begin{aligned} & 5.1 \\ & 4.0 \\ & 7.6 \end{aligned}$	$\begin{array}{r} 5 I \\ 2 I \\ 222 \end{array}$	1 II. I 5.2 2.9	$\begin{array}{rr} \$ 13 & 275 \\ 9 & 640 \\ 15 & 469 \end{array}$	$\begin{array}{r} \$ 260 \\ 459 \\ 703 \end{array}$	$\begin{array}{r} 92 \\ 59 \\ \text { III } \end{array}$	$\begin{array}{r} \text { \$144 } \\ 163 \\ 139 \end{array}$	$\begin{aligned} & 330 \\ & 294 \\ & 583 \end{aligned}$	$\begin{array}{r} \$ 40 \\ 33 \\ 27 \end{array}$	$\begin{array}{r} 4360 \\ 10970 \\ 34790 \end{array}$	$\begin{gathered} \$ 3.04 \\ 0.96 \\ 0.44 \end{gathered}$
Total arc. Ninety-eighth meridian triangulation after Igor.	$\text { 16. } 7$ $\text { 30. } 5$	$\begin{array}{r} 94 \\ 265 \end{array}$	$\begin{aligned} & 5.6 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 38 \quad 384 \\ & 78 \quad 187 \end{aligned}$	408 293	$\begin{aligned} & 262 \\ & 849 \end{aligned}$	147 109	$\begin{array}{ll} \text { I } 207 \\ \text { I } & 229 \end{array}$	32 63	49220 21655	0.78 5. 19

[^5]For the first season the unit costs are somewhat lower than the costs for the southern portion of the ninety-eighth meridian. The topography on the eastern portion of the Texas-California are is very similar to that along the ninety-eighth meridian in Texas. The cost per station occupied is about 10 per cent less than the southern ninety-eighth meridian triangulation. The cost per mile of progress is $\$ 40$, against $\$ 62$ on the ninetyeighth meridian south. The rate at which stations were occupied per month on the first season on the Texas-California arc was ir.i, against 10.5 on the southern ninetyeighth meridian. The cost per station occupied increased materially for the second and third seasons, and the number of stations occupied per month dropped to 5.2 and 2.9 , respectively. At the same time the cost per mile of progress decreased from $\$ 40$ to $\$ 33$ and $\$ 27$, respectively. The triangulation of the last two seasons was carried through a mountainous country where distances between stations were great and transportation difficult.

For purposes of comparison the statistics for the ninety-eighth meridian triangulation which was done after 1901 are shown in the last line of the preceding table.

The writer is justified in stating that the Texas-California arc of primary triangulation has been the most economically executed of the extensive arcs of primary triangulation in this country. He believes that no extensive arc in any other country equals this arc for low unit costs.

A statement of costs for the ninety-eighth meridian triangulation is given on pages 181-183 of Appendix 4, Report for 1911. It is stated there that the ninety-eighth meridian triangulation cost very much less than the triangulation of either the transcontinental or the oblique arc.

STATEMENT OF ADJUSTMENTS.

No local adjustments werc madc, thesc having become unnecessary since the adoption of the present method of supplying missing obscrvations in broken series. ${ }^{1}$

The line Kyle-McClenny had been fixed in length, direction, and position by the adjustment of the nincty-eighth meridian triangulation, ${ }^{2}$ and the line San JacintoCuyanaca was similarly held by the adjustment of the primary triangulation of California. ${ }^{3}$

In addition to the line at each end of this seheme of triangulation there werc known the lengths of the Stanton base and of the Deming basc. At first a single adjustment was made of the entire chain of triangulation, but, for convenience, the single adjustment is considered in the three sections into which the base lincs naturally divide it. The first scetion extends from the line Kyle-McClenny to the Stanton base; the second from the first section to the Dcming base; and the third from the seeond section to the line San Jacinto-Cuyamaea.

ADJUSTMENT OF THE DISCREPANCIES IN LATITUDE, LONGITUDE, AND AZIMUTH.

After the eompletion of the adjustment of the primary chain from the fixed stations of the ninet y-eighth meridian to stations of the California triangulation, the positions were computed through these adjusted triangles. The discrepancy in latitude which developed at the junction with the California triangulation was $1^{\prime \prime} .253$ (or 38.6 meters); in longitude, $\mathrm{o}^{\prime \prime} .532$ (or 14 meters); and in azimuth $7^{\prime \prime} .49$. In other words, the closure of the loop of triangulation, forming nearly a reetangle with the Texas-California are and the thirty-ninth parallel as the base and top, respectively, and the ninety-cighth meridian and the California triangulation as the sides, a total of 5300 kilometers, is 41 mcters in position, or 1 part in 130000 .

This total discrepancy was thus distributed in only about one-third of the entire loop and in a portion fully as strong as the average of that part held fixed. The introduction of the whole loop into the adjustment, or of any considerable portion of.it, other than the part used, was impractieable on aeeount of the great amount of computation which would have been involved. Not only would such a stcp have greatly increased the work of making the loop adjustment which already included 190 conditions, but it would also have made nccessary the recomputation of much other triangulation which was based on the previously adjusted portion of the loop. Bcsides, the geographic positions on the United States Standard Datum of the stations of the east and west sides of the loop have been published, and have been extensively used in public and private surveys. It will be seen on examining the corrcetions to the direetions or angles, arising from the adjustment of these discrepancies in latitude, longitude, and azimuth, which are shown separately from those arising from the adjustment of the angle, side, and length equations, that a few large corrections fall on directions at the west end of the scheme. The maximum is $1^{\prime \prime} .56$ on the dircetion Cuyamaca to San Jacinto. The probable error of a direction which is the best test of the method adopted was $\pm \mathrm{o}^{\prime \prime} .33$ before distributing the latitude, longitude, and azimuth discrepaneies, and it was inereased to only $\pm \mathrm{o}^{\prime \prime} .4^{\prime}$ after this distribution. The maximum correction to a direction, $\mathrm{x}^{\prime \prime} .03$, was inereased to $1^{\prime \prime} .56$ by this distribution.

[^6]
ABSTRACTS OF HORIZONTAL DIRECTIONS AND ELEVATION OF TELESCOPE ABOVE THE STATION MARK.

All observed directions in the triangulation have been given equal or unit weight. Those directions were reduced to centcr where either the instrument or the object observed was not coincident with the center of the station mark.

The horizontal directions are reduced to sea level. The correction expressed in seconds is given by

$$
\frac{e^{2} h \sin 2 \alpha \cos ^{2} \phi}{2 \rho \sin \mathrm{I}^{\prime \prime}}
$$

where $e^{2}=\frac{\left(a^{2}-{ }^{2} b\right)}{a^{2}}, h=$ height of station sighted, $\rho=$ the radius of curvature in a plane normal to the meridian, $\phi=$ the latitude, and $\alpha=$ the azimuth counted from the south westward.

In the following table are also given the elevations of the telescope of the theodolite above the station mark at each of the primary stations. These elevations enable the reader to judge of the amount of building done and they permit the engineer or surveyor who uses the stations to form an estimate of the probable amount of building required to make any particular line clear.

Kyle-McClenny to Stanton base.

Station occupied and elevation of telescope above station mark	Number of direc- tiors	Object observed	Observed direction reduced to sea leve!	Seconds after figure adjustment	Final seconds after closure of loop
Rattlesnake, 1.59 meters	1178910	McClennyHearn	$\begin{array}{cc} 0 & 11 \\ 0 & \infty 0 \\ 0 & 0.02 \end{array}$	59. 48	$\overline{59.58}$
			1810250.14	50. 98	50. 64
		Pierce	2382756.43	56. 55	56. 46
		Lacasa	26047 36.51	35.80	35. 79
		Kyle	3075725.50	25.79	26. I4
McClenny, 15.56 meters	6	Kyle	$\bigcirc 00 \overline{59.98}$	00. 02	-0. 45
		Rattlesnake	2674856.02	56. 16	55.83
	5	Lacasa	3 II 3242.86	42.68	42. 57
Kyle, 8.76 meters	1	McClenny Rattlesnake Lacasa	- 0059.99	59.47	59.82
			35 46	25.35	25.19
	3		775437.68	37.60	$37 \cdot 4^{2}$
Hearn, 18.79 meters		Springgap	$\bigcirc 0000.00$	-0. 37	00. 11
	28	Lamb	3883153.45	53. 76	53. 69
	29	Flat	920246.88	47. 02	47.05
	30	PierceRattlesnake	$\begin{array}{lll} 118 & 23 & 34.07 \\ 160 & 32 & 03.73 \end{array}$	$\begin{aligned} & 34.10 \\ & 02.89 \end{aligned}$	34.2403.02
	31				
Flat, 18.66 meters	21	Lacasa	-0000. 04	01.00	
	22	Pierce	350853.30	53. 14	53.26
	23	HearnLamb	$\begin{array}{llll} 136 & 52 & 04.07 \\ 179 & 03 & 07.61 \end{array}$	04. 14	04. I407.11
				$\begin{aligned} & 07.20 \\ & 50.83 \end{aligned}$$\text { 20. } 16$	
	25	SpringgapHitson (U. S. G. S.)	1790307.61 1890350.86 2195920.59		$\begin{aligned} & 07.11 \\ & 50.65 \\ & 20.03 \end{aligned}$
Pierce, 15.67 meters	20	Flat	$\bigcirc 00 \overline{59.93}$	-0.09	59.97
	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	Lacasa	1103814.19	14.23	14. 3^{8}
			$\begin{array}{lll} 227 & 37 & 29.44 \\ 308 & 03 & 57.22 \end{array}$	$\begin{gathered} 29.30 \\ 57.16 \end{gathered}$	$\begin{aligned} & 29.40 \\ & 57.03 \end{aligned}$
	19	Hearn			

Kyle-McClenny to Stanton base-Continued.

Station occupied and elevation of telescope above station mark	Number of tion	Object observed	Observed direc tion reduced to sea level	Seconds after fig- ure ad justment	
Laeasa, 18.70 meters			- ' $"$		
	16	Flat	- $\infty 0000$	59. 08	58.85
	12	Kyle	1942357.07	56. 77	57. 02
	13	MeClenny	2480204.48	05. 51	05. 74
	14	Rattlesnake	2850557.93	58. 19	58.09
	15	Pierce	3254704.87	04.81	04.67
Clyde, 1.32 meters	51	Kennard	- $\infty \overline{59.98}$	-0. 32	0. 26
	48	Hitson (U. S. G. S.)	8554 43. 12	43. 02	43. 13
	49	Springgap	1592458.09	57.84	57.90
	50	Clayton	25356 II.03	II. 03	10. 93
$\begin{gathered} \text { Hitson (U. S. G. S.), 5.32 } \\ \text { meters } \end{gathered}$	44	Lamb	$\bigcirc 0059.97$	59. 52	59. 59
	45	Springgap	565759.46	59. II	59.08
	46	Clyde	1245651.45	51. 83	51. 72
	47	Klat	160 320 320 2028.08	O1. 80 28. 97	or. 65 20. I8
	43	Flat	3292028.26	28.97	29. 18
Springgap, 5.70 meters	36	Clayton	- 000000	${ }^{\circ} \mathrm{c}$. 9	$\overline{59.87}$
	37	Clyde	4725 20. 79	21. 48	21. 39
	38	Kennard	535126.04	25.41	25.30
	39	Hitson (U. S. G. S.)	855614.60	14. 79	14.83
	40	Flat	147 23 17.65 156 07	17.74	17.95
	42	Hearn	156 158 183 8 8	17. 01 46.87	17.12 46.97
Lamb, 15.75 meters		Hearn	- $00 \overline{59.96}$	59.45	59. 5^{2}
	33	$\mathrm{Springgap}_{\text {Hitson (U. S. G. S.) }}$	114 26 167 37.12 167 17	37.23 36.82	37. 13
	$\begin{aligned} & 34 \\ & 35 \end{aligned}$	$\xrightarrow[\text { Flat }]{\text { Hitson (U. S. G. S.) }}$	$\begin{array}{lllll}167 & 17 & 36.59 \\ 275 & 41 & 54.60\end{array}$	36.82 54.76	36.75 54.86
Morrison, 1.28 meters	63	Kennard	$\bigcirc 0000.00$	$\infty .42$	-0. 58
	64	Clayton	$5855 \quad 20.04$	19.90	20. 02
	65	Buzzard	1212208.62	08. 68	08.66
	66		1624940.55	40. 78	40. 62
	67	Sears	196293 I. 20	30. 63	30. 51
Buzzard, 1.33 meters	68	Hale	$\bigcirc 0000.33$	00. 20	0. 04
	69	Sears	484429.60	30. 09	29. 99
	70	Morrison	1000706.41	06.27	06. 30
	71	Kennard	$\begin{array}{llll}137 & 38 & 36.25 \\ 181 & 22 & 26.92\end{array}$	36.35 26.59	36. ${ }^{52}$ 26. 68
Clayton, 5.43 meters					co. or
	59	Morrison	361752.24	52. 48	52. 38
	60	Kennard		51. 89	51. 95
	61 62	Clyde Springgap	115 56 153 59 \%. 61 15	08. 31 35. 30	08. 40 35. 42
	62	Springgap	${ }^{1} 5359$ 35. 78	35. 30	35. 4^{2}
Kennard, 9.95 meters	52	Hitson (U. S. G. S.)	$\bigcirc 0059.99$	$\overline{59.98}$	co. 15
	53	Springgap	442108.47	08. 95	0. 09
	54	Clyde	583007.80	07. 71	07. 75
	55	Clayton	1140002.65	02. 69	02. 67
	56	Buzzard Morrison	1524622.98 173520.	23.06	22.87 45.92
	57	Morrison	$1735^{2} 46.56$	46. 06	45.92
Hale, 1.40 meters		Allen	- 000003	- 26	¢. 16
	80	Sears	785518.66	18.89	18.91
	81	Morrison	$\begin{array}{ll}113 & 43 \\ 14.54\end{array}$	14.35	14.49
	82	Buzzard	1520837.06	37.16	37.25

Kyle-McClenny to Stanton base-Continued:

Station occupied and elevation of telescope above station mark	Num- ber of direce tion	Object observed	Observed direction reduced to sea level	Seconds after figure adjustment	Final after closure of loop
Sears, 1.34 meters			- , "		
	73	Morrison	- 0059.97	0. 54	-0. 68
	74	Buzzard	$53 \quad 3003.75$	03. 29	-3.40
	75	Hale	III $32 \begin{array}{ll}16.41\end{array}$	16. 03	16.01
	76	Boyd	$13^{2} 0236.51$	36. 55	36.40
	77		1701417.61	17.86	17.77
Allen, 1.37 meters	85	Boyd	- $\infty \overline{59.96}$	$\overline{59.88}$	$\overline{59.85}$
	86	Lloyd	5314	10. 89	10. 78
	87	Patterson	895235.41	35.62	35. 5^{2}
	83	Sears	301 17 35. 20	34. 86	35. 00
	84	Hale	34340 I5. 35	15.44	15.53
Boyd, 1.43 meters	90	Allen	- 0000.06	59.92	59.93
	91	Sears	830554.32	54. 53	54.65
	92	Hale	13059.21 .24	21. 48	21. 58
	88	Lloyd	$26230^{\circ} 08.86$	08. 55	08. 43
	89	Patterson	3044603.97	03.98	03. 85
Wolf, 1.38 meters	103	Patterson	- 0000.02	-0. 28	-0. 38
	104	Lloyd	445017.72	17.92	18. 01
	105	Bench	6005 31. 38	30. 57	30. 57
	106	Bynum	156 58 5846.36	46. 52	46. 45
	107	Cuthbert	194 2403.68	03.88	03. 75
Bench, 1.41 meters	112	Lloyd	- 0000.05	$\overline{59.88}$	$\overline{59.98}$
	108	Bynum	2105034.58	34.20	34. 11
	109	Cuthbert	2321430.60	30. 48	30. 38
	110	Wolf	25539 17.36	18. 18	18. 17
	III	Patterson		13.24	13. 34
Lloyd, 1.45 meters	102	Boyd	- 0000.05	-0. 27	-0. 35
	98	Bench	1833745.77	45.90	45.80
	99	Wolf	244 O1 52.05	52. 04	51. 92
	100	Patterson	2862108.81	O8. or. 53	08. 49
	101		33044 0r. 54	01.53	-1.67
Patterson, 15.82 meters		Wolf			
	93	Allen	168 10 49. 72	49. 46	49.60
	94	Boyd	${ }^{203} 0418.69$	18.77	18.83
	95	Lloyd	$\begin{array}{llll}267 & 09 & 32.69 \\ 286 & 14 & 23.74\end{array}$	32.87 24.04	32.87 23.94
	96	Bench	2861423.74	24.04	23.94
Signal, 1.41 meters	128	Williams	$\bigcirc 0000.09$	59. 89	59.86
	129	Evart	495026.82	26.81	26.69
	130	Top	1022340.76	40. 64	40.63
	131	Cuthbert	1323940.91	41. 10	41. 16
	132	Bynum	I5730 Or. 46	Or. 61	01. 70
Top, 8.54 meters	123	Cuthbert	- 0000.02	59. 95	59.99
	124	Bynum	39273^{88}. or	37.72	37.79
	125	Signal	$\begin{array}{lll}110 & 19 & 21.84\end{array}$	21. 90	21. 93
	126	Williams	131 1688822.73 16842	23.09	23.07
	127	Evart	1681241.82	41. 76	41. 63
Cuthbert, 5.33 meters	113	Wolf	- 0000.00	-0. 06	-0. 12
	114	Bench	22 16 40.69	40. 30	40. 39
	115	Bynum	780837.93	38. 38	38.41
	116	Signal	1274246.21	45.96	45.91
	117	Top	1670724.93	25.04	24.94

Kyle-McClenny to Stanton base-Continued.

Station occupied and elevation of telescope above station mark	$\begin{aligned} & \text { Num- } \\ & \text { ber of } \\ & \text { direc } \\ & \text { tion } \end{aligned}$	Object observed	Observed direc tion reduced to sea level	Seconds alter fig- ure urtment	
Bynum, 1.38 meters			- .		$\stackrel{\cdot}{-}$
	121	Wolf	- ∞ - 0.06	$\overline{59.72}$	$\overline{59.80}$
	122	Bench	3818 or. 07	01.67	-1. 74
	118	Signal	1895820.97	20.83	20.78
	119	Top	2440017.34	17.60	17.49
	120	Cuthbert	2953354.56	54. 19	54.18
Epley, 15.33 meters	143	Evart	$\infty \times \infty$	-0. 03	$\overline{59.96}$
	144	Williams	284541.34	41. 69	41. 74
	145	Stanton	764424.94	24.74	24.80
	146	Stanton S. base	1151350.06	50. 20	50. 31
	147	Stanton N. base	1542646.20	45.82	45. 74
Stanton, 15.55 meters	151	Evart	- 0000.06	$\infty .02$	0. 04
	${ }^{152}$	Williams	322123.51	23.28	23. 39
	148	Stanton S. base	2091359.78	59. 79	59.77
	149	Stanton N. base	24640 II. 76	12. 34	12. 25
	150	Epley	$286413^{8 .} 72$	38.40	38. 3^{6}
Evart, 18.78 meters	134	Signal	- $00 \overline{59.93}$	00.05	00. 11
	135	Williams	${ }^{2} 8833$ 25. 24	25.00	${ }^{25} 504$
	136	Stanton	8739 I6. 70	17.02	17.04
	137	Epley	1173632.62 2002632.27	32. 40 32.30	32.23 32.28
	133	Top	2902632.27	32.30	32. 28
Williams, 8.6 r meters	138	Stanton	- $\infty \overline{59.96}$	59.93	59.96
	I 39	Epley	262133.46	33.47	33. 34
	140	Evart	$8832 \begin{aligned} & \text { 46. } 15\end{aligned}$	46. 24	46. 20
	${ }^{141}$	Top	134 O1 36.28	36.06	36. 11
	142	Signal	1900854.83	54. 98	55.05
$\underset{\text { meters }}{\text { Stanton S. base, } 18.79}$	4	Elkins	- $\infty 00006$	-0. 36	0. 17
	5	Dunn	442128.04	27.49	27.45
	6	Stanton N. base	855141.32	41. 41	41. 44
	153 154	Epley	$\begin{array}{llll}127 & 10 \\ 1013.97\end{array}$	14. 46	14. 5^{2}
	154	Stanton	1911311.26	10. 92	II. 04
Stanton N. base,meters 18.68				$\text { ©. } 16$	-0. 09
	156	Stanton	$\begin{array}{llll}62 & 16 & 13.48\end{array}$	13.67	13.69
	1	Stanton S. base	992832.29	32.03	32.03
	2	Elkins	1434042.85	42.71	42.65
	3	Dinn	2040547.53	47.66	47.78

Stanton base to Deming base.

Elkins, 15.56 meters	16	Stanton S. base	- 0000.05	59.93	59.90
	12	Scar	16819 16.49	16. 19	16. 03
	13	Morris	20718 39. 13	39. 49	39. 5^{2}
	14	Dunn	2544644.14	44.41	44.45
	15	Stanton N. base	3100351.49	51.26	51. 39
Dunn, 15.48 meters		Stanton N. base	- 0000.04	-0. 21	©. 35
	8	Stanton S. base	$335^{2} 3$ 31. 26	31. 16	31. 12
	9	Elkins	641749.31	49.00	48. 88
	10	Scar	1141418.84	19.4I	19. 32
	11	Morris	16113 II. 06	10. 73	10. 82

Stanton base to Deming base-Continued.

Stanton base to Deming base-Continued.

Station occupied and elevation of telescope above station mark	Num-direction	Object observed	Observed ${ }^{\text {direc }}$ tion reduced to sea level	Seconds after fig- ure ad- justment	Final after closure of loop
Estes, 18.57 meters			- . $\quad 1$		
	68	Aroya	- $00 \overline{59.95}$	$\infty 0.03$	00. 06
	69	Harris	554040.97	40.89	40. 95
	70	Curtis	${ }^{9} 3174{ }^{\text {42. }} 36$	42. 43	42. 34
	66	Lee	$\begin{array}{llll}283 & 49 & 26.62 \\ 313 & 20 & 39.11\end{array}$	26.38 30.26	26.37 39.29
Harris, 10.05 meters					
	${ }_{5} 5$	Aroya	$\begin{array}{rrrr}\circ & 0 & 00.08 \\ 149 & 12 & 26.14\end{array}$	0. 00 26.00	o0. 03 26.05
	52	Douro	19700 II. 82	12.03	Ir. 97
	53	Curtis	22849 41. 92	41.74	41. 72
	54	Estes	3180042.24	42.43	42.42
Lee, ro. r meters	77	Sist	- 0000.05	$\overline{59.78}$	$\overline{59.80}$
	78	Hays	414129.80	30. 15	30. 17
	79	Johnson	760201.49	01. 10	Or. 12
	80	Aroya	1471540.07	40. 44	40. 46
	81	Estes	191 031549	15.42	15.37
Hays, 1.32 meters	83	Lee	- $00 \overline{59.96}$	$\overline{59.78}$	59. 76
	84	Sist	11514 II. 96	11. 66	II. 68
	85	Ingle	1842135.93	36.45	36. 46
	82	Johnson	2543003.81	03. 78	-3. 78
Round, r.ig meters	97	Ingle	$\bigcirc 0000.05$	59.45	59. 39
	98	Sist	45 II 39. 15	39.62	39.55
	99	Toyah	1040946.42	46. 40	46. 44
	100	Newman	$\begin{array}{llll}133 & 13 & 36.40 \\ 169\end{array}$	36. 4 I	36. 5^{2}
	101	Seay	16947 21. II	2 I . 24	21. 21
Toyah, 1.24 meters	106		- 000006	∞ O. 1	
	102	Newman	1905825.11	25.25	25.36
	103	Seay	2412053.62	53. 20	53. 17
	104	Round	$\begin{array}{llll}299 & 56 & \text { Or. } 08 \\ 332 & 17 & 27.06\end{array}$	50.89	$\text { o. } 90$
	105	Ingle	3321727.06	27. 58	27.54
Ingle, 9.95 meters	86	Johnson	$\bigcirc \infty \infty$		
	87	Hays	2526 35. O1	34.60	34.55
	88	Sist	733405.65	05. 55	05. 55
	89	Toyah	113 39 15 12.75	13.17	13. 24
	90	Round	1570802.26	02. 57	02. 5^{8}
Sist, 9.88 meters	93	Ingle	- $\infty \overline{59.96}$	$\overline{59.68}$	59. 70
	94	Johnson	490916.09	16.19	16. 18
	95	Hays	624504.75	-5. 36	05. 34
	96	Lee	8549 23.81	23.79	23.73
	$9{ }^{92}$	Toyah Round	2474737.54 30845	37.15 34.68	37.22 34.69
	92	Round	3084534.68	34.68	34.69
Chispa, 1.40 meters		Diablo			
	130	Krouse	5514438.28	38. 67	38.59
	131	Reynolds	$\begin{array}{llll}61 & 18 & 26.57\end{array}$	26. 66	$\text { 26. } 58$
	132 128	Eagman	93 18740.98 314 10	40. 84	40. 89
Reynolds, 1.39 meters	128	Eagle	3141017.12	17.23	17.42
	120	Krouse	- $\infty \overline{59.9}{ }^{2}$	-0. 30	-0.31
	121	Seay	$125{ }^{22} 51.90$	52. 18	52. 12
	118	Newman Chispa	1985508.17 29024 290.24	O7. 79 59.06	07.77 60.05

Stanton base to Deming base-Continued.

Station occupied and elevation of telescope above station mark.	Number of direc- tion	Object observed	Observed direction reduced to sea level	Seconds after figure ad- justment	$\begin{aligned} & \text { Final } \\ & \text { seconds } \\ & \text { after } \\ & \text { closure } \\ & \text { of loop } \end{aligned}$
Seay, 1.26 meters			- "		
	- III	Krouse	- 0 0. 10	59.89	$\overline{59.92}$
	107	Round	1682511.05	1 1. 08	10. 98
	108	Toyah	2241232.09	32.32	32. 26
	109	Newman	2652640.5^{8}	40.82	40.90
	110	Reynolds	3454932.92	$3^{2.63}$	32.69
Newman, 1.29 meters	117	Toyah	00000.07	00. OI	$\overline{59.96}$
	112	Chispa	1893041.66	41. 75	4I. 95
	113	Krouse	2424956.89	56.62	56.61
	114	Reynolds	2453139.43	40. 10	40. 08
	115	Seay	$\begin{array}{lllllllll}27 & 36 & 34.09\end{array}$	33.99	33. 94
	116	Round	318 O1 23.24	22.9I	22.83
Diablo, 1.40 meters	133	Krouse	$\bigcirc \infty 000$	$\overline{59.58}$	59. 40
	134	Chispa	663144.40	44. 79	44.73
	135	Fagle	$118 \quad 4024.84$	24.60	24.67
	136	Quitman	1751508.59	08. 75	08.86
	137	Black	2423159.35	59. 47	59. 53
Eagle, x .28 meters	140	Diablo	- 00 0. 13	- ${ }^{1}$ I	0. 39
	141	Krouse	3531.03 .87	0.3 .91	03. 73
	142	Chispa	82 O1 41.96	41. 87	41. 86
	138	Quitman	2745712.41	12. 16	12.37
	139	Black	3271912.90	12.83	12.91
Krouse, 1.40 meters	122	Seay	$\bigcirc 0000.07$	00. 32	0. 21
	123	Reynolds	4026 4I. 70	41. 37	41. 36
	124	Newman	564005.61	05. 54	05. 51
	125	Chispa	1444753.92	53.78	53. 84
	126	Eagle	$\begin{array}{lllllllllll}177 & 12 & 59.56\end{array}$	59. 3^{2}	59.47
	127	Diablo	203 O1 33.97	34. 51	34. 46
Black, 1.35 meters	144	Eagle	- $00 \overline{59.97}$	$\overline{59.92}$	$\overline{59.87}$
	145	Quitman	$4005 \quad 23.37$	23.80	23.87
	146	North Franklin	III 06 150	43. 58	43. 74
	147	Corduna	1500356.45	57.03	57.08
	143	Diablo	$33632 \begin{aligned} & \\ & 3\end{aligned}$	19.01	18. 74
North Franklin: 1.33 meters.	170	Jarilla	$\bigcirc 0000.11$	0. 23	© 012
	171	Corduna	4843333.3 I	33.22	33.09
	172	Black	724039.11	38. 99	38. 68
-	173	Quitman	${ }_{98} 90946.22$	46. 66	46. 49
	166	Hermanas	$\begin{array}{llll}232 & 48 & 25.09\end{array}$	24.83	25.05
	167	Florida		27.19	27.35
	168	Cooks Kent	$\begin{array}{lll}268 & 22 & 25.68 \\ 327 & 49 & 32.16\end{array}$	25.44 32.27	25.61 32.31
	169		3274932.16	32.27	32.31
Kent, 1.41 meters	161	Jarilla	- $00 \overline{59.93}$	$\overline{59.85}$	
	162	Corduna	111939.10	38.76	38.60
	163	North Franklin	7200 28.72	28.67	28. 64
	164	Florida	1393532.49	32. 86	33. 11
	165	Cooks	1630346.04	46. 15	46. 26
Corduna, 1.39 meters	153	Black	- 0059.87	59.82	59.60
	${ }^{1} 54$	Quitman	3346 33.13	32. 41	32.40
	155	North Franklin	11645 155 155 18	53. 56	53.63
	156 157	Kent Jarilla	$\begin{array}{lll}155 & 31 & 18.73 \\ 161 & 27 & 32.29\end{array}$	18. 41 32. 79	$\begin{aligned} & 18.52 \\ & 32.84 \end{aligned}$

Stanton base to Deming base-Continued.

Station occupied and elevation of telescope above station mark	Numdirec tion	Object observed	Observed direction reduced to sea level	$\begin{array}{\|c} \begin{array}{c} \text { Seconds } \\ \text { after } \\ \text { uffo } \\ \text { uure ad- } \\ \text { justment } \end{array} \end{array}$	
Quitman, 1.33 meters			- . ${ }^{\circ}$		
		Eagle	- $00 \overline{59.83}$	-0. 07	0. 05
	148	North Franklin	18857 26.91	26.94	27. 14
	149	Corduna 1	${ }_{236} 31215.23$	15. 24	15.40
	150	Black	2722717.89	17.81	17.78
	151	Diablo	3213728.65	28. 46	28. 14
Deming N. base, 10.23meters.	35	Red	- $00 \overline{59.91}$	0. 07	-0. 10
	36	Cooks	720614.96	14. 58	14.64
	37	Florida	1851857.55	57. 24	57. I4
	34	Deming S. base	2782648.37	48.89	48.90
Deming S. base, 10.10 meters.	22	Red	$\bigcirc 0059.93$	0. 03	59.92
	23	Cooks	2605 14. 10	14. 46	14.45
	24	Deming N. base	45 II 39. 20	38. 63	38. 63
	25	${ }_{\text {Florida }}$	850307.07	07. 31	07.40
	26	Hermanas	2163159.79	59.67	59.71
Florida, 1. 36 meters	27	Deming S. base	$\bigcirc \infty \times 0.07$	$\infty .05$	©. 21
	28	Red	442021.02	2 I . 06	21.09
	29	Deming N. base	47×40. 1	40. 26	40. 23
	30	Cooks	$\begin{array}{r}98 \\ \hline 1780 \\ 17 \\ 13 \\ 13 \\ \hline\end{array}$	08.21	08. 37
	31 32	North Franklin		59.61 08.64	59. 50 08.46
	33	Hermanas	3313722.35	22.07	22. 02
Jarilla, I. 24 meters	160	Kent	- $\infty \overline{59.90}$	- 21	-0. 27
	158	Corduna	1971551.63	51. 56	51. 48
	159	North Franklin	284 10 51. 27	51.02	51. 06
Cooks, I .36 meters	10	Florida	- $00 \overline{59.93}$	59. 55	59. 59
	11	Deming N. base	151749.95	50. 22	50. 23
	12	Deming S. base	2232 O1. I2	O1. 07	O1. 02
	13	Hermanas	2610 10. 94	10. 73	10. 72
	14	${ }_{\text {Red }}^{\text {Chiricahua }}$		22.94	22.83 O. 36
	16	Burro	1072705.27	-05.75	06. 05
	8	Kent	2831150.58	50. 46	50. 19
	9	North Franklin	3124145.74	46. 15	45.86
Hermanas, 1.27 meters		Deming S. base		-0. 57	-0. 55
	6	Florida	200831.38	31. 42	31. 23
	7	North Franklin	640926.65	26. 90	26.63
	1	Chiricahua	$\begin{array}{llll}252 & 59 & 45.10 \\ 311 & 38 \\ 26.07\end{array}$	45. 12 25.85	45. 33
	3	Red	311 345 30000.04	$\frac{25.85}{59.91}$	$\frac{26.10}{59.97}$
	4	Cooks	353 11 24.75	24.28	24. 25
Red, 1.37 meters	19	Florida	- 0059	59.71	59.68
	20	Deming S. base	503632.48	32. 45	32. 35
	21	Hermanas	724832 . O1	32. 28	07. 51
	17	Cooks $\mathrm{Deming} \mathrm{N}$.	269 3572207.49 3 121.82	O7. 57 21. 69	32. 41 21.72
		Deming N. base		21. 69	21. 72

Deming base net to San Jacinto-Cuyamaca.

Station occupied and elevation of telescope above station mark	Numdirect tion	Object observed	Observed direction reduced to sea level	Seconds arter fig- ure ad justment	
Burro, 1.25 meters			- ' $"$		
	42	Line (U. S. G. S.)	- $0 0 \longdiv { 5 9 . 8 6 }$	$\overline{59.85}$	$\overline{59.97}$
	38	Cooks	1561349.41	49.30	49.04
	39	Hermanas	2132409.89	09.77	09. 47
	40	Chiricahua	2863715.84	16. 01	16. 14
	41	Graham (U. S. G. S.)	3364450.82	50.89	51. 18
$\underset{2.99 \text { meters }}{\underset{\text { Graham }}{ }(\mathrm{U} . \text { G. S.), }}$	53	Line (U. S. G. S.)	$\bigcirc 0000.06$	00.23	-0. 07
	54	Burro	$16 \quad 3243.85$	44. 18	43.90
	55	Chiricahua	703031.22	31.14	30. 95
	56	Baldy (U. S. G. S.)	1413227.53	27.30 25.72	27.66 26.00
	57	Catalina	$1733^{2} 25.91$	25.72	26.00
$\underset{\text { meters }}{\text { Baldy (U. S. G. S.), I. } 49}$	60	Catalina	- 0000.03	-0. 83	-0. 83
	61	Graham (U. S. G. S.)	3526 10. 99	11. 04	10. 76
	62	Chiricahua	781048.86	48. 7^{8}	48. 21
	58	Table	3104307.21	-6. 88	-7. 26
	59	Superstition (U. S. G. S.)	341 O1 23.30	22.86	23. 32
Catalina, 1. 42 meters	67	Superstition (U. S. G. S.)	$\bigcirc 0059.90$	-0. 63	or. 19
	63	Graham (U. S. G. S.)		02. 69	02. 36
	64	Chiricahua ${ }^{\text {Baldy }}$ (${ }^{\text {a }}$)	1412857.19	56.72	56. 14
	65	$\begin{aligned} & \text { Baldy (U. S. G. S.) } \\ & \text { Table } \end{aligned}$	$\begin{array}{llll} 211 & 47 & 12.26 \\ 313 & 36 & 16.99 \end{array}$	11.75 16.85	I1. 78 i7. 16
Chiricahua, i. 44 meters		Burro	- 0000.19	00. 37	00. 30
	48	Cooks	175443.74	43. 35	42. 97
	49	Hermanas	4808 40.42	40. 52	39.97
	43	$\underset{\text { Baldy (U. S. G. S.) }}{\text { Catalina }}$	$\begin{array}{llll}217 & 50 & 48.94 \\ 249 & 22 & 16.47\end{array}$	48. 93 16.81	49.36 17.20
	44	Catalina (S S.	$\begin{array}{llll}249 & 22 & 16.47\end{array}$	16.81	17.20
	45	Graham (U. S. G. S.)	2840452.28	52. 32	52. 49
	46	Line (U. S. G. S.)	32853 16. 04	15.79	15.82
$\underset{\text { meters }}{\operatorname{Line}(\mathrm{U} . \text { S. G. S.), I. } 38}$	50	Burro	- $<0 \overline{59.84}$	59.77	$\overline{59.64}$
	51		753047.59	47.95	47.93
	52	Graham (U. S. G. S.)	1401215.36	${ }^{15} 507$	15.22
Table, 1. 32 meters		Superstition (U. S. G. S.) Catalina		o. 14 24.	00. 22
	76	Catalina	622023.88	24.02	23.42
	77	Baldy (U. S. G. S.)		51. 84	51. 34
	73	Maricopa	$\begin{array}{llll} 227 & 09 & \text { or. } 88 \\ 293 & 21 & 36.46 \end{array}$	O1. 62 36.41	02. 14 36.92
Superstition(U.S. G. S.) 1.4 r meters.	72	Whitetank	$\bigcirc 0059.97$	00. 25	-0. 83
	68	Catalina	2321823.13	22. 72	22. 27
	69	Baldy (U. S. G. S.)	2450709.27	-9. 39	08. 87
	70	Table	3033444.38	44. 20	44. 18
	71	Maricopa	312 10 21.82	22. ∞	22. 43
Maricopa, 1. 33 meters		Superstition, (U. S. G. S.) Table			
	87 83	Table Mohawk	$\begin{array}{rr}38 & 33 \\ 210 & 27.93 \\ 27.29\end{array}$	28. 14	27.58 37.63
	83 84	Harquahalla		37.13 03.58	37.03 04.12
	85	Whitetank	2983013.72	13. 5^{8}	13. 66
Whitetank, x .36 meters	82	Harquahalla	$\bigcirc 0059.91$	$\overline{59.82}$	0. 34
	78	Superstition (U. S. G. S.)	1681457.48	57.33	56. 84
	79	Table	225 II 40.42	40.51	39. 85
	80	Maricopa	2385556.63	56.63	56. 63
	8I	Mohawk	2925344.25	44.40	45.04

Deming base net to San Jacinto-Cuyamaca-Continued.

Station occupied and elevation of telescope above station mark	Num- ber of direction	Object observed	Observed direction reduced to sea level	Seconds aiter figure ad. justment	Final seconds after closure of loop
Harquahalla, 1.27 meters			- , "		
	88	Whitctank	- 00 59.94	00.05	59.50
	89	Maricopa	320702.49	02. 46	O1. 84
	90	Mohawk	$81 \quad 3815.04$	14. 76	14.90
	91	Kofa	1234545.07	45. 42	45.87
	92	Powell	2063549.29	49. 16	49.70
Powell, 1.33 meters		Chemehuevis	- 00000		
	108	Harquahalla	$22532 \begin{array}{ll}24 & 73\end{array}$	44. 77	44. 24
	109	Kofa	265 or 09. 27	©. 48	0. 43
	110	Butte	$313 \quad 52$ 10. 51	10.27	10. 83
American (U. S. G. S.), 1.44 mcters	\cdots	Yuma No. 10	- 00000		
	103	Cuyamaca	12740 32. 5^{2}	32. 84	33. 5^{2}
	104	San Jacinto	1550319.30	19.39	20. 19
	105	Butte	178 48 21. 19	21. 05	21. 09
	106	Kofa	2620360.57	60. 44	59.92
	107	Mohawk	3193738.68	38. 55	$37 \cdot 5^{2}$
Butte, 1.36 meters	113	American (U. S. G. S.)	- 00000	¢. 06	$\overline{59.96}$
	114	Cuyamaca	954029.62	29. 12	29. 86
	115	San Jacinto	$13835{ }^{1} 29.64$	29.62	30. 19
	III	Powell	2592213.44	13. 58	13.03
	112	Kofa	3155408.90	09.21	08. 54
Koia, 1.44 meters	101	Harquahalla	$\bigcirc \infty 00.13$	59. 97	59. 42
	102	Mohawk	1005438.65	38.70	38.20
	98	American (U. S. G. S.)	175 or 31.89	32. 05	32. 57
	99	Butte	2274022.01	22. OI	22. 52
	100	Powell	3021804.39	04.32	04. 34
Mohawk, i. 40 meters	93	American (U. S. G. S.)	$\bigcirc 0059.97$	$\overline{59.83}$	©. 73
	94	Kofa	48 19 47. 50	47. 7^{2}	48. II
	95	Harquahalla	8517858.43	58. 34	58.37
	96	Whitetank	1163355.31	55. 36	54.8I
	97	Maricopa	$1544^{2} 59.26$	59. 22	58.45
Cuyamaca, 1.50 meters	119	San Jacinto	$\bigcirc \infty 000$	$\infty 000$	O1. 56
	120	Butte	$63 \quad 33 \quad 10.55$	$\text { II. } 05$	10. 40
	121	American (U. S. G. S.)	$9645 \quad 27.21$	26. 65	25.80
San Jacinto, 2.95 meters	118	Cuyamaca	- ∞ 0. ∞	∞ 0. 0	
	116	Butte	2862741.45	41. 71	40.84
	117	American (U. S. G. S.)	30407 31. 02	30. 88	30. 11

CONDITION EQUATIONS.

KYLE-McCLENNY TO STANTON BASE.

No.
$0.0=-1.98-(1)+(3)-(5)+(6)-(12)+(13)$
2. $0.0=-0.87-(2)+(3)-(9)+(10)-(12)+(14)$
$0.0=-0.19-(1)+(2)-(4)+(6)-(10)+(11)$
$0.0=+1.34-(8)+(9)-(14)+(15)-(17)+(18)$
$0.0=+1.51-(7)+(8)-(18)+(19)-(30)+(31)$
$0.0=+2.10-(15)+(16)+(17)-(20)-(21)+(22)$
$0.0=-0.34-(19)+(20)-(22)+(23)-(29)+(30)$
$0.0=+1.34-(23)+(24)-(28)+(29)+(32)-(35)$
$0.0=+0.49-(23)+(25)-(27)+(29)-(40)+(42)$
$0.0=-0.87-(27)+(28)-(32)+(33)-(41)+(42)$
$0.0=+1.57-(25)+(26)-(39)+(40)-(43)+(45)$
$0.0=+1.25-(24)+(26)-(34)+(35)-(43)+(44)$
$0.0=-0.08-(37)+(39)-(45)+(46)-(48)+(49)$
$0.0=-1.38-(38)+(39)-(45)+(47)-(52)+(53)$
$0.0=+1.18-(46)+(47)+(48)-(51)-(52)+(54)$
$0.0=+0.93-(36)+(38)-(53)+(55)-(60)+(62)$
$0.0=+0.33-(36)+(37)-(49)+(50)-(61)+(62)$
$0.0=+2.04-(55)+(57)-(59)+(60)-(63)+(64)$
$0.0=+1.34-(55)+(56)-(58)+(60)-(71)+(72)$
$0.0=-0.01-(58)+(59)-(64)+(65)-(70)+(72)$
$0.0=+2.29-(65)+(67)-(69)+(70)-(73)+(74)$
$0.0=-0.45-(65)+(66)-(68)+(70)-(81)+(82)$
$0.0=+2.17-(66)+(67)-(73)+(75)-(80)+(81)$
$0.0=-1.06-(75)+(77)-(79)+(80)-(83)+(84)$
$0.0=-0.82-(76)+(77)-(83)+(85)-(90)+(91)$
$0.0=-0.8 \mathrm{I}-(78)+(79)-(84)+(85)-(90)+(92)$
$0.0=-0.47-(85)+(87)-(89)+(90)-(93)+(94)$
$0.0=-0.97-(88)+(89)-(94)+(95)-(100)+(102)$
$0.0=-0.85-(86)+(87)-(93)+(95)-(1 \infty)+(101)$
$0.0=+0.85-(95)+(97)-(99)+(100)-(103)+(104)$
$0.0=+2.63-(96)+(97)-(103)+(105)-(110)+(111)$
$0.0=+2.14-(98)+(99)-(104)+(105)-(110)+(112)$
$0.0=-1.50-(105)+(107)-(109)+(110)-\left(\mathrm{II}_{3}\right)+\left(\mathrm{II}_{4}\right)$
$0.0=-2.07-(108)+(109)-(114)+(115)-(120)+(122)$
$0.0=-3.11-(105)+(106)-(108)+(110)-(121)+(122)$
$0.0=+1.19-(115)+(117)-(119)+(120)-(123)+(124)$
$0.0=-1.02-(118)+(119)-(124)+(125)-(130)+(132)$
$0.0=-0.80-(116)+(117)-(123)+(125)-(130)+(131)$
$0.0=+0.14-(125)+(127)-(129)+(130)-(133)+(134)$
$0.0=+0.11-(128)+(129)-(134)+(135)-(140)+(142)$
$0.0=+1.00-(126)+(127)-(133)+(135)-(140)+(141)$
$0.0=-0.45-(135)+(137)-(139)+(140)-(143)+(144)$
$0.0=+0.4^{2}-(138)+(139)-(144)+(145)-(150)+(152)$
$0.0=+0.46-(136)+(137)-(143)+(145)-(150)+(151)$
$0.0=+0.98-(145)+(147)-(149)+(150)-(155)+(156)$
46. $0.0=+0.73-(145)+(146)-(148)+(150)-(153)+(154)$
47. $0.0=+0.3 \mathrm{I}+(\mathrm{I})-(6)-(148)+(149)+\left({ }_{54}\right)-(156)$
48. $0.0=+6.3+2.92(\mathrm{I})-5.25(2)+2.33(3)+2.28(4)-2.20(5)-0.08(6)-0.03(12)-2.79(13)+2.82(14)$
49. $0.0=+3.5+1.35(7)-6.48(8)+5.13(9)+2.45(14)-5.55(15)+3.10(16)+2.99(21)-2.55(22)-0.44(23)$
$+4.25(29)-6.58(30)+2.33(31)$
50. $0.0=-13.1+2.32(23)-14.25(24)+11.93(25)+2.64(27)-4.20(28)+1.56(29)+13.71(40)-17.84(41)$ $+4.13(42)$

No.
51. $0.0=-6.9+2.32(23)-4.75(24)+2.43(26)+2.64(27)-4.20(28)+1.56(29)+0.76(39)-4.89(41)+4.13(42)$
$+3.55(43)-4.9^{2}(44)+1.37(45)$
$5^{2} .0 .0=+32.9+\mathrm{r} .93(36)-20.60(37)+18.67(38)+8.36(53)-9.81(54)+\mathrm{r} .45(55)+6.3 \mathrm{I}(60)-9.00(6 \mathrm{I})$ $+2.69(62)$
$53.0 .0=+16.8+1.93(36)-4.58(37)+2.65(39)+0.85(45)-3.79(46)+2.94(47)-2.74(54)+1.29(52)$
$+\mathrm{r} .45(55)+6.3 \mathrm{r}(60)-9.00(6 \mathrm{I})+2.69(62)$
54. $0.0=+4.3+1.22(55)-5.45(56)+4.23(57)+2.87(58)-4.03(59)+1.16(60)+2.42(70)-2.74(71)+0.32(72)$
$55.0 .0=+3.2+0.56(65)-3.16(66)+2.60(67)+1.85(68)-3.53(69)+1.68(70)+2.40(80)-3.03(81)+0.63(82)$
56. $0.0=+3.0+4.35(75)-5.63(76)+1.28(77)+2.31(83)-9.50(84)+7.19(85)-1.83(90)-1.90(91)+3.73\left(9^{2}\right)$
$57.0 .0=+0.7+1.57(85)-1.57(86)+3.02(93)-4.04(94)+1.02(95)+0.62(100)-3.76(101)+3.14(102)$
58. $0.0=+8.9+6.19(95)-6.09(96)-0.10(97)+2.12(103)-.9 .84(104)+7.72(105)-0.54(110)-1.31(111)$
$+1.85(112)$
59. $0.0=-9.5-0.25(105)-2.50(106)+2.75(107)+5.37(108)-10.23(109)+4.86(110)+5.14(113)-6.57(114)$
$+\mathrm{I} .43(\mathrm{II} 5)+\mathrm{r} .01(120)-3.68(121)+2.67(122)$
60. $0.0=+2.0-0.59(\mathrm{II} 8)-\mathrm{I} .67(\mathrm{II} 9)+2.26(\mathrm{I} 20)+3.34(\mathrm{I} 23)-2.56(\mathrm{I} 24)-0.78(\mathrm{I} 25)+3.6 \mathrm{I}(130)-8.16(13 \mathrm{I})$
$+4.55\left(13^{2}\right)$
$6 \mathrm{I} .0 .0=+2.7+4.03(\mathrm{I} 25)-5.35(\mathrm{I} 26)+1.32(\mathrm{I} 27)+0.78(\mathrm{I} 33)-4.65(134)+3.87(\mathrm{I} 35)-0.43(\mathrm{I} 40)-\mathrm{r} .4 \mathrm{I}(14 \mathrm{I})$ +1.84 (142)
62. $0.0=-6.0-\mathrm{r} .26\left(\mathrm{I}_{35}\right)+4.9 \mathrm{I}\left(\mathrm{r}_{3} 6\right)-3.65\left(\mathrm{r}_{37}\right)-4.25\left(\mathrm{I}_{3} 8\right)+5.36(\mathrm{I} 39)-\mathrm{r} . \mathrm{II}\left(\mathrm{I}_{4} \mathrm{C}\right)-3.84\left(\mathrm{r}_{43}\right)+5.74\left(\mathrm{I}_{44}\right)$ $-1.90(145)-0.63(150)+3.95\left(\mathrm{I}_{5} \mathrm{r}\right)-3.3^{2(152)}$
63. $0.0=+5.8+3.12(\mathrm{r})+2.65(\mathrm{r} 45)-5.23(\mathrm{I} 46)+2.58(\mathrm{I} 47)+2.28(\mathrm{I} 48)-2.75(\mathrm{I} 49)+0.47(\mathrm{I} 50)-0.35(\mathrm{I} 55)$

$$
-2.77(156)
$$

Length $=\mathrm{S}_{1} 0.0=-\mathrm{r} .6-0.45(\mathrm{I})+0.45(3)-2.20(4)+2.20(5)-\mathrm{I} .35(7)+\mathrm{I} .35(8)-0.34(9)+0.34(1 \mathrm{I})+1.55(\mathrm{I} 2)$
$-1.55(13)-2.45(14)+2.45(15)-1.07(17)+1.07(18)-1.65(19)+1.65(20)-0.44(22)+0.44(23)$
$-2.43(24)+2.43(26)-1.56(28)+1.56(29)+2.33(30)-2.33(31)-0.21(32)-1.60(33)+1.60(34)$
$+0.21(35)-1.54(36)+1.54(38)+0.76(39)-0.76(4 \mathrm{r})+3.55(43)-3.55(44)+0.5 \mathrm{I}(45)-0.5 \mathrm{I}(47)$
$+2.15(52)-2.15(53)-1.22(55)+1.22(57)-2.87(58)+2.87(59)+1.39(60)-1.39(62)+1.27(63)$
$-1.27(64)-0.56(65)+0.56(67)-1.85(68)+1.85(69)+0.32(70)-0.32(72)+1.56(73)-1.56(74)$
$-2.68(76)+2.68(77)+0.83(78)-0.20(80)-0.63(82)+1.28(83)-1.28(85)-2.32(88)+2.32(89)$
$+1.90(91)-1.90(92)+3.02(93)-3.02(94)-0.6 \mathrm{r}(96)+0.61(97)+0.48(98)+0.14(100)-0.62(102)$
$+1.21(103)-1.21(105)-2.75(106)+2.75(107)-2.12(108)+2.12(110)+1.31(111)-1.31(112)$
$+0.44(113)-0.48(115)+0.04(117)-1.53(118)+1.53(119)+2.67(121)-2.67(122)+2.56(123)$
$-2.56(124)-1.32(125)+1.32(127)-1.78(128)+1.78(129)+1.47(130)-1.47(132)+0.78(133)$
$-0.78(\mathrm{I} 34)-0.03(\mathrm{I} 35)+0.03(\mathrm{I} 37)-4.25(\mathrm{I} 38)+4.25(\mathrm{I} 39)-0.43(\mathrm{I} 40)+0.43(\mathrm{I} 42)+3.84(143)$
$-3.84(\mathrm{I} 44)-2.58(\mathrm{I} 46)+2.58(\mathrm{I} 47)-0.47(\mathrm{I} 48)-0.12(\mathrm{I} 50)+0.59\left(\mathrm{I}_{5}\right)+\mathrm{I} .02(\mathrm{I} 53)-1.02\left(\mathrm{I}_{54}\right)$
$-0.35(155)+0.35(\mathrm{I})$

STANTON BASE TO DEMING BASE.

No.

1. $0.0=-0.77-(1)+(3)-(5)+(6)-(7)+(8)$
2. $0.0=+1.45-(4)+(5)-(8)+(9)-(14)+(16)$
3. $0.0=+0.70-(2)+(3)-(7)+(9)-(14)+(15)$
4. $0.0=-0.37-(9)+(\mathrm{II})-\left(\mathrm{r}_{3}\right)+(\mathrm{I} 4)-(17)+(\mathrm{I} 8)$
$5 \cdot 0.0=-0.35-(12)+(13)-(18)+(19)-(24)+(26)$
5. $0.0=+0.54-(10)+(11)-(17)+(19)-(24)+(25)$
6. $0.0=+1.12-(19)+(20)-(23)+(24)-(27)+(28)$
7. $0.0=+0.47-(20)+(21)+(27)-(30)-(31)+(32)$
8. $0.0=-1.8 \mathrm{I}-(22)+(23)-(28)+(29)-(39)+(40)$
9. $0.0=+1.93-(29)+(30)-(32)+(33)-(38)+(39)$
10. $0.0=+$ 1.63 $-(33)+(35)-(37)+(38)-(41)+\left(4^{2}\right)$
11. $0.0=-0.37-(36)+(37)-(42)+(43)-(48)+(50)$
12. $0.0=+2.91-(34)+(35)-(41)+(43)-(48)+(49)$
13. $0.0=-$ 1.11 $-(43)+(45)-(47)+(48)-(5 \mathrm{r})+(52)$
14. $0.0=+0.46-(46)+(47)-\left(5^{2}\right)+(53)-(58)+(60)$
15. $0.0=-0.20-(44)+(45)-(51)+(53)-(58)+(59)$

No.
17. $0.0=+0.07-(53)+(55)-(57)+(58)-(61)+(62)$
i8. 0.0. $=-0.79-(53)+(54)-(56)+(58)-(69)+(70)$
19. $0.0=-0.16-(56)+(57)-(62)+(63)-(68)+(70)$
20. $0.0=-\mathrm{I} .36-(63)+(65)-(67)+(68)-(71)+\left(7_{2}\right)$
21. $0.0=-0.40-(66)+(67)-(72)+(73)-(79)+(81)$
22. $0.0=-1.73-(64)+(65)-(71)+(73)-(79)+(80)$
23. $0.0=+0.76-(73)+(74)-(78)+(79)-(82)+(83)$
24. $0.0=+0.54-(73)+(75)-(77)+(79)-(94)+(96)$
25. $0.0=+0.13-(77)+(78)-(83)+(84)-(95)+(96)$
26. $0.0=-0.92-(75)+(76)-(86)+(88)-(93)+(94)$
27. $0.0=+0.75-(74)+(76)+(82)-(85)-(86)+(87)$
28. $0.0=-0.06-(88)+(89)-(91)+(93)-(105)+(106)$
29. $0.0=-1.17-(89)+(90)-(97)+(99)-(104)+(105)$
30. $0.0=-0.03-(91)+(92)-(98)+(99)-(104)+(106)$
31. $0.0=+0.03-(99)+(100)-(102)+(104)-(116)+(117)$
32. $0.0=-0.10-(100)+(101)-(107)+(109)-(115)+(116)$
33. $0.0=-0.58-(99)+(101)-(103)+(104)-(107)+(108)$
34. $0.0=+1.96-(109)+(110)-(114)+(115)+(118)-(121)$
35. $0.0=+0.60-(109 ;+($ III $)-(113)+(115)-(122)+(124)$
36. $0.0=+0.60-(\mathrm{IIO})+(\mathrm{III})-(\mathrm{I} 20)+(121)-(122)+(123)$
37. $0.0=+0.95-(112)+(113)-(124)+(125)-(130)+(132)$
38. $0.0=-0.46-(112)+(114)-(118)+(119)-(131)+(132)$
39. $0.0=-2.34-(125)+(127)-(129)+(130)-(133)+(134)$
40. $0.0=+\mathrm{r} .68-(\mathrm{I} 28)+(\mathrm{I} 29)-(\mathrm{I} 34)+(\mathrm{I} 35)-(\mathrm{I} 40)+(142)$
41. $0.0=-0.05-(125)+(126)-(128)+(130)-(141)+(142)$
42. $0.0=-0.78-(135)+(137)-(139)+(140)-(143)+(144)$
43. $0.0=-0.98-(\mathrm{I} 38)+(\mathrm{I} 39)-(\mathrm{I} 44)+(\mathrm{I} 45)-(\mathrm{I} 50)+(152)$
44. $0.0=-0.30-(136)+(137)-(143)+(145)-(150)+(151)$
45. $0.0=+0.61-\left(\mathrm{I}_{45}\right)+\left(\mathrm{I}_{47}\right)-(\mathrm{I} 49)+\left(\mathrm{I}_{50}\right)-(\mathrm{I} 53)+(\mathrm{I} 54)$
46. $0.0=-1.82-(148)+\left({ }^{149}\right)-(154)+(155)-(171)+(173)$
47. $0.0=+0.90-(145)+(146)-(148)+(150)-(172)+(173)$
48. $0.0=+0.48-(155)+(157)-(158)+(159)-(170)+(171)$
49. $0.0=-0.60-(\mathrm{I} 59)+(160)-(161)+(163)-(169)+(170)$
50. $0.0=+0.82-(155)+(156)-(162)+(163)-(169)+(171)$
51. $0.0=+1.32-(8)+(10)-(30)+(31)-(164)+(165)$
52. $0.0=-1.03-(8)+(9)-(163)+(165)-(168)+(169)$
53. $0.0=+1.83-(9)+(10)-(30)+(32)-(167)+(168)$
54. $0.0=-0.47-(6)+(7)-\left(3^{2}\right)+(33)-(166)+(167)$
5. $0.0=+0.4+2.72(1)-2.17(2)-0.55(3)+3.14(7)-6.73(8)+3.59(9)-0.57(14)-1.77(15)+2.34(16)$
56. $0.0=+4.8+2.03(9)-1.77(10)-0.26(11)+2.94(17)-5.48(18)+2.54(19)-0.42(24)-2.21(25)+2.63(26)$
$57.0 .0=+8.2+1.76(19)-2.83(20)+1.07(21)+2.47(22)-7.01(23)+4.54(24)+3.54(31)-5.59(32)+2.05(33)$
$+1.50(38)-3.23(39)+1.73(40)$
58. $0.0=+1.8+1.88(33)-1.68(34)-0.20(35)+2.89(41)-4.35(42)+1.46(43)+0.46(48)-3.21(49)+2.75(50)$
59. $0.0 \doteq+3.6+3.57(43)-5.57(44)+2.00(45)+2.39(46)-1.89(47)-0.50(48)+0.39(51)-3.39(52)+3.00(53)$
$60.0 .0=+0.9+1.58(56)-4.40(57)+2.82(58)+4.62(61)-4.90(62)+0.28(63)+1.44(68)-4.17(69)+2.73(70)$
6г. $0.0=+2.0+1.21(63)-3.43(64)+2.22(65)+3.20(66)-3.72(67)+0.52(68)+0.97(71)-2.96(72)+1.99(73)$
62. $0.0=+13.4+2.49(73)-6.60(74)+4.11(75)+2.36(77)-5.44(78)+3.08(79)+8.71(94)-13.65(95)$
+4.94 (96)
$63.0 .0=-6.7+3.90(74)-4.11(75)+0.21(76)+4.43(86)-6.32(87)+1.89(88)+1.08(93)-8.71(94)+7.63(95)$
64. $0.0=+7.5-0.86(91)-1.69(92)+2.55(93)+2.62(97)-2.09(98)-0.53(99)+3.32(104)-7.33(105)$
+4.01 (106)
$65.0 .0=-0.4+2.84(99)-3.79(100)+0.95(101)+1.43(107)-3.83(108)+2.40(109)+0.06(115)-2.34(116)$ $+2.28(117)$
$4957^{\circ}-12-3$

No.
66. $0.0=+41.2+0.36(109)-8.70(110)+8.34(111)+44.73(113)+49.03(114)+4.30(115)+2.47(122)$ $-9.7 \mathrm{I}(123)+7.24(124)$
$67.0 .0=-3.3+0.36(\mathrm{IOg})-8.70(\mathrm{IIO})+8.34$ (III) +1.42 (II2) $-5.72(\mathrm{II} 4)+4.30(\mathrm{II} 5)+2.47(122)-1.93(123)$ $-0.54(125)+19.82(130)-23.13(131)+3.31(132)$
68. $0.0=-3.9+3.32(125)-7.67(126)+4.35(127)+2.46(128)-2.05(129)-0.41(130)-1.15(133)-1.64(134)$ +2.79 (135)
69. $0.0=-3.3+0.18(138)-3.28(139)+3.10(140)+3.80(143)-4.85(144)+1.05(145)+1.82(150)-4.48(151)$ $+2.66(152)$
70. $0.0=-3.8+0.24(148)-2.87(149)+2.63\left(I_{50}\right)+4.21(153)-3.15\left(I_{54}\right)-1.06(155)+4.67(171)-9.09(172)$ $+4.42(173)$
$71.0 .0=-19.1+2.13(155)-20.25(156)+18.12(157)+9.83(161)-10.51(162)+0.68(163)+3.35(169)$ $-5.22(170)+1.87(171)$
$7^{2} .0 .0=+1.2+0.49(8)-1.94(9)+1.45(10)+0.87(163)-5.72\left(16_{4}\right)+4.8_{5}(165)+5.83\left(16_{7}\right)-6.28(168)$ $+0.45(169)$
73. $0.0=+3.3+4.14(4)-6.32(6)+2.18(7)+1.94(9)-6.22(10)+4.28(13)+6.88(166)-13.16(167)$ $+6.28(168)$
Length $=\mathrm{S}_{2} 0.0=-6.3-1.20(2)+1.20(3)-0.15(4)+0.15(6)+1.01(7)-1.01(9)-1.96(10)+1.96(11)$ $-0.13(12)+0.13(14)+1.77(15)-1.77(16)+0.55(17)-2.31(19)+1.76(20)-2.47(22)+2.47(23)$ $+2.21(25)-2.21(26)-0.57(27)+0.57(28)-0.38(29)+0.38(30)+2.05(32)-1.85(33)-0.20(35)$ $-1.96(36)+1.96(37)+1.73(39)-1.73(40)+2.89(41)-2.89(42)-0.49(43)+0.49(45)-1.89(46)$ $+1.89(47)+0.46(48)-0.46(50)+1.91(51)-1.91(52)-2.34(54)+2.34(55)-1.58(56)+1.20(58)$ $+0.38(60)+0.28(6 I)-0.28(63)-2.22(64)+2.22(65)-0.52(66)+0.5^{2}(68)+2.73(69)-2.73(70)$ $+0.97(71)-0.97(73)-1.35(75)+1.35(76)-0.5^{2}(77)+0.52(79)+2.20(80)-2.20(81)+0.62(86)$ $-0.86(88)+0.24(90)-1.17(91)+1.17(92)+2.83(94)-2.83(96)+2.09(97)-2.09(98)-0.95(99)$ $+0.95(101)-1.74(102)+1.74(103)+1.21(104)-1.21(106)+1.43(107)-1.43(108)+0.17(109)$ -0.17 (III) $-1.57(112)+1.57(113)+0.06(115)-0.06(117)+1.38(122)-1.38(124)-1.30(125)$ $+1.30(127)-2.05(128)+2.05(129)+2.64(130)-2.64(132)+0.91(133)-0.91(134)-0.88(136)$ $+0.88(137)-0.18(138)+0.47(140)-0.29(142)+1.05(143)-0.28(145)-0.77(147)-1.95(148)$ $+1.95(149)+2.66\left(\mathrm{I}_{5} \mathrm{I}\right)-2.66\left(\mathrm{I}_{52}\right)+3.15\left(\mathrm{I}_{53}\right)-3 . \mathrm{I}_{5}\left(\mathrm{I}_{54}\right)-2 . \mathrm{I}_{3}\left(\mathrm{I}_{55}\right)+2 . \mathrm{I}_{3}\left(\mathrm{I}_{57}\right)+0.11\left(\mathrm{I}_{5} 8\right)$ $-0.64\left({ }^{1} 59\right)+0.53(160)+0.68(16 \mathrm{I})-0.68(163)-4.85(164)+4.85(165)-0.45(167)+0.45(169)$ $+1.78(171)-1.78(173)+0.49(8)-5.56(10)+5.07(12)+1.27(23)-1.27(25)-1.96(27)+1.96(20)$ $+3.07(31)-3.07(32)+0.12(34)-0.12(37)$

DEMING BASE NET TO SAN JACINTO-CUYAMACA.

No.

1. $0.0=+0.04-(1)+(2)-(39)+(40)-(47)+(49)$
2. $0.0=-0.43-(2)+(4)-(13)+(16)-(38)+(39)$
$0.0=-1.15-(3)+(5)-(20)+(21)+(22)-(26)$
$0.0=-0.93-(3)+(6)-(19)+(2 I)+(28)-(33)$
$0.0=-0.18-(3)+(4)-(13)+(14)-(17)+(21)$
$0.0=-0.32-(12)+(14)-(17)+(20)-(22)+(23)$
$0.0=+0.90-(11)+(14)-(17)+(18)-(35)+(36)$
$0.0=-0.73-(10)+(14)-(17)+(19)-(28)+(30)$
$0.0=-0.99-(10)+(11)-(29)+(30)-(36)+(37)$
$0.0=-0.75-(10)+(12)-(23)+(25)-(27)+(30)$
$0.0=+2.15-(11)+(12)-(23)+(24)-(34)+(36)$
$0.0=-0.69-(15)+(16)-(38)+(40)-(47)+(48)$
$0.0=-0.68-(40)+(42)-(46)+(47)-(50)+(51)$
$0.0=+0.37-(40)+(41)-(45)+(47)-(54)+(55)$
1 5. $0.0=+0.15-(41)+(42)-(50)+\left(5^{2}\right)-(53)+(54)$
3. $0.0=+0.23-(43)+(45)-(55)+(56)-(61)+(62)$
4. $0.0=+0.57-(43)+(44)-(60)+(62)-(64)+(65)$
5. $0.0=+1.29-(44)+(45)-(55)+(57)-(63)+(64)$
6. $0.0=-3.01-(59)+(60)-(65)+(67)-(68)+(69)$

No.
20. $0.0=+0.29-(58)+(59)-(69)+(70)-(75)+(77)$
21. $0 . \mathrm{¢}_{7}-\mathrm{r} .22-(66)+(67)-(68)+(70)-(75)+(76)$
22. $0.0=-0.77-(70)+(72)-(74)+(75)-(78)+(79)$
23. $0.0=-0.32-(71)+(72)-(78)+(80)-(85)+(86)$
24. $0.0=-0.93-(70)+(71)-(73)+(75)-(86)+(87)$
25. $0.0=+0.5^{2}-(80)+(82)-(84)+(85)-(88)+(89)$
26. $0.0=-0.11-(83)+(84)-(89)+(90)-(95)+(97)$
27. $0.0=-0.08-(80)+(8 \mathrm{I})-(83)+(85)-(96)+(97)$
28. $0.0=-0.53-(90)+(91)-(94)+(95)-(101)+(102)$
29. $0.0=+0.40-(91)+(92)-(100)+(\mathrm{IOI})-(108)+(109)$
30. $0.0=-0.47-(93)+(94)+(98)-(102)-(106)+(107)$
31. $0.0=+0.35-(99)+(100)-(109)+(110)-(111)+(112$
32. $0.0=+0.40-(98)+(99)-(105)+(106)-(112)+(113)$
33. $0.0=+0.70-\left(\mathrm{IO}_{4}\right)+\left(\mathrm{IO}_{5}\right)-\left(\mathrm{II}_{3}\right)+\left(\mathrm{II}_{5}\right)-\left(\mathrm{II}^{2}\right)+\left(\mathrm{II}_{7}\right)$
34. $0.0=+0.65-(103)+(104)-(117)+(118)-(119)+(121)$
35. $0.0=-0.73-(114)+(115)-(116)+(118)-(119)+(120)$
36. $0.0=-6.4+\mathrm{r} .28(\mathrm{I})-3.66(2)+2.38(4)+0.32(\mathrm{r} 3)-3.4 \mathrm{I}(\mathrm{r} 5)+3.09(\mathrm{r} 6)+4.63(47)-6.52(48)+\mathrm{r} .89(49)$
$37.0 .0=+35.3-15.94(3)+33.58(4)-17.64(5)-33.13(12)+46.36(13)-13.23(14)+2.62(17)+2.54(20)$ $-5.16(21)+1.46(22)-4.30(23)+2.84(26)$
38. $0.0=+28.0+17.64(4)-23.38(5)+5.74(6)+5.07(10)-38.20(12)+33.13(13)-3.58(27)-0.32(30)$
$+3.90(33)$
39. $0.0=+2.6+7.70(\mathrm{IO})-24.29(\mathrm{II})+16.59(\mathrm{I} 2)+6.08(23)-8.60(24)+2.52(25)+1.96(27)-3.64(29)$
+1.68(30)
40. $0.0=+0.4+2.98(10)-9.36(12)+6.38(14)+4.12(22)-4.30(23)+0.18(25)+2.15(27)-3.67(28)+1.52(30)$
41. $0.0=-14.6+44.02(18)-45.59(19)+1.57(20)+2.09(22)-4.61(24)+2.52(25)+1.96(27)-45.14(28)$
$+43.18(29)$
42. $0.0=-0.5+0.63(40)-4.90(41)+4.27(42)+2.12(45)-5.61(46)+3.49(47)+6.34(53)-7.09(54)+0.75(55)$
43. $0.0=+0.2+3.43(43)-6.47(44)+3.04(45)-0.49(55)-3.37(56)+3: 86(57)+2.52(60)-2.96(61)+0.44(62)$
44. $0.0=-0.6+\mathrm{I} .8 \mathrm{I}(58)-6.12(59)+4.3 \mathrm{I}(60)+8.55(68)-9.26(69)+0.7 \mathrm{I}(70)+\mathrm{I} . \mathrm{IO}(75)-4.9 \mathrm{I}(76)+3.8 \mathrm{I}(77)$
45. $0.0=+4.5+\mathrm{r} 2.54(70)-\mathrm{I} 3.94(7 \mathrm{I})+\mathrm{r} .40(72)+\mathrm{r} .37(78)-9.98(79)+8.6 \mathrm{I}(80)-0.37(85)-2.64(86)$ $+3.01(87)$
46. $0.0=+\mathrm{r} .6+0.08(83)-4.16(84)+4.08(85)+3.04(88)-3.35(89)+0.31(90)+3.47(95)-6.15(96)+2.68(97)$
47. $0.0=+5.2+2.33(00)-2.59(91)+0.26(92)+1.87(93)-4.67(94)+2.80(95)+0.25(105)-1.59(106)$ $+\mathrm{I} .34(107)+2.56(\mathrm{IO} 8)-4.40(109)+\mathrm{r} .84(110)+\mathrm{I} .39(\mathrm{III})-3.56(\mathrm{II2})+2.17(\mathrm{II} 3)$
48. $0.0=+\mathrm{I} .8+\mathrm{I} .7 \mathrm{O}(\mathrm{IO} 3)-4.78(\mathrm{IO4})+3.08(105)+5.99(116)-6.61(\mathrm{II} 7)+0.62(118)+1.05(\mathrm{II9})-4.27(120)$ +3.22 (121)
Length $\mathrm{S}_{3} .0 .0=+12.5+\mathrm{r} .28(\mathrm{I})-\mathrm{I} .28(2)-3.07(3)+3.07(6)-4.28(\mathrm{IO})+4.60(\mathrm{I} 3)-0.32(\mathrm{I} 6)-1.57(18)$ $+0.65(19)+\mathrm{r} .57(20)-0.65(21)+0.18(22)-0.18(25)-2.15(27)+2.15(28)+1.58(30)-1.58(33)$ $+0.3 \mathrm{I}(34)-0.3 \mathrm{I}(35)-\mathrm{I} .36(38)+\mathrm{I} .36(39)+\mathrm{r} .76(40)-1.76(4 \mathrm{I})+3.43(43)-3.43(44)-1.89(47)$ $+\mathrm{r} .89(49)-\mathrm{I} .53(54)+1.04(55)+0.49(57)+1.81(58)-2.25(60)+0.44(62)-2.32(63)+2.32(64)$ $+2.01(66)-2.01(67)-0.7 \mathrm{I}(68)+2.1 \mathrm{I}(70)-1.40(72)+0.93(73)-0.93(74)-3.8 \mathrm{I}(76)+3.8 \mathrm{I}(77)$ $-1.37(78)+\mathrm{x} .37(79)+0.89(8 \mathrm{r})-0.89(82)+0.08(83)+0.29(85)-0.37(87)-0.3 \mathrm{I}(88)+2.64(90)$ $-2.33(9 \mathrm{I})+\mathrm{I} .87(93)-1.87(94)-2.68(96)+2.68(97)+\mathrm{r} .6 \mathrm{I}(98)-\mathrm{I} .6 \mathrm{I}(99)+0.4 \mathrm{I}(\mathrm{IOI})-0.4 \mathrm{I}(\mathrm{IO2})$
 $-0.62(\mathrm{Ir} 6)+0.62(\mathrm{II} 8)-3.22(\mathrm{I} 20)+3.22(\mathrm{I} 21)$

ACCURACY AS INDICATED BY CORRECTIONS TO OBSERVED DIRECTIONS.

In the following tables are given the corrections to the observed directions resulting from the figure adjustments, the additional corrections resulting from the introduction of latitude, longitude, and azimuth equations, and the combination of these two corrections. (See p. 20.)

TABLE OF CORRECTIONS TO OBSERVED DIRECTIONS.

Kyle-McClenny to Stanton base.

Number of direction	Corrections to directions-			Number of direction	Corrections to directions-		
	From figure adjustment	Due to the introduction of latitude, longitude. and azimuth equations	Total		From figure ad justment	Due to the introduction of latitude. longitude. and azimuth equations	Total
	"	"	"		"	"	"
1	-0. 521	+0.346	-0. 175	38	-0.628	-0.117	-0. 745
2	+0.603	-0. 167	+o. 436	39	+0.193	+0.032	+0. 225
3	-0.082	-0.180	-0. 262	40	+0.087	+o. 208	+o. 295
4	+o. 143	-0. 328	-0. 185	41	-0.37^{2}	+o. 108	-0. 264
5	-0. 179	-0. 108	-0.287	42	-0.069	to. 095	+0.026
6	+0.036	+o. 436	+0.472	43	+o. 713	+0.206	+0.919
	+o. 844	-0.342	+0. 502	44	-0. 453	+o. 073	-0.380
8	+0.121	-0.093	+o. 028	45	-0.351	-0.029	-0.380
9	-0.713	-0. 010	-0.723	46	+o. 377	-0. 104	+0.273
10	+o. 288	+o. 347	+0.635	47	-0. 285	-0.146	-0.431
II	-0. 540	+0.097	-0.443	48	-0. 100	+o. 109	+0.009
12	-0.297	+0. 245	-0.052	49	-0. 247	+o. 055	-0. 192
I 3	+1.030	+0. 227	+1.257	50	+o. 004	-0. 102	-0.098
14	+o. 259	-0. 100	+o. 159	51	+o. 343	-0.062	+0.281
15	-0.064	-0. 139	-0.203	52	-0. 015	+o. 171	+o. 156
16	-0.927	-0. 232	- I. 159	53	+o. 479	+o. 139	+o.618
17	+0. 042	+o. 150	+o. 192	54	-0.090	+o. 042	-0.048
18	-0.142	+o. 106	-0.036	55	+0.043	-0. 025	+0.018
19	-0. 057	-0. 139	-0. 196	56	+0.080	-0. 188	-0. 108
20	+o. 157	-0. II8	+0.039	57	-0. 497	-0. 141	-0.638
21	+0.960	+o. 299	+1.259	58	+o. 239	-0. 177	+o. 062
22	-0. 163	+o. 124	-0.039	59	+0.239	-0.100	+o. 139
23	+0.070	o. 00.4	+0.066	60	-0.705	+0. 067	-0. 638
24	-0.413	-0.093	-0. 506	61	+0.703	+o.093	+o. 796
25	-0.027	-0. 193	-0. 220	62	-0.475	+o. 117	-o. 358
26	-0. 427	-0. 135	-0. 5^{62}	63	+0. 416	+o. 170	+o. 586
27	+0.370	-0. 260	+o. 110	64	-0. 139	+o. 118	-0. 021
28	+o.315	-0.072	+o. 243	65	+0.064	-0. 020	+0. 044
29	+o. I34	+0.039	+o. 173	66	+0. 231	-0. 157	to. 074
30	+0.026	+o. 150	+o. 176	67	-0. 572	-0. 113	-0. 685
31	-0.845	+o. 145	-0.700	68	-0. 130	-0.162	-0.292
32	-0. 512	to. 075	-0.437	69	+o. 490	-0. 108	+o. 382
33	+o. 111	-0.099	+0.012	70	-0.136	+0.022	-0. 114
34	+o. 235	-0.075	+0. 160	71	+o. 104	+0. 165	+0.269
35	+o. 166	+0. 100	+0. 266	72	-0.329	+0.084	-0. 245
36	+0.096	-0.23I	-0. 135	73	+o. 566	+0.146	+0.712
37	+o. 693	-0.098	+o. 595	74	-0. 464	+o. 109	-0. 355

Kyle-McClenny to Stanton base-Continued.

Number of direc tion.	Corrections to directions-			Number of direction	Corrections to directions-		
	From figure adjustment	Due to the introduction of latitude, longitude, and azimuth equations	Total		From figure adjustment	Due to the introduction of latitude. longitude. and azimuth equations	Total
	"	"	"		"	"	"
75	-0.387	-0.015	-0. 402	116	-0. 246	-0.055	-0.301
76	+0.040	-0.152	-0. 112	117	+0. 1112	-0. 107	+0.005
77	+o. 246	-0.088	+o. 158	118	-0. 138	-0.053	-0. 191
78	-0. 365	-0. 140	-0.505	119	+o. 255	-0. 102	+o. 153
79	+o. 228	-0. 106	+0. 122	120	-0. 370	-0.008	-0. 378
80	+o. 226	+o. 020	+o. 246	12 I	-0. 343	+o.085	-0. 258
81	-0. 188	+o. 136	-0.052	122	+0. 596	+0.079	+0.675
82	+o. 100	+o.089	+o. 189	123	-0. 073	+o. 045	-0.028
83	-0.342	+o. 149	-0. 193	124	-0. 292	+0.076	-0.216
84	+0.086	+0.096	+o. 182	125	+0. 060	+o. 028	+0.088
85	-0.076	-0.033	-0.109	126	+o. 364	-0. 020	+o. 344
86	+o. 122	-0. 109	+o. 013	127	-0. 059	-0. 130	-0. 189
87	+0.210	-0.104	+o. 106	128	-0. 199	-0.035	-0. 234
88	-0. 306	-0. 124	-0. 430	129	-0. 012	-0.119	-0.131
89	+0.008	-0. 128	-0.120	130	-0. 125	-0.005	-0.130
90	-0. 143	+0.012	-0. 131	131	+o. 185	+0.064	+o. 249
91	+o. 205	+o. 131	+o. 336	132	+o. 151	+o. 093	+o. 244
92	+o. 236	+0. 108	+o. 344	133	+0. 026	+0.023	+0.049
93	-0. 259	+o. 134	-0. 125	134	+o. 117	+0.068	+o. 185
94	+0.076	+0.064	+o. 140	135	-0. 243	+o. 046	-0. 197
95	+o. 178	+0.004	+o 182	136	+o. 322	+0. 024	+o. 346
96	+0.295	-0.090	+o. 205	137	-0. 222	-0. 162	-o. 3^{88}
97	-0. 290	-0. I12	-0. 402	1.38	-0.032	+0.040	+o. 008
98	+o. 128	-0.097	+0.031	139	+0.009	-0. 124	-0.115
99	0. 012	-0. 116	-0. 128	140	+0.090	-0.036	+o. 054
100	-0.331	+o.008	-0. 323	141	-0. 219	+o. 051	-0.168
101	-0.007	+o. 13.3	+0. 126	142	+o. 152	+o. 069	+o. 221
102	+o. 222	+0. 072	+0. 294	143	+0.002	-0.069	-0.067
103	+0. 262	+0.095	+o. 357	144	+0.351	+0. 052	+0.403
104	+0.200	+o. 087	+o. 287	145	-0.198	+o. 064	-0. 134
105	-0.813	+o.004	-0.809	146	+o. 228	+0. 023	+o. 251
106	+o. 157	-0.066	+0.091	147	-0.384	-0.072	-0.456
107	+o. 194	-0. 121	+0.073	148	+0.009	-0.017	-0.008
108	-0.381	-0.085	-0.466	149	+o. 579	-0.083	+0. 496
109	-0. 121	-0. 102	-0. 223	150	-0. 320	-0.036	-o. 35^{6}
IIO	+0.820	-0. 010	+0.810				
				151	-0.036	+o. 018	-0. 018
111	-0. 150	+o. 103	-0. 047	152	-0. 232	+o. 116	-0. 116
112	-0. 168	+0.092	-0.076	153	+o. 492	+0. 062	+o. 554
113	+0.062	+0.056	+o. 118	154	-0.335	+o. 122	-0. 213
114	-0.386	+o. 088	-0. 298	155	+o. 086	-0.070	+o. 016
115	+o. 458	+0.019	+0.477	156	+o. 191	+0.019	+o. 210

Stanton base to Deming base.

Number of direction.	Corrections to directions-			Number of direction	Corrections to directions-		
	From figure adjustment	Due to the introduction of latitude. longitude, and azimuth equations	Total		From figure adjustment	Due to the introduction of latitude. longitude, and azimuth equations	Total
	"	"	"		"	"	"
1	-0. 260	-0. 002	-0. 262	48	+o. 117	+0.039	+o. 1_{56}
2	-0. 143	-0.065	-0. 208	49	+0. 022	+o. 099	+0.121
3	+o. 127	+o. 119	+o. 246	50	-0. 146	-0. 119	-0. 265
4	+o. 303	-0. 189	+0. 114	51	-0. 144	+0.056	-0.088
5	-0. 553	-0. 027	-0.580	52	+o. 206	-0.056	+o. 150
6	+o. 094	+o. 034	+o. 128	53	-0. 177	-0.018	-o. 195
7	+o. 166	+o. 146	+o. 313	54	+o. 193	-0.011	+o. 182
8	-0.098	-0.036	-0. 134	55	-0.079	+0.026	-0.053
9	-0. 306	-0. 122	-0. 428	56	-0.270	-0.085	-0. 355
10	+o. 571	-0.088	+0.483	57	+o. 198	+0.007	+0. 205
11	-0.334	+0.098	-0. 236	58	-0.003	+0.060	+0. 057
12	-0.299	-o. 15^{8}	-0. 457	59	+o. 194	+o. 068	+o. 262
13	+o. 368	+0.025	+o. 393	60	-0.118	-0.049	-0.167
14	+0. 272	+0.041	+o. 313	61	+o. 010	+0. 043	+o. 053
15	-0. 227	+o. 126	-0. 101	62	+0.043	-0.055	-0.012
16	-0. 114	-0.035	-0. 149	63	-0. 258	-0. 025	-0. 283
17	-0.026	+o. I59	+o. 133	64	-0. 108	+0.008	-0.100
18	+0. 468	-0.077	+o. 391	65	+0.313	+o. 029	+o. 342
19	-0. 125	-0.069	-0. 194	66	-0. 236	-0.016	-0.252
20	+o. 128	-0. 054	+0.074	67	+o. 156	+o. 025	+o. 181
2 I	-0. 444	+0. 042	-0. 402	68	+0.083	+0. 027	+o. 110
22	-0.085	-0. 165	-0.250	69	-0.078	+o.058	-0.020
23	+0.617	+0. 024	+0.641	70	+0.075	-0.094	-0.019
24	-0. 424	+0.097	-0. 327	71	-0. 499	+0.003	-0. 496
25	+o. 0.40	+0.140	+o. 180	72	+o. 363	-0.053	+o. 310
26	-0. 148	-0. 095	-0. 243	73	+o. 048	-0.018	+o. 030
27	-0. 024	+0.065	+o. 041	74	+o. 175	+0.003	+0.178
28	-0.356	-0. 024	-0.380	75	-0. 258	+o.035	-0. 223
29	+0.494	-0.060	+o. 434	76	+o. 171	+0.031	+o. 202
30	-0. 115	+o. 019	-0.096	77	-0. 274	+o. 020	-0. 254
3 I	+0.312	+o. 119	+o. 431	78	+o. 352	+o.010	+o. 3^{62}
32	+o. 323	-0. 024	+o. 299	79	-0. 388	+o.015	-0. 373
33	-0. 543	-0. III	-0.654	80	+0.374	+o. O15	+o. 389
34	+o. 821	-0.045	+0.776	8 I	-0. 065	-0.061	-0. 126
35	-0.912	+0.061	-0.852	82	-0.032	-0.002	-0.034
36	-0.374	-0.082	-0. 456	83	-0.180	-0.029	-0. 209
37	+0.786	+0.009	+o. 795	84	-0.305	+0.021	-0. 284
38	+0.08I	+o.069	+o. 150	85	+0. 517	+0.010	+0. 5^{27}
39	-0.375	+0.078	-0. 297	86	-0.212	-0.033	-0. 245
40	-0.117	-0. 074	-0.191	87	-0.409	-0.048	-0. 457
41	+0. 501	+o. 120	+o. 621	88	-0. 105	+0.002	-0.103
42	-0.0.054	-0. 113	-0. 167	89	+0.416	+0. 068	+o. 484
43	-0. 58 \%	-0. 046	-0.627	90	+o. 310	+o.010	+o. 320
44	+0. 049	-0. 014	+o. 035	91	-0. 392	+0. 066	-0. 326
45	+0.086	+0.053	+o. 139	92	-0.007	+0.013	+0.006
46	-0.015	-0.045	-0.060	93	-0. 286	+o.017	-0. 269
47	+o. 023	+0. 026	+0. 049	94	+0.098	-0.012	+0. 086

Stanton base to Deming base-Continued.

Number of direction.	Corrections to directions-			Number of direction	Corrections to directions-		
	From figure adjustment	Due to the introduction of latitude, longitude. and azimuth equations	Total		From figure adjustment	Due to the introduction of latitude, longitude, and azimuth equations	Total
	"	"	"		"	"	"
95	+0.608	0. 022	+o. 586	135	-0. 248	+0.078	-0. 170
96	-0.022	-0.061	-0.083	136	+o. 157	+o. 112	+0. 269
97	-0. 597	-0.056	-0. 653	137	+o. 117	+0.059	+o. 176
98	+0. 468	-0.069	+o. 399	138	-0. 253	+o. 214	-0.039
99	-0.018	+o. 042	+o. 024	139	-0.071	+o. 086	+0.015
100	+0. 012	+o. 115	+o. 127	140	+0. 375	-0. 117	+0. 258
IOI	+o. 135	-0.032	+o. 103	141	+o. 042	-0. 181	-0. 139
102	+o. 143	+0. 112	+o. 255	142	-0.094	-0.002	-0.096
103	-0.418	-0.027	-0. 445	143	-0. 022	-0. 264	-0. 286
104	-0. 184	+o. 004	-0. 180	144	-0.052	-0.042	-0. 094
105	+o. 513	-0.036	+0.477	145	+o. 423	+o. 080	+0. 503
106	-0.054	-0.054	-0. 108	146	-0.925	+o. 167	-0.758
107	+0.034	-0. 103	-0.069	147	+o. 576	+o. 059	$+0.635$
108	+0. 227	-0.060	+o. 167	148	+0. 026	+o. 203	+0. 229
109	+o. 238	+0.077	+o. 3 I5	149	+0.006	+o. 167	+o. 173
110	-0.290	+0.057	-0.233	150	-0.082	-0. 028	-0. 110
III	-0.209	+0.030	-0.179	151	-0. 190	-0.319	-0. 509
112	+0.090	+0. 202	+0. 292	152	+0.24I	-0. 021	+0. 220
113	-0. 270	-0.009	-0.279	${ }^{1} 53$	-0. 047	-0. 222	-0. 269
114	+o. 669	-0.024	+o. 645	I 54	-0.72I	-0.006	-0. 727
115	-0. 101	-0.048	-0. 149	155	+o. 588	+0.072	+o. 660
116	-0.328	-0.079	-0. 407	156	-0.320	+o. 104	-0. 216
117	-0. 061	-0. 043	-0. 104	157	+0. 500	+o. 05I	+o. 551
118	-0.384	-0.021	-0.405	158	-0. 068	-0.089	-0. 157
119	-0. 277	+0.080	-0. 197	159	-0. 245	± 0.032	-0.213
120	+o. 382	+0.005	+o. 387	160	+0.313	+0.056	+0.369
121	+o. 279	-0.064	+o. 215	161	-0.079	-0.076	-0. 155
122	to 246	-0.109	+o. 137	162	-0.340	-0.168	-0. 508
123	-0. 332	-0.013	-0.345	163	-0.052	-0.029	-0.081
124	-0.077	-0. 025	-0. 102	164	+0. 366	+o. 159	+o. 525
125	-0. 139	+o. 055	-0.084	165	+o. 106	+o. 115	+o. 22 I
126	-0. 236	+o. 146	-0.090	166	-0.261	+0. 222	-0.039
127	+o. 539	-0.053	+o. 486	167	+o. 049	+o. 167	+o. 216
128	+o. 111	+o. 186	+o. 297	168	-0.239	+o. 178	-0.061
129	-0. 462	-0.070	-0. 532	169	+o. 106	+o. 049	+o. 155
130	+0. 394	-0.085	+0.309	170	+o. 121	-0.022	+o. 099
131	+o. 09 I	-0.077	+o. 014	171	-0.094	-0. 122	-0.216
132	-0. 134	+o. 047	-0.087	172	-0. 119	-0.307	-0. 426
133	-0.415	-0. 186	-0. 601	173	+o. 438	-0. 164	+o. 274
134	+o. 390	-0.064	+0.326				

Deming base net to San Jacinlo-Cuyamaca.

Number of direction	Corrections to directions-			Number of direction	Corrections to directions-		
	From figure adjustment	Due to the introduction of latitude, longitude, and azimuth equations	Total		From figure adjustment	Due to the introduction of latitude, longitude, and azi muth equations	Total
	"	"	"		"	"	"
1	+0. 022	+0. 205	+0.227	50	-0.068	-0. 132	-0. 200
2	-0.218	+o. 244	+0.026	51	+o. 361	-0.020	+o. 341
3	-0. 128	+o. 061	-0.067	52	-0. 293	+o. 153	-0. 140
4	-0.468	-0.032	-0.500	53	+o. 172	-0. 160	+0.012
5	+0. 500	-0. 022	+0.478	54	+o. 334	-0. 283	+o.051
6	+0.039	-0. 185	-0.146	55	-0.078	-0. 197	-0.275
7	+0.253	-0.271	-0. 018	56	-0. 235	+o. 361	+o. 126
8	-0. 118	-0. 279	-0. 397	57.	-0. 194	+o. 279	+o. 085
9	+o. 410	-0. 295	+0. 115	58	-0.331	+o. 388	+0.057
10	-0.384	+o. 043	-0.341	59	-0.436	+o. 459	+o.023
11	+o. 265	+0. 012	+0. 277	60	+o. 798	+o. 005	+o. 803
12	-0.050	-0.054	-0. 104	61	+0.048	-0.280	-0.232
13	-0.213	-0. 011	-0. 224	62	-0.080	-0. 572	-0.652
14	+0. 121	-0. 111	+0.010	63	+o. 405	-0.331	+0.074
15	-0.508	+o. 393	-0. 115	64	-0.47I	-0.581	-1.052
16	+o. 477	+o. 303	+o. 780	65	-0. 516	+0.036	-0.480
17	+o. 079	-0.054	+0.025	66	-0. 145	+o. 316	+o. 171
18	-0. I 33	+0.037	-0.096	67	+o. 727	+o. 560	+1.287
19	-o. 175	-0.027	-0. 202	68	-0. 408	-0. 457	-0. 865
20	-0.036	-0.094	-0. 130	69	+0. 125	-0. 5^{26}	-0.401
2 I	+o. 265	+o. 138	+o. 403	70	-0. 179	-0.026	-0. 205
22	- 0.096	-0.109	-0.013	71	+o. 179	+o. 433	+0.612
23	+o. 359	-0.012	+o. 347	72	+o. 283	+o. 577	+o. 860
24	-0. 571	-0.002	-0. 573	73	-0.261	+o. 520	+o. 259
25	+o 242	+0.082	+o. 324	74	-0. 047	+o. 509	+o. 462
26	-0. 126	+0.041	-0.085	75	+0. 024	+0.072	+0.096
27	-0.017	+o.163	+o. 146	76	+o. 142	-0.601	-0. 459
28	+0.039	+0.039	+0.0.8	77	+o. 143	-0. 499	-0. 356
29	+o. 253	-0.030	+0. 223	78	-0.152	-0. 492	-0. 644
30	+o. 518	+0.165	+0.683	79	+0.086	-0.658	-0. 572
31	-0. 276	-0. 113	-0.389	80	+o. 003	-0.008	-0.005
32	-0. 232	-0. 182	-0.414	8I	+0.15I	+0.637	+o. 788
33	-0.285	-0.0.0.1	-0. 326	82	-0.088	+o. 522	+0. 434
34	+o. 523	+0.007	+0. 530	83	-0. 156	+o. 499	+o. 343
35	+o. 163	+0.031	+o. 194	84	+o. 157	to. 530	+o. 687
36	-0.381	+0.063	-0.318	85	-0.138	+o. 078	-0.060
37	-0.305	-0.101	-0.406	86	-0.076	-0. 548	-0.624
38	-0.107	-0. 260	-0. 367	87	+0. 212	-0. 560	-0. 348
39	-0.117	-0. 298	-0.415	88	+o. 102	-0. 535	-0. 433
40	+0.167	+0.140	$+0.307$	89	-0.032	-0.614	-0.646
41	+0.072	+0. 290	+0. 3^{62}	90	-0. 284	+o. 148	-0. 136
42	-0.014	+0.128	+o. 114	91	+o. 345	+o. 459	+0.804
43	-0.013	+o. 429	+0.416	92	-o. 131	+o. 541	+0. 410
44	+o. 340	+0.388	+o. 728	93	-0.143	+0.903	+0.760
45	+o.042.	+o. 163	to. 205	94	+o. 221	+o. 386	+0.607
46	-0.254	+0.026	-0. 228	95	-0.088	+o. 024	-0. 064
47	+o. 180	-0.074	+o. 106	96	+0.048	-0. 544	-0.496
48	-0.390	-0.383	-0. 773	97	-0.038	-c. 770	-0. 808
49	+0.095	-0. 550	-0.455	98	+0.165	+o. 518	+o. 683

Deming base net to San Jacinto-Cuyamaca-Continued.

Numberof direction	Corrections to directions-			Numberof direc-	Corrections to directions-		
	From fizure adjustment adjustrment	Due to the introduction of latitude, longitude and azimuth equations	Total		From fizure adjustment	Due to the introduction of latitude, longitude, and azimuth equations	Total
	"	"	"		"	"	"
99	+o. 004	+o. 508	+o. 512	111	+o. 142	-0. 550	-0.408
100	-0.064	+o. 018	-0. 046	112	+o. 315	-0.670	-0. 355
101	-o. 157	-0. 548	-0. 705	113	+o. 062	-0. 095	-0.033
102	+0.053	-0.498	-0. 445	114	-0. 503	+o. 747	+o. 244
103	+0.315	+0.690	+r. 005	115	-0. 015	+o. 566	+o. 551
104	+o. 087	+0.804	+o. 89 I	116	+0. 217	$-0.83 \mathrm{I}$	-0.614
105	-0. 141	+o. 045	-0.096	117	-0. 178	-0. 733	-0.911
106	-0. 128	-0. 52 I	-0. 649	118	-0.040	+1. 564	+1. 524
107	-0. 134	- 1. 018	-1. 152	119	$+0.020$	+1. 542	+r. 562
108	+o. 039	-0. 526	-0. 487	120	+o. 520	-0. 672	-o. $15{ }^{2}$
109	+o. 208	-0. 042	+o. 166	121	-0. 540	-0. 869	-1. 409
110	-0. 247	+o. 568	+o. 321				

The maximum correction to an observed direction for each of the three seasons on the Texas-California arc is shown in the following table:

Maximum correction to an observed direction by seasons.

Season	Direc- tion No.	Between stations	Correc
			"
Kyle-McClenny to IngleSist, 1908-9	13	Lacasa and McClenny	1. 03
Ingle-Sist to Deming base, 1909-10	146	Black and North Franklin	0. 92
Deming base to San JacintoCuyamaca, igro-II	60	Baldy and San Jacinto	0. 80

The first season's triangulation was in a rolling country, while the last two seasons were entirely in mountainous regions.

The maximum corrections to a direction for each of the three seasons' triangulation are also the maximum corrections for the three sections into which the arc is divided.

The maximum correction to a direction on the ninety-eighth meridian primary triangulation was $I^{\prime \prime} .96$, and the average maximum correction to a direction for the 17 sections into which that arc was divided was $o^{\prime \prime} .99$. The average maximum correction for the three sections of the Texas-California arc is $o^{\prime \prime} .92$.

The probable error of an observed direction is

$$
d=0.674 \sqrt{\frac{\Sigma v^{2}}{c}}
$$

in which Σv^{2} is the sum of the squares of the corrections to directions, and c is the number of conditions.

The probable crrors of an observed direction resulting from the figure adjustment for cach of the threc seasons are as follows:


```
Inglc-Sist to Deming base, 1909-10. ......................................... . . . . . . . . . . . . % 
Deming basc net to San Jacinto-Cuyamaca, 1910-11........................ 土0. . . . . % 
```

The writer made the observations at about two-fifths of the stations of the first season, and Mr. Hill made the observations at all of the other stations of the arc. The nncthods employed, the instruments uscd, and the number of observations over each direction werc the same throughout. The stations occupicd during the last two scasons were in a mountainous region, and those in the first season were in a rolling country. The smaller probable errors in the last two seasons indicate that a mountainous country is more favorable for accurate triangulation.

The probable errors, resulting from the figure adjustment, of an observed direction for the three sections of the Texas-California arc are as follows:

Kyle-McClenny to Stanton base.	to. 37
Stanton base to Dcming base.	to. 32
Deming base net to San Jacinto-Cuyamaca.	± 0.28
Whole Texas-California arc.	± 0.33

Of the 17 sections of the ninety-eighth meridian triangulation there are 4 with a mean probable error of an observed direction less than $\pm \mathrm{o}^{\prime \prime} .28$, and 3 sections with a probable error greater than $\pm o^{\prime \prime} \cdot 37$. The mean probable error for the entire ninety-eighth meridian is the same as for the Texas-California arc.

The average values of d for the four great arcs in the United States are as follows:

Each of these values was obtained by taking the mean of the values of d by sections.

ACCURACY AS INDICATED BY CORRECTIONS TO ANGLES AND CLOSURES OF TRIANGLES.

The correction to each angle is the algebraic sum of the corrections to two directions. In order to make it possible to study the corrections to the separate angles, they are shown in the following table for every triangle in the primary scheme. There are two columns of corrections to the angles, one for those resulting from the figure adjustment and the other for the total corrections, which include the correction due to the introduction of latitude, longitude, and azimuth equations. (See p. 36.) There are also shown the errors of closure of the triangles, the corrected spherical angles, and the spherical excess for each triangle. The plus sign prefixed to the error of closure of a triangle indicates that the sum of the angles is less than 180° plus the spherical excess. The spherical excess is a convenient indication of the size of the triangle, since it is proportional to the area.

TABLES OF TRIANGLES.
Kyle-McClenny to Stanton base.

Station	Corrections to angles-		Error of closure of triangle	Corrected spherical angles	Spherical excess
	From figure adjustment	Total, which includes that due to the introduction of latitude, longitude, and azimuth equations			
	/	/	/1	- , /1	/"
Lacasa	+1.33	+1.31		$\begin{array}{lllll}53 & 38 & 08 . & 72\end{array}$	
Kyle	+o. 44	-0.09	+r. 98	$\begin{array}{lllll}77 & 54 & 37.60\end{array}$	4. 20
McClenny	+o. 21	+o. 7^{6}		$48 \quad 2717.88$	
Rattlesnake	+1. 00	+1. 36		470950.35	
Lacasa	+o. 5^{6}	+o. 21	+0.87	9042 O1. 07	3.65
Kyle	-0.69	-0.70		420812.23	
Rattlesnake	+o. 17	+o. 28		$\begin{array}{llll}99 & 12 & 23.79\end{array}$	
Lacasa	-0. 77	-1. 10	-0.92	$\begin{array}{llllllllllll}37 & 03 & 5.35\end{array}$	2. 88
McClenny	-0.32	-0.10		434346.74	
Rattlesnake	-0.83	-1. 08		$\begin{array}{llll}52 & 02 & 33.44\end{array}$	
Kyle	+1. 12	+o. 61	+o. 19	$\begin{array}{llll}35 & 46 & 25.37\end{array}$	3.43
McClenny	-0. 10	+o. 66		92 II 04. 62	
Pierce	-0. 19	-0.23		$\begin{array}{llllll}116 & 59 & 15.02\end{array}$	
Lacasa	-0.32	-0.36	- 1. 34	4041106.58	0. 93
Rattlesnake	-0.83	-0. 75		$22 \begin{array}{lll}19 & 39.33\end{array}$	
Flat	-1. 12	-1. 30		350851.96	
Lacasa	-0. 86	-0.95	-2.10	$\begin{array}{lllll}34 & 12 & 54.18\end{array}$	0. 55
Pierce	-0. 12	+o. 15		110 $3^{88} 14.41$	
Hearn	-0. II	0.00		262047.19	
Flat	+o. 23	+o. 11	+o. 34	IOI 43 Io. 88	I. OI
Pierce	+o. 22	+o. 23		515602.94	
Hearn	-0.87	-0. 88		420828.78	
Pierce	+o. 08	-0. 16	-I. 51		2. 22
Rattlesnake	-0.72	-0.47		572505.82	
Lamb	-0.68	-0. 70		841804.66	
Flat	-0. 48	-0. 57	-1. 34	$42 \begin{array}{llll}42 & \text { I } & 02.97\end{array}$	-. 99
Hearn	-0. 18	-0.07		533053.36	
Springgap	-0. 46	-0. 56		843 59. 17	
Flat	+o. 39	+o. 29	-0. 02	IO 0043.54	0. 44
Lamb	to. 05	to. 25		161 1517.73	
Springgap	-0. 16	-0. 27		3545429.02	
Flat	-0. 10	-0.28	-0. 49	52 II 46.51	2.47
Hearn	-0.23	+o. 06		920246.94	
Springgap		+0.29			
Lamb Hearn	+0.62	+o. 45	+0.87	$\begin{array}{rrrrr}114 & 26 & 37.61 \\ 38 & \\ 3 & \text { I } & 53 . & 58\end{array}$	I. 04
Hearn	-0.05	+o. 13		$3^{8} \quad 3153.58$	
Hitson (U. S. G. S.)	-I. 16	$1-1.30$		303930.41	
Flat	-0.02	-0.06 +0.11	-1. 25	$\begin{array}{rrr}40 & 56 & 12.92 \\ 108 & 24 & 18.12\end{array}$	1. 45

Kyle-McClenny to Stanton base-Continued.

Stations	Corrections to angles-		Firror of closure of triangle	Corrected spherical angles	Spherical excess
	From figure adjustment	Total, which includes that due to the in troduction of latitude. longitude. and azimuth equations			
	11	"	/	- , "	/
Hitson (U. S. G. S.)	-1. 06	-1. 30		873729.90	
Flat	-0. 40	-0. 34	-1. 57	305529.39	2. 41
Springgap	-0. II	+0.07		612703.12	
Hitson (U. S. G. S.)	$=+0.10$	0.00		$\begin{array}{llll}56 & 57 & 59.49\end{array}$	
Lamb	+o. 12	+o. 15	-0. 34	525059.62	1. 40
Springgap	-0. 56	-0. 49		7011102.29	
Clyde	-0. 15	-0. 20			
Hitson (U. S. G. S.)	+o. 73	+o. 65	+0.08	6758852.64	-. 85
Springgap	-0. 50	-0. 37		$38 \quad 3053.44$	
Kennard	+o. 49	+0. 46	,	442108.94	
Hitson (U. S. G. S.)	+0.07	-0.05	+1. 3^{8}	1033402.57	1. 04
Springgap	+o. 82	+0.97		320449.53	
Kennard	-0.08	-0. 21		583007.60	
Hitson (U.'S. G. S.)	-0.66	-0.70	-1. 18		0. 40
Clyde	-0.44	-0.27		855442.87	
Kennard	-0. 57	-0.67		140858.66	
Springgap	-1. 32	-1. 34	-2.48	62603.91	0. 21
Clyde	-0. 59	-0.47		1592457.64	
Clayton	+1. 41	+1. 43		182616.45	
Kennard Clyde	+o. 13	+0.07	+1.88	$\begin{array}{r}55 \\ \hline 10954.92\end{array}$	0. 70
Clyde	+o. 34	+o. 3^{8}		1060349.33	
Clayton	+o. 23	+o. 28			
Kennard	-0. 44	-0.60	-0. 93	$6938 \quad 53.58$	2. 48
Springgap	-0.72	-0.61		5351 25.43	
Clayton	-1. 18	-1. 15		$\begin{array}{llll}38 & 03 & 27.02\end{array}$	
Clyde	+o. 25	+0.09	-0. 33	$943^{1} 113.03$	1. 57
Springgap	+o. 60	+o. 73		4725 21. 5^{2}	
Morrison	-0. 56	-0.60		585519.44	
Kennard	-0. 54	-0.66	-2.04	59.5243 .25	2. 26
Clayton	-0. 94	-0. 78		61 II 59. 57	
Buzzard	+0. 24	+o. 38		373130.22	
Morrison	-0.35	-0. 54	-0.69	1212208.08	1. 35
Kennard	-0. 58	-0. 53		210623.05	
Buzzard	-0. 19	-0. 13		$\begin{array}{llll}81 & 15 & 20.38\end{array}$	
Morrison	+0.20	+o. 06	to. or	$\begin{array}{llll}62 & 26 & 48.64\end{array}$	I. 39
Clayton	0. 00	+0.08		361752.37	
Buzzard	-0. 43	-0. 51		4343 50. 16	
Kennard	+o. 03	-0. 13	-1. 34	384620.20	2.30
Clayton	-0.94	-0.70		972951.94	
Sears	-1. 03	-1.06		533002.72	
Morrison	-0.63	-0.73	-2.29	750721.85	0. 88
Buzzard	-0.63	-0. 50		512236.31	

Kyle-McClenny to Stanton base-Continued.

Stations	Corrections to angles-		Error of closure of triangle	Corrected spherical angles	$\begin{gathered} \text { Spherical } \\ \text { excess } \end{gathered}$
	From figure adjustment	Total, which includes that due to the introduction of latitude, longitude, equations			
	"	"	"	- , "	/
Hale	-0.42	-0. 30		344755.58	
Sears	-0. 95	-I. II	-2. 17	$\begin{array}{lll}111 & 32 & 15.33\end{array}$	o. 80
Morrison	-0.80	-0. 7^{6}		$\begin{array}{llll}33 & 39 & 49.89\end{array}$	
Hale	-0. 13	-0.06		731318.34	
Sears	+0. 08	-0.05	+0. 57	5880212.61	0. 90
Buzzard	+0.62	+o. 68		484429.95	
Hale	+0. 29	+0. 24		382522.76	
Morrison	+0. 17	+o. 03	+o. 45	41 27 31.96	0. 98
Buzzard	-0. 01	+o. 18		1000706.26	
Boyd	+o. 03	+o. 01		$47 \quad 5326.93$	
Sears	+o. 43	+o. 29	+r. 05	20 30 15	0. 37
Hale	+o. 59	+0. 75		$\begin{array}{lll}11 & 36 & 13.05\end{array}$	
Allen	+o. 43	+o. 38		422240.53	
Sears	+0.63	+o. 56	+r. 06	5842 or. 76	I. 04
Hale	0. 00	+0. 12		7855 18.75	
Allen	+o. 27	+o. 09		584224.85	
Sears	+0. 20	+0. 27	+o. 82	38 II 41. 37	0. 94
Boyd	+o. 35	+o. 46		830554.72	
Allen	-0. 16	-0. 29		16 19 44. 32	
Hale	+o. 59	+0.63	+o. 8r	324054.30	0. 27
Boyd	+0. 3^{8}	+0. 47		130 59 21. 65	
Patterson	+o. 33	+o. 26		345329.23	
Allen .	+0.23 +0.15	+0.22 +0.01	+o. 47	$\begin{array}{llll}89 & 52 & 35.67 \\ 55 & \mathrm{I} & 56.08\end{array}$	0. 98
Boyd	-0.15	-0. 01		$\begin{array}{llll}55 & 13 & 56.08\end{array}$	
Lloyd	+0. 32	+o. 45		44 22 53.18 8	
Patterson Allen	+0.44 +0.09	+0.31 +0.09	+o. 85	$\begin{array}{lllll}98 & 58 \\ 36 & 43.28 \\ 36 & 34 . & 24.73\end{array}$	I. 19
Allen	+0.09	+o. 09		$\begin{array}{lllll}36 & 38 & 24.73\end{array}$	
Lloyd	+o. 55	+o. 62		$73 \quad 38851.86$	
Patterson	+o. 10	+0. 04	+o. 97	640514.04	I. 3^{2}
Boyd	+o. 32	+0.3I		$4^{2} 1555.42$	
Lloyd	+o. 23	+o. 17		291558.68	
Allen	+o. 20	+o. 12	+o. 59	$53 \mathrm{I} 4 \times 10.93$	I. II
Boyd	+o. 16	+o. 30		$97 \quad 2951.50$	
Bench	-0. 02	-0.03		58 II 46.63	
Patterson	+0. 12	+0.02	-0.36	190451.07	-. 39
Lloyd	-0.46	-o. 35		1024322.69	
Wolf	-0. 06	-0.07		445017.63	
Patterson	-0. 4 I	-0. 58	-0.85	925026.79	0. 98
Lloyd	-0. 32	-0. 20		$\begin{array}{lllll}42 & 19 & 16.56\end{array}$	
Wolf	-1. 07	-1. 16		60.0530 .20	
Patterson Bench	-0. 59 - o. 97	-0.6 I -o .86	-2. 63	734535.75 460855.17	I. 88

Kyle-McClenny to Stanton buse-Continued.

Stations	Corrections to angles-		Error of closure of triangle	Corrected spherical angles	Spherical excess
	From fisure adjustment	Total, which includes that due to the introduction of latitude. longitude, and azimuth equations			
	/	11	/	- / $/ 1$	11
Wolf	-I. OI	-1. 10		15151512.56	
Lloyd	-0. 14	-0. 16	-2. 14	602406.12	O. 49
Bench	-0. 99	-0. 88		1042041.81	
Bynum	+0.94	+0.93		$\begin{array}{llll}38 & 18 & \text { Or. } 94\end{array}$	
Wolf	+o. 97	+o. 90	+3.11	$96 \quad 5315.88$	1. 88
Bench	+1.20	+1. 28		4448 44.06	
Cuthbert	-0.45	-0.41		22 16 640.28	
Wolf	+1. 01	+o. 88	+1.50	$\begin{array}{lllll}134 & 18 & 33.18\end{array}$	1. 25
Bench	+o. 94	$+1.03$		23 24 47.79	
Cuthbert	+o. 39	+o. 36		$\begin{array}{llll}78 & 08 & 38.29\end{array}$	
Wolf	+0.04	-0. 02	+o. 46	372517.30	1. 21
Bynum	+o. 03	+0. 12		$64 \quad 26 \quad 05.62$	
Cuthbert	+o. 84	+o. 7^{8}		$555^{1} 5^{8.02}$	
Bench	+o. 26	+0. 24	+2.07	212356.26	I. 84
Bynum	+o. 97	+1.05		1024407.56	
Top	-0. 22	-0. 19		392737.80	
Cuthbert	-0.34	-0. 47	-1. 19	$88 \quad 5846.53$	1. 02
Bynum	-0.63	-0. 53		$5^{1} 3336.69$	
Signal	+o. 3^{1}	+o. 3^{8}		$3016 \quad 00.53$	
Top	+o. 13	+o. 11	+o. 80	1101921.93	I. 49
Cuthbert	+o. 36	+o. 31		3924 39.03	
Signal	+o. 28	+o. 37		55062 I .07	
Top	+o. 35	+o.31	+1. 02	70 51 44. 14	1. 92
Bynum	+o. 39	+o. 34		54 O1 56.71	
Signal	-0. 03	0. 00		245020.55	
Cuthbert	-0.71	-0. 7^{8}	-0.97	$49 \quad 34$ 07. 50	1. 45
Bynum	-0. 23	-0.19		10535 33.40	
Williams	+o. 37	+o. 39		560718.94	
Top	+o. 30	+0. 26	+o. 75	2129 Or. 15	o. 86
Signal	+o. 08	+o. 10		1022340.77	
Evart	+o.09	+o. 14		693327.80	
Top	-0. 12	-0. 28	-0. 14	5753 19.70	I. 44
Signal	-0. II	0. 00		$\begin{array}{llll}52 & 33 & 13.94\end{array}$	
Evart	-0. 27	-0.25		980652.72	
Top.	-0. 42	-0. 53	-1.00	3624 18. 56	I. 19
Williams	-0. 3 I	-0. 22		$45 \quad 28 \quad 49.91$	
Evart	-0. 36	-0. 3^{8}		$28 \quad 3324.93$	
Signal	+o. 19	+0. 10	-0. II	495026.83	0.6I
Williams	+o. 06	+0.17		$\begin{array}{llll}101 & 36 & 08.85\end{array}$	
Stanton	-0. 20	-0. 10		322123.35	
Evart	+o. 57	+o. 54	+o. 49	5905152.00	1. 59
Williams	+0. 12	+0.05		$88 \quad 3246.24$	

Kyle-McClenny to Stanton base-Continued.

Stations	Corrections to angles-		Eirror of closure of triangle	Corrected spherical angles	Sphericalexcess
	From figure adjustment	Total, which includes that due to the introduction of latitude, longitude. and azimuth equations			
	"	"	"	- 11	"
Epley	+o. 35	+o. 47		284541.78	
Evart	+o. 02	-0.19	+o. 45	890307.19	I. 83
	+o. 08	+o.17		62 II 12.86	
Epley	-0. 20	-0.07		$\begin{array}{lllll}76 & 44 & 24.84\end{array}$	
Evart	-0. 54	-0. 73	-0.46	2957 I5. 19	I. 71
Stanton	+o. 28	+o. 34		7318121.68	
Epley	-0. 55	-o. 54		4758843.06	
Williams	+o. 04	-0. 12	-0.42	262133.38	I. 47
Stanton	+o.09	+o. 24		IO5 3945.03	
Stanton, S. base	-0.83	-0.77		$640^{02} 56.52$	
Epley	+o. 43	+o. 39	-0. 73		0. 62
Stanton	-0. 33	-0. 35		7727 38.59	
Stanton, N. base	+o. 11	+o. 19		$\begin{array}{lll}62 & 16 & 13.60\end{array}$	
Epley	-0. 19	-0. 32	-0.98	7742 20.94	-. 65
Stanton	-0.90	-0.85		40 O1 26. 11	
Stanton, N. base	-0. 35	-0. 28		992831.94	
Epley	-0.61	-0. 71	-o. 56	$\begin{array}{llllll}39 & 12 & 55.43\end{array}$	-. 45
Stanton, S. base	+0. 40	+o. 43		411833.08	
Stanton, N. base	-0. 45	-0. 47		$\begin{array}{llll}37 & 12 & 18.34\end{array}$	
Stanton	+o. 57	+o. 50	-0. 31	$37 \quad 2612.48$	c. 42
Starton, S. base	-0. 43	-0. 34		1052129.60	

Stanton base to Deming base.

Elkins	+o. 11	-0.05		495608.51	
Stanton, N. base	+o. 12	+o. 06	+o. 02	$44 \begin{array}{llll}4 & 12 & 10.62 \\ 85 & 51\end{array}$	0. 40
Stanton, S. base	-0. 21	+o. 01		85 51 41. 27	
Dunn	-0. 26	-0.45		335230.77	
Stanton, N. base	+o. 39	+o. 51	+0.77	104 $37 \quad 15.75$	0. 51
Stanton, S. base	+o. 64	+0.71		413013.99	
Dunn	-0.47	-0.74		641748.53	
Stanton, N. base	+o. 27	+o. 45	-0.70	602505.13	0. 60
Elkins	-0.50	-0.45		$\begin{array}{lllll}55 & 17 & 06.94\end{array}$	
Dunn	-0.21	-0. 29		302517.76	
Stanton, S. base	-0.85	-0. 70	-1. 45	442127.28	0. 49
Elkins	-0. 39	-0. 46		$10513 \quad 1545$	
Scar	-0.19	-0.42		4336 Or. 91	
Dunn	+o. 88	+o.91	+1. 26	4956	0. 77
Elkins	+o. 57	+0. 77		8627 28.42	
Morris	+0. 49	+0. 26			
Dunn	-0.03	+o. 19	+o. 37	$\begin{array}{lllll}96 & 55 & 21.94 \\ 47 & 28 & \text { O4, }\end{array}$	0. 88
Elkins	-0.09	-0. 08		472804.93	

Stanton base to Deming base-Continued.

Stations	Corrections to angles-		Error of closure of triangle	Corrected spherical angles	Sphericalexcess
	From figure adjustment	Total, which includes that due to the Introduction of latitude, longitude, and azimuth equations			
	"	"	"	- 11	"
Morris	-0. 10	-0. 33		$\begin{array}{lllll}75 & 16 & 13.02\end{array}$	
Dunn	-0.91	-0. 72	-0. 54	$46 \quad 58$ 51. 50	o. 94
Scar	+0. 47	+o. 51		574456.42	
Morris	-0. 59	-0. 58		3939 39. 02	
Elkins	+o. 66	+o. 85	to. 35	$38 \quad 59$ 23. 49	o. 83
Scar	+o. 28	+0.08		IoI 2058.32	
Bates	-0. 33	-0. 4^{2}		1050228.24	
Morris	+o. 25	+o. 27	-1. 12	500546.50	0. 28
Scar	-1. 04	-0. 97		24 51 45.54	
Odessa	+o. 26	+o. 11		5035 г6. ı6	
Bates	+o. 85	+o. 81	+1.81	88 56 03. 91	0. 44
Scar	+o. 70	+o. 89		402840.37	
Smith	+o. 01	-0. I3		304543.97	
Morris	-o. 57	-0. 4^{8}	-0.47	$\begin{array}{llll}63 & 03 & 28.78\end{array}$	0. 28
Bates	+o.09	+o. 14		86 10 47. 53	
Smith	-0.86	-0. 95		454 I 57.40	
Bates	-0.61	-0. 53	-1.93	795040.32	0. 42
Odessa	-0.46	-0.45		542722.70	
Dublin	-0. 55	-0.79		360428.60	
Smith	-0. 37	-0. 20	-1. 63	953060.43	o. 89
Odessa	-0.71	-0.64		$48 \quad 2431.86$	
Douro	-0. 10	-0.03		$44 \begin{array}{llll}43 & 57.07\end{array}$	
Dublin	-1. 08	-1. 25	-2.91	912431.89	1. 13
Smith	-1. 73	-1. 63		441132.17	
Douro	-0. 26	-0. 42		774004.60	
Dublin	-0. 53	-0. 46	+o. 37	$55 \quad 2003.29$	1. 24
Odessa	+1. 16	+1. 25		$46 \quad 59$ 53. 35	
Douro	-0. 17	-0. 39		331607.53	
Smith	+1. 36	+1.43	+1. 65	511928.26	I. 00
Odessa	+o. 46	+0.61		952425.21	
Curtis	-0.31	-0. 43		$46 \quad 0920.84$.	
Dublin	+o. 63	+0.66	+0.45	303204.52	-. 77
Douro	+o. 13	+o. 22		1031835.41	
Harris	+o. 35	+o. 24		474745.92	
Dublin	+o. 67	+0.77	+1. 11	7656 II. I3	I. 22
Douro	+o.09	+o. 10		551604.17	
Harris	-0.03	-0. II			
Dublin	+0.04	+0. 10	+o. 20	462406.60	I. 23
Curtis	+o. 19	+o. 21		$\begin{array}{llllll}53 & 5 & 3^{8 .} 96\end{array}$	
Harris	-0. 3^{8}	-0. 35		3149 29.75	
Douro	+o. 04	+o. 11	-0.46	480231.23	0. 78
Curtis	-0. 12	-0. 22		1000759.80	

Stanton base to Deming base-Continued.

Stations	Corrections to angles -		Error of closure of triangle	Corrected spherical angles	Spherical excess
	From figure adjustment	Total, which includes that due to the introduction of latitude, longitude, and azimuth equations			
	"	$1 /$	//	- / /1	//
Estes	+o. 15	0. 00		3737 or. 39	
Harris	+o. 37	+o. 38	+o. 79	89 II 00. 70	I. 46
Curtis	+o. 27	+o. 41		53 II 59.37	
Aroya	+o.03	-0. 06		$2315 \begin{array}{lll}15.85\end{array}$	
Harris	+o. 10	+o. 14	-0.07	131 10 18.30	0. 9^{2}
Curtis	-0.20	-0.15		253419.77	
Aroya	-0. 27	-0. 34		822002.57	
Harris	-0. 27	-0.23	-0.70	415917.61	1.07
Estes	-0. 16	-0. 13		554040.89	
Aroya	-0. 30	-0. 27		5904 39. 73	
Curtis	+0. 47	+o. 56	+o. 16	273739.60	I. 61
Estes	-0.01	-0. 13		$9317 \cdot 42.28$	
Lee	-0. 44	-0. 51		4347 34.91	
Aroya	+o. 15	+o. 18	+0.03	60 or 52.46	I. 06
Estes	+o. 3^{2}	+o. 36		76 10 33.69	
Johnson	+o. 86	+o. 8 I		2949 06. 21	
Aroya	+o. 57	+0. 62	+1. 36	1033134.26	1. 24
Estes	-0.07	-0.07		4639 20. 77	
Johnson	+o. 55	+o. 53		651640.10	
Aroya	+o. 42	+o. 44	+1.73	43294 I .80	I. 24
Lee	+o. 76	+0.76		71133934	
Johnson	-0. 31	-0.28		$35 \quad 2733.89$	
Estes	+o. 39	+o. 43	+0. 40	293112.92	1. 06
Lee	+o. 32	+o. 25		IIS OI 14. 25	
Hays	-0. 15	-0. 17		1052955.98	
Johnson	+o. 13	+o. 15	-0. 76	40 O9 33.44	0. 37
Lee	-0. 74	-0. 74		342030.95	
Sist	+o. 51	+o. 50		133549.16	
Johnson	-0. 43	-0.40	+o. 35	270819.17	0. 43
Hays	+0. 27	+0. 25		13915 52.10	
Sist	-0. 12	-0. 17		364007.55	
Johnson	-0. 30	-0.25	-0. 54	671752.61	I. 48 .
Lee	-0. 12	-0. 12		76 O2 O1. 32	
Sist	-0.63	-0.67		2304 I8. 39	
Hays	-0. 12	-0.08	-0. 13	11514411.92	0. 68
Lee	+0. 62	+0.62		414130.37	
Ingle	-0.20	-0.21		252634.80	
Johnson	0. 00	+0.02	-0. 75	842458.62	0. 74
Hays	-0. 55	-0. 56		$7008 \quad 27.32$	
Ingle	+o. 11	+0. 14		$\begin{array}{llll}73 & 34 & 05.79\end{array}$	
Johnson	+o. 43	+o. 43	+o. 92	$\begin{array}{lllll}57 & 16 & 39.46\end{array}$	I. 73
Sist	+o. 3^{8}	+o. 35		$49 \quad 9916.48$	

Stanton base to Deming base-Continued.

Stations	Corrections to angles-		Error of closure of triangle	Corrected spherical angles	Spherical excess
	From figure adjustment	Total, which includes that due to the introduction of latitude longitude, and azimuth equations			
	"	"	/	- , /1	"
Ingle	+o. 31	+o. 36		$4^{8} 0731.00$	
Hays	+o. 82	+o.81	+2. 02	6907 24.78	1. 4^{2}
Sist	+o. 89	+o. 85			
Round	+1.07	+1.05		45 II 40. 15	
Ingle	+o. 41	+o. 42	+1.20	$8333 \begin{array}{llll}87.03\end{array}$	2. 19
Sist	-0.28	-0.27		511425 O1	
Toyah	+o. 70	+o. 66		322126.64	
Round	+o. 5^{8}	+o. 68	+1. 17	1040947.05	3. 03
Ingle	-0. 11	-0. 17		$43 \quad 2849.34$	
Toyah	+o. 13	+o. 07		60.03 .59 .05	
Round	-0. 49	-0.37	+o.03	5858806.90	3. 42
Sist	+o. 39	+o. 33		$6057 \quad 57.47$	
Toyah	-0. 57	-0. 59		274232.41	
Ingle	+o. 52 +0.11	+0.59 +0.06	+o. 06	40 405 112 127.69	2. 5^{8}
Sist	+o. 11	+o.06		1121222.48	
Seay	+0.20	+o. 24		5547 21. 28	
Round	+o. 15 + O. 23	+o. 08	+0. 58	$\begin{array}{lllll}65 & 37 & 34 & 77 \\ 58 & 35 & 07 & 72\end{array}$	3.77
Toyah	+o. 23	+o. 26		$\begin{array}{llllll}58 & 35 & \text { O7. } 72\end{array}$	
Newman	-0. 23	-0. 26		462448.89	
Seay	+o. 21	+o. 38	+0. 10	97 O1 29.91	3.49
Round	+o. 12	-0. 02		$\begin{array}{llll}36 & 33 & 44.69\end{array}$	
Newman	+o. 04	+o. 04		8823 26. 02	
Seay	+o. 01	+o. 15	-0. 51	$\begin{array}{llll}41 & 14 & 08.64\end{array}$	2. 47
Toyah	-0. 56	-0.70		502227.81	
Newman	+o. 27	+o. 30			
Round	+o. 03	+o. 10	-0.03	290350.08	2. 75
Toyah	-0. 33	-0. 43		1085735.54	
Reynolds	-0.66	-0.62		$\begin{array}{llll}73 & 32 & 15.65\end{array}$	
Seay	-0. 53	-0. 55	- 1. 96	8022 51. 79	1. 3 I
Newman	-0. 77	-0. 79		260453.87	
Krouse	-0. 58	-0.48		4026 41. 15	
Seay	+0.08	+o.05	-0.60	141027.23	-. 19
Reynolds	-0.10	-0. 17		1252251.81	
Krouse	-0. 32	-0.24		564005.30	
Seay	-0.45	-0. 49	-0.60	9433 19.03	1. 66
Newman	+o. 17	+o. 13		284637.33	
Krouse	+o. 26	+0. 24		16 I3 24. 15	
Reynolds :	+0.76	+o. 79	+1. 96	1610452.54	0. 16
Newman	+0.94	to. 93		$2 \begin{array}{llll} & 41 & 43.47\end{array}$	
Chispa	-0.30	-0. 29		. 60348.00	
Krouse	+o. 19	+0. 26	+o. 55	1042112.48	0. 74
Reynolds	+0. 66	to. 5^{8}		693460.26	

Stanton base Deming base-Continued.

Stations	Corrections to angles-		Error of closure of triangle	Corrected spherical angles	Sphericalexcess
	From figure adjustment	Total, which includes that due to the introduction of latitude. longitude, and azimuth equations			
ChispaKrouseNewman	\%	/'	/'	$\begin{array}{ccc} \circ & 11 \\ 38 & 33 & 02.30 \end{array}$	"
	-o. 53	-0.40+0.02			5. 29
	-0. 06		-0. 95	$\begin{array}{lll}38 & 33 & 02.30 \\ 88 & 07 & 48.33 \\ 53 & 19 & 14.66\end{array}$	
	-0. 36	-0. 57			
Chispa Reynolds Newman	$\begin{aligned} & -0.23 \\ & +0.11 \\ & \text { +o. } 58 \end{aligned}$	-0.10+0.21	+o. 46	$\begin{array}{lll}32 & 29 & 14.31 \\ 91 & 29 & 52.28\end{array}$	4. 71
		+o. 35		560058.12	
Diablo	+0.81+0.68	+0.93+0.57	+2. 34	66 31 45. 33	5. 19
Krouse				$\begin{array}{llll}58 & 13 & 40.62\end{array}$	
Chispa	+o. 85	+o. 84		551439.24	
Eagle	-0. 34	-0. 40	+0.61	353103.34	3. 60
Diablo	+o. 17	+o. 43			
Krouse	+o. 78	+o. 5^{8}		${ }^{2} 548$ 34.99	
Eagle	-0. 47	-0. 35	-1. 68	82 ol 41. 47	3. 35
Diablo	$\begin{aligned} & -0.04 \\ & -0.57 \end{aligned}$	$\begin{aligned} & -0.50 \\ & -0.83 \end{aligned}$		520839.95	
Chispa				4549 41. 93	
Eagle	-o. 13	+o. 05	+o.05	463038.14	4. 94
Krouse	-0. 10	-0. 01		$32 \begin{array}{llllll} & 25 & 05.63\end{array}$	
Chispa	+o. 28	+o. 01		101 0421.17	
Quitman	+o. 43	+0.73+ o. 44	+1. 46	382231.91	4. 11
Diablo	+o. 40+0.63			$\begin{array}{llll}56 & 34 & 44 . \\ 85 & 19\end{array}$	
Eagle		+o. 29		850248.01	
Black	-0. 03	+o. 19		232741.13	3. 46
Diablo	+o. 36	+o. 35	+0. 78	1235134.85	
Eagle	+o. 45	+o. 24		324047.48	
Black	$\begin{aligned} & +0.45 \\ & -0.04 \end{aligned}$	+o. 79	+o. 30	$63 \quad 33$ O5. 13	6. 16
Diablo		-0. 09		67 16 50. 67	
Quitman	-0. 11	-0.40		49 10 10. 36	
Black Eagle Quitman	$\begin{aligned} & \text { +o. } 48 \\ & \text { +o. } 18 \\ & \text { +o. } 3^{2} \end{aligned}$	$\begin{aligned} & +0.60 \\ & + \text { o. } 05 \\ & + \text { o. } 33 \end{aligned}$	+o. 08	$4005 \quad 24.00$	6.81
				5221160.54	
				873242.27	
Corduna Black Quitman	-0.67 +o. 15 -0.09	-0. 46	-0.6I	$\begin{array}{llll}33 & 46 & 32.80\end{array}$	8. 39
		+o. 13		1095833.21	
		-0. 28			
North Franklin Corduna Black	$\begin{aligned} & -0.03 \\ & +0.64 \\ & +1.50 \end{aligned}$	-0. 21+0.93	+2. II	$\begin{array}{llll}24 & 17 & 05.59\end{array}$	12. 96
				I16 45 54.03	
		+1. 39		3857 I $3-34$	
North FranklinCorduna	$\begin{aligned} & +0.53 \\ & +1.31 \\ & -0.02 \end{aligned}$	$\begin{aligned} & \text { +o. } 49 \\ & \text { + I. } 39 \\ & \text {-o. } 06 \end{aligned}$	+1. 82	$\begin{array}{lll}49 & 46 & 13.40 \\ 82 & 59 & 21.23 \\ 47 & 14 & 48.26\end{array}$	22. 89
Quitman					
North Franklin Black Quitman	+o. 56 -I. 35 -0.11	$\begin{aligned} & \text { +o. } 70 \\ & \text {-I. } 26 \\ & -0.34 \end{aligned}$	-0.90	$\begin{array}{lll}25 & 29 & 07.81 \\ 71 & \text { O1 } & 19.87 \\ 83 & 29 & 50.64\end{array}$	18. $3^{\text {2 }}$

Stanton base to Deming base-Continued.

Stations	Corrections to angles-		Error of closure of triangle	Corrected spherical angles	Suhericalexcess
	From figure adjustment	Total, which includes that due to the inof latitude, longitude, and azimuth equations			
	"	"	"	- /"	"
Jarilla	-0. 18	-0.06		865459.58	
Corduna	-0. 09	-0. 11	-0. 48	444139.21	11. 68
North Franklin	-0.21	-0.31		4823 32.89	
Kent	-0. 26	-0. 35		11193888	
Jarilla	+0.38	+0. 5^{2}	+0. 94	1624408.79	1. 94
Corduna	+0. 82	+o. 77		$5 \begin{array}{llll}56 & 14.33\end{array}$	
Kent	+o. 03	+0.07		720028.86	
Jarilla	+0. 56	+0. 58	+0.60	754909.21	$5 \cdot 97$
North Franklin	+o. 01	-0.05		321027.90	
Kent	+0. 27	+0.42		604050.04	
Corduna	-0.91	-0. 87	-0. 82	3845 24.89	15.71
North Franklin	-0. 20	-0. 37		803360.78	
Florida	+0. 04	-0. 03		342508.95	
Kent	+o. 42	+0.61	+o. 5^{2}	673464.38	18. 29
North Franklin	+0.06	-0. 06		775964.96	
Cooks	+0. 53	+o. 51		292955.67	
Kent	+o. 16	+0. 30	+1.03	$9^{1} 10317.62$	19. 99
North Franklin	+o. 34	+o. 22		5927 06. 70	
Cooks	-0. 27	+0.05		764809.40	
Kent	-0. 26	-0.30	-1. 3^{2}	${ }_{23}^{3} \quad 28813.25$	13.78
Florida	-0. 79	-1.07		7943 51.13	
Cooks	-0. 79	-0. 46		471813.73	
North Franklin	-0. 29	-0. 28	-1.83	$18 \quad 32 \begin{array}{lll}58.26\end{array}$	12. 08
Florida	-0. 75	-1.09		1140860.09	
Hermanas	+0. 72	+0. 48		705762.38	
Cooks North Franklin	-0.62 +0.02	-0.34 -0.02	+0. 12	$\begin{array}{llll}73 & 28 & 24.86 \\ 35 & 33 & 60.57\end{array}$	27.81
North Frankin	+o. 02	-0. 02		353360.57	
Hermanas	+0. 21	+o. 13		44 oo 55.40	
Florida North Franklin	-0.05 + o. 31	+0.099 +0.25	+0.47	$\begin{array}{cccc}118 \\ 17 & 58 & 13.57 \\ 17 & 00 & 62.30\end{array}$	11. 27
North Franklin	+o. 31	+0. 25		170062.30	
Red	+o. 10	-0. 03		$\begin{array}{llll}53 & 15 & 10.63\end{array}$	
Deming N. base	-0. 36	-0. 34	-0. 93	8 I 3311.20	0. 54
Deming S. base	-0. 67	-0. 5^{6}		4511138.71	
Florida	+0.06	-0. 07		442020.88	
Deming S. base	+o. 14	+0. 34	+o. 34	850307.48	1. 03
Red	+0. 14	+0.07		503632.67	
Florida	+0. 27	+0.08		470040.02	
Deming S. base ${ }^{\text {d }}$	+0.81	+0. 90	+1.91	395128.77	0. 54
Deming N. base	+o. 83	+o. 93		930751.75	
Florida	+0. 22	+o. 15		24019.14	
Red Deming N. base	-0.04 +0.46	-0.11 +0.60	+o. 64	238837.95 1744102.96	0.05

Stanton base to Deming base-Continued.

Stations	Corrections to angles-		Eirror of closure of triangle	Corrected spherical angles	Sphericalexcess
	From figure adjustment	Total, which includes that due to the introduction of latitude, longitude, and azimuth equations			
	/	/	/1	- , /1	/1
Cooks	+o. 65	+o. 62		151750.64	
Florida	+0. 26	+0.46	+o. 99	51 2928.14	1. 28
Deming N. base	+o. 08	-0.09		$\begin{array}{lllllllllll}12 & 12\end{array}$	
Cooks	+o. 50	+o. 35		$\begin{array}{llll}35 & 12 & 23.24\end{array}$	
Florida	+o. 48	+0.61	+o. 73	54 09 47.28	2.68
	-0.25	-0.23		9037 52. 16	
Cooks	-0. 15	-0.27		195432.60	
Deming N. base	-0. 54	-0. 51	-0.90	720614.54	1. 35
Red	-0. 21	-0. 12		875914.21	
Hermanas	-0.34	-0. 43		73124.28	
Red	+o. 19	+o. 38	+o. 18	1632624.90	1. 29
Cooks	+o. 33	+o. 23		90212.11	
Cooks	+0.33	+0. 24		223161.43	
Florida	+o. 54	+o. 53	+o. 75	983008.15	2. 53
Deming S. base	-0. 12	-0. 02		585752.95	
Cooks	-0.32	-0.38		71410.79	
Deming N. base	-0. 90	-o. 85	-2. 15	1533925.74	-. 71
Deming S. base	-0.93	-0.92		190624.18	
Cooks	+o. 17	+o. 11		124021.81	
Deming S. base	+o. 26	+o. 36	+o. 32	260514.53	1. 18
Red	-0. 11	-0. 15			
Hermanas	+o. 97	+o. 98		64836.30	
Cooks ${ }^{\text {deme }}$	-o. 16	-0. 12	+1. 29	$r 33^{8}$ 09.70	-. 74
Deming S. base	+o. 48	+o. 43		1693314.74	
Hermanas	$+0.63$	+o. 54			
Red	+o. 30	+o. 53	+1. 15	22 I1160.06	0. 85
Deming S. base	+0.22	+o. 08		1432760.22	
Hermanas	+o. 17	-0.08		3428 31. 26	
Red	+o. 44	+0.61	+0.93	$\begin{array}{lllll}72 & 48 & 32.74\end{array}$	3.07
Florida	+o. 32	+o. 40		$72 \begin{array}{llll} \\ 72 & 59.07\end{array}$	
Hermanas	+o. 51	+o. 35			
Cooks	+0.17 +0.80	+0.12	+1.48	$2610 ~ 11 . ~ 13 ~$	4.46
Florida	+o. 80	+1. or		$126 \quad 5246.35$	
Hermanas	-0. 46	-0.62		200830.69	
Deming S. base Florida	-0.37 +0.27	-0.41 +0.47	-o. 56	$\begin{array}{rrrr}131 & 28 & 52.31 \\ 28 & 22 & 38 . & 19\end{array}$	I. 19

Deming base net to San Jacinto-Cuyamaca.

Stations	Corrections to angles-		Error of closure of triangle	Corrected spherical angles	Spherica!excess
	From figure adjustment	Total, which includes that due to the introduction of latitude. longitude, and azimuth equations			
	"	" 1	/	- 11	"
Burro	-0. 01	-0.05			
Cooks	+0. 69	+1.00	+o. 43	811655.33	13. 9^{2}
Hermanas	-0. 25	-0.52		413258.16	
Chiricahua	-0. 57	-0. 88		175442.67	
Burro	+o. 27	+0.67 +0.00	+o. 69	1302327.10	14.47
Cooks ${ }^{\text {c }}$	+o. 99	+0.90		314164.70	
Chiricahua	-0.08	-0. 56		$\begin{array}{llll}48 & 08 & 39.67\end{array}$	
Burro	+o. 28	+0. 72	-0.04	$\begin{array}{llll}73 & 12 & 66.67\end{array}$	27. 11
Hermanas	-0. 24	-0. 20		$\begin{array}{llll}58 & 3^{8} & 40.77\end{array}$	
Chiricahua	+o. 49	+o. 32		301357.00	
Cooks	-0.30	+o. 11	-0.30	493450.64	26. 5^{6}
Hermanas	-0. 49	-0. 73		100 II 38.92	
Line (U. S. G. S.)	+o. 43	+o. 54		753048.29	
Burro	-0.18	-0. 19	+o. 68	7312243.83	16. 60
Chiricahua	+o. 43	+o. 33		310644.48	
Graham (U. S. G. S.)	+o. 16	+o. 04		$16 \begin{array}{lll}16 & 32 & 43.83\end{array}$	
Line (U.S. G. S.)	-0.23	+0.06	-0. 15	$140 \begin{array}{llll}12 & 15.58\end{array}$	8.20
Burro	-0.08	-0.25		231508.79	
Graham (U. S. G. S.)	-0. 25	-0. 29		703030.87	
Line (U. S. G. S.)	-0.65	-0. 48	-1. 20	644127.29	21. 49
Chiricahua	-0.30	-0.43		$44 \begin{array}{lll}48 & 23.33\end{array}$	21.49
Craham (U. S. G. S.)	-0.41	-0.32		535747.05	
Burro	-0. 10	+o. 05	-0. 37	500735.03	29.89
Chiricahua	+0. 14	-0.10		$75 \quad 5467.81$	
	-0. 88	-1. 13		$\begin{array}{lllll}42 & 15 & 53 . & 78\end{array}$	
Graham (U. S. G. S.)	-0. 11	+o. 36	-1. 29	103 O1 55.05	24. 12
Chiricahua	-0.30	-0.52		$34 \quad 42 \quad 35 \cdot 29$	
Baldy (U. S. G. S.)	-0.75	-1.03			
Catalina Graham (U. S. G. S.)	-0.92 +0.04	-0. 56	-1.63	$\begin{array}{rlll}112 & 34 & 09.42 \\ 31 & 59 & 58\end{array}$	17.69
Graham (U. S. Gr. S.)	+o. 0.4	-0.04		315958.34	
Baldy (U. S. G. S.)	-0. 88	-1.45		78 10 47.38	
Catalina	-0. 04	+o. 57	-0. 57		30.86
Chiricahua	+o. 35	+o. 31		$31 \begin{array}{llll} \\ 1 & 127.84\end{array}$	
Baldy (U. S. G. S.)	-0. 13	-0. 42		424437.45	
Graham (U. S. G. S.)	-0.15	+o. 40	-0. 23	710156.71	37.29
Chiricahua	+0.05	-0.21		$\begin{array}{llllll}66 & 13 & 63.13\end{array}$	
Table	0. 00	+0.10		$28 \quad 54 \quad 27.92$	
Catalina	+o. 37	$+0.65$	+1. 50	$1014865 \cdot 3^{8}$	26.87
Baldy (U. S. G. S.)	+1. 13	+o. 75		$\begin{array}{lllll}49 & 16 & 53.57\end{array}$	
$\begin{aligned} & \text { Superstition (U. S. } \\ & \text { G.S.S.) } \end{aligned}$	+o. 53	+o. 46		124846.60	
Catalina	+1. 24	+1. 77	+3.01	$\begin{array}{llll}148 & 12 & 49.41\end{array}$	13. 5^{2}
Baldy (U. S. G. S.)	+1. 24	+0.78		$18 \quad 5837 \cdot 5^{\text {I }}$	

Deming base net to San Jacinto-Cuyamaca-Continued.

Stations	Corrections to angles-		Eirror of closure of triangle	Corrected spherical angles	Spherical excess
	From figure adjustment	Total, which includes that due to the introduction of latitude, longitude, and azimuth equations			
Superstition (U. S. C. S.) Catilina Table	$\begin{aligned} & \text { +o. } 23 \\ & \text { +o. } 87 \\ & \text { +o. } 12 \end{aligned}$	$+o .66$	- 11	- /1 "	/1
				71 16 2 \%. 91	
		+r. 11	+1.22	$\begin{array}{llll}46 & 23 & 44.02 \\ 62 & \end{array}$	29. 14
		-0. 55		622023.21	
Superstition (U. S. G. S.)	-0. 30	+o. 20		$\begin{array}{cccc}58 & 27 & 35-31\end{array}$	
Baldy (U. S. G. S.)	-0. 11	-0.03	-0. 29	3018 16. 06	42. 49
Table	+o. 12	-0. 46		911451.12	
Whitetank	+o. 24	+o. 07		$56 \quad 56$ 43. or	
Superstition (U. S.	+o. 46	+1.06	+o. 77	$\begin{array}{llll}56 & 25 & 16.65\end{array}$	22.96
Table	+o. 07	-o. 36		$66 \quad 38 \quad 23.30$	
Maricopa	+o. 06	-o. 56			
Whitetank	+o. 16	+o. 64	+o. 32	704059.79	24.02
Superstition (U. S. G. S.)	+o. 10	+o. 24		474938.39	
Maricopa	+o. 35	-0. 29		100 0313.92	
Whitetank	-0. 08 +0.12	+o. 27 +0.50	+0. 48	13 13 66 12 16.78	5.48
Table	+o. 12	+o. 5°		$66 \quad 1234 \cdot 78$	
Maricopa	+o. 29	+0.27 +0.82		$\begin{array}{rrr}38 & 33 & 28.08 \\ 8 & 35 & 38.26\end{array}$	
$\underset{\text { Superstition(U.S.G.S.) }}{\text { Sable }}$	+o. 36 +o. 28	+o. 82 -0.16	+o. 93	83538.26 1325088.08	4. 42
Table.	+o. 28	-0. 16		1325058.08	
Mohawk	-0.09	-0.3I		$\begin{array}{llll}38 & 08 & 63.64\end{array}$	
Whitetank	+o. 15	+o. 79	+0.08	535748.41	28. 08
Maricopa	+o. 02	-0.40		875336.03	
Harquahalla	-0. 14	-0.21		320662.34	
Whitetank	-0. 09	+o. 44	-0. 5^{2}	$1210363 \cdot 72$	15.60
Maricopa	-0.29	-o. 75		$26 \quad 49$ 09. 54	
Harquahalla	-0. 39	+o. 30		$\begin{array}{llll}81 & 38 & 15.40\end{array}$	
Whitetank	-0. 21	-o. 35	-0. 49	670615.31	27. 15
Mohawk	+o. II	-0. 44		311556.44	
Harquahalla	-0. 25	+o. 51			
Maricopa	+o. 31	+o. 35	+o. 11	610426.49	39.63
Mohawk	+o. 05	-0. 75		692460.08	
Kofa	+o. 21	+o. 26		$100543^{8 .} 78$	
Harquahalla	+o. 63	+o. 94	+o. 53	$4207 \quad 30.97$	20. 01
Mohawk	-0. 3 I	-0.67		$36 \quad 58$ 10. 26	
American (U. S. G. S.)	0. ∞	-0.5I		573337.60	
Kofa	+o. 11	+1. ${ }^{\text {a }}$	+o. 47	$740654 \cdot 37$	19. 35
Mohawk	+o. 36	-o. 15		$4^{8} 1947 \cdot 3^{8}$	
Powell	+o. 17	+o. 65		$3928 \quad 25.19$	
Harquahalla	-0. 4^{8}	-o. 39	-0. 40	824963.83	24. 10
Kofa	-0.09	-0. 66		574155.08	

Deming base net to San Jacinto-Cuyamaca-Continued.

Stations	Corrections to angles-		Etror of closure of triangle	Corrected spherical angles	$\begin{aligned} & \text { Spherical } \\ & \text { excess } \end{aligned}$
	From figure adjustment	Total, which includes that due to the introduction of latitude, and azimuth cquations			
	"	"	"	- / "	"
Butte	+0. 17	+0.05		563155.51	
Powell	-0.45	+0. 16	-0. 35	485061.40	38. 73
Kofa	-0.07	-0. 56		743741.82	
Butte	-0. 25	+c. 32		440551.42	
Kofa (${ }^{\text {a }}$,	-0.16	-0.17	-0.40		20. 20
American (U. S. G. S.)	+o. 01	-0. 55		831538.83	
Cuyamaca	$-\mathrm{r} .06$	-r. 26		33121540	
Butte American (U. S. G. S.)	-0.56 -0.46	+0.28 -1.10	-2. 08	$\begin{array}{llllll}95 & 40 & 29.90 \\ 51 & 07 & 47.57\end{array}$	32.87
San Jacinto	-0. 40	-0.30			
Butte	$-\mathrm{o} .08$	+o. 59	-0.70	13835 30.23	20.40
American (U. S. G. S.)	-0. 23	-0. 99	- 70	${ }^{2} 34460.90$	20. 40
San Jacinto	-0. 26	+2.14		$733^{32} 20.69$	
Butte	+o. 49	+o. 3 I	+o. 73	425460.33	29.85
Cuyamaca	+o. 50	-1. 72^{2}		633308.83	
San Jacinto	+o. 14	+2.43		555231.41	
American (U. S. G. S.) Cuyamaca	-0. 23	-0. 11	-0.65	272246.67	42. 3^{2}
Cuyamaca	-0.56	-2.97		964524.24	

The maximum correction ($-1^{\prime \prime} .73$) to any angle (in the second column) is to the angle at Smith between the stations Douro and Dublin.

The statistics as to closures of triangles and the mean error of an angle for the seasons and sections of the Texas-California are are given in the two following tables. The mean error of an angle $a=\sqrt{\frac{\overline{y J^{2}}}{3^{n}}}$, in which $\Sigma \Delta^{2}$ is the sum of the squares of the closing errors of the triangle and n is the number of triangles in the season's work or in the section.

Season	Number of triangles			Average closure	$\begin{aligned} & \text { Maxi- } \\ & \text { mum clo- } \\ & \text { sure } \end{aligned}$	Mean error of an angle
	Total	$\begin{aligned} & \text { With } \\ & \text { plus } \\ & \text { closures } \end{aligned}$	With minus closures			
				/1	11	11
Kyle-McClenny to Sist-Ingle, 1908-9	- 99	50	49	0. 95	+3.11	± 0.70
Sist-Ingle to Deming base nct, 1900-10	53	35	28	0.89	+2.34	± 0.61
Deming base net to San JacintoCuyamaca, igio-11	31	14	17	-. 74	+3.01	\pm o. 5^{6}

Se Section	Number of triangles			Average	$\begin{gathered} \text { Maxi- } \\ \text { muma clo- } \\ \text { sure } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Mean } \\ \text { error of } \\ \text { an angle } \end{gathered}\right.$
	Total	$\begin{gathered} \text { With } \\ \text { plus } \\ \text { closures } \end{gathered}$	$\begin{gathered} \text { With } \\ \text { minus } \\ \text { closures } \end{gathered}$			
Kyle-McClenny to Stanton base Stanton base to Deming base Deming base net to San JacintoCuyamaca	$\begin{aligned} & 62 \\ & 72 \\ & 49 \end{aligned}$	28 44 27	34 28 22	1. 02 0. 87 o. 77	$\begin{gathered} \prime \prime \\ +3.11 \\ -2.91 \\ +3.01 \end{gathered}$	$\begin{gathered} 1 \prime \\ \pm 0.7 \mathrm{I} \\ \pm 0.64 \\ \pm 0.57 \end{gathered}$
Sums and means for the three sections (by sections)	183	99	84	0. 89	+3.11	± 0.64

The last two seasons have smaller average closing errors of a triangle and smaller mean errors of an angle than the first season's triangulation, and confirm the evidence furnished by the probable error of an observed direction (see p. 42) that a mountainous region is more favorable to accuracy in triangulation.

The average closing error of a triangle for the 183 triangles of the Texas-California arc is $o^{\prime \prime} .90$. This average closing error indicates that the methods employed on the field and the number of observations made on each direction give grcater accuracy than that called for by the instructions. There are only two triangles with closing errors greater than $3^{\prime \prime} .00$. It does not appear advisable to cut down the number of observations at least in the near future or on long arcs. A decrease in the number of positions of the circle from 16 to 12 would materially increase the average closing error of the triangles and would also increase the number of triangles for which the closing errors are greater than $3^{\prime \prime}$. For all geographic purposes an average accuracy greater than that now obtained is not necessary, while with frequent Laplace ${ }^{\frac{1}{1}}$ or twist stations to insure true geodetic azimuths, the accuracy attained is believed to be sufficient for all geodetic purposes.

To obtain greater accuracy would undoubtedly require a greater expenditure of time, and the cost of the triangulation would be greatly increased. It is believed that it is more important to accomplish the maximum amount of work of a reasonable accuracy rather than a smaller amount at a greater accuracy. That portion of the general instruction for primary triangulation bearing on this subjcct states that "In selecting the conditions under which to observe primary directions, proceed upon the assumption that the maximum speed consistent with the requirement that the closing crror of a single triangle in the primary scheme shall seldom cxceed three seconds, and that the average closing error shall be but little greater than one second, is what is desired rather than a greater accuracy than that indicated with slower progress.'"

Although the party on the Texas-California arc of primary triangulation was not striving for extreme accuracy at the expense of progress, yet the average accuracy of the results as shown by the triangle closutes (see also the comparison of probable errors of an observed direction, p. 63) is greater than that for the other great ares of the United States, the transcontinental triangulation, the eastern oblique arc, and the ninetyeighth meridian.

The comparisons of the average closing errors are given below:

Arc	Average closing error
	/I
Transcontinental triangulation	1. 06
Fastern oblique arc	I.19
Ninety-eighth meridian	0.92
Texas-California arc	0.90

No attempt has been made here to set forth the agreement of the separate measures of each direction as a eriterion of aceuracy, since it is well known that it is of little value for that purpose. A elose agreement of the separate measures of a given direction is of little consequence, sinee such measures are usually subjeet to constant errors of considerable size, which become evident as soon as the closure of the triangles are studied or an attempt is made to adjust a figure.

ACCORD OF BASES.

There are five bases which serve to fix the length in the triangulation discussed here.

The Bowie and the Stephcuville bases were adjusted in the ninety-eighth meridian triangulation, which fixed the length of the line Kyle-MeClenny. The Los Angeles base, in the California triangulation, fixed the length of the line San Jacinto-Cuyamaca. The Stanton and Deming bases furnish three valuable tests of the accuracy of the triangulation, dividing it, as they do, into three parts.

In solving the normal equations in each section of the figure adjustment the length cquation was, as usual, assigned to the last place, so that after all the conditions relating to triangle elosures and ratios of length had been satisfied the discrepancy in length became known. In the following table the discrepancies developed between bases arc given in terms of the seventh place of logarithms and are also expressed as ratios. A plus sign before the diserepancy expressed in terms of logarithms means that the first base mentioned is longer as measured than as computcd through the intervening triangulation from the second base mentioned.

Bases	Discrepancy in seventh place of logarithms	Discrepancy expressed as a ratio
Bowie-Stephenville (ninety-eighth meridian)	-77	$1 / 56000$
Kylc-McClenny to Stanton	-11	$1 / 395000$
Stanton to Deming Deming to San Jacinto-Cuyamaca	-59	$1 / 74000$

ACCORD OF AZIMUTHS.

Laplace azimuths were eomputed at two stations of this triangulation, viz, at Stanton and Jarilla. While it was reasonably eertain that the Laplaee azimuth at both of these stations was more aecurate than the geodetic azimuth computed through the triangulation, it was also known that the United States Standard azimuth at the ninety-eighth meridian required a considerable correction to reduce to Laplace or true geodetic azimuth. The nearest station at the eastern end is Bowie NW. base, where the correction to the United States Standard value is $-6^{\prime \prime} .85 .^{1^{1}}$ After the preliminary adjustment had been made, so that all the eonditions relating to triangle closures and ratios of length had been satisfied the correetion to this United States Standard value at Stanton was $-4^{\prime \prime} .62$, at Jarilla $-2^{\prime \prime} .24$, and projecting this azimuth into the fixed triangulation of southern California the eorreetion neeessary at the San Diego Laplace station would be $-1^{\prime \prime} .28$.

The loop closure in azimuth was $7^{\prime \prime} .49$, the value from the east being the smaller. The same reasons whieh made it advisable to distribute the entire diserepancy in latitude and longitude in this small seetion of i 200 miles made it also imperative to distribute the seven and a half seconds of azimuth aeeumulated in a loop of 3300 miles in this small seetion. After this had been done the eorreetions to reduce the United States Standard azimuths to Laplaee azimuths were reduced from $-4^{\prime \prime} .62$, at Stanton, to $-\mathrm{o}^{\prime \prime} .95$ and from $-2^{\prime \prime} .24$, at Jarilla, to $+\mathrm{o}^{\prime \prime} .48$. It is evident, therefore, that although this seven and a half seconds of azimuth was distributed through the whole are between the ninety-eighth meridian and the California triangulation only the portion west of Jarilla was much affected. At two additional Laplace stations of the United States and Mexico Boundary Survey at Nogales and Yuma azimuths were computed which were eonsidered nearly as good as the geodetie azimuth computed through the triangulation. The correetions to the final United States Standard values at these two stations are $+1^{\prime \prime} .4$ at Nogales and $-3^{\prime \prime} .5$ at Yuma. The United States Standard azimuth, therefore, agrees very elosely with the Laplace or geodetie azimuth throughout the entire length of this seheme.

STUDY OF ERRORS.

While the primary triangulation done by the Coast and Geodetie Survey is sufficiently accurate for geographie and geodetie purposes, at the same time it is well to search for the causes of the larger crrors and to try to eliminate them, if possible without an inerease in the time and eost of the triangulation. Or, if the causes of the largest errors ean be found and removed, it might be possible to obtain the present accuraey with fcwer obscrvations over each direetion in the scheme of triangulation. It is known to all observers of experienee that large errors are likely to oecur in observations made on a heliotrope before the late afternoon, when the wind makes the support of the instrument vibrate badly and when a line passes close to a stcep slope or a factory or heated stack. Therc must be other more obscute sourees of error. In the text below there are given data with referenee to the aecuraey of observations made over lines of different degrees of elearness and also the relative accuracy of observations made during the day on heliotropes and at night on lamps and the relative

[^7]accuracy of obscrvations made during one observing period and during more than one observing period.

Beginning with the scason of 1904 each observer on the northern portion of the ninety-cighth meridian triangulation and on the Texas-California arc kept a record, callcd the error book, in which he made notes of the weather conditions, the character of the line observed over, and the appcarance of the object observcd upon. For each period of observations of primary horizontal angles there werc entercd in the record the datc, with the hour; the direction of the wind; the strength of the wind; the station observed; the intensity, size, and degrec of steadiness of the image of the heliotrope or lamp; the character of the image, whether symmetrical or asymmetrieal; and the eharacter of the line, whether high, low, grazing, or elear only at night as a result of elevation by refraetion. In a column of remarks notes werc made rcgarding the condition of the atmosphere, whether clear, hazy, or smoky. It has been impossible for the author, in the limited time at his disposal for such work, to make an analysis of all the accumulated data. ${ }^{1}$

HIGH, LOW, GRAZING, AND REFRACTION LINES.

As considered in the Error Book, ${ }^{2}$ a high line is one with its greater portion elevated well above the ground and obstructions. This usually occurs when the line crosses a depression or valley. A low line passes over a very flat country or just over ridges, trees, houses, or othcr obstructions. Grazing was the term cmployed to deseribe a line which was barely clcar during the day. A refraction linc was one which was elear only at night as a result of great refraction. A refraction line is, strictly speaking, a grazing linc.

The scetion between El Paso, Tex., and the eastern end of the arc has lines which have various degrecs of elevation. That portion of the are to the westward of El Paso is in mountainous regions and all except a very few lines are classed as high. Therc are two directions over the Deming base, which is a refraction line, for which the correetions, are $\mathrm{o}^{\prime \prime} .57$ and $\mathrm{o}^{\prime \prime} .52$. The average size of the corrections on I 22 directions to the west of El Paso is o ${ }^{\prime \prime} .2 \mathrm{I}$.

The following table gives certain data regarding the charaeter of the lines to the east of El Paso, the percentage of lines which are high, low, and grazing and refraetion and the average eorrection for the scveral elasses of lines:

	Number	Percentage of all	Average correction to a direc- tion
All lines		-	
High lines	324	100	$0^{\prime \prime} \cdot 26$
Lowlines			
Grazing and refraction lines	250	77	0.25

The mean correction for the high lines is about 8 per eent smaller than for the low lincs and the grazing and refraetion lines.

[^8]The following table gives the number of large corrections for the triangulation east of El Paso, appearing on all the directions and on each of the three classes of lincs:

-	Corrections greater than $0^{\prime \prime} \cdot 34$		Corrections greater than$0^{\prime \prime} .49$	
	Number	Percentage of all	Number	Percentage of all
On all lines	90	100	43	100
On high lines	68	75	29	68
On low lines	15	17	Io	23
On grazing and refraction lines	7	8	4	9

This table indicates that the corrections greater than $\mathrm{o}^{\prime \prime} .34$ are not more frequent proportionately on one character of line than on another, and that the corrcctions greater than $o^{\prime \prime} .49$ occur less frequently proportionately on the high lines and they occur more frequently on the low, grazing and refraction lines. Only 16 per cent of the directions considered are classed as low and yet 23 per cent of the corrections greater than $\mathrm{o}^{\prime \prime} .49$ appcar on such lines. Grazing and refraction directions appear to give slightly better results than the low directions. It is sufficient, owing to the small number of grazing and refraction directions under consideration, to assume that they are about equal in reliability to the low lines. It is significant, however, that the average correction to a direction in the mountainous section of the are is only $o^{\prime \prime} .20$ (leaving out the two directions on the Deming base) and of the 120 directions in that region (west of El Paso) only 22 have corrections greater than o"' 34 and only 9 greater than $o^{\prime \prime} .49$. These make 18 and 7 per cent, respectively, of the directions considered. To the east of El Paso the percentages of the total corrections greater than $\mathrm{o}^{\prime \prime} .34$ and $\mathrm{o}^{\prime \prime} .49$ are, respectively, 28 and 13 .

From the above considerations it appears that more accurate work can be done in a mountainous region than where the country is comparatively flat or rolling, and that in the latter kind of country the corrections on the lines classed as high are not matcrially smaller than on the low, grazing and refraction lines.

This matter of the character of the line and the sizes of the corrections was discussed in Appendix 4, Report for 191 I. On page 227 of that publication it was stated that:

The evidence given above for high and low lines is so conflicting that no safe conclusions can be drawn from it.

The data for the grazing and refraction lines are also conflicting, doubtless due to the small number of directions involved.

It can not be said that the data for the Tcxas-California arc are conflicting and contradictory, but one should be very cautious in assuming that the relations between crrors and the character of lines which obtained on one are or group of stations will occur on any other are of triangulation.

CORRECTIONS TO DIRECTIONS OBSERVED IN A SINGLE PERIOD AND IN TWO OR

 MORE PERIODS.Beginning with the season of 1902 on the nincty-eighth meridian triangulation the observer began making all obscrvations at a station in the shortest time practicable. At each of many stations of that arc all observations for primary horizontal directions were made in a single day. All of the observations for cach of a number of directions
were made in only one obscrving period. 'The obscrver on the Tcxas-California are of primary triangulation followed the same plan.

On pages 228 to 230 of Appendix 4, Report for 1911, it is shown that the directions obscrved during only one observing period required on an average larger corrcetions than those directions which were observed in two or more obscrving periods. This increase was about 30 per cent.

In the Tcxas-California triangulation each of 132 dircetions was observed in only one period and the average correction to a dircetion from the figure adjustment is $0^{\prime \prime} .25$. Each of 320 dircctions were obscrved in two or more periods and the average correction is $o^{\prime \prime} .24$. The two average corrcctions are so nearly equal that so far as the results on this are are concerned the one-period directions have the same accuracy as those directions observed in more than one period. Of the 53 corrections to directions of $0^{\prime \prime} .50$ or greater, 17 corrections, 32 per cent of all, were on dircetions which were observed in one period. As 29 per cent of the directions were obscrved in onc period each, it appears that the one-period directions have a slightly greater proportion of the larger corrections.

As the accuracy obtained is well within that represented by an average closing error of a triangle of $I^{\prime \prime}$, it is not deemed advisable to have the observations on each direction extended over many periods if this would add to the cost of the triangulation and reduce the ratc of progress. As most of the directions which were obscrved in more than one period werc observed in only two periods, it appears from the evidence furnished that it would probably be necessary to greatly increase the number of observing periods to obtain a decided increase in accuracy.

ACCURACY OF DAY AND NIGHT OBSERVATIONS.

Much the greater portion of the observing was done at night. On this arc there were 24 primary directions on which all the obscrvations were made during the day, and there were 159 directions on which all the observations were made at night. For each group of directions the average correction to a dircction was $o^{\prime \prime} .25$. This would indicate that the day and night observations have equal accuracy. Owing to the limited number of directions observed in daylight only, the above evidence should not be considered as conclusive.

AN EXAMPLE OF GREAT LATERAI, REFRACTION.

The linc Clayton-Kcnnard, about 32 kilometers in length, passed very close to a steep slope of a flat top hill about 4 kilometers from Clayton. At Clayton 16 measurcs of the direction of this line were made during each of 5 obscrving periods. While the light at Kennard was very satisfactory during each period and the range of the separate measures was satisfactory and small, yet the means of the valucs for the direction for the several periods had an cxtreme range of $7^{\prime \prime} .7$. During most of the obscrvations the wind was blowing from the hill across the line between the stations Clayton and Kennard, and the results gave cxcessive closing crrors to the triangles involving this line. The obscrvations made when the wind was blowing across the line toward the hill gave values for the direction which closed the triangles in a satisfactory manner. The latter observations were retained and the others were rejected. The figure adjustment gave a correction of $o^{\prime \prime} .70$ to the direction Clayton to Kennard, which shows that the selection was justified. The distance from the hill to Kennard was about 28 kilometers, and
the line passing close to the slope would affect the direction from that station only a small amount. The correction to the direction Kennard-Clayton resulting from the figute adjustment was only $o^{\prime \prime} .04$. No reoccupation of the station Clayton was necessary, for the trouble was discovered before the completion of the station, and an analysis of the observations, at this and other stations showed that the difficulty was on the line to Kennard.

ACCURACY OF THE PRIMARY TRIANGULATION IN THE UNITED STATES.

In the following table, 62 sections of triangulation in the United States, for which the required tabular values can be conveniently obtained, have been arranged in the order of accuracy, the most accurate being placed first. The most severe and therefore the best test of accuracy is believed by the writer to be the quantity d, expressing the probable error of the observed direction as derived from the corrections to directions resulting from the figure adjustment; accordingly the various sections of triangulation have been placed in the order of the values of d. In the few cases in which d is the same to the nearest hundredth of the second for several sections the next column, a, has been used to decide their relative rank. The method of computing d and a has already been explained fulty on pages 41 and 56 .

Sections of triangulation in order of accuracy.

No	Section.	Probable error of an observed $\stackrel{+}{\text { direction }}=d$	$\begin{gathered} \text { Mean } \\ \text { error of } \\ \text { angle } a \boldsymbol{a} \end{gathered}$	Average closing error of a triangle.	$\begin{gathered} \text { Maxi- } \\ \text { marm } \\ \text { correc- } \\ \text { tion to } \\ \text { a airec } \\ \text { tion. } \end{gathered}$		$\begin{array}{\|l\|l\|} \text { Discrep- } \\ \text { bancy } \\ \text { between } \\ \text { bases ! } \end{array}$
		"	/	"	/"	"	
1	Nevada-California series	± 0.23	± 0.42	-. 57	0. 60	I. 57	$+83$
2	Stephenville base net to Lampasas base	\pm o. 23	± 0.45	-. 56	0. 60	2. 09	- 47
3	Yolo base net	\pm. 24	± 0.51	0. 68	0. 64	2.60	
4	Point Isabel base net	± 0.25	± 0.40	o. 50	0. 60	1. 6 r	
5	Elliff-Nolan to Laguna Madre base	\pm. 25	± 0.62	0. 85	o. 62	2. 23	+ 73
6	Dauphin Island base net	± 0.26	± 0.51	o. 83	0. 49	I. 25	
	New Englard section	± 0.26	± 0.53	0. 75	I. 17	2. 02	$+^{2} 44$
8	Meades Raneh-Waldo to Shelton base net	± 0.27	\pm 土. 35	o. 50	o. 62	I. 4	+ 75
9	dEMing base net to san JacintoCUYAMACA	± 0.28	± 0.57	-. 77	0. 80	3. 01	+ 72
10	Shelton base net to Page base	± 0.29	± 0.44	0. 60	-. 87	I. 77	16
11	Olney base net	± 0.29	± 0.54	0. 78	0. 70	1. 78	
12	Bowie base net to Stephenville base	± 0.29	± 0.63	0. 90	0. 70	2. 50	- 77
13	Eastern oblique art to Augusta	± 0.30	± 0.60	0. 7^{8}	0. 74	2. 73	+85
14	Roeky Mountain series	± 0.32	± 0.57	o. 84	o. 80	2. 31	
15	STANTON BASE TO DEMING BASE,	$\pm \mathrm{c} .32$	± 0.64	o. 87	0. 72	2. 91	59
16	Salt Lake base net	± 0.32	± 0.66	-. 81	c. 84	3. 18	
17	Shelton base net	\pm-. 33	± 0.45	0. 80	0. 88	2. 07	
18	Stephen base net to Canada	$\pm \mathrm{o} .33$	± 0.61	o. 84	0. 78	2. 3^{8}	-64
19	El Reno base to Bowie base	± 0.33	± 0.97	1. 19	I. 40	4. 43	
20	Fire Island base net	± 0.34	± 0.49	0. 70	I. 43	I. 43	
21	Illinois series	\pm 0. 34	± 0.57	0. 79	C. 99	I. 72	
22	Holton base net	\pm-. 34	土0. 58	0. 79	o. 84	2. 28	-71
23	Indiana series	± 0.34	± 0.60	o. 80	I. 31	3. 20	+

[^9]Sections of triangulation in order of accuracy－Continued．

No．	Section．	Probable error of an observed direction $=d$	$\begin{gathered} \text { Mean } \\ \text { error of an } \\ \text { angle } \end{gathered}$	Aver age closing a tri－ angle．		Maxi－ mum closing atri－ angle．	
24	Atlanta base net to Dauphin Island base net，	± 0.34	± 0.63	0． 85	0． 93	2． 19	
25	Fergus Falls to Stephen base	± 0.34	± 0.63	0． 85	0.90		
26	Transcontinental triangulation to Anthony base	± 0.35	± 0.54	0． 79	1． 39	1． 98	＋ 41
27	Missouri－Kansas series	± 0.35	± 0.60	0． 88	I． 12	2.37	＋169
28	Atlanta base net to Dauphin Island base net， V	± 0.35	± 0.68	0． 97	1． 12	2.87	
29	Anthony base net to E1 Reno base net	\pm 0． 36	± 0.69	1． 05	o． 84	2． 17	
30	Brown Valley base net to Royalton base	士0． 36	± 0.70	0． 96	0． 98	3． 84	＋ 98
31	Atlanta base net to Dauphin Island base net， III	\pm o． 36	± 0.77	1． 10	－． 84	2.69	
32	Royalton base net to Duluth	± 0.36	± 0.86	1． 16	1． 22	4.41	＋80
33	KYLE－McCLENNY TO STANTON BASE	± 0.37	± 0.71	1． 02	0． 82	3． 11	－II
34	Versailles base net	± 0.40	± 0.64	0． 90	0． 95	2． 71	
35	El Paso base net	± 0.40	± 0.68.	o． 94	0． 93	2． 60	
36 37	Seguin base net to Alice base	$\pm \begin{aligned} & \pm 0.41 \\ & \pm 0.41\end{aligned}$	± 0.78 ± 0.88	I． 104 I． 14	1． 19	3.25 3.60	－ 144
38	Yolo base net to Los Angeles base net	± 0.41	± 0.91	I． 16	1． 34	5． 52	$4{ }^{1}$
39	Kent Island base net	± 0.41	± 0.91	1． 33	0． 75	2． 97	
40	Page base net to Brown Valley base	± 0.42	± 0.77	1． 03	1． 44	3． 81	＋ 65
41	Salina base net	± 0.44	± 0.75	1． 13	I． 11	2． 37	
42	Los Angeles base net	± 0.44	± 0.91	1． 39	1． 22	3．09	
43	Lampasas base net to Seguin base	± 0.45	\pm 0． 82	1． 13	1． 96	3． 38	
44	Ohio series	$\pm{ }^{\text {º．}} 45$	$\pm{ }^{\text {a }}$ ． 85	1． 14	I． 32	5.08	－24
45	Alleglieny series	± 0.45	± 0.98	1． 37	I． 37	4.03	＋II
46	Epping base net	± 0.47	± 0.63	0． 90	I． 25	2． 63	
47	Fire Island base net to Kent Island base net	± 0.47	± 0.86	1． 29	2． 02	3． 35	$+46$
48	St．Albans base net	\pm ． 47	± 1.04	1． 38	1． 53	4． 94	
49	Kansas－Colorado series	± 0.50	± 0.75	1． 00	I． 43	3． 92	-9^{2}
50	Los Angeles base net to Soledad－Cuyamaca	± 0.50	± 0.82	I． 16	I． 15	2． 53	
51	Epping base net to Canadian boundary	± 0.51	土0． 74	I． 15	I． 12	2．09	
52	Dauphin Island westward，I	± 0.53	± 0.78	1． 12	1． 31	2.80	
53	Kent Island base net to Atlanta base net，III	± 0.62	土0． 78	1． 66	I． 7^{2}	4．03	
54	Atlanta base net	± 0.65	$\pm \mathrm{r} .00$	I． 19	1． 31	4.35	
55	Missouri series	± 0.66	± 0.81	1.09	1． 89	4． 64	＋86
56	Atlanta base net to Dauphin Island base net，II	± 0.67	± 0.78	1． 03	1． 84	2.88	＋
57	Coast Range series	± 0.67	土1． 37	I． 80	2． 73	6． 49	
58	Eastern Shore series	± 0.72	± 1.22	1． 75	1． 85	5． 24	
59	Kent Island base net to Atlanta base net，II	士0． 7^{2}	± 1.31	I． 80	2.05	4． 64	$+24$
60	Dauphin Island base net to New Orleans	士0．78	土1． 20	1． 50	2． 65	5.40	
61	Atlanta base net to Dauphin Island base net, I	± 0.79	± 0.97	1． 35	2． 19	3． 44	$+2$
62	American Bottom base net	± 0.82	± 1.59	2.22	1． 80	6． 36	

Of the 62 sections of triangulation tabulated，the three sections of the Texas－ California arc rank as numbers $9, \mathrm{I}_{5}$ ，and 33 ．The mean value of $d, \mathrm{o}^{\prime \prime} \cdot 33$ ，for the whole are falls between sections 16 and 20 of the above list．The average accuracy of the Texas－California are of primary triangulation is equal to that of the Ninety－eighth meridian triangulation．It is also equal to that of the better half of all the primary trian－ gulation previously done by the Coast and Geodetic Survey in the United States．

EXPLANATION OF POSITIONS, LENGTHS, AND AZIMUTHS, AND OF THE UNITED STATES STANDARD DATUM.

The lengths, as already fully explained in connection with the adjustments, all depend upon the Bowie, Stephenville, Stanton, Deming, aṇ Los Angeles bases. The lengths as given are all reduced to sea level. If the actual length of a line simply reduced to the horizontal is desired, it may be obtained with all the accuracy ordinarily needed by adding to the sea-level length as given a correction = (length of line as given) $\left[\frac{\text { mean elevation of the two ends of the line in meters }}{6370000}\right]$.

The maximum value of this
correction does not exceed $\frac{10}{2060}$ for the length of any portion of the triangulation here published. The maximum error made in the use of the above approximate formula for

The positions-that is, the latitudes, longitudes, and azimuths-need special explanation.

All of the positions and azimuths have been computed upon the Clarke spheroid of $\mathbf{1 8 6 6}$, as expressed in meters, which has been in use in the Coast and Geodetic Survey for many years.

After a spheroid has been adopted and all the angles and lengths in a triangulation have been fully fixed, it is still necessary, before the computation of latitudes, longitudes, and azimuths can be made, to adopt a standard latitude and longitude for a specified station and a standard azimuth of a line from that station. For convenience, the adopted standard position (latitude and longitude) of a given station, together with the adopted standard azimuth of a line from that station, is called the geodetic datum.

The primary triangulation in the United States was commenced at various points and existed at first as a number of detached portions in each of which the geodetic datum was necessarily dependent only upon the astronomic stations connected with that particular portion. As examples of such detached portions of triangulation there may be mentioned the early triangulation in New England and along the Atlantic coast, a dctached portion of the transcontinental triangulation centering on St. Louis and another portion of the same triangulation in the Rocky Mountain region, and three separate portions of triangulation in California in the latitude of San Francisco, in the vicinity of Santa Barbara Channel, and in the vicinity of San Diego. With the lapse of time these separate pieces have expanded until they have touched or overlapped.

The transcontinental triangulation, of which the office computation was completed in 1899, joins all of the detached portions mentioned and makes them one continuous triangulation. As soon as this took place the logical necessity existed of discarding the old geodetic data used in these various pieces and substituting one for the whole country, or at least for as much of the country as is covered by continuous triangulation. To do this is a very heavy piece of work and involved much preliminary study to detcrmine the best datum to be adopted. On March 13, 1901, the superintendent adopted what is now known as the United States Standard Datum, and it was decided to reduce the positions to that datum as rapidly as possible. The datum adopted was that formerly in use in New England, and therefore its adoption did not affect the positions which had been used for geographic purposes in New England and along the

$$
4957^{\circ}-12 — 5
$$

Atlantic coast to North Carolina, nor those in the Statcs of New York, Pennsylvania, New Jersey, and Delawarc. The adopted datum does not agrec, however, with that used in The Transcontinental Triangulation and in The Eastern Oblique Are of the United States, publications whieh deal primarily with the purely scientific problem of the determination of the figure of the earth and whieh were prepared for publication before the adoption of the new datum.

As the adoption of such a standard datum is a matter of considerable importance, it is in order here to explain the desirability of this step more fully.

The main objects to be attained by the geodetic operations of the Coast and Geodetic Survey are, first, the control of the charts published by the Survey; second, the furnishing of geographic positions (latitudes and longitudes), of aceurately determincd elevations, and of distances and azimuths, to officers connected with the Coast and Geodetic Survey and to other organizations; third, the determination of the figure of the earth. For the first and second objeets it is not necessary that the reference spheroid should bc accurately that which most closely fits the geoid within the area covered, nor that the adopted geodetic datum should be absolutely the best that ean be derived from the astronomic observations at hand. It is simply desirable that the reference spheroid and the geodetie datum adopted shall be, if possible, such a close approximation to the truth that any correction which may hereafter be derived from the observations which are now or may beeome available shall not greatly exceed the probable errors of such eorrections. It is, however, very desirable that one spheroid and one gcodetic datum be uscd for the whole eountry. In fact, this is absolutely necessary if a geodetie survey is to perform fully the function of accurately coordinating all surveys within the area which it covers. This is the most important function of a geodetic survey. To perform this function it is also highly desirable that when a certain spheroid and geodetic datum have been adopted for a country they be rigidly adhered to, without change, for all time, unless shown to be largely in error.

In striving to attain the third object, the determination of the figure of the earth, the conditions are decidedly different. This problem concerns itself primarily with astronomic observations of latitude, longitude, and azimuth, and with the geodetic positions of the points at whieh the astronomic observations were made, but is not conccrned with the geodetic positions of other points fixed by the triangulations. The geodetic positions (latitudes and longitudes) of eomparatively few points are therefore concerned in this problem. However, in marked contrast to the statements made in preceding paragraphs, it is desirable in dealing with this problem that, with each new important accession of data, a now spheroid fitting the geoid with the greatest possible accuracy, and new values of the geodetic latitudes, longitudes, and azimuths of the highest degree of accuracy, should be derived.

The United States Standard Datum was adopted with reference to positions furnished for geographic purposes, but has no reference to the problem of the determination of the figure of the carth. It is adopted with reference to the engineer's problem of furnishing standard positions and does not affect the scientist's problem of the determination of the figure of the earth.

The principles which guided in the selection of the datum to be adopted were: First, that the adopted datum should not differ widely from the ideal datum for which the sum of the station errors in latitude, longitude, and azimuth should each be zero; second,
it was desirable that the adopted datum should produce minimum changes in tile publications of the Survey, including its charts; and, third, it was desirable, other things being equal: to adopt that datum which allowed the maximum number of positions already in the office registers to remain unchanged, and therefore necessitated a minimum amount of new computation. These considerations led to the adoption as the Unitcd States standard of the datum which had been in use for many years in the northeastern group of States and along the Atlantic coast as far as North Carolina.

An examination of the station errors available in 1903, on the United States Standard Datum, at 246 latitude stations, 76 longitude stations, and 152 azimuth stations, scattered widely over the United States from Maine to Louisiana and to California, indicated that this datum approaches closely the ideal with which the algebraic sum of the station errors of each class would be zero. ${ }^{1}$

The adopted United States Standard Datum, upon which the positions and azimuths given in this publication depend, may be defined in terms of the position of the station Meades Ranch as follows:

	\circ	\prime	$\prime \prime$
$\phi=39$	13	26.686	
$\lambda=98$	32	30.506	
$\boldsymbol{\alpha}$ to Waldo $=75$	28	14.52	

Points are then said to be upon the United States Standard Datum when they are connected with the station Meades Ranch by a continuous triangulation, through which the corresponding latitudes, longitudes, and azimuths have been computed on the Clarke spheroid of 1866 , as expressed in meters, starting from the above data.

The principal lists of geographic positions heretofore published on the United States Standard Datum throughout the whole United States are contained in the following publications of the Coast and Geodetic Survey and of other organizations:

Appendix 8 of the Report for 1885 , positions in Massachusetts and Rhode Island; Appendix 8 of the Report for 1888, positions in Connecticut; Appendix 8 of the Report for 1893, positions in Pennsylvania, Delaware, and Maryland; Appendix io of the Report for 1894, positions in Massachusetts; Appendix 6 of the Report for 1901, positions in Kansas and Nebraska; Appendix 3 of the Report for 1902, positions in Kansas, Missouri, Nebraska, and Colorado; Appendix 4 of the Report for 1903, positions in Kansas, Oklahoma, and Texas; Appendix 9 of the Report for 1904, positions in California; Appendix 5 of the Report for 1905, positions in Texas; Appendix 3 of the Report for 1907, positions in California; Appendix 5 of the Report for 1910, positions in California; Appendix 4 of the Report for 1911, positions in Nebraska, Minnesota, North Dakota, and South Dakota; Appendix 5 of the Report for 1911, positions in Texas; Appendix 6 of the Report for 1911, positions in Florida; in Appendix EEE, pages 2905-3031, Annual Report of the Chief of Engineers, 1902, positions of points on or near the Great Lakes; in the publications of the Massachusetts Harbor and Land Commission; and in various bulletins of the United States Geological Survey.

[^10]
TABLES OF POSITIONS.

In the tables of positions the latitude and longitude of eaeh point are given on the United States Standard Datum (see p. 65), also the length and azimuth of eaeh line observed over, whether in one or both ways. Along with the latitude and longitude of eaeh point the lengths and azimuths are given of lines from that point to other points of the triangulation. No lengths or azimuths are repeated, and for a given line the length and azimuth will generally be found opposite the position of the last mentioned of the two stations involved.

For the eonvenience of the draftsman a column of "seeonds in meters" is given, in whieh is plaeed the length (in meters) of eaeh small arc of a meridian or parallel corresponding to the seconds of the given latitude or longitude. To faeilitate further the use of the tables, a column is given of the logarithms of the lengths. It must be remembered that it is the logarithm whieh is derived first from the eomputation, the lengths given in this table being then derived from the eorresponding logarithms.

The rule followed in recent publications of this Offiee has been to give latitudes and longitudes to thousandths of seconds for all points the positions of whieh are fixed by fully adjusted triangulation. Points, the positions of whieh are given to hundredths of seconds only, are marked by footnotes as being without eheek (observed from only two stations) or eheeked by verticals only.

In the eolumns giving azimuths, distanees, and logarithms of distanees, the accuracy is indicated to a certain extent by the number of deeimal plaees given, it being understood that in eaeh case two doubtful figures are given. In some cases there is very little doubt of the eorreetness of the seeond figure from the right, while in a few cases some doubt may be cast on the third figure from the right.

These tables may be eonveniently eonsulted by using as finders the 9 . sketehes at the end of this appendix, and the index on pages 135 to 141 . In the third column of the index will be found for eaeh point a referenee to the page on whieh its description is given, in the fourth eolumn the number of the sketeh on whieh it appears, and in the fifth eolumn the page on whieh its elevation above sea level will be found.

For the convenience of those who wish to eonvert the distanees given in this table or the elevations given later on from meters into feet the following eonversion table is here inserted:

Meters	Feet	Fect	Meters
1	3.280833		1
2	6.561667	0.3048006	
3	9.842500	2	0.6096012
4	13.123333	3	0.9144018
5	16.40 .167	4	1.2192024
6	19.685000	5	1.5240030
7	22.965833	6	I.8288037
8	26.246667	7	2.1336043
9	29.527500	8	2.4384049
10	32.808333	9	2.7432055
		10	3.0480061

Kyle-McClenny to Stanton base.

Kyle-McClenny to Stanton base-Continued.

Station	Latitude and longitude	Seconds in meters	Azinuth	Back azimuth	To station	Distance	I.ogarithm
Primaipal points-Contd.							
	- *		"	- " ${ }^{\prime}$		Meters	
Bynum	321915.921	490.4	23458843.73	55 ¢ 0152.72	Wolf	39102.69	
1909	101000.967	25.3	2731645.67	933041.82	Bench	40995.08	46127318
$\begin{gathered} \text { Cuthbert } \\ 1909 \end{gathered}$	$322854 \cdot 582$	1682. 3	2722258.89	923210.02	Wolf	26825.66	4.4285594
	roi O1 54.669	$1427 \cdot 4$	3943939.17	1145438.09	Bencb	48308.89	4.6840370
			$3503^{17} 37 .: 8$	1703238.11	Bynum	18070. 39	4.2569675
Top	3226 42. 333	1297.8	2592253.73	$793033-71$	Cuthbert	22270. 38	43477276
1909	IOI 1552.993	1384.3	29850 31. 53	11859 O1. 42	Bynum	28.42840	44537524
Signal 1909	3211844.424	1368.4	$18940 \quad 39.15$	94215.67	Top	28051.97	44479633
	101 1853.522	1401.9	2195639.68	400544.68	Cuthbert	41434.60	46873631
			2444700.22	$64 \quad 5704.75$	Bynum	32744-38	45151368
$\begin{gathered} \text { Williams } \\ \text { Ig09 } \end{gathered}$	32 II 25.135	774. 2	2110528.04	311116.82	Top	33000. 87	4.5185254
	IO1 2645.402	1189.3	367 I 246.98	$87 \quad 16 \quad 58.38$	Signal	12374. 47	40925267
Evart 1909	322147.230	1454.8	$247=804.98$		Top	23767.95	4.3759916
	1012953.451	1397.5	317 O1 32.78	1370725.21	Signal	25357.40	4.4041048
					Williams	19783. 76	42963089
Stanton 1909	320733.087	1019. 2	21432 co. 82		Evart	36954.44	4.5676666
	IOI 4634.746	648. 5	25653124.17	$77 \quad 03 \quad 51.89$	Williams	31718. 73	4-5013158
Epley 1909	321632.417	998.5	3542608.50	743804.90	Evart	36366.43	
	101 $5^{2} 13.415$	35 I . 1	2831150.28	$\begin{array}{llllll}103 & 25 & 25.27\end{array}$	Williams	41110.86	4.6739565
			3371033.34	1511339.14	Stanton	18956.95	4. 2777685
Stanton south base 1909	320533.745	1039.4	1893848.66	939.58 .85	Eppley	20579.88	43134428
	101 5425.195	660.6	2534145.18	73.46 ca. 55	Stanton	13121. 55	41179852
Stanton north base 1909	321138.198	1176.4	2284922.99	$48 \quad 5254.28$		13773. 14	4. 1390330
	101 $5^{8} 49.549$	1297.9	$\begin{array}{lllll}291 & 05 & 36.59 \\ 328 & 17 & 54.93\end{array}$	11181213.03	Stanton	$20925 \cdot 43$	4. 3206744
			$32817 \quad 54.93$	$148 \quad 20 \times 5.58$	Stanton south base	13191.34	4.1202889

Stanton base to Deming base.

Elkins	320233.267	1024.7	1922850.14	123005.55	Stanton N. base	1719\%. 38	4. 2353106
1909	102 or 11.387	298.7	2422458.65	622834.38	Stanton S. base	$1201 \% 19$	4.0798030
Dunn 1909°	320908.284	255. 2	2525006.06	$72 \begin{array}{llll} & 55 & 10.68\end{array}$	Stanton N. base	15683.06	4. 1954308
	1020821.634	566.7	2864236.83	10650 01. 59	Stanton S. base	22900.07	4.3598368
			3170754.59	1371143.20	Elkins	16592.25	4. 2199052
Scar	315614.562	448. 5	1870325.30	70425.03	Dunn	24013.83	4. 3804614
1909	1021014.207	373.2	$23039 \quad 27.21$	504414.78	Eikins	18415.13	4. 2651748
MorrisIg	320297.622	850.8	23357 32. 24	54.03 16. 53	Dunn	20999. 04	4.3221995
	1021909.578	251.3	2693406.25	8943 38. 27	Elkins	28288. 74	$4.4516{ }^{1} 3^{6}$
			$3091345 \cdot 26$	1291828.88	Scar	${ }^{18153.75}$	4. 2589663
Bates1909	$\begin{array}{rrrr}31 & 58 & 11.043 \\ 102 & 19 & 06.034\end{array}$	340. 1	1791933.64	3598931.76	Morris	7903.41	3.8978143
		158.4	28422 O1. 88	1042643.34	Scar	14420.19	4.1589712
OdessaI909	$\begin{array}{rrr}31 & 51 & 48.208 \\ 102 & 20 & 52.079\end{array}$	1484.7	19317809.73	$\begin{array}{lllll}13 & 18 & 05.80\end{array}$	Bates	12116. 16	4.0833651
		1369.0	2435225.89	$635^{8} 02.97$	Scar	18061. 32	4. 2709423
Smith	$\begin{array}{lllll}31 & 58 & 35 \cdot 288\end{array}$	1086.8	24288824.75	$62 \quad 23$ 00. 54	Morris	15421. 37	4. 1881230
	10227 49.901	1310.2	273040872	930846.12		13775.06	$\text { 4. } 1390936$
			3184606.12	$\mathrm{t}_{3}^{8} \quad 4947.04$	Odessa	16664. 27	4. 2217862
Dublin 1909	$\begin{array}{rrrr}31 & 51 & 53.672 \\ 102 & 3^{8} & 43.651\end{array}$	1653.1	2341120.89	541706.55	Smith	21165.78	4. 3256343
		1147.5	$\begin{array}{llllllllllll}270 & 15 & 49\end{array}$	$90 \quad 2515.18$	Odessa	38169. 22	4. 4497748
$\begin{aligned} & \text { Douro } \\ & \quad 1909 \end{aligned}$	3142 28. 536	878.9	1453951.13			21087. 58	
	1023711.175	294.3	$\begin{array}{lllllllllll}190 & 03 & 48.20\end{array}$	$10.0534-38$	Smith	30242.73	4. 4805210
			$2231955 \cdot 73$	$43{ }_{4} 25 \quad 27.83$	Odessa	23715.93	4.3750401
Curtis 1909	$\begin{array}{rrrr}31 & 36 & 31.953 \\ 102 & 37 & 30.846\end{array}$	984.1	1760335.62	3560757.37	Dublin	28.453. 19	
		813.1	2221756.46	422115.73	Douro	14854.87	$\text { 4. } 1718688$
Harris 1909	$\begin{array}{rrr} 32 & 42 & 33 \cdot 556 \\ 102 & 48 & 44 \cdot 309 \end{array}$	1033. 5	$2223647 \cdot 57$	423203.92	Dublin	23395.33	4.3691291
		1166.7		$\begin{array}{r}90 \\ \hline 123 \\ \hline 123.96\end{array}$	Douro	27730.84	4. 4429630
			3020403.18	1220956.66	Curtis	30948.37	4.3215502

Stanton base to Deming base-Continued.

- Station	Latitude and longitude	Sec onds in meters	Azimuth	Back azimuth	To station	Distance	Logarithm
Principal points-Contd.	"		- " ${ }^{\text {c }}$	' 1		Meters	
Eistes	312950.428	1553. 1	2111080	311503.89	Harris	27481. 20	4.4390356
1909	1025744.538	1175.1	24847822.18	$68 \quad 5757.29$	Curtis	34316. 77	4. 5355064
Aroya	3138858.380	1798.0	2530704.43	731421.50	Harris	22900.88	4. 3598521
1909	1030236.554	963.1	$27632 \quad 27.28$	$96 \quad 35 \quad 36.89$	Curtis	39936.46	4. 6013696
			$335 \quad 2707.00$	1553939.90	Estes	18550.07	4. 2683455
Lee 1009	352789.871	920.0	2152400.01	$\begin{array}{llll}35 & 28 & 59.46\end{array}$	Aroya	26027.95	4.4154399
	1031208.798	232.3	2591134.92	$\begin{array}{ll}79 & 19\end{array} 06.21$	Eistes	23220. 54	4.3658723
Johnson	$\begin{array}{cccc}31 & 36 & 08 & 861\end{array}$	272.9	$\begin{array}{llll}258 & 49 & 5 \mathrm{r} .55 \\ 288 & 38 & 57.76\end{array}$	785841.26 1085010.13	Aroya	27129.94 36270.55	4. 4334488
1909	10319 26.730	704.7	$\begin{array}{llll}288 & 38 & 57.76 \\ 324 & 06 & 31.65\end{array}$	108 104 144 10 1020.673	Lestes Lee	36270.55 19723.40	4. 5595541
Hays	312955.018	1694.4	18451548.06	41605.10	Johnson	11545.85	4.0624260
1909	10319 59.290	1564	2894544.04	10949 49-72	Lee	13199.24	4. 1205489
Sist ${ }_{1909}$	312120.372	624.3	2111854.30	312424.26	Johnson	32049.32	4. 5058175
	1032958.617	1549.2	2245443.46	$\begin{array}{llll}44 & 59 & 55.96 \\ 68 & 08 & 10.35\end{array}$	Hays	22402.37 30466.85	$\text { 4. } 35029.40$
			24759 or. 85	680819.35	Lee	30466.85	4.4838275
$\underbrace{\text { Ingle }}_{1909}$	- 313549.018	1509.7	2683241.46	884103.73	Johnson	25276.83	4.4027226
	$10335 \quad 25.284$	666.6	2935916.26	11407820.74	Hays	26747.56	4.4272845
			3420647.25	1620937.82		28111. 10	4.4488779
Round 1909	3 ± 2854637	1682.7	2453126.35	654044.28	Ingle	30895.49	4.4898951
	1035311.902	314. I	2904306.50	1105512.81	Sist	39371.41	4. 5951809
$\begin{gathered} \text { Toyah } \\ 1909 \end{gathered}$	310745.601	1404.4	1694332.87	3494113.40	Round	39722. 47	4. 5990362
	1034843.488	1152.2	2020459.51	221154.94	Ingle	55972.88	4. 7479777
			29947 31.92	495715.35	Sist	38929. 82	4. 5902824
Seay	3 ± 1615.406	4745	2350744.76	551848.17	Round	40992.67	4.6127062
	1041426.077	689.8	2905506.04		Toyah	43752. 45	4.6410024
$\begin{gathered} \text { Newman } \\ 1909 \end{gathered}$	310007.100	218.7	1521421.61	3320914.68	Seay	33712.56	4.5277917
	1040432.501	862.3	$198 \quad 3910.50$	184503.48	Round	56168.99	4.7494966
			3403747.63	$6045 \quad 57 \cdot 34$	Toyah	28851.06	4-460.1618
$\begin{gathered} \text { Reynolds } \\ 1909 \end{gathered}$	311109.916	305.4	2322806.27	$\begin{array}{llll}52 & 32 & 06.47\end{array}$	Seay	15455. 28	4.1890769
	1042209.379	$24^{8 .} 3$	3060031.92	1260927.74	Newman	34659.4	4.5398212
$\begin{aligned} & \text { Krouse } \\ & 1909 \end{aligned}$	311205.529	170.3	2463644.23	$664233 \cdot 72$	Seay	19424. 56	4. 2883512
	1042540.020	1059.4		1070514.46	Reynoids	5833.92	3.7659608
			$303 \quad 1649.53$	1232744.28	Newman	40222.69	4.6044711
Chispa 1909	$304^{8} 09.928$	305.8	211155519	$\begin{array}{llll}31 & 24 & 37.87\end{array}$	Krouse	51762.02	4.7140172
	$1044234 \cdot 783$	9247		$\begin{array}{llll}37 & 30 & 14.20\end{array}$	Reynolds	53507.60	$\text { 4. } 7284155$
			24940 57.49	700829.62	Newtar	64507.87	4.809612
Diablo 1909	311152.719	1623.6	2692311.33	89 38 18	Krouse	46362.95	4. 6661710
	1045451.217	1355.9	3355456.66	156 or 15.96	Chispa	47974.65	4.6810118
Eagle 1909	305516.688	514.0	2075819.02	$\begin{array}{llll}28 & 03 & 36.61\end{array}$	Diablo	34745.67	4. 5409007
	1050506.790	180.3	$\begin{array}{llllllllllll} & 243 & 29 & 22.36\end{array}$	634943.50	Krouse	70019.03	4. 8452161
			2900000.49	1101134.04	Chispa	38248.36	4. 58.26×28
$\begin{gathered} \text { Quitman } \\ 1909 \end{gathered}$	310858.819		2642015.89	843820.80	Diablo		$\text { 4. } 7463183$
	10529 47.102	1247.6	3024247.80	1225531.01	Eiagle	46713.62	4.6694436
Black 1909	315421.899	6745	3314753.41	1515511.47	Diablo	47122.15	4.6732251
	1050852.357	1380.7		17517731.54	Eagle	72472.15	4.8601711
			$35 \quad 2058.54$	2151005.53	Quitman	57445.57	4. 7592565
$\underset{1909}{\substack{\text { Corduna } \\ \text { dex }}}$	320131.467	969. 2	3250753.74	1451931.76	Black	6irioc. 94	4. 7860479
	1053057.015	1496. 1	35854 26. 54	1785503.15.	Quitman	97115.49	4.9872885
North Franklin 1909		321.4	26122 44. 70			93403.60	4.9703636
	1062936.241	952.3	2853950.29	$\begin{array}{llll}106 & 22 & 18.42\end{array}$	Black	132655.47	5, 1227252
			3110858.10	1314014.90	Quitman	126256.31	5.1012531
$\underset{1909}{\text { Jarilla }} \quad \text { (N.M }$		$1845 \cdot 5$	3061691.58	1263527.00	Corduna	69939.03	4.8447196
	$1060645 \cdot 737$	1195.2	33 I1 21. 16	21259 1\%.81	North Franklin	65786.97	4. 8181398
$\underset{1909}{\text { Kent }} \quad \text { (N. Mex.) }$	$\begin{array}{rrr}32 & 30 & 27.408 \\ 106 & \end{array}$	844.2	$\begin{array}{llll}288 & 48 & 34.47\end{array}$				
	1062859.825	+561.6	3000813.29	1203912.67	Corduna	$\text { rog678. } 54$	3.0239868
			$\bigcirc 49 \quad 03.33$	$180{ }^{18} 43.92$	North Franklin	67061.65	4.8264742
Florida 1910	320701.834	56.5	2474727.42	$68 \quad 24{ }^{\circ} \mathrm{O} 7$ - 71	Kent	116054.43	5.0646617
	1073736.040	944.8	2821236.37	1024838.96	North Franklin	109681. 36	5.0401328

Stanton base to Deming base-Continued.

Station	Latitude and longitude	Sec onds in meters	Azimuth	Back azimuth	Tostation	Distance	Laga rithm
Principal points-Contd.							
Cooks1910	323209.548	294. ${ }^{1}$	2711205.17	9153 20.105	Kent	Mreters	5. 0692733
	1074352.419	1367.9	3004201.24	1212137.22	North Franklin	136176.74	5. 1341029
			348×14.97	16803 36. 29		$\text { 47473. } 18$	4.6764483
Hermanas 1910	314815.577	356.6	1940330.85	14.1026 .11	Cooks	83783.96	49231609
	1075652.331	1376.6	$\begin{array}{llllllllllll}221 & 0 & 37.83\end{array}$	411049.94	Florida	46194.16	4. 6645871
			265 or 33. 23	854736.65	North Franklin	138100.92	5.1401966
Red_{1910}	321300806	24. 8	20307 28.04	231238.22	Cooks	38488. 12	4. $5^{8} 53266$
	1075331.665	829.2	$29345 \quad 20.20$	1135349.01	Florida	27370.93	4. 4372896
			63352.94	$186 \quad 32$ 人6. 57	Hermanas	46171.00	4. 6643693
$\begin{aligned} & \text { Deming S. base } \\ & \text { I9Io } \end{aligned}$		13.8	205537.59	2005307.15	Hermanas		4.4669480
	1075014.406	377.9	$\begin{array}{llll}164 & 23 & 37.80\end{array}$	3442152.88	Red	19201. 18	4. 2833279
			$\begin{array}{lllll}190 & 28 & 52.33\end{array}$	103216.41	Cooks	54795. 58	$\text { 4. } 7387455$
			$2492645 \cdot 28$	693328.14	Florida	21232.28	4.3269967
$\begin{gathered} \text { Deming N. base } \\ \text { IgIo } \end{gathered}$	$\begin{array}{rrrr}32 & 10 & 19.489\end{array}$	600.3	293752.33	2093516.51	Deming S. base	15554.33	4.1918512
	1074521.268	557.2	111511003.53	2910642.25	Red	13772. 59	4. 13901.6
			$\begin{array}{llll} 183 & 17 & 18.07 \\ 296 & 30 & 00 . & 57 \end{array}$	$\begin{array}{r} 31805.62 \\ 116340815 \end{array}$	Cooks Florida	$\begin{aligned} & 40420.07 \\ & 13627.82 \end{aligned}$	4. 6065978

Deming base net to San Jacinto-Cuyamaca.

${ }_{1910}^{\text {Burro }}$ (N. Mex.)	$\begin{array}{rrrr}32 & 35 & 26.637 \\ 108 & 25 & 56.758\end{array}$	820.5 1480.4	$\begin{array}{lllll}275 & 04 & 42 . & 75 \\ 332 & 15 & 03.18\end{array}$	95 152 152 30	Cooks Hermanas	$\begin{aligned} & 66131-35 \\ & 98555 \cdot 73 \end{aligned}$	$\begin{aligned} & \text { 4. } 8204074 \\ & 4.9936819 \end{aligned}$
Chiricahua1910 \quad (Ariz.)	$3 \mathrm{5} 52 \mathrm{23.561}$	725.7	2250055.31	$45 \quad 2809.85$	Burro	112997.05	5.0530671
	109 17 O1. 339	35. 2	2425537.98	634516.74	Cuoks	163786.26	5. 2142775
			2730934488	93 51 51.92	Hermanas	126688, 24	5. 1027363
Line (U. S. G. S.) (N. Mex.)	$\begin{array}{r} 32 \\ 31 \\ 108 \\ 59 \\ \hline 8.601 \\ \hline 8.023 \end{array}$	203. 3	2983235.67	1185053.68	Burro	60302.65	4. 7803364
1910		1248.7	1403 23.96	$193 \quad 54180.83$	Chiricahua	111831.10	5.0485626
Grabam (U. S. G.S.) (Ariz.) 1910		186.3	2581637.07	781451.24	İine (U. S. G. S.)	8359808	4. 9221964
	$\begin{array}{r} 324206.048 \\ 109 \quad 5215.894 \end{array}$	414.0	27449 10.89	953544.88	Burro	135541.82	5. 1320733
			$32846 \quad 57.94$	1490547.50	Chiricahua	107242.47	5.0303668
$\begin{gathered} \text { Catalina } \\ 1910 \end{gathered}$	$\begin{array}{rrrrr}32 & 26 & 34.063 \\ 110 & 47 & 18 . & 163\end{array}$	1049. 2	2511915.13	$71 \quad 48 \quad 52.98$	Graham (U. S. G. S.)	90795-23	4.9580630
		474.5	293350891	1142312.20	Chiricahua	155355.42	5.1913264
$\underset{1910}{\text { Baldy (U. S. G. S.) }}$	$\begin{array}{rrr} 31 & 41 & 46.065 \\ 110 & 50 & 51.939 \end{array}$	1418.8	1835151504	3532455	Catalina	82983. 28	4.9189906
		1367.8	2191740.97	39485464	Graham (U.S. G. S.)	144613.52	5. 1602089
			2620218.43	825144.36	Cbiricahua	149434-20	5. 1744499
Table	324512.148	374. 2	2845917.55	1054229.93	Catalina	130114.89	5.1143270
	1120729.903	778.4	3135345.47	1343437.47	Baldy (U.S. G. S.)	168041.44	5. 2254164
Superstition (U. S. G. S.) 1910	3332439.852	1227.8		1520613.95	Catalina	121686. 19	5. 0852413
	III 2401.480	38.2	$\begin{array}{lllll}344 & 35 & 02.85 \\ 43 & 02 & 38 & 16\end{array}$	$\begin{array}{lllll}164 & 52 & 53.53 \\ 222 & 38 & 54\end{array}$	Baldy (U.S. G. S.)	197130.31	5. 2947534
			430238.16	2223854	Table	99482.70	4.9977476
Whitetank 1910	$\begin{array}{rrrr}33 & 34 & 02.053 \\ 112 & 33 & 28.731\end{array}$	$63 \cdot 3$	$2784935 \cdot 35$	9927 54.81	Superstition (U. S. G. S.)	10896.8 .8	5.0372865
			3354618.37	1560031.04	Table	98886. 45	4.9951368
Maricopa 1910	$\begin{array}{rrrr}32 & 45 & 08 & 501 \\ 112 & 22 & 46044\end{array}$	261.9	$16936 \quad 36.69$	3493035.15	Whitetank	91894. 49	4.9632895
		1198.7	23 I O6 12. 53	$\begin{array}{llll}51 & 38 & 16.42\end{array}$	Superstition (U. S. G. S.)	117015.47	5.0682433
			2693940.61	894756.26	Table	23849.12	4-3774724
Mohawk 1910	323522.608	696.4	2225242.87	$43{ }_{4} 28123.56$	Whitetank	148667.90	
	$1133^{8} 50.720$	1322.8	261 O1 46.51	81425066	Maricopa	120296.61	5. 0802534
Harquaballa 1910	334842.659	1314.3	2900834.37	1103438.87	Whitetank	77983.75	4. 8920041
	II3 2047.383	1218,8	3221526.61	1424717.15	Maricopa	148061.08	5. 1704409
			11.4639 .67	1913646.44	Mohawk	138425.05	5. 1412147
$\underset{\text { Kigil }}{\text { Kofa }}$ (Ariz.)	$\begin{array}{r} 3321 \quad 33.578 \\ 110^{\circ} 04 \quad 56.894 \end{array}$	1034. 5	2332944.96	5354180.64	Harquahalla	84775.84	4.9282721
		1470.9	3342423.74	$1543^{8} 36.18$	Mohawk	94554.43	4.9756821
$\underset{\substack{\text { Ampan }}}{\text { Ameran }}$ (U. S. C. S.)	$\begin{array}{rrr} 32 & 51 & 27.747 \\ 114 & 45 & 08.350 \end{array}$	$\begin{aligned} & 854.7 \\ & 216.1 \end{aligned}$	2280920.91	483118.11	Kofa	83689.27	4.9226695
			2854258 151	1061848.80	Mohawk	107759.86	5.0324570
			934554.51	$27245 \quad 28.81$	Cuyamaca	173731.19	5. 2398778
			1210841.18	3000509.17	San Jacinto	208419.85	5.3189390

Deming base net to San Jacinto-Cuyamaca-Continued.

Kyle-McClenny to Stanton base.

upplementary points.							
```Carton schoolhouse bel- fry }\mp@subsup{}{}{1 1908```	$\begin{array}{lll}32 & 16 & 02.337 \\ 98 & 49 & 37.423\end{array}$	72.0 717.7	$\begin{array}{rrrr}80 & 42 & 19.1 \\ 250 & 14 & 17.6\end{array}$	$\begin{array}{rrrr}260 & 39 & 41.4 \\ 70 & 24 & 18.9\end{array}$	Hearn Rattlesnake	7834.3 31251.9	$\begin{array}{r} 3.893999 \\ -494876 \end{array}$
Eastland courthouse ${ }^{1}$ 1908	323404520		271223.7	20709344	Hearn	18122.2	4. 258212
	984906.253	163.4	148832 IL 1	$328 \quad 3007.7$	Flat	12433.0	$4.094577$
```Eastland schoolhouse bel- Iry ' 1g08```	323402.012	62.0	263630.5	2063346.4	Hearn	$17940 \cdot 3$	4. 253830
	984915.814	413. 3	1494240.9	3294032.7	Flat	12371. 1	4.092410
Cisco astronomic station (U. S. G. S) 1908	$\begin{array}{llll}32 & 23 & 24.857\end{array}$	$\begin{array}{r}765.7 \\ \\ \\ \hline 588\end{array}$	634929.4	$24347 \begin{array}{rrr} \\ 37 & 15 & 3\end{array}$	Lamb	7298.9	3. 863258
	$98 \quad 5859.617$	1558. 3	$\begin{array}{lll} 217 & 16 & 10.4 \\ 334 & 03 & 37.3 \end{array}$	37 154 154	Flat	14864.4 16565.2	4. 172147 4.219197
Cisco standpipe 1908	323324.785	763. 5	635328.5	24351 14.0	Lamb	7311.1	3.863984
	$98 \quad 58 \quad 59.054$	1543. 5	643020.6	24420288	Springgap	32090.4	4. 576375
			$\begin{array}{lllllll}217 & 13 & 09.9\end{array}$	371614.5	Flat	14857.2	4. 171938
			33406 10. 2	$15408 \quad 37.9$	Hearn	16556.8	4. 218977
Cisco Metbodist Church spire ${ }^{1}$ 1908	323309.191	283. 1	$333 \begin{array}{llll}32 & 08.8\end{array}$	1533435.4	Hearn	16101. 0	4. 306854
	$98 \quad 5856.913$	1487.5	$673225 \cdot 3$	24730 09.7	Lamb	7164.5	3.855187
Church 7 miles south of Cisco	$32 \quad 1837.415$	844. 5	3114614.5	1314825.5	Hearn	8609.1	3. 934956
	$\begin{array}{lllll}98 & 58 & 28.089\end{array}$	734.9		$\begin{array}{lllllllllllll}260 & 57 & 16.8\end{array}$	Springgap	30137. I	4.479101
			12851488	3084917.9	Lamb	9471.2	3. 976405
Baird courthouse dome 1908	$\begin{array}{llll}32 & 23 & 40 & 294\end{array}$	1241.2	2190725.0	390957.3	Hitson (U. S. G. S.)	11749.5	4.070018
	9923 38.695	1017. 3	$\begin{array}{llll}325 & 44 & 03.5 \\ 108 & \text { or } & 32.4\end{array}$	$\begin{array}{llll}145 & 47 & 22.9\end{array}$	Springgap	17335.8 6445.0	4. 2388944
			108 or 32.4	2875926.7	Clyde	6445. 0	3. 809223
Baird tall churcb spire ${ }^{1}$ 1908	$32 \begin{array}{llll}32 & 39.303\end{array}$	1210. 7	22017906	4019 45-4	Hitson (U. S. G. S.)	11989.3	4. 078793
	992351.651	1350.0	3244536.0	1444902.4	Springgap	17503.7	4. 243131
Clyde church spire ${ }^{1}$ 1908	322421.939	675.8	2560713.0	7608 II. 9	Clyde	2960. 4	3. 471347
	992923.220	606.8	3094247.6	12949 II. 3	Springgap	24410.5	4. 387576
Abilene standpipe (U. S. G. S.) 1908	322644.754	1378.6	6508 og. I	2450116.0	Buzzard	22214.4	4. 346634
	$994444 \cdot 305$	1157.3	$12450-3.5$	3044703.4	Morrison	11852.8	4. 073822
			2552653.0	753440.4	Kennard	23475.5	4.370614
			3435735.8	1635939.9	Clayton	21961. 5	4. 341662
Abilene courthouse dome 1908	3226 44.715	1377.4	$34714{ }^{28} 80$	16716057		21640.4	$4 \cdot 335265$
	994355.065	14.38. 5	$66 \quad 2814.3$	2462054.8	Buzzard	23387.2	4. 368978
			2543711.6	744432.6	Kennard	22233.1	4.347001

[^11]Kyle-McClenny to Stanton base-Continued.

Station	Latitude and longitude	Seconds in meters	Azimuth	Back azimuth	Tostation	Distance	Logarithm
Supplementary poantsContinued.							
	"		,	- "		Meters	
Abilene low standpipe 1908	323644.282	1364.0	650952.8	2450259.7	Buzzard	22203.9	4.346430
	9944 44.488	1162.1	3345438.1	30451 18. 1	Morrison	11857.2	4.073983
			2552500.2	7532476	Kennard	23483.7	4-370766
			3435615.1	1635819.2	Clayton	21948.9	+341413
Abilene asylum stack ${ }^{1}$ 1908	322505.568	171.5	$34^{8} 2423.3$	168,2538.9	Clayton	18.428 .4	+. 265488
	$99 \quad 4313.968$	365.0	742456.7	35417150	Buzzard	23376.5	4-368780
Church north of Tye, belfry ${ }^{1}$ 1908	324501.930	59. 5	$\begin{array}{lllll}19 & 16 & 18.9\end{array}$	1991508.4	Buzzard	45707.9	
	994758199	1515.2	435536.1	2234356.3	Hale	48922.6	4689510
Tye Baptist church spire 1908	$32 \quad 2720.563$	633.4	401227.8	2200926.5	Buzzard	13696.0	4. 136595
	995157.030	1489.5	844305.9	2643337.1	Hale	27818.1	4. 444327
			$195 \quad 2805.3$	152837.5	Morrison	5876.6	$\text { 3. } 769123$
Tye Methodist church spire 1903	3227 32. 537	1002.2	381315.1	2181020.3	Buzzard	13783.7	+139365
	995209.030	235.8	835332.9	2634410.6	Hale	27542.8	4. 440008
			1993310.2	193348.9	Morrison	5619.0	3.749656
Church 6 miles west of Morrison, beliry ${ }^{1}$ 1908	$323234 \cdot 407$	1059. 8	2935930.5	1140235.6	Morrison	9837.1	$\text { 3. } 992867$
	9956 41. 283	1077.2	1011427.3	2811126.7	Sears	9830.6	3.950883
Merkel church, square spire 1908	$\begin{array}{rrrr}32 & 28 & 05.107 \\ 100 & 00 & 49.745\end{array}$	157.3 1290.1	$\begin{array}{rrr}73 & 57 & 51.3 \\ 167 & 12 & 39.3\end{array}$	$\begin{array}{llll}253 & 53 & 08.1 \\ 347 & 11\end{array}$	Hale	14341.0 10287.9	
	1000049.745	1299. 1	$\begin{array}{lllll}167 & 12 & 39.3 \\ 336 & 44 & 32 .\end{array}$	347 156 11 52.4	Sears Buzzard	10287.9	4.012328
			3364432.7	1564616.9	Buzzard	12881.2	4. 109955
```Merkel elect ric light plant, tall stack 1908```	$32 \quad 28 \quad 07.151$		$743435 \cdot 9$	25429363	Hale	15128.2	
	10000 19.106	498.9	1625059.7	3424956.3	Sears	10433.9	4.018446
			3401132.4	1601300.3	Buzzard	12646.0	4101953
Merkel tall water tank 1908	3228 I1. 494	354.1	734104.6	2533612.8	Hale	14799.9	4. 170259
	1000033.632	878.2	8603 37. 1	2655557.7	Boyd	22400.7	4.350261
			$1643945 \cdot 2$	$3443^{88} 49.6$	Sears	10199. 3	4.008573
Trent schoolhouse belfry ${ }^{1}$ 1908	322928.467	876.9	3029 21. 2	2102802.1	Hale	7587. 1	3.880077
	1000709.976	260.4	715212.7	25148061	Boyd	12623.7	4. 10115.3
Trent Christian Church spire ${ }^{1}$ 1908	322920.591	634. 3	311549.7	2111431.2	Hale	7364.9	3.867165
	10007 11.021	287. 7	7253102	2524904.1	Boyd	12523.2	4.097717
Eskota water tank ${ }^{1}$ 1908	323144.809	1380.3	3191711.2	1392021.1	Hale	14161.7	4. 151115
	1001530.913	806. 7	$352 \begin{array}{llll}33 & 09.7\end{array}$	1723332.1	Boyd	8307. 1	3.914189
Sweetwater schoolhouse cupola ${ }^{1}$ 1908		928.4 89.8			Allen		$\text { 4. } 181872$
	1002403.440	89.8	2782149.7	9836 47.2	Boyd	$14629.2$	$4165220$
$\begin{aligned} & \text { Wasp, U. S. G. S. } \\ & 1908 \end{aligned}$			2573601.4				
	1002640.726	1062. 3	94618.2	1894445.4	Lloyd	26638.5	$4-425509$
			544534.5	2344217.2	Patterson	11725.2	4.069121
Roscoe cotton gin stack 1909	$\begin{array}{rrrr}32 & 36 & 52.740 \\ 100 & 32 & 08.381\end{array}$	1624.6					
	1003208.381	318.9	$\begin{array}{llll} 171 & 06 & 01.1 \\ 342 & 38 & 04.4 \end{array}$		Patterson Lloyd	6616.3 13563.8	$\begin{aligned} & \text { 3. } 820612 \\ & 4.132380 \end{aligned}$
Roscoe schoolhousepola1909	$\begin{array}{llll}32 & 36 & 17.989\end{array}$	554.1	83454.6	18834 07.0	Bench	15603.4	
	$10032 \quad 27.628$	721.7	176 04   339 O1   10.8	$\begin{array}{llll}356 & 04 & 39.4 \\ 159 & 03 & 14.0\end{array}$	Patterson L.loyd	7624.8 12717.3	$\begin{aligned} & \text { 3. } 882230 \\ & \text { 4. } 104395 \end{aligned}$
Loraine schoolhouse cupola ${ }^{1}$ 1909	$32 \quad 2410.75$	331.1	1570232	337 O1 26	Wolf	8245. 3	3.936204
	$1004^{2} 45 \cdot 12$	1179.1	3094501	1294944	Bench	17984.6	4.254901
Colorado, west standpipe 1909	322258.018	1787. 1	655044.6	2454533.0	Bynum	16690.6	
	10050.18 .739	489.8	2215543.1	411840.3	Wolf	13084.6	$\text { 4. } 116760$
			2894618.4	1095503.8	Bench	27304.9	4.436240
Westbrook Methodist Church spire ${ }^{1}$ 1909	322130 O1	924.4	1731844	3531811	Cuthbert	13788.0	$\text { 4. } 139500$
	$1010053.17$	1390.2	3414222	1614250	Bynum	4350.3	3.638507
Morgans Peak 1909	322113.967	430.2	1160021.6	295531507	Top	23103.0	4. 363669
	sol 0238.088	995.9	18434006.1	43429.4	Cuthbert	14233.6	4. 153314
			3112939.9	1313104.0	Bynum	5486.8	3.739323

${ }^{1}$ Checked by vertical angles only.

Kyle-McClenny to Stanton base-Continued.

4. Station	Latitude and longitude	Seconds in meters	Azimuth	$\begin{gathered} \text { Back } \\ \text { azimuth } \end{gathered}$	To station	Distance	Loga- rithm
Supplementary pointsContinued.							
Muchakooago Peak 1909	$\begin{array}{cccc}\bullet 3 & \prime \prime \\ 32 & 43 & 26.624 \\ 101 & 24 & 03.026\end{array}$	$\begin{array}{r} 820.1 \\ 78.8 \end{array}$	$\begin{array}{cccc}\circ & \prime \prime & \prime \prime \\ 307 & 41 & 41.9 \\ 319 & 47 & 15.0 \\ 337 & 31 & 14.0\end{array}$	1275337.6 1400010.3 1573537.9	Cuthbert   Bynum   Top	$\begin{aligned} & \text { Meters } \\ & 43333.0 \\ & 58423.8 \\ & 33477.7 \end{aligned}$	$\begin{aligned} & \text { 4. } 641801 \\ & 4.765950 \\ & 4.524755 \end{aligned}$
Stanton courthouse cupola 1909	320752.322 1014727.197	1611.6 712.8	$\begin{array}{ll} 154 & 56 \\ 258 & 41.6 \\ 258 & 31 \\ 289 & 05 \\ 583 & 31 . \\ \hline \end{array}$	$\begin{array}{r} 3345409.0 \\ 784206.6 \\ 109540.8 \end{array}$	Epley   Williams   Stanton	17687. 0 33192. I 1740.9	$\begin{aligned} & 4.247654 \\ & 4.521035 \\ & 3.240767 \end{aligned}$
Stanton longitude station	$\begin{array}{r} 3207 \\ 10143 \cdot 014 \\ 1024 \cdot 746 \end{array}$	$\begin{array}{r} 1016.9 \\ 648.6 \end{array}$	180	$\bigcirc$	Stanton	2. 26	0.35411

Stanton base to Deming base.

Midland courthouse cupola IgOg	$\begin{array}{rrrr}31 & 59 & 52.623 \\ 102 & 4 & 33.755\end{array}$	1620.8 886.1	$\begin{array}{rrr}53 & 06 & 25.3 \\ 160 & 46 & 05.3 \\ 227 & 00 & 35.8\end{array}$	$\begin{array}{rrrr}233 & 03 & 25 \cdot 1 \\ 340 & 44 & 04 \cdot 3 \\ 47 & 02.23 .1\end{array}$	Scar   Dunn Elkins	11188. 5 18128. 5 7258. 5	4. 048500   4. 258361   3. 860849
Odessa courthouse cupola 1909	$\begin{array}{rrr}31 & 50 & 49.70 \\ 102 & 22 & 03.84\end{array}$	1530.8 101.0	$\begin{array}{llll}147 & 38 & 59 \\ 326 & 18 & 25\end{array}$	32735 4619 46	Smith Odessa	6979.9 2609.9	$\begin{aligned} & 4.229935 \\ & 3.416498 \end{aligned}$
Castle Gap Mountain ${ }^{2}$ Igog	$\begin{array}{rrrr}31 & 18 & 52.41 \\ 102 & 18 & 12.83\end{array}$	1674.0 $339-3$	$\begin{array}{llll}136 & 57 & \text { OT. } 0 \\ 154 & 50 & 26.7\end{array}$	$\begin{array}{llll}316 & 46 & 56.6 \\ 334 & 43 & 39.8\end{array}$	Curtis Douro	$\begin{aligned} & 44716 \\ & 48208 \end{aligned}$	$\begin{aligned} & 4.650464 \\ & 4.683122 \end{aligned}$
Judkins schoolhouse cupola ${ }^{2}$   1909	$\begin{array}{r}35 \\ 102 \\ 42 \\ \hline 7\end{array}$	1681.7 1066.6	$\begin{array}{llll}274 & 26 & 57 \\ 358 & 45 & 44\end{array}$	943022 1784549	Douro Curtis	10283.7 11788.0	$\begin{aligned} & 4.012108 \\ & 4.071440 \end{aligned}$
Windmill 2 miles south of Dublin Igog	$\begin{array}{rrrr}31 & 50 & 10.792 \\ 102 & 38 & 32.347\end{array}$	332.4 587.6	$\begin{array}{rrr}321 & 25 & 03.4 \\ 356 & 55 & 08.0 \\ 49 & 20 & 00.8 \\ 169 & 58 & 37.9\end{array}$	1412850.4 17655 35. I 2291433.2 $349 \quad 58 \quad 26.7$	Dourn Curtis Harris Dublin	18205.1 25256.3 21590.8 3217.9	4. 260193   4. 402369   4. 334269   3. 507567
Barstow courthouse cupola 1909	$\begin{array}{rrrr}31 & 27 & 41.627 \\ 103 & 23 & 38 & 575\end{array}$	$1282.0$ $\text { 1018. } 4$	$\begin{array}{rrrr}40 & 32 & 59.8 \\ 128 & 53 & 22.5 \\ 203 & 01 & 16.8 \\ 234 & 37 & 06-3\end{array}$	$\begin{array}{rrrr}220 & 29 & 41.8 \\ 308 & 47 & 13.0 \\ 23 & 03 & 28.5 \\ 54 & 39 & 00.9\end{array}$	Sist   Ingle   Johnson   Hays	15450.8 23936.1 16976.2 7097.9	$\begin{aligned} & \text { 4. } 188952 \\ & \text { 4. } 379054 \\ & \text { 4. } 229840 \\ & \text { 3. } 851130 \end{aligned}$
Pecos courthouse cupola ${ }^{1}$ 1909	$\begin{array}{rrrr}31 & 25 & 17 & 12 \\ 103 & 29 & 38 & 36\end{array}$	527.3 1013.2	$\begin{array}{r}401018 \\ 154 \\ \hline 28\end{array}$	$\begin{array}{lll} 184 & 01 & 30 \\ 334 & 25 & 47 \end{array}$	Sist   Ingle	7621.3 21228.6	$\begin{aligned} & \text { 3. } 88203 \mathrm{I} \\ & 4.326922 \end{aligned}$
Davis Mountain, or Black Mountain, center of highest round peak 1909	$\begin{array}{rrrr}30 & 43 & 23.375 \\ 103 & 58 & 52.664\end{array}$	719.8 1401.2	200 56 39-3 2130758.8 2153324 .	$\begin{array}{llll}21 & 08 & 47.6 \\ 33 & 22 & 52.9 \\ 35 & 53 & 29.6\end{array}$	Ingle Sist. Hays	$\begin{array}{r} 103798.9 \\ 83852.7 \\ 105897.8 \end{array}$	$\begin{aligned} & \text { 5. } 016193 \\ & \text { 4. } 923517 \\ & \text { 5. } 024887 \end{aligned}$
Davis ${ }^{1}$ 1909	$\begin{array}{rrrr}30 & 54 & 33.87 \\ 104 & 03 & 47.34\end{array}$	1043.0 1257.1	$\begin{aligned} & 1944803 \\ & 22427 \end{aligned}$	$\begin{array}{lll} 14 & 53 & 32 \\ 44 & 34 & 51 \end{array}$	Round Toyah	$\begin{aligned} & 65657 \cdot 3 \\ & 34194 \cdot 2 \end{aligned}$	$\begin{aligned} & \text { 4. } 817283 \\ & \text { 4. } 53395^{2} \end{aligned}$
$\begin{gathered} \text { I'lat Top } \\ \text { Igog } \end{gathered}$	$\begin{array}{rrrr}31 & 10 & 27.24 \\ 104 & 03 & 49.64\end{array}$	838.9 1314	$\begin{array}{lll} 122 & 31 & 28 \\ 281 & 39 & 06 \end{array}$	$\begin{array}{llll}302 & 25 & 58 \\ 101 & 46 & 55\end{array}$	Seay Toyah	19968. 1 34512.3	$\begin{aligned} & \text { 4. } 300339 \\ & 4 \cdot 389384 \end{aligned}$
Gomez Peak 1909	$\begin{array}{rrrr}31 & 01 & 34.619 \\ 104 & 04 & 17 . & 770\end{array}$	1066.1 471.3	$\begin{array}{r} 815 \text { o1. } 0 \\ 1220217.8 \\ 1491957.0 \end{array}$	$\begin{array}{llll} 188 & 14 & 53.4 \\ 301 & 52 & 58.2 \\ 329 & 14 & 42 . & \end{array}$	Newman   Reynolds Seay	$\begin{array}{r} 2723.4 \\ 33471.3 \\ 31550.2 \end{array}$	3. 435115   4. 524672   4. 499002
Newman U. S. G. S. 1909	$\begin{array}{rrrr} 31 & \infty & 00 & 488 \\ 104 & 04 & 43 \cdot & 739 \end{array}$	15.0 1160.4	$\begin{array}{llll}126 & 43 & 14 \\ 235 & 39 & 58\end{array}$	$\begin{array}{r}306 \\ 304 \\ 55 \\ \hline 50\end{array}$	Reynolds   Newman	$\begin{array}{r} 34540.5 \\ 361.0 \end{array}$	$\begin{aligned} & \text { 4. } 5383329 \\ & \text { 2. } 557543 \end{aligned}$
High or Sawtooth Mountain 1909	$\begin{array}{rrr}30 & 41 & 06.134 \\ 104 & 13 & 40.616\end{array}$	$\begin{array}{r} 188.9 \\ 1081.1 \end{array}$	$\begin{array}{lll} 161 & 36 & 27 \cdot 9 \\ 166 & 22 & 13 \cdot 4 \\ 202 & 28 & 34 \cdot 4 \end{array}$	$\begin{array}{rrr} 341 & 30 & 18.0 \\ 346 & 17 & 51.9 \\ 22 & 33 & 15.4 \end{array}$	K rouse   Reynolds   Newman	$\begin{aligned} & 60361.8 \\ & 57167 \cdot 1 \\ & 38035 \cdot 5 \end{aligned}$	4. 780762   4. 757146   4. $5^{80189}$
Erast 1911	$\begin{array}{rrrr}31 & 09 & 45 \cdot 974 \\ 104 & 21 & 35 \cdot 283\end{array}$	1415.9 934.4	$\begin{array}{rrr} 80 & 59 & 03 \cdot 5 \\ 123 & 34 & 13 \cdot 2 \\ 160 & 44 & 59 \cdot 5 \end{array}$	2605728.0 30332 o6. 5   34044 41. 9	West Krouse Reynolds	$\begin{aligned} & 4951.7 \\ & 7776.0 \\ & 2738.3 \end{aligned}$	3. 694751   3. 890758   3. 437479
Mid 1911	$\begin{array}{rrrr}31 & 07 & 10.428 \\ 104 & 22 & 52 . & 586\end{array}$	321.2 1393.4	$\begin{array}{rrr} 10 & 02 & 20.4 \\ 144 & 41 & 18.4 \\ 203 & 08 & 25.8 \end{array}$	$\begin{array}{rrr} 190 & 02 & 03.8 \\ 324 & 40 & 23.0 \\ 23 & 09 & 05.8 \end{array}$	Boracho   West   East	$\begin{aligned} & 4886.0 \\ & 4918.5 \\ & 5209.7 \end{aligned}$	3. 688953   3. 691834   3. 716809
Cone ${ }^{1}$ 1909	$\begin{array}{r} 312028.05 \\ 1042300.76 \end{array}$	$\begin{array}{r} 863.9 \\ 20.1 \end{array}$	$\begin{array}{lll} 355 & 28 & 28 \\ 15 & 14 & 24 \end{array}$	$\begin{array}{lll} 175 & 28 & 55 \\ 195 & 13 & 0: \end{array}$	Reynolds Krouse	$\begin{aligned} & 17242.7 \\ & 16039.5 \end{aligned}$	4. 236604   4. 205190
Pinnacle ${ }^{2}$	$\begin{array}{rrr} 31 & 44 & 24 \cdot 72 \\ 104 & 27 & 37 \cdot 50 \end{array}$	$\begin{aligned} & 761.5 \\ & 987.0 \end{aligned}$	$\begin{array}{r} 3591820 \\ 43732 \end{array}$	$\begin{array}{lll} 179 & 18 & 35 \\ 184 & 35 & 57 \end{array}$	Reynolds Krouse	$\begin{aligned} & 61441 \\ & 59918 \end{aligned}$	$\begin{aligned} & \text { 4. } 788459 \\ & \text { 4. } 777557 \end{aligned}$

Stanton base to Deming base-Continued.

Station	Latitude and longitude	Seconds in meters	Azimuth	13ack azimuth	Tostation	Distance	Logarithm
	- ${ }^{\text {, }}$		- 11	- 11		Meters	
Boracho	310434.202	1053.4	1671647.1	3471608.2	West	9046.7	3.956489
$1915$	10423 24.716	655.2	1964745.9	$164^{8} 42.4$	East		$4.001292$
Boracho longitude station 1911	310433.989	1046.8	180	$\bigcirc$	Boracho	6.565	0.817335
	1042324.716	$655 \cdot 2$					
W'est	310920.742	638.8	1623548.5	3423510.4	Krouse	5318.6	3.725795
1911	1042439.925	1057.4	2295048.1	495206.0	Reynolds	5215.3	3.717276
Krouse U. S. G. S. cairn 1909	$\begin{array}{r} 311205.480 \\ 1042540.166 \end{array}$	$\begin{array}{r} 168.8 \\ 1063.3 \end{array}$	2484218	684218	Krouse	4. 16	0.6191
Cone Peak	325331.46	969.0	2845055	1053105	Ingle	124935.3	5.096685
1909	1045146.19	1213.9	2942015	1150308	Sist	142359. 1	5.153385
Diablo U. S. G. S. cairn 1909	311152.744	1624.4	763345	2563345	Diablo	3.28	0. 5159
	1045451.097	1352.7					
$\begin{gathered} \text { Allamore } \\ 1909 \end{gathered}$	310439.476	1215.6	242851.0	2042617.9	Eagle	19040.4	4. 279677
	1050009.624	255.1	994506.6	2792948.1	Quitman	47772.0	4.670173
$\underset{1909}{\text { Quitman U. S. G. S. cairn }}$	$\begin{array}{r} 31 \quad 08 \quad 58.875 \\ 105 \quad 2947.063 \end{array}$	$\begin{aligned} & 1813.2 \\ & 1246.6 \end{aligned}$	305741	2105741	Quitman	2.0	0.3010
Corduna U. S. G. S. cairn 1909		976.9 1497.3	3504745	1704745	Corduna	7.8	0.8921
Cerro Alto 1909	$\begin{array}{llll}31 & 56 & 43.141 \\ 305\end{array}$	1328.8	844216.3	2642541.0	North Franklin	49669.0	4.696085
	1055814.045	368.8	2581285.9	$7^{78} 26$ 43.1	Corduna	43884.6	4. 642312
			3325014.0	1530507.1	Quitman	99042.1	4.995820
Cerro Alto U. S. G. S. cairn 1910	$315643 \cdot 353$	1335.3	3384958	1584958	Cerro Alto	7.0	0. 8451
	$1055^{814.141}$	378.4					
Mesa 1909	314535.296	1087. 1	1372106.9	$\begin{array}{llllll}317 & 16 & 13.4\end{array}$	North Franklin	21585.5	4.334162
	$106 \quad 20 \quad 19.693$	518.3	2392813.6	593253.2	Cerro Alto	40469.4	4.607127
			$30958 \quad 22.7$	$1302445 \cdot 2$	Quitman	104819.0	5.020440
Silo 1909	$\begin{array}{rrr} 31 & 44 & 59.87 \\ 106 & 28 & 28.42 \end{array}$	$\begin{array}{r} 1844.0 \\ 748.0 \end{array}$	122 2625	3022427	Boundary montment No. 2	7010.6	3.845758
			2650656	851114	Mesa	12908.5	4. 310877
```E1 Paso: Courthouse 893```	$\begin{array}{rrr} 3145 & 30.164 \\ 106 & 29 & 02.349 \end{array}$	929.1 62.0	995533.2	2795525.6	Federal Building (flagstaff)	386.0	2. 586643
			$\$ 19$ or 03.6	29859 22.7		5766.0	3.760878
			1192206.8	2992026.3	Boundary monument No. 2	5764.7	3. 760778
			1282040.8	3081946.7		3451.3	3. 537979
			$26918 \quad 12.3$	892247.4	Mesa	13755.7	4.138482
Federal center 1910	$\begin{array}{rrr} 31 & 45 & 32.308 \\ 106 & 29 & 16.706 \end{array}$	$\begin{aligned} & 995.1 \\ & 439.7 \end{aligned}$	1204010.5 2693587.0	300 3 $8 \begin{aligned} & 87.6 \\ & 89\end{aligned} \begin{aligned} & 39\end{aligned}$	Boundary monument No. 2, Ecc. Mesa	$\begin{array}{r} 5396.0 \\ 14132.9 \end{array}$	$\begin{aligned} & 3.732073 \\ & 4.150230 \end{aligned}$
Federal flagstaff 1893	$\begin{array}{rrr} 31 & 45 & 32.324 \\ 106 & 29 & 16.798 \end{array}$	$\begin{aligned} & 995.6 \\ & 442.1 \end{aligned}$	1204044.4	3003911.6	Boundary montument No, 2, Ecc.	5393.7	3.731887
			2693523.1	894005.8	Mesa	14135.3	4. 150304
Mills 1918	314532.489	1000.6	3004850	204152	Weather	294. 3	2. 46877
	1062919.424	518.2	2742729	942731	Federal buildiag (conter)	71.7	5. 85582
			2790312	990321	Courthouse	455.0	2. 65805
Weather 1918	314541.427	1275.9		1350746	El Paso coturthouse	489.5	2. 68975
	$106 \quad 2915.472$	407.2	63546	1863546	Federal building (center)	282. 7	2.45139
$\underset{\text { City Hall }}{ }$	$\begin{array}{rrr}31 & 45 & 32.228 \\ 106 & 29 & 04.309\end{array}$	$\begin{aligned} & 992.6 \\ & 113.4 \end{aligned}$	902607	27026 or	Federal building (center)	326.3	2. 51356
	10629 04.309		910938	2710930	Mills	397.9	2. 59973
			1335757	3835758	Weather	408. I	2.61081
West ${ }_{\text {1983 }}$	314536.435	1122.2	2311151	511153	East	121.5	2. 08454
	106,29 29.968	788.7	2480253	680300	Weather	411.3	2. 61415
1918			2933920	1133925	Mills	302.9	2. 48133
East	$31.45 \quad 38.907$	1198.3	2545128	745126	Weather	297. 1	2.47292
	1062926.370	694.0	3171427	+3714 30	Mills	269.2	2. 43013

Stanton base to Deming base-Continued.

[^12]Stanton base to Deming base-Continued.

Deming base net to San Jacinto-Cuyamaca.

Near	314723.753	731.6	3351906.8	553649.4	Filorida	64007. 4	4.806230
1910	1081103.844	101. 1	3661031.9	$86 \quad 18000$	Hermanas	334.48 .6	4. 351190
Fonndary monument No.	3147 01. 360	38.8	1960846.7	160850.7	Near	731.2	2.858076
39 (U.S. \& Mex.)	10811111.468	301.7	2345444.6	$\begin{array}{llllll}55 & 12 & 34.1 \\ 8 & 15 & \end{array}$	Florida	64568. I	$\text { 4. } 810018$
1910			364 $3: 49.0$	843531.6		22705. 1	4. 356133
	$\begin{array}{rrrr}31 & 47 & 01.169 \\ 107 & 55 & 45.394\end{array}$	36.0	1405539.0	3305503.7	Hermanas Florida	$\text { 3793. } 5$	$3 \cdot 446 x_{43}$
3 (U. S. \& Mex.) 1910	$1075545 \cdot 394$	11943	2173846.6	374823.1	Florida	46755.9	4. 6698836
Boundary monument No. 32 (U.S. \& Mex.)	$\begin{array}{rrr} 31 & 47 & 01.200 \\ 107 & 57 & 18.025 \end{array}$	$\begin{array}{r} 37.0 \\ 4 \% 4.3 \end{array}$	900350.8	369 5 3 3 37.8	Bonndary monument No. 39	21927.9	4.340998
1910			915329.7	3;14614.7	Near	317.57.7	4.337314
			1971904.5	1719180	Hermanas	3370-5	3.356137
Boundary monument No.	31878 or. 365			725559.4		2359.2	3.372758
$40 \text { (U. S. \& Mex.) }$	1081229.563	777.8	2695954.8	900035.9	Boundary monuwent No. 39	2054.7	3.312747
$\begin{gathered} \text { Burro U. S. ©. S. } \\ 19 \mathrm{O} \\ \hline \end{gathered}$	$\begin{array}{rrrr}32 & 35 & 26.607 \\ 108 & 25.56 .643\end{array}$	819.6 $14 \% 78.2$	107 or 04	287 or 04	Burro	3. 645	a. 4976
Huachuca	$3129{ }^{31} 36.0 .44$	803.1	11782405.59	297 as 30. 37	Baldy	49726.0	4. 6965837
1910	1102355.583	1466.9	3473253.57	680730.41	Chiricahua	112459.4	5.0509958
Huachuca U. S. G. S. cairn	$\begin{array}{rrr} 31 & 29 & 26.037 \\ 110 & 22 & 55.561 \end{array}$	$\begin{array}{r} 801.9 \\ 1466.4 \end{array}$	109350	3893500	Huachuca	0.6	9.7782

${ }^{1}$ Checked by vertical angles only
${ }^{2}$ No check on this position.

Deming base net to San Jacinto-Cuyamaca-Continued.

Station	Latitude and longitude	Seconds in meters	Azimuth	Back azimuth	To station	Distance	I.ogarithm
Supplementary pointsContinued.							
	-		- " "	- ' "		Meters	
Mule (U. S. G. S.)	312637.246	1147%	972834.28	27715	Huachuca	40550.4	4. 6079953
	1095732.216	850.7	2331112.68	533238.55	Chiricahua	79809.6	4.9020553
Boundary monument No.	312002.447	75.4	1095055.60	2893459.91	Huachuca	51451.2	4. 7113959
```91 (U.S. & Mex.) 1910```	1095221.943	$5^{\text {Sob. }} 1$	1460201.91	32559 20. 31	Mule (U. S. G. S.)	14664.4	4. 1662641
$\underset{1893}{\text { Noga!es No. }_{7}}$	312137.630	1158.9	$211 \begin{array}{lll}16 & 57.23\end{array}$	312426.55	Baldy	43578.2	4.6392697
	1110511.191	295.8	2573934.76	78 or 36.81	Huachuca	68504.0	4.8357162
```Boundary monument No. 128 (U. S. & Mex.) 1910```	313000.894	27.5	1655105.70	3455050.92	Nogales No. 7	3072.5	3.4874898
	1110442.775	1130.9	3083247.11	2840 Or. 40	Baldy	45786.6	4.6607385
			2550536.40	$75 \quad 27 \quad 23.12$	Huachuca	68475.8	4.8355369
$\begin{gathered} \text { Benedict (U. S. G. S.) } \\ 1910 \end{gathered}$	$\begin{array}{rrrr}31 & 23 & 46.696 \\ 110 & 55 & 20.999\end{array}$	1438.2 $554 \cdot 7$	64.5631 .22	$2445^{1} 38.83$	Boundary monument No. 128	16394.6	4. 2147000
			754436.81	25539 29. 51	Noga!es No. 7	16093.9	$\text { 4. } 2066625$
			192 O1 53.57	120414.34	Baldy	33992.3	$\text { 4. } 5313800$
```Boundary monument No. 120(U. S. & Mex.) 1910```	$\begin{array}{rrr} 31 & 19 & 58.282 \\ 110 & 55 & 38.554 \end{array}$	$\begin{aligned} & 1794.9 \\ & 1019.2 \end{aligned}$		2691801.71	Boundary monument No. 121	1073.8	3.0309209
			I01 2808.72	$\begin{array}{llll}381 & 23 & 10.82\end{array}$	Nogales No. 7	15442.7	4. 1887237
			$\begin{array}{lllllll}183 & 46 & 18.69\end{array}$	34627.82	Benedict(U.S.G.S.)	7049.9	$3.8481845$
			1903648.04	103917.85	Baldy	40981.6	4.6125891
```Boundary monument No. 12I (U.S. & Mex.) 1910```	$\begin{array}{rrr} 31 & 19 & 57.858 \\ 110 & 56 & 19.168 \end{array}$	$\begin{array}{r} 1781.9 \\ 506.8 \end{array}$	$90 \quad 26 \quad 19.29$	2702157.41	Boundary monument No. 128	13314. 1	4.1243121
			$\begin{array}{llll}102 & 21 & 49.50 \\ 192 & 18 & 0\end{array}$	28217812.73	Nogales No. 7	14394.8	$4,1582057$
			$192 \quad 18 \quad 02.58$	$1 \begin{array}{llllll}12 & 18 & 32.85\end{array}$	Benedict(U.S.G.S.)	7213.4	3.8581406
$\begin{aligned} & \text { Mexican customhouse } \\ & \text { flagstaff (Nogales) } \\ & 1893 \end{aligned}$		1611.3	1032811.7	$\begin{array}{llll}283 & 23 & 44.5\end{array}$	Nogales No. 7 ,	13961.5	
	$1105637 \cdot 461$	990.4	1953802.6	15 15842.4	Benedict(U.S.G.S.)	7495.8	3. 874819
			2503407.1	703416.6	Boundary monument No. 121	512.8	2. 709978
$\underset{1893}{\text { Nogales No. } 5}$	312008.584	264.4	1061240.4	2860934.4		9838.4	3.992926
	11059×3.737	363.2	2765406.4	$9655 \quad 27.7$	Mexican customhouse flagstaff	4161.7	3.619273
$\underset{1893}{\text { Nogales No. } 8}$	$\begin{array}{ccc}31 & 19 & 35 \cdot 732\end{array}$	1100.5	1634026.7	3434005.1	Nogalcs No. 7	3912.0	$3 \cdot 592397$
	1110429.583	782.1	2630406.7	830650.9	Nogales No. 5	8411.2	3.924860
$\begin{gathered} \text { Nogales No. } 6 \\ 1893 \end{gathered}$	311832.070	987.7	1033258.8	2833018.6	Nogales No. 8	8383.0	3.923349
	1105921.372	565.1	$\begin{array}{ll}121 & 44 \\ 183 & 21.9 \\ 183 & 04.0\end{array}$	301 301 3 53 19.9	Nogales No. 7 Nogales No. 5	10871.3 2979.3	$4.0362 \$ 0$
			1835304.0	35307.9	Nogales No. 5	2979.3	3.474107
$\underset{1893}{\text { Nogalcs No. } 3^{1893}}$	31 19 53.054 10 50 35	1633.9	672041.6	24718 48. 2		6470.8	
	110 55 35. 552	939.9	891242.5	2691210.3	Mexican customhouse flagstaff	1036.9	3.214015
			944520.5	2744327.0	Nogales No. 5	5787.9	3.762525
$\underset{1893}{\text { Nogales No. } 4}$	$\begin{array}{llll}31 & 18 & 56.882\end{array}$	1751.8	825645.4	2625444.4	Nogales No. 6		
	$110 \quad 55 \quad 28.392$	750.7	1102111.3	29019 14. 1	Nogales No. 5	$6353 \cdot 9$	3.803043
			17345 a 1.2	3534517.5	Nogales No. 3		3.240634
$\underset{1893}{\text { Nogales No. } 1}$	$\begin{array}{rrrr}31 & 19 & 48.789 \\ 110 & 56 & 51.455\end{array}$	1502.6 1360.4	2535788	$733735 \cdot 4$	Mexican customhouse flagstaff	385.6	2. 586557
	110 56 51.453	1360.4	$26614 \begin{array}{llll} & 57.8\end{array}$	$\begin{array}{lllll}86 & 15 & 37.3\end{array}$	Nogales No. 3	2011.0	3. 3034 II
			3060243.6	1260326.8	Nogales No. 4	2716.4	$3 \cdot 43399 \mathrm{I}$
Nogales No. 2 1893	$\begin{array}{lll}31 & 19 & 23.610\end{array}$	727.1	1882123.0	82125.2	Nogales No. $:$	783.8	2. 894199
	$1105655 \cdot 764$	1474.4	$246 \quad 50 \quad 32.2$	66 51 14.0 109 37	Nogalcs No. 3	2306.4	$\text { 3. } 362941$
			2893630.3	1093705.7	Nogalcs No. 4	2452.4	3. 389598
Nogales: Azimuth station 1893	311957.391	$1767 \cdot 5$	$276 \quad 36 \quad 59-9$	963722.5		1158.6	
	1105619.084	5045		1441646.9	Nogales No. 4	2295.5	$\text { 3. } 360868$
			721037.2	2521027.7	Mexicancustomhouse flagstaff	510. 3	2. 707841
			724807.2	2534750.4	Nogalcs No. I	895.9	2.952242
Astronomic station 1893	$\begin{array}{rrr} 31 & 20 & \text { OI. } 764 \\ \text { IIO } & 56 & 22.363 \end{array}$	$\begin{array}{r} 54.3 \\ 59 \mathrm{I} .2 \end{array}$	3271350.8	1471352.5	Nogalcs azimuth station	160.2	2. 20.4561
			535500.9	2335453.7	Mexican customhouse flagstaff	493.9	2. 693623
			623251.5	2423236.4	Nogales No. 1	866.7	2. 937877
Montezuma hotel, flagpole	$\begin{array}{rrrr} 31 & 20 & 03 \cdot 228 \\ 110 & 56 & 34 & 142 \end{array}$	$\begin{array}{r} 99.4 \\ 638.2 \end{array}$	3232122.0	1432124.6	Nogales azimuth station	224.0	2. 350304
			3134733.1	1334734.0	Nogales astronomic station	65.1	1. 813833
				$\begin{array}{llll}238 & 22 & 20.8\end{array}$		848.0	2.928405

Deming base net to San Jacinto-Cuyamaca-Continued.

Station	Latitude and longitude	Sec onds in meters	Azimuth	Back azimuth	To station	Distance	Logarithm
Supplementary poinfsContinued.							
Nogales-continued. Levy's store, flagpole	- "		- ' "	- 1		Melers	
	$\begin{array}{rrrr} 131 & 19 & 59.260 \\ 10 & 56 & 36.894 \end{array}$	$\begin{array}{r} 1825.0 \\ 711.0 \end{array}$	2853436.9	1053441.0	Nogales azimuth station	214.3	2.331104
			$63 \begin{array}{llll}65 & 28.1\end{array}$	24.33515 .4	Nogales No. 1	725.0	2. 860335
			23713 32.1	$5^{5713} 344$	Nogales astronomic station	142.5	2. 153680
South hase 1893	311924.472	753. 7	854716.5	2654709.4	Nogales No. 2	361. 6	2. 558192
	1105642.125	1113.8	1614613.0	3414608.2	Nogales No. 1	788.5	2.896791
North base 1893	311947.846	1473.6	648006	1864758.9	Nogales south hase	735.0	
	$110 \quad 5638.878$	1027.8	3053 or. 8	2105252.9	Nogales No. 2^{--}	869.7	2.939386
			945934.6	2745928.1	Nogales No. 1	333.8	2. 523433
Courthouse, dome ${ }^{1}$	$\begin{array}{rrrr}31 & 20 & 10.949 \\ 110 & 56 & 15.141\end{array}$	$\begin{aligned} & 337 \cdot 2 \\ & 400.3 \end{aligned}$	144724.2	1944722.1	Boundary monument No. 121	417.0	2.620127
			1920855.2	120923.4	Benedict (U.S.G.S.)	6796.8	3. 832307
Catbolic cburch ${ }^{1}$	312015.258	469.9	1943758.9	143832.4	Benedict (U S.G.S.)	6730.3	3.828033
	1105625.356	670.3	343 O1 23.8	163 or 27.0	Boundary monument No. 121	560.3	2. 748409
Public school ${ }^{1}$	$\begin{array}{lll}31 & 20 & 13.486\end{array}$	415.3	1944750.1	144824.3	Benedict (U.S.G.S.)	6791.8	3. 831984
	1105636.657	704.6	33738 25.2	1573829.2	Boundary monument No. 121	520.4	2. 716374
$\begin{gathered} \text { Rincon Peak } \\ 1910 \end{gathered}$	320710.55	324.8	331817.7	2130759.2	Baldy (U. S. G. S.)	56126.6	4.749169
	1103121.68	568.3	1152557.2	29434 23.2	Table	166267.4	5. 230807
Four Peaks, second from north	334051.311	1580.8	360505.5	2153852.1	Table	126936.3	5. 103586
	1111937.996	978.7	435350.8	2231915.6	Maricopa	142223.4	$\text { 5. } 152971$
			840236.7	2632133.2	Whitctank	114897.6	5.060311
Desert Peak	324307.741	238.4	932525.4	273 or 54.0	Table	68062.0	4.832905
	1112359.976	1561.9	923506.4	2720319.6	Maricopa	91883.0	4.963235
			1795815.5	3595814.7	Superstition (U. S. G. S.)	76772.4	4. 885205
Comobabi Peak	314615.841	487.9	1553856.4				
	$1113543 \cdot 794$	1152.4	1854154.8	54813.0	Superstition (U. S. G. S.)	182785.6	$\text { 5. } 261942$
			2762927.7	$96 \quad 5303.6$	Baldy (U. S. G. S.)	71346.4	4.853372
Maricopa astronomic station, eccentric $19{ }^{\circ}{ }^{\circ}$	3303 34.351	1058. 2	113750.8	1913525.0	Table	34663. I	4. 539867
	1120301.456	37.8	421132.5	2220048.9	Maricopa	45914.7	4.661952
Maricopa northwest base,$\underset{\text { (U.S.G.S.) }}{(910}$	33 0300.494	15.2 308.1	$\begin{array}{llll}13 & 58 & 24.9 \\ 44 & 10 & 38.9\end{array}$	1935534.1	Table	33910.9	
	1120215.343	398.1	44 10 38.7	2235930.1	Maricopa	45972.9	4.662502
			1310510.8	3110445	Maricopaastronomic station, eccentric.	1587.2	$3 \cdot 200624$
3.5aricopa cast pier	$\begin{array}{rrr}33 & 03 & 33.527 \\ 112 & 03 & 00.808\end{array}$	1032.8 23.3	1380719.6	3180719.3	Maricopa astronomic station, eccentric	21.673	1. 335919
Maricopa west pier	$\begin{array}{rrr}33 & 03 & 33.826 \\ 112 & 03 & 00.968\end{array}$	$\begin{array}{r} 1042.0 \\ 25.1 \end{array}$	1415459.6	$3215459 \cdot 3$	Maricopaastronomic station, eccentric.	20. 544	1. 312685
Mare	3316 24. 506	755.0	1414041.4	3213131.0	Whitetank	41572.4	4.618805
	1121649.289	1275.6	$25912 \quad 20.3$	79 41 21.5	Superstition (U. S. C. S.)	83325.7	4.920779
			3454942.5	1655447.2	Table	59479.0	4.774364
			90748.1	1890433.8	Maricopa	58529.1	4.767372
Sierra Del Ajo ${ }^{\text {I }}$ 1910	32 ol 38.24	1177.9	1995328.0	200327.0	Maricopa	$85549 \cdot 2$	4.932216
	1124124.13	633.2	2131715.4	$33 \quad 3525.2$	Table	96485.9	$4 \cdot 984464$
Flat Top (ccnter)	323807.643	235.4	1892239.4	92840.8	Whitetank	104751.9	5.020162
	1124430.457	793.9	249 or 06. 5	691251.1	Maricopa.	36368.0	$4 \cdot 560720$
			2570541.5	772540.9	Table	59302.6	
$\text { Watson Peak }_{1910}^{1}$	340913.66	420.9	184649.8	1983852.1	Whitctank	68690. 4	4.836896
	11219 11.35	290. 7	$68 \quad 2947 \cdot 7$	2475521.8	Harquahalla	102170.6	5. 009326
Gila Peak		96.2	21422 ± 3.8	3433 or.o		53764.7	4. 730497
	1125305.521	143.0	3024028.2	1230516.5	Table	84600.9	4.927375
			3140705.3	13423 35.2	Maricopa	65976.6	4.819390

Deming base net to San Jacinto-Cuyamaca-Continued.

Station	Latitude and longitude	Sec onds in meters	Azimuth	Back azimuth	Tostation	Distance	Logarithma
Supplementary pointsContinued.							
	"		- ' "	- " 1		Meters	
Needles	332412.500	385.1	862048.3	2655506.6	Kofa	72589.4	4. 860873
	1131814.916	385.4	175 755030606	3550142.1	Harquahalla	45464. 1	4. 657669
			2550703.6	753145.6	Whitetank	71687.4	
Peak "N"1	3419 44.93	1384.5	IoI 19 Or. 8	2803234.1	Powell	128629.9	5. 109342
	1124850.30	1283.2	1173251.2	2964729.0	Pine	107160.8	5.030036
Peak "I' ${ }^{\text {I }}$	345653.15	1637.8	6 I 3858.4	2410839.1	Powell	92475.6	4.966027
	$\begin{array}{lllllllllll}113 & 18 & 05.24\end{array}$	133.1	684024.7	2482129.0	Pine	54240. 3	4.734322
High sharp peak, 25 miles northeast of Needles ?	350525.61	789.2	3083434	1285158	Pine	57010.1	4.755952
	1142024.83	628.9	3465439	1665952	Powell	61656.1	4.789976
Gila ${ }_{19}$	324414.775	455. 1	1112540.7	2911349.6	American (U.S. G.	36669.4	4.5643034
	1142315.506	$403 \cdot 7$	2022218.4	223217.5	S.) Kofa	74626. 7	4.8728945
Castle Dome 1910	330505.357	165.0	304639.4	2103840.8	Gila	44808.9	4. 6513646
	1140834.856	904.0	411934.8	221 05 00.8	Yuma No. 10	63546.6	4.8030924
			661845.8	3455848.1	American (U. S. G. S.)	62280. I	4.7943493
			1153733.2	2945757.2	Butte	123723.0	
			1902910.6	103110.0	Kofa	30962.8	$4 \cdot 4908403$
$\underset{\text { Y. }}{\substack{\text { YiI }}}$	323913.344	417.0	1461036.2	3260520.6	American (U.S.G.S.)	$27345 \cdot 7$	4.4352987
	1143525.039	652.5	211 of 43.4	312219.4	Kofa	91518.2	4.9615077
			2435415.3	$64 \infty 0049.4$	Gila	21150.5	4.3253207
$\underset{t 893}{\text { Yuma No. } 9}$		507.5	19349 28. I	135000.5	Azimuth station	6536. 7	
	114380.8081	127.0	2711851.8	913018.0	Yuma No. 10	4166.4	3.619764
Yuma: Azimuth station 1911							
	324242.524	1309.9	1421015.3	32205053.4	American (U.S.G.S.)	20494-4	4. 311636
	114.3704 .898	127.6	$\begin{array}{ll}362 & 36 \\ 31.1 \\ 338 & \text { co } \\ 34.0\end{array}$	$\begin{array}{rrr}82 & 33 & 59.5 \\ 158 & \text { O1 } & 17.8\end{array}$	Gila No. 10	21783.6 6949.0	4. 338130 3.841923
West base 1893					Azimuth station		
	1143756.244	1465.0	235 O1. I	1823456.3	Yuma No. 9	4987.4	3.697871
East base 1893	324148.834	1504.3	271054.3	2071004.2	Yuma No. 9	5275.6	3. 722274
	1143632.395	843.8	973239.0	$2773153-7$	West base	2203. I	$\text { 3. } 343041$
			1525345.1	3325327.5	Azimuth station	1858.0	3. 269044
			3395231.8	1595258.0	Yuma No. 10	5101.1	3. 707664
Courthouse dome 1910	324326.206	807.2	1403638.5	3203207.6	American (U.S.G.S.)	19204. 6	4. 283405
	1143719.560	509.3	2660232.2	861008.5	Gila	22028.7	4.342988
			339020808	15903050	Yuma No. so	8341.0	3.921220
			3440930.0	1640938.0	Azimuth station	1398.7	3. 145737
$\underset{\substack{\text { Indian } \\ \text { tank }}}{\text { school water }}$	324352.469	1616.3	3444533.1	1644621.6	Yuma No. 10	8911.4	3-949946
	1143654.929	1430.3	6 52 1515.5	18652 10. I	Azimtith station	2170.2	3-336499
			1373402.9	3172935.6	American (U.S.G.S.)	19013.2	4. 279055
B	3243 31.332	965.2	3414812.9	${ }_{161} 4^{8} 34.5$	East base	3323.6	3. 521605
	1143712.239	318.7	3524512.5	1724516.5	Azimuth station	1515.6	3.180586
Boundary post	3243 32.528	1002.0	3495841.2	$\begin{array}{lllll}169 & 58 & 52.9\end{array}$	East base	$3243 \cdot 7$	3. 511046
	1143654.066	1407.9	$\begin{array}{ll}10 & 2244.7\end{array}$		Azimuth station	1566.0	3.194782
			853259.0	2653249.1	\mathbf{B}	$474 \cdot 7$	2.676382
Latitude station	324337.678	1160.4	3110189.5				2. 473476
	1143720.858	543. I		1661513.1	Azimuth station	1748.9	3.242759
			$92 \begin{array}{ll} \\ 56 & 23.1\end{array}$	3725221.8	Pilot Knob	$11635 \cdot 7$	4.065794
Indian school	32 43 56.481 14	1739.9	I 4858.4	${ }_{18}^{18} 41597.0$			3.357785.
	1143702.303	60.0	$18 \quad 2805.5$	1982800.1	B	816.8	2.912100
			90 o5 04.9	2700053.5	Pilot Knob	12103.6	4.082913
Penitentiary	3243 37.808	1164.6	94606.0		Azimuth station	1728.0	3. 237556
	$1143^{6} \quad 53.641$	I396. 8	$673645 \cdot 7$	2473635.6	B	523.8	2. 719139
Pilot Knob 1893	324356.823	1750. 4	2804350.6	1004800.5	Azimuth station	12253.0	4.088243
	1144447.147	1227.6	3004606.3	1205109.8	Yuma No. 10	17048.7	4.231691
			30927 44.7	1293122.0	Yuma No. 9	13578.9	4. 132866
Picacho, U. S. G. S. cairn	$322 \begin{array}{llll}38 & 16.864\end{array}$	519.5	3150220.4		Gila	36612.8	
	11439 49. 171	1276.9	3485532.8	1685855.9	Yuma No. 10	35890.0	4. 554973
			3513241.9	17134 II .1	Azimuth station	29097.7	4.463858

Deming base net to San Jacinto-Cuyamaca-Continued.

Station	Latitude and longitude	Sec. onds in meters	Azimuth	$\underset{\text { azimuth }}{\text { Back }}$	To station	Distance	Logarithm
Supplementary pointsContinued.							
	- ' "		- " ${ }^{\prime}$	- ' 11		Meters	
$\begin{aligned} & \text { Boundary monument No. } \\ & 204 \text { (U. S. \& Mex.) } \\ & \text { I } 893 \end{aligned}$		$\begin{array}{r} 123.8 \\ 1204.5 \end{array}$	$\begin{array}{llll}186 & 25 & 37.9 \\ 210 & 58 & 06.5\end{array}$	$\begin{array}{rrr}6 & 26 & 42.0 \\ 31 & 03 & 19.6\end{array}$	Pilot Knob Azimuth station	27676.2 29418.2	4. 442107 4.468616
			2232235.6	$43 \quad 3842.2$	Yuma No. 10	25844.6	4.412369
Boundary monument No. 207 (U. S. \& Mex.) 1910	324304.857	249.6	273 41 03.0	9344429	Azimuth station	${ }^{106188.4}$	4.026060
	1144351.769	1348.3	281 3158.4	1013554.9	East base	11680. 7	4.067469
			2982028.6	1182502.2			4.176213
$\begin{aligned} & \text { Boundary monument No. } \\ & 208 \text { (U.S. S. \& Mex.) } \\ & 1910 \end{aligned}$	324256.346		2714232.0	${ }^{91} 4721.3$		${ }^{13949.3}$	
	1144600.267	7.0	2775740.3	9802 47.2	East base	14936.0	4.174235
			29229445	1123527.5	Yuma No. 10	17917.9	4.253287
Boundary monument No. 206 (U. S. \& Mex.) 1910	324306.919	213.1	$274{ }^{21} 42.9$	942506.0	Azimuth station	9817. 1	3.991987
	1144320.749	540.3	28242487.3	1024628.0	East base.	10904.2	
	-		3000611.3	1201028.2	Yuma No. 10	14330.1	4156250°
$\underset{\mathrm{I}_{93}}{\text { Yuma No. } 1 \mathrm{I}}$	324126.382	812.7				9002. 1	3.954343
	1144943.478	1132.6	2631024.0 280 19	$\begin{array}{rrrrr}83 & 17 & 13.8 \\ 100 & 26 & 4.8\end{array}$	Azimuth station	19897. 4	4. 298897
			$\begin{array}{lllll}280 & 19 & 06.1 \\ 348 & 33 & 08.3\end{array}$	$\begin{array}{lllll}100 & 26 & 49.5 \\ 168 & 34 & 43.8\end{array}$	Yuma No. 10 Boundary monu-	22739.3 23330.7	4. 3566777 4.367928
			3483308.3		Boundary monument No. 204		4.367928
$\begin{gathered} \text { Hill (Cal.) } \\ \pm 893 \end{gathered}$	345411.922	367.4	281 O1 45.62	101 29 47.35	Pine		$\text { 4. } 8823676$
	1144016.167	410.4	311 348 345 36	131 165 1650 40 14.24 .25	Powell Chemehuevis	59180.7 40193. 5	$\begin{aligned} & \text { 4. } 7721798 \end{aligned}$
Knoll 1893	345010.107	311.4	1514709.5	3314535.4	Hill	8457. 4	3. 927237
	1143738.673	982.7	2754647.3 349 15	36 18 169 16	Pine	71220.8 32045.8	4.852607
			$349150 \% .0$		Chemehuevis		4.505771
$\underset{1893}{\text { Bluff }^{2}}$	34.54 59.391	1830.2	3560716.8	1760730.4	Knoll	8934.8	3.951086
	$114{ }^{38} 802.459$	62.4	${ }^{3} 664149.9$	2464033.4	Hill	3696. 1	3. 567747
C. \& G. S. B. M. N ${ }_{\text {6 }}$ eccentric	345146.962	1447.0	20429 42.2	2430 43. 1	Bluff	6516.7	3. 814027
	1843948.900	1242. 1	$\begin{array}{llll}277 & 46 & 39.7 \\ 312 & 02 & 39.7\end{array}$	$\begin{array}{rrrrr}98 & 14 & 25.1 \\ 132 & 03 & 53.6\end{array}$	Pine Knoll	74859.0 4455.7	3. 8.874244 3. 648917
Bar							
	$3450<6.669$	205. 5	925326.0	$272 \begin{array}{llll} & 5 & 38 \\ 321\end{array}$	Knoll	2105.7	3. 323404
	1843615.904	404. 1	141 05 59.1 163 18 18	32103418	${ }_{\text {Hill }}$	9713.7	3.987384
			1631833.2	$\begin{array}{cccc}343 & 17 & 31.3 \\ 21 & 21 & 40.1\end{array}$	$\xrightarrow{\text { Blufi }}$ Needles east base	9417.5 1292.5	3.973937
			2012129.5	2121401	Needles east base	1292. 5	3.111426
Needles east base ${ }^{1893}$	345045.731	1409. 2		2465331.6			
	11435 57.376	1457.9	$\begin{array}{llll}134 & 03 & 0.4 \\ 157 & 53 & 39.5\end{array}$	$\begin{array}{llll}314 & 00 & 36.6 \\ 337 & 52 & 28.0\end{array}$	Hill Bluff	$\begin{aligned} & 9141.6 \\ & 8417.4 \end{aligned}$	3. 961024 3.926209
Needles west base 1893	345100.619		3046 35. 2	2104614.3	Knoll	r8ır. 6	3. 258070
	1143702.190	55.6	1400751.0	3200600.0	Hill	7682. 5	3.885501
			$168 \times 5 \times 5.4$	3481440.9	Bluff	7515.3	3.875948
			2853350.6	1053427.6	Needles east base	1709.3 3065	3. 2328825
			3244320.7	14443 47.1	Bar	2036.4	3.308857
$\underset{1893}{ } \begin{gathered}\text { Needles schoolhouse tower } \\ 102\end{gathered}$	345008.346	254.1	603453.2	2403451.2		98.95	1. 995424
		317.9	913026.2	2712936.9	Knoll	2100.0	3. 340447
			1415885		Needles west base	2048.8	3.311504
	1		1982445.7	$18 \quad 2454.3$	Needles east base	1217.4	3.085447
Needles longitude station 1889	$\begin{array}{rrrr}34 & 50 & 16.036 \\ 114 & 36 & 15.899\end{array}$	494.1	$\begin{array}{rlll} 340 & 16 & 24.6 \\ 0 & \text { or } & 27.1 \end{array}$	$160 \quad 16 \quad 26.5$ 180 ol 27.1	Needles schoolhouse Bar	$\begin{aligned} & 255.0 \\ & 288.6 \end{aligned}$	2. 406539 2. 460355
	1143615.899	404.0					
Needles public school, east dome 1911	345008.256	254.4	929588	2782908.9	Knoll	2190.3	3. 340497
	11443612.502	317.7	$118{ }^{188} 818.2$	2985614.6	C. \& G.S. B. M. N ${ }_{6}$ eccentric	6282.9	3. 79818 rax
			1403183.9	3202904.6	Hill	9730.4	3.988.32
Base 1893	345008.212	253.0	533134.2	2333132.8	Bar	80.0	1. 903090
	1143613.372	339.8	1650512.6	3450511.2	Needles station	249.5	2. 397047
Peak "E"	351624.571		3050052.6	1253044.3	Pine	96933.8	4.986475
	1144314105	356.5	3283914.4	1485731.3	Powell	93955.2	4.972921
			3494221.3	1694747.4	Chemehuevis	81301.8	4.910100
Peak "D"	353608.271	254.9	3070316.2	1274906.4		152067. 7	5. 182037
	1151044.544	1121.3	$\begin{array}{lllll}321 & 59 & 38.3 \\ 334 & 02 & 47.7\end{array}$	14233 154 154 24 03.7	Powell	147722.6 129356.4	5.189447

Deming base net to San Jacinto-Cuyamaca-Continued.

Station	Latitude and longitude	Seconds in meters	Azimuth	Back azimuth	Tostation	Distance	Logarithm
Supplementary pointsContinued.							
	- ' 1		- ' $"$,		Meters	
Peak "C'	351531.833	981.0	2914804.9	1123815.4	Pine	143686.9	5.157417
	1151838.560	974.9	30711101.7	12749343	Powell	129336.2	5.111720
			3184027.3	1390609.1	Chemehuevis	104028. 2	5.017151
Peak " ${ }^{\text {] }}$	3457 19.395	597. 7	2771118.5	980853.8	Pine	154921. 6	5. 190112
	115 31 56.763	1440 2		1102949.9	Powell	131086.8	5.117559
			2963633.4	$1165944 \cdot 2$	Chemehuevis	99447. 1	4. 997592
Peak "A"			2702513.0	$\begin{array}{llll}91 & 28 & 22.4\end{array}$			
	$1154 \mathrm{~L} 54 \cdot 782$	1392.8	28041105.5		Powell	1.41081 .8 107539.8	5.149471
			$28407 \quad 26.3$	$10446 \quad 13.3$	Chemehuevis		
$\text { Sharp Peak }{ }^{1}$$1910$				1494652.0	American (U.S.G.S.)	97650.4	4989674
	1151654.88	1414.8	430456.1	2230251.7	Butte	8488.2	3-928814

${ }^{2}$ Checked by vertical angles only.

DESCRIPTIONS OF STATIONS.

This list may be conveniently consulted by reference to the illustrations at the end of this publication or to the index. All azimuths given in these descriptions are reckoned continuously from true south around by west to 360°, south being 0°, west 90°, north 180°, and east 270°. Where magnetic azimuths are given they are indicated as such.

In general the surface and underground marks are not in contact, so that a disturbance of the surface mark will not necessarily affect the underground mark. The underground mark should be resorted to only in cases where there is evidence that the surface mark has been disturbed.

The dates and initials given in each description immediately after the county refer to the date of establishment of the station, the man by whom it was established, and the date when the station was last visited.

Any person who finds that one of the stations herein described has been disturbed, or that the description no longer fits the facts, is requested to send such information to the Superintendent, Coast and Gcodetic Survey, Washington, D. C.

MARKING OF STATIONS.

The standard triangulation disk station mark referred to in the following notes and descriptions consists of a disk and shank, as shown in illustration No. 8, made of brass and cast in one piece. The disk is 90 mm . in diameter, with a small hole at the center surrounded by a 20 mm . equilateral triangle, and has the following inscribed legend: "U. S. Coast and Geodetic Survey triangulation station. For information write to Superintendent, Washington, D. C. \$250 fine or imprisonment for disturbing this mark." The shank is 25 mm . in diameter and 80 mm . long, with a slit at the lower end into which a wedge is inserted so that when it is driven into a drill hole in the rock it will bulge at the bottom and hold the mark securely in place.

Another type of station mark shown in illustration No. 8 and referred to in the following notes and descriptions is made in the form of a cap to fit a 3 -inch pipe instead of
with the shank, but in other respects is exactly similar to the disk station mark described abovc.

The old type of station mark referred to in the following notes and descriptions is somewhat similar to the disk station mark described above, except that the disk has a raised rim and that the lcgend which is on the depressed part within the rim consists only of the following raiscd letters: "U. S. C. \& G. S."

GENERAL NOTES IN REGARD TO STATION MARKS.

Note r.-The underground mark is the point of a 40 -penny nail projecting onefourth of an inch above the concrete that fills an iron pipe $1 \frac{1}{2}$ inches in diameter and 12 inches long, which in turn is embedded in a cylinder of concrete 12 inches in diameter and 12 inches long. The surface mark is similar to the underground mark, except that the cylinder of concrete and the iron pipe are cach 24 inches long and the cylinder is 20 inches in diameter. The top of the underground mark is 30 inches bclow the surface of the ground, and 6 inches of sand or earth scparates it from the surface mark.

Note 2.-The underground mark is a 4o-penny wire nail cemented into a drill hole in the solid rock, the point of the nail projecting one-fourth of an inch. The surface mark is similar to the surface mark described in note I, except that the length of the cylinder of concrete and of the iron pipe depends upon the depth of the soil above solid rock. Six inches of sand or earth separates the surface mark from the underground mark.

Note 3.-The underground mark is an old type station mark, described above, cemented into a drill hole in the solid rock. The surface mark is the same as the surface mark described in note 2. Six inches of sand or earth scparates the surface and underground marks.

Note 4.-The underground mark is similar to the underground mark described in note 1 , except that the iron pipe is embedded in an irrcgular mass of concrete instead of in a cylinder of concrete. The surface mark is a cap station mark, described on page 83 , screwed to the top of a 3 -inch iron pipe 30 inches long, which is embedded in a cylinder of concrete 20 inches in diameter and 30 inches long. The top of the underground mark is 3 feet below the surface of the ground, and 6 inches of sand or carth separates it from the surface mark.

Note 5.-The underground mark is a disk station mark, described on page 83 , set in a cylinder of concrete 10 inches in diamater and 8 inches long. The surface mark is the same as the surface mark described in note 4. The top of the underground mark is 3 fect below the surfacc of the ground, and 6 inches of sand or carth separates it from the surface mark.

Note 6.-The underground mark is a disk station mark, described on page 83, cemented into a drill hole in a rock. The surface mark is a cap station mark, described on page 83 , screwed to the top of a 3 -inch iron pipe $21 / 2$ feet long set in the ground with earth and rock well tamped around it. The top of the underground mark is 3 fect below the surface of the ground, and 6 inches of sand or earth separates it from the surface mark.

Note 7.-The station is marked by a dise station mark, described on page 83, cemented into a drill hole in solid outcropping rock.

NoTE 8.-The underground mark is an old type station mark, described on page 84 , sct in cement 2 feet below the surface of the ground. The surface mark is a cap station mark, described on page 83 , screwed to the top of a 3 -inch iron pipe 2 feet long, which is anchored by means of an iron rod through a horizontal hole near the bottom of the pipe.

GENERAL NOTES IN REGARD TO REFERENCE MARKS.

Note 9.-The mark is the point of a 40 -penny nail projecting one-fourth inch above the concrete that fills an iron pipe $1 / 2$ inches in diameter and 24 inches long, which in turn is embedded in a cylinder of concrete 12 inches in diameter and 24 inches long.

Note ro.-The mark is similar to that described in note 9 except that the lower end of the pipe is cemented into a drill hole in the solid rock, and the lengths of the pipe and of the cylinder of concrete depend upon the depth of soil above the solid rock.

Note in.-The mark is a three-fourths inch iron rod 18 inches long, set in a cylinder of concrete 12 inches in diameter and 20 inches long.

KYLE-MCCLENNY TO STANTON BASE.

PRINCIPAI, POINTS.

Kyle (Palo Pinto County, Tex., O. W. F., 1902; 1908).-On the highest part of Kyle Mountain, which rises above the south bank of the Brazos River, 4 miles north by west of the town of Palo Pinto and $11 / 3$ miles west of the Palo Pinto-Jacksboro road at a point 3 miles south of the ford where the road crosses the river. The top of the mountain is a table-land, about 2 acres in extent, belonging to Mrs. T. A. McClure, and the station is in the middle of this area longitudinally and about one-fourth of the distance from the northeast end. The underground mark at the station is the point of a spike projecting onc-fourth of an inch from a 6 -inch bed of concrete. Above the underground mark is 4 inches of sand, and resting on the sand is the surface mark, which consists of a 6o-penny wire nail cemented in the top of a piece of terra-cotta pipe 14 inches long. The reference mark, a five-eighths inch drill hole surrounded by a 5 -inch equilateral triangle cut in one of the highest and most prominent of the large rocks near the station, is 52.47^{2} meters from the station in azimuth $38^{\circ} 07^{\prime} \mathbf{2 2}^{\prime \prime}$.

McClenny (Erath County, Tex., O. W. F., 1902; 1908).-At the center and highest point of a long wooded ridge extending east-northeast and west-southwest on land belonging to D. Cantrell, 6 miles by road north of the town of Morgan Mills, ioo meters east of the Morgan Mills-Caraway-Roberts Settlements road, between Paluxy Creek to the south and Buck Creek to the north and three-fourths of a mile west by south from the "B. D." spring. The underground mark at the station is the point of a 60 -penny wire nail projecting one-fourth of an inch above the concrete that fills a 4 -inch terra-cotta pipe 2 fect long, which in turn is embedded in a cylinder of concrete I foot in diameter and 2 feet long. The surface mark is similar to the underground mark except that the cylinder of concrete is 18 inches in diameter, and the top of the terra-cotta pipe is embedded I inch below the top of the concrete. A 6 -inch layer of sand separates the underground and surface marks. Three square-blazed oak trees are at the following distances and directions from the station: 13.17 meters, N. 38° E.; 6.20 meters, S. 65° E.; and 5.13 meters, N. $88^{\circ} \mathrm{W}$. The reference mark is exactly similar
to the underground mark at the station except that it is flush with the surface of the ground and is 53.99^{15} metcrs from the station in azimuth $198^{\circ} 47^{\prime} 28^{\prime \prime}$. Three oak trecs are at the following distances and directions from the reference mark: 3.10 meters, N. 34° E.; 6.25 meters, S. 56° E.; and 6.70 meters, S. $83^{\circ} \mathrm{W}$.

Lacasa (Stephens County, Tex., W. B., r908).-Thirteen miles due north of Ranger, a town on the Texas \& Pacific Railway, 3 miles north of Lacasa post office and I mile west of the Ranger-Caddo road on top of the highest peak of a very prominent ridge. The peak is somewhat rounded and is partly covered with low trees. The station is on the property of Robert Milholland and 6.80 meters south of the fence betwcen his property and that of Matt Stevenson. It is marked according to note I, page 84. The reference mark, described in note 9 , page 85 , is 29.56 meters from the station in azimuth $97^{\circ} 10^{\prime}$. The center of Milholland's house is about 200 meters from the station in azimuth $348^{\circ} 38^{\prime}$.

Ratllesnake (Eastland County, Tex., W. B., 1908).-On Rattlesnake Mountain, 15 miles south of Strawn, a town on the Texas \& Paeific Railway, 2 miles southwest of Tanner post office, 300 meters west of the Granbury and Eastland City road, in the W. T. Marshall pasture, and on the southern and higher one of two peaks known as Little Rattlesnake and Big Rattlesnake Mountains. The top of the peak is bare. The station is marked aecording to note I , page 84 . The reference mark, a 20 -penny wire nail cemented into a ledge of rock, is 22.25 meters from the station, in azimuth $186^{\circ} 15^{\prime} 57^{\prime \prime}$.

Pierce (Stephens County, Tex., W. B., 1908).—About 5 miles by road, or $3^{1 / 2}$ miles direct, northwest of Ranger, a town on the Texas \& Pacific Railway, about 375 meters west of the eenter of the Ranger-Wayland public road, and about one-fifth mile north of the boundary between Stephens and Eastland Counties, on the property of David Z. Pierce. The station is in a wood lot, I 6.94 meters north of an east-and-west fence which separates the wood lot from a cultivated field, and 25 paces northeast of a tenant house. It is marked according to note 1 , page 84 . The rcference mark, described in note 9 , page 85 , is in the east-and-west fence mentioned above, and 16.94 meters from the station, in azimuth 347° o6'. Other distances and azimuths are as follows: South gable of Pierce's house, 22 I. 60 meters, $244^{\circ} 49^{\prime}$; chimney on Pierce's house, 225 meters, $241^{\circ} 50^{\prime}$.

Hearn (Eastland County, Tex., W. B., 1908).-Ten miles south and 4 miles east of Cisco, a town on the Texas \& Pacific Railway, I mile south and $4 \frac{1}{3}$ miles west of Carbon, a town on the Texas Central Railroad, at the highest point of the Carbon-Romney public road, and about r mile east of where this road joins the Cisco-Long Braneh public road. The station is 4.74 meters south of the south side of the road, on land covered with low trees and belonging to J. M. Hearn, about roo meters west of the northeast corner of his property, and about five-eighths of a mile northeast of his house. The station is inarked according to note 1 , page 84 . The reference mark, described in note 9 , page 85 , is in the fence line on the south side of the road, and 27.17 ineters from the station, in azimuth $99^{\circ} 17^{\prime} 05^{\prime \prime}$.

Flat (Eastland County, Tex., W. B., 1908).-About $8 \frac{1}{2}$ miles by road northwest of Eastland, $121 / 2$ miles by road northeast of Cisco, towns on the Texas \& Pacific Railway, and one-half mile west of the Cisco-Gunsight public road, on the highest point and near the north end of a short wooded ridge called on the United States Geological Survey map "Flat Top Mountain," a name not recognized locally. The station is 43.40 meters west of a north-and-south fcnee running along the eastern edge of the top of the peak, on
land belonging to P . Thorp, of Gunsight. The station is marked according to note I , page 84 . The reference mark, described in note 9 , page 85 , is in the east-and-west fence mentioned above, and 47.53 meters from the station, in azimuth $297^{\circ} 59^{\prime} 06^{\prime \prime}$. Other distances and azimuths are as follows: Chimney of a white house, about three-fourths of a mile, $231^{\circ} 22^{\prime} 36^{\prime \prime}$; chimney of N. J. Ramsower's house, about three-fourths of a mile, $298^{\circ} 31^{\prime} 36^{\prime \prime}$.

Lamb (Eastland County, Tex., W. B., 1908).-Two miles south and 5 miles west of Cisco, 2 miles south, and 2 miles east of Dathan, towns on the Texas \& Pacific Railway, and I mile south of the old Base Line public road, on one of the highest points of an extensive plateau. It is on the property of J. J. Livingston and in a grove of low oak trees just to the east of a north-and-south road. The station is marked according to note 1 , page 84. The reference mark, described in note 9 , page 85 , is 0.40 meter east of the fence line on the east side of the road, and 21.09 , meters from the station, in azimuth $105^{\circ} 24^{\prime}{ }^{11} 1^{\prime \prime}$. Other distances and azimuths are as follows: South gable of J. F. Lamb's house, about 120 meters, 158° : $11^{\prime} 41^{\prime \prime}$; east chimney of Livingston's house, 78.10 meters, $35^{\circ}{ }^{\circ} 7^{\prime} 5^{\prime \prime}$. .

Springgap (Callahan County, Tex., W. B., 1908).-Twelve miles by road southwest of Putnam, 12 miles by road southeast of Baird, towns on the Texas \& Pacific Railway, and one-half mile south of the Baird-Brownwood public road, near the northwest corner of the Springgap Mountains. It is on a peak having a flat top partly covered with brush, and is 475 paces $\mathrm{S} .80^{\circ} \mathrm{E}$. from the extreme northwest corner of the top of the mountain, on property belonging to Richard Cordwell, of Admiral. The station is marked according to note 2 , page 84. Reference mark No. 1, a cross with a drill hole at its center and marked with the letters U.S.C. \& G., S. cut into a ledge of rock at the edge of a bluff, is 44.022 meters from the station, in azimuth $204^{\circ} 35^{\prime}$. Reference mark No. 2, a pipe set in concrete, is 12.705 meters from the station, in azimuth $214^{\circ} 45^{\prime}$. From the station the south gable of the Admiral Church is distant about 2 miles, in azimuth $172^{\circ} 35^{\prime}$, and the south gable of J. H. Brown's house is distant about onc-half mile, in azimuth $198^{\circ} 5^{\prime}$.

Hitson (U. S. G. S.) (Callahan County, Tex., W. B., 1908).-This station is identical with the United States Geological Survey station of the same name. It is on the highcr and more southern one of the two highest peaks of the Hitson Mountains, on the property of R. D. Williams, of Putnam, about 12 miles by road northiwest of Putnam and 9 miles by road northeast of Baird, towns on the Texas \& Pacific Railway. It is 30 paces west of the east break of the top of the peak, 35 paces east of the west break, and 100 paces south of the north break. The station is marked according to note 2 , page 84 . The reference mark, a cross with a drill hole at its center cut into the solid outcropping rock, is 19.160 meters from the station in azimuth $235^{\circ} 55^{\prime}$.

Clyde (Callahan County, Tex., W. B., 1908).-Four and one-half miles by road northwest of Baird, $21 / 2$ miles by road northeast of Clyde, towns on the Texas \& Pacific Railway, and 600 meters south of the upper or northi Baird-Clyde public road, on the highest point of the more southern one of two prominent hills which are about onc-half mile apart. The hill is rather sharp and covered with oak buslies, and the land is owned by Joscph Weldy, of Clyde. The station is marked according to note 1 , page 84 . The reference mark, dcscribed in note 9 , page 85 , is 3.517 meters from the station in azimuth $314^{\circ} 13^{\prime}$. The northeast corner of a house is about 50 paces from the station in azimuth $142^{\circ} 1.3^{\prime}$.

Kennard (Callahan County, Tex., W. B., 1908).-Eleven milcs by road northwest of Baird, about 16 miles by road northcast of Abilcne, and $7^{1 / 2}$ miles north of Clydc, towns on the Texas \& Pacific Railway, in a cultivated field belonging to John Kennard, whose addrcss is Clydc , and near the northwest corner of a long north-and-south ridge which has a nearly flat top with a few scattered trees growing on it. A peach orchard is just south of the station. The station is marked according to note 1, page 84 . The reference mark, described in note 9, page 85 , is in an east-and-west fence and 234.13 meters from the station in azimuth $172^{\circ} 25^{\prime} 11^{\prime \prime}$. Other distances and azimuths are as follows: North gable of Kennard's house, 144.92 meters, $345^{\circ} 39^{\prime}$; northwest corner of Kennard's barn, about 150 meters, $311^{\circ} 5 I^{\prime}$.

Clayton (Taylor County, Tex., W. B., 1908). -This station is very close to the United States Geological Survey station "Lidel," which was recovered only approximately. It is about 13 miles by road southeast of Abilene, a town on the Texas \& Pacific Railway, about 3 miles south-southwest of the post office and village of Potosi, and about one-half milc east of the East Abilene-Coleman public road at a point where it crosses the mountain. It is on a clear peak, the highest peak of a very prominent ridge, and in the pasture of George Clayton. The station is marked according to note 3 , page 84 , except that only 4 inches of earth separates the surface and underground marks. The reference mark, which is similar to that described in note 9 , page 85 , except that the pipe projects about 5 inches above the ground, is 14.280 meters from the station in azimuth $151^{\circ} 19^{\prime}$.

Morrison (Taylor County, Tex., W. B., 1908).-About 9 miles by road from Abilene and 2 miles cast and 4 miles north of Tye, towns on the Texas \& Pacific Railway. It is in the Morrison pasture on the highest point of the highest hill in the vicinity, which has a flat top, almost level, with its cdges cut by ravines. The station is near the extreme western edge of the top of the hill 300 meters south-southwest from a water tank and near the head of a deep ravine running southwest. It is marked according to note 2 , page 84 . The reference mark, described in note 10 , page 85 , is 14.620 meters from the station in azimuth $159^{\circ} 44^{\prime}$.

Buzzard (Taylor County, Tex.,.W. B., 1908).-Six miles south and 3 miles east of Merkel, a town on the Texas \& Pacific Railway, on Buzzard Peak, which is the northeast spur or corner of an extensive flat-topped ridge, and about 1 mile east-southeast of East Peak, shown on the United States Gcological Survcy map. The station is where the Buzzard Peak spur joins the main ridge on land belonging to either Fred Dubo or J. T. Humphreys; whose address is Merkel. The peak or spur is flat-topped and covered with scrub brush. The station is marked according to note 3 , page 84 . The reference mark, which is similar to that described in notc 9 , page 85 , except that the pipe projects about 5 inches above the ground, is 14.800 meters from the station in azimuth $293^{\circ} 59^{\prime}$. Other distances and azimuths are as follows: North corner of Buzzard Peak, about 400 meters, $193^{\circ} 51^{\prime}$; east corner of Buzzard Peak, about 400 meters, $286^{\circ} 30^{\prime}$.

Sears (Jones County, Tex., W. B., 1908).-Nine miles by road, or 6 miles direct, N. $131 / 3^{\circ}$ W. from Merkel, a town on the Texas \& Pacific Railway, and 1 mile east of the Merkel-Ncinda public road, on a prominent flat-topped hill in the pasture of John Sears, of Whitewright, Grayson County. The station is 3 miles south of the village of Noodle, which is on the main public road. It is in clear pasture land on the highest part of the more western onc of the two most southern spurs of the hill, 115 meters west of a north-
and-south ravine, about 60 paces northeast of the head of a ravine running southwest. and about 300 meters northeast of the end of the spur. The station is marked according to ngte 3, page 84 . The reference mark, described in note 9 , page 85 , is 12.94 meters from the station in azimuth $262^{\circ} 47^{\prime}$. The east gable of a house in the southwest corner of the pasture, near the Merkel-Neinda road, is about three-fourths of a mile from the station in azimuth $73^{\circ} 4^{\prime}$.

Hale (Nolan County, Tex., W. B., 1908).-Nine miles in a direct line S. $73^{1 / 2}{ }^{\circ} \mathrm{W}$. from Merkel, and $4^{1 / 2}$ miles direct S. $33^{\circ} \mathrm{W}$. from Trent, towns on the Texas \& Pacific Railway. It is I mile west of the house of \uparrow. C. Hale and three-fourths of a mile southeast of the house of F. C. Hale, on the highest point of the mountain in this vicinity, and about 600 meters south of the extreme north edge of the top of the hill. The station is marked according to note 3 , page 84 . The reference mark described in note 9 , page 85 , is 14.120 meters from the station in azimuth $280^{\circ} 35^{\prime}$.

Boyd (Nolan County, Tex., W. B., 1908).-About $5^{1 / 2}$ miles in a direct line south from Eskota, a town on the Texas \& Pacific Railway, and on a somewhat rounded knoll near the north edge of a very prominent ridge. The station is on solid rock, about ro meters south-southeast of the highest point of this part of the ridge, and is in the Boyd pasture. In erecting the stand, holes 6 inches square and 6 inches deep were drilled in the solid rock to receive the lower ends of the legs, and when the stand decays these holes will serve as reference marks. The station is marked with an old-type station mark, described on page 84 , cemented into a drill hole in the solid rock. The reference mark, a cross cut in a large solid rock with a 1 -inch drill hole at the center, is 18.110 meters from the station in azimuth $217^{\circ} 44^{\prime}$. A small tree is 22.20 meters from the station in azimuth 277° o6 .

Allen (Fisher County, Tex., W. B., 1908).-Six miles direct, or $7^{1 / 2}$ miles by road, northwest from Eskota, 10 miles direct, or 14 miles by road, northeast from Sweet water, towns on the Texas \& Pacific Railway and 200 meters west of the Eskota-Roby public road. It is on prairie land on the highest part of a prominent round-topped knoll. The station is marked according to note I, page 84. The reference mark, described in note 9 , page 85 , is 14.825 meters from the station in azimuth $o^{\circ}{ }_{11}{ }^{\prime}$. The chimncy of N. H. Allen's house is about 300 meters from the station in azimuth $236^{\circ} 41^{\prime}$, and a cotton-gin stack is distant about 2 miles in azimuth $91^{\circ}{ }_{21} 1^{\prime}$.

Patterson (Nolan County, Tex., J. S. H., 1909).-Four miles due north of Roscoe, a town on the Texas \& Pacific Railway, on an extensive table-land on the farm of A. A. Patterson, who lives three-fourths of a mile north of the station. It is 9.83 meters north of the north edge of the main east-and-west road, 700 meters east of the southwest corner of Patterson's property and between two of his tenant houses. The station is marked according to note 1 , page 84 . The reference mark, described in note 9 , page 85 , is 5.80 meters south of the fence on the south side of the road and 23.684 meters from the station in azimuth 359° o5'. Other distances and azimuths are as follows: East gable of tenant house, about 300 meters, $80^{\circ} 17^{\prime}$; Patterson's windmill, about 1 mile, $208^{\circ} 31^{\prime}$; southeast corner of other tenant house, 67.80 meters, $241^{\circ} 47^{\prime}$.

Lloyd (Nolan County, Tex., J. S. H., 1909). -Nine miles by road, or $81 / 4$ miles direct, S. 21° E. from Roscoe, a town on the Texas \& Pacific Railway and threc-fourths of a mile east of the Roscoe-Decker public road. It is near the north end of a high flat-top ridge in a pasture owned by Charles Lloyd, whose house is about one-half mile
west of the station. The station is marked according to note 1 , page 84 . The reference mark, described in note 9 , page 85 , is 13.375 meters from the station in azimuth $356^{\circ}{ }^{\circ} 5^{\prime}$. Other distances and azimuths are as follows: Helen's windmill, about one-half mile, $71^{\circ} 22^{\prime}$; J. W. Watt's windmill, about onc-fourth of a mile, $99^{\circ} 42^{\prime}$.

Bench (Nolan County, Tex., J. S. H., 1909).-Ten miles south by west from Roscoe and 12 miles southeast from Lorainc, towns on the Texas \& Pacific Railway, and on the highest point of the western end of a prominent flat-top peak known as Bencl Mountain, which is the second point from the northwestern end of the ridge. The station is marked according to note I, page 84 . The reference mark, described in note 9 , page 85 , is 17.092 meters from the station in azimuth $243^{\circ} \mathrm{O} 4^{\prime}$. Other distances and azimuths are as follows: P. R. Key's house, about 2 miles, $84^{\circ} 40^{\prime} ;$ M. A. Dougherty's house chimney, about $\mathrm{I} 1 / 2$ miles, $140^{\circ} 20^{\prime}$.

Wolf (Mitchell County, Tex., J. S. H., 1909).-Five miles north of Lorainc, a town on the Texas \& Pacific Railway, and one-half mile west of the L.oraine-Snyder public road, on the property of Walter Tubbs and on the western one of two very prominent peaks known as the Lone Wolf Mountains. The station is marked according to note 3, page 84 . The reference mark, described in note 10 , page 85 , is 13.350 meters from the station in azimuth $185^{\circ} 59^{\prime}$. Other distances and azimuths are as follows: Windmill about 1 milc, $271^{\circ} 59^{\prime}$; windmill about $11 / 2$ miles, $123^{\circ} 13^{\prime}$; well stand, about 200 meters, $233^{\circ} 34^{\prime}$.

Bynum (Mitchell County, Tex., J. S. H., 1909).-Three miles south of Westbrook, a town on the Texas \& Pacific Railway, on a round-top hill in a pasture belonging to G. D. Bynum, of Colorado, Tex., and about 170 meters west of his tenant house. There are a few scattered mesquite trecs on the hill. The station is marked according to note 1 , page 84. The reference mark, described in note 9 , page 85 , is 14.612 meters from the station in azimuth $356^{\circ} 44^{\prime}$. The south gable of Boswell's house is distant about 230 meters in azimuth $270^{\circ} 10^{\prime}$.

Cuthbert (Mitchell County, Tex., J. S. H., 1909).-In the town of Cuthbert, 15 miles by road northwest of Colorado, a town on the Texas \& Pacific Railway, on a lot owned by D. T. Bozcman, postmaster of the town, and I meter south of the south side of the main east-and-west road through the town. The station is marked according to note I, page 84 . The reference mark, described in note 9 , page 85 , is 14.330 meters from the station in azimuth $270^{\circ} 58^{\prime}$. Other distances and azimuths are as follows: Schoolhouse, about 250 meters, $312^{\circ} 47^{\prime}$; flagstaff on Bozeman's store, about 90 meters, $48^{\circ} 57^{\prime}$; center of church, about 150 meters, $109^{\circ} 51^{\prime}$.

Top (Howard County, Tex., J. S. H., 1909). -Ten miles north and 3 miles east of Coahoma, a town on the Texas \& Pacific Railway, on the north end and highest point of Flat Top Mountain and in a large pasture. There is an east-and-west wagon road about one-fourth of a mile south of the station. The station is marked according to note 1 , page 84 . The refcrence mark, described in note 9 , page 85 , is 16.936 meters from the station in azimuth $15^{\circ} \mathrm{o8} 8^{\prime}$. The southeast point of the mountain is about 400 meters distant in azimuth $5^{\circ} 24^{\prime}$.

Signal (Howard County, Tex., J. S. H., 1909). -Eight miles south of Coahoma, a town on the Texas \& Pacific Railway, on the northern end of Signal Mountain, which is the first peak south of Signal Peak, a pcak conspicuous for its conical shape. The distance between the two peaks is about 600 meters. The station is marked according
to note 2 , page 84 , the nail in the underground mark being 15 inches below the surface. The reference mark, a 2 -inch hole 3 inches deep drilled in a ledge of rock on the northwest eds of the mountain, is 29.90 meters from the station in azimuth $138^{\circ} 38^{\prime}$.

Williams (Howard County, Tex., J. S. H., 1909).-Four miles direct, or 6 miles by road, south of Big Springs, a large town on the Texas \& Pacific Railway, on the property of Jim Williams of Big Springs, and on the highest part of a north and south ridge. It is II meters east of the road running along the ridge and 5 meters north of a fence line. The station is marked according to note 3 , page 84 , the underground mark being 17 inches below the surface. The reference mark, described in note io, page 85 , is in the fence line mentioned above and is 23.770 meters from the station in azimuth $63^{\circ} 20^{\prime}$.

Evart (Howard County, Tex., J. S. H., 1909).-Seven and one-half miles due north of Big Springs, a town on the Texas \& Pacific Railway and one-third of a mile east of the Big Spring-Caboka public road, on land owned by G. C. Black, which was formerly known as the old Evart place. The reconnoissance description states that the point selected was on the east side of a pasture near a north and south fence, 80 meters south of the farmhouse and ioo meters southeast of a windmill and tank. The station is probably either at or near the point selected by the reconnoissance party. It is marked according to note 4 , page 84 . The reference mark, described in note 9 , page 85 , is 60.44 I meters from the station in azimuth $184^{\circ} 19^{\prime}$.

Stanton (Martin County, Tex., J. S. H., 1909).—About I mile S. 54° E. from the city water tower at Stanton, a town on the Texas \& Pacific Railway, on the highest point of a narrow ridge running north and south and about one-half mile south of the railroad. The station is marked according to note 4 , page 84 . The reference mark, described in note 9 , page 85 , is 20.260 meters from the station in azimuth 64° o6'. The Stanton courthouse cupola is about I mile distant in azimuth $109^{\circ} 54^{\prime}$.

Epley (Martin County, Tex., J. S. H., 1909).-Eleven miles direct, or $121 / 2$ miles by road, N. $25^{\circ} \mathrm{W}$. from Stanton, a town on the Texas \& Pacific Railway, one-fourth of a mile west of the Stanton-Lamera public road, on the highest elevation in the vicinity and on land owned by a Mr. Norton, of New York. The station is marked according to note 4 , page 84 . The reference mark, described in note 9 , page 85 , is 20.678 meters from the station in azimuth $89^{\circ} 47^{\prime}$. Other distances and azimuths are as follows: Chimney of A. L. Graham's house, about $11 / 4$ miles, $I^{\circ}{ }^{\circ} O^{\prime}$; chimney of Walker's house, about one-half mile, $84^{\circ} 29^{\prime}$.

Stanton south base (Martin County, Tex., J. S. H., 1909).-Seven and one-eighth miles direct, or $7^{1 / 2}$ miles by road, west-southwest from Stanton, a town on the Texas $\&$ Pacific Railway, and two-thirds of a mile north of the railroad on level clear prairie land. The underground and surface marks at this station are described in notes 3 and 4 , respectively, page 84 . The reference mark, described in note 9 , page 85 , is 29.590 meters from the station in azimuth $14^{\circ} 14^{\prime}$.

Stanton north base (Martin County, Tex., J. S. H., 1909).-Eleven milcs direct, or 14 miles by road, N. $69^{\circ} \mathrm{W}$. from Stanton, a town on the Texas \& Pacific Railway, and about 2 miles west of the Stanton-Gaines County public road, on the highest part of a small bare knoll in the pasture of J. E. Henson. The station is marked according to note 4 , page 84 , except that the cylinder of concrete for the surface mark is 24 inches in diameter instead of 20 . The reference mark, described in note 9 , page 85 , is 23.550 meters from the station in azimuth $327^{\circ} 20^{\prime}$.

PRINCIPAL POINTS.

Elkins (Midland County, Tex., J. S. H., 1909).-Four and onc-half miles direct, or 6 miles by road, northeast of Midland, a town on the Texas \& Pacific Railway, on the property of Frank Elkins, of Midland, $11 / 4$ miles north of the railroad and on the highest point of the south end of a north-and-south ridge. The station is marked according to note 4 , page 84 . The reference mark, described in note 9 , page 85 , is 24.662 metcrs from the station in azimuth $162^{\circ} 09^{\prime}$. Other distances and azimuths are as follows: Smith's windmill, $11 / 4$ miles, $358^{\circ} 14^{\prime}$; chimney on housc, onc-half mile, $16^{\circ} 57^{\prime}$.

Dunn (Martin County, Tex., J. S. H., 1909).-Fourtcen miles by road, or 11 miles direct, $\mathrm{N} .27^{\circ} \mathrm{W}$. from Midland, a town on the Texas \& Pacific Railway, and $\mathrm{I} 3 / 8$ miles west of the Midland-Seminole public road. It is on the south side of a large pasture owncd by Ole Dunn and about 10 meters north of an east-and-west fence, which is the south line fence of Mr. Dunn's property. The underground and surface marks at this station are described in notes 3 and 4 , respectively, page 84 . The reference mark, described in note 9 , page 85 , is in the above-mentioned fence line and 23.593 meters from the station in azimuth $271^{\circ} 45^{\prime}$.

Scar (Midland County, Tex., J. S. H., 1909).-Seven miles west of Midland, 3 miles east of Warfield, towns on the Texas \& Pacific Railway, and one-half mile south of the railroad, on a round knoll in a cultivated field, the property of the Scarborough Cattle Co. of Midland. The station is marked according to note 5, page 84. The reference mark, described in note 11 , page 85 , is 38.161 meters from the station in azimuth $27 \mathrm{I}^{\circ} 37^{\prime}$. A windmill is 8.53 meters from the station in azimuth $331^{\circ} 5^{\prime}$.

Morris (Ector County, Tex., J.S. H., 1909).-Seventeen miles by road, or 14 miles direct, $\mathrm{N} .72^{\circ} \mathrm{W}$. from Midland, a town on the Texas \& Pacific Railway, in the C. Morris pasture, known as the " C " pasture, and on the highest knoll in the vicinity. It is onehalf mile east of R. A. Anderson's cast line fence. The station is marked according to note 4 , page 84 , except that the underground mark has an old-type station mark in place of the iron pipe and nail. The reference mark, described in note 9 , page 85 , is 29.615 meters from the station in azimuth $352^{\circ} 52^{\prime}$. Two windmills in the Morris pasture arc at the following distances and azimuths from the station: About $1 \frac{1}{2}$ miles, $276^{\circ} 59^{\prime}$; about 2 miles, $337^{\circ} 5^{\prime}$.

Bates (Ector County, Tex., J. S. H., 1909).-Nine and one-half miles direct, or 10 miles by road, $\mathrm{N} .20^{\circ} \mathrm{E}$. from Odessa, a town on the Texas \& Pacific Railway, near a large round dcpression in the top of a ridge, and on the "Old Bates Ranch," now owned by H. S. Ratiff. The station is marked according to note 5 , page 84 . The reference mark, described in note 11, page 85 , is 18.945 meters from the station in azimuth $350^{\circ} 56^{\prime}$. Other distances and azimuths are as follows: Center of depression, 550 meters, 287°; center of the old Bates ranch housc, about $1 \frac{1}{2}$ miles, $64^{\circ} 40^{\prime}$.

Odessa (Ector County, Tex., J. S. H., 1909).-Two miles east of Odessa, a town on the Tcxas \& Pacific Railway, and I mile north of a railroad crossing, on the highest point of a low bare knoll in the pasture of C. P. Turner and onc-half mile north of his housc. The station is marked according to note 5, page 84. The reference mark, described in note 11 , page 85 , is 19.145 meters from the station in azimuth $247^{\circ} 00^{\prime}$.

Smith (Ector County, Tex., J. S. H., 1909).-Ten and one-half miles direct, or 14 miles by road, N. $35^{\circ} \mathrm{W}$. from Odessa, a town on the Texas \& Pacific Railway, threefowths mile west of the main county road, on the ranch owned by R. W. Smith and I mile southwest of his residence. The station is marked according to note 5, page 84. The reference mark, described in note 11, page 85 , is 20.684 meters from the station in azimuth $88^{\circ} 12^{\prime}$. Smith's windmill is about three-fourths mile from the station in azimuth $204^{\circ} 19^{\prime}$.

Dublin (E.ctor County, Tex., J. S. H., 1909).-Sixteen and one-half miles direct, or 20 miles by road, N. $85^{\circ} \mathrm{W}$. from Odessa, a town on the Texas \& Pacific Railway, and 5 miles S. $75^{\circ} \mathrm{W}$. from the ranch house of J. W. Buchanan. It is on the west side of a pasture owned by the Dublin brothers, 20 meters south of the wagon road leading through their pasture from Buchanan's ranch, and about 30 meters southeast of the gate where the road enters the pasture to the westward. The underground and surface marks at this station are described in notes 3 and 5 , respectively, page 84 . The reference mark, described in note 11 , page 85 , is 17.780 meters from the station in azimuth $347^{\circ} 30^{\prime}$. A windmill is about $2 \frac{1}{2}$ miles distant in azimuth $349^{\circ} 5^{\prime}$.

Douro (Ector County, Tex., J. S. H., 1909).-Four miles direct, across pasture, S. 2° W. from Douro, a station on the Texas \& Pacific Railway, on a round top knoll near the south edge of a large platcau and on the property of Mr. Henderson, about one-third of a mile south by east from his ranch house. The station is marked according to note 5 , page 84 . The rcference mark, described in note 11 , page 85 , is 20.541 meters from the station in azimuth $259^{\circ} 4^{1^{\prime}}$. A windmill at Henderson's west ranch house is about 500 meters from the station in azimuth $166^{\circ} 41^{\prime}$.

Curtis (Crane County, Tex., J. S. H., 1909).-Eight miles direct, or 10 miles by road, directly south of Judkins, about 7 miles direct south by east from Metz, towns on the Texas \& Pacific Railway, and very near the southern end of a prominent narrow ridge which extends 4 miles southeast from the J. A. Graham ranch house. The station is on the "O4" pasture, owned by Mrs. A. G. Curtis, of Midland. The underground and surface marks at this station are described in notes 2 and 5 , respectively, page 84 . The reference mark, described in note 1i, page 85 , is 13.757 meters from the station in azimuth $266^{\circ} 08^{\prime}$. The eastern one of two windmills is about I mile distant in azimuth $336^{\circ} 27^{\prime}$.

Harris (Winkler County, Tex., J. S. H., 1909).-Nine miles direct, or $101 / 2$ miles by road, N. $83^{\circ} \mathrm{W}$. from Metz, a station on the Texas \& Pacific Railway, 3 miles N. $55^{\circ} \mathrm{W}$. from the Judge Murphy cattle pens, where there are four windmills, and on land owned by M. W. Harris, who lives I mile north by east of the station. The station is 150 meters west from the southeast corner of the four-section claim of Mr. Harris and just north of a line of old fence posts to which no wirc is attached. The underground and surface marks at the station are described in notes 1 and 5 , respectively, page 84 . The reference mark, described in note 11 , page 85 , is 16.065 meters from the station in azimuth $232^{\circ} 39^{\prime}$. Other distances and azimuths are as follows: Harris ranch windmill, about 2 miles, $110^{\circ} 17^{\prime}$; windmill, about 1 mile, $201^{\circ}{ }^{1} 5^{\prime}$.

Estes (Ward County, Tex., J. S. H., 1909).-Seven and one-fourth miles direct, or 9 miles by road, S. $30^{\circ} \mathrm{W}$. from Monahans, a town on the Texas \& Pacific Railway, $5^{1 / 2}$ miles direct S. $10^{\circ} \mathrm{E}$. from the section house at Aroya switch on the same railroad, on land owned by E. W. Estes and 400 meters northeast of his housc. The windmill
and eottonwood trees at Mr. Estes's house may be scen from Monahans, the trees being very prominent and the only ones in the vicinity. The underground and surface marks at the station are described in notes 2 and 5 , respeetively, page 84 . The referenee mark, deseribed in note 11 , page 85 , is 21.729 meters from the station in azimuth $276^{\circ} 03^{\prime}$. Estes' windmill is about onc-fourth of a mile from the station in azimuth $3 \mathrm{I}^{\circ}{ }^{\circ} \mathrm{or}^{\prime}$.

Aroya (Winkler County, Tex., J. S. H., 1909).-Nine miles direet, or $111 / 2$ miles by road, N. $68^{\circ} \mathrm{W}$. from Monahans, a town on the Texas \& Paeific Railway, 6 miles direet N. $35^{\circ} \mathrm{W}$. from the seetion house at Aroya switeh on the same railroad, and on the highest point of a flat-top knoll in the MeElroy pasture. The undcrground and surface marks at the station are described by notes 2 and 5 respeetively, page 84 . The referenee mark, described in note 11 , page 85 , is 15.714 meters from the station in azimuth $76^{\circ} 27^{\prime}$. The eenter of a water tank is about $11 / 4$ miles distant in azimuth $172^{\circ} 38^{\prime}$.

Lee (Ward County, Tex., J. S. H., 1909).-Seven miles direet, or $7^{1 / 2}$ miles by road, S. $43^{\circ} \mathrm{W}$. from Pyote, a small town on the Texas \& Pacifie Railway, on the highest point of a prominent ridge and on the property of Capt. J. M. Lee, who lives about 2 miles west of the station. The ridge on whieh the station is located is the more distant one of the two ridges southwest of Pyote. The station is marked aecording to note 6 , page 84 . The referenee mark, a $11 / 2$-ineh hole drilled in the top of a natural white limestone rock, is 16.643 meters from the station in azimuth $228^{\circ} 12^{\prime}$. Other distanees and azimuths are as follows: Railway pumping station, about 3 miles, ${ }^{15} 55^{\circ}{ }^{\circ} 9^{\prime}$; windmill, about I mile, $260^{\circ} 20^{\prime}$.

Johnson (Ward County, Tex., J. S. H., 1909).-Eleven miles direct, or 13 miles by road, N. $221 / 2^{\circ}$ E. from Barstow, a town on the Texas \& Pacific Railway, in the "W" pasture one-fourth mile west by north of the road leading through this pasture from Barstow. It is 4 miles north by east of the gate where the road enters the " W " pasture, on the highest point of a ridge on a spur projecting to the southwest from the main ridge and near its southwest end. The station is marked aeeording to note 5 , page 84 . The referenee mark, deseribed in note 11 , page 85 , is 19.024 meters from the station in azimuth $167^{\circ} 55^{\prime}$. The eenter of a tank at a group of three windmills is about $11 / 2$ miles distant in azimuth $213^{\circ} 4^{\prime}$.

Hays (Ward County, Tex., J. S. H., 1909).-Four and one-half miles direet N. 55° E. from Barstow, a town on the Texas \& Paeifie Railway, on the northwest eorner and highest point of the first very prominent hill northeast of Barstow. It is $13 / 4$ miles N. 28° W. from the Roger's rock quarry and in the pasturc of N. L. Hays, whose raneh house is S. 55° E. from the station and imile distant. The station is marked aeeording to note 5, page 84. The reference mark, described in note II, page 85, is 19.365 meters from the station in azimuth $55^{\circ} 54^{\prime}$.

Sist (Reeves County, Tex., J' S. H., 1909).-Four and threc-fourths miles direet, or 5 miles by road, $\mathrm{S} .3^{\circ} \mathrm{W}$. from the eourthouse in Peeos, a town on the Texas \& Pacifie Railway, and 500 meters west of the Peeos-Fort Stockton road, on the 4 -section elaim of T. J. Disk, who lives about 200 meters southeast of the station. The station is marked aeeording to note 5 , page 84 . The referenee mark, described in note 11 , page 85 , is in the northwest eorner of a lot, and 35.900 metcrs from the station in azimuth $10^{\circ} 5^{8^{\prime}}$. Sist's windmill is about 75 meters from the station in azimuth $3^{28^{\circ}} 05^{\prime}$.

Ingle (Reeves County, Tex., J. S. H., 1909).-Twelve and one-half miles direct, or 13 miles by road, N. $26^{\circ} \mathrm{W}$. of Peeos, a town on the Texas \& Pacifie Railway, and 375
meters west of the "Hill" public road which is parallel to and west of the Pecos Valley Southern Railway. It is on a prominent round-top hill, 4 miles north of where the road crossts a deep draw in which are a windmill and ranch house owned by a Mr. Engle. The station is marked according to note 5 , page 84. The reference mark, described in note 11 , page 85 , is 21.278 meters from the station in azimuth $22^{\circ} 31^{\prime}$. A windmill is about I mile from the station in azimuth $32^{\circ}{ }^{\circ} \mathrm{IO}^{\prime}$.

Round (Reeves County, Tex., J. S. H., 1909).-Twelve miles direct, or 14 miles by road, N. $25^{1} 2^{\circ} \mathrm{W}$. from Toyah, a town on the Texas \& Pacific Railway, and on a very prominent hill, visible from Toyah, known as Round Mountain, which is in a pasture owned by Dug Coalson and $\mathrm{I} / 2$ miles northeast of his house. To reach the station from Toyah, go nortly and west on the "Dug Coalson" road to his house and from there to the top of the mountain. The station is marked according to note 6 , page 84 . The reference mark, described in note 11 , page 85 , is 16.236 meters from the station in azimuth $196^{\circ} 55^{\prime}$.

Toyah (Reeves County, Tex., J. S. H., 1909).-Fourteen and three-fourths miles by road, or ${ }^{1} 3$ miles direct, $\mathrm{S} .7^{\circ} \mathrm{W}$. from Toyah, a town on the Texas \& Pacific Railway, and three-fourths mile east of the Toyah-Toyah Valley road. It is on the highest and most southwesterly hill in the vicinity and 8 feet south of a conical pile of rocks on this hill. The station is marked according to note 6 , page 84 . The reference mark, described in note 11 , page 85 , is 15.15 meters from the station in azimuth $350^{\circ} 4^{\prime}$.

Seay (El Paso County, Tex., J. S. H., 1909). -Thirteen miles direct, or about 17 miles by road, N. $54^{\circ} \mathrm{W}$. from the scetion house at San Martine, a station on the Texas \& Pacific Railway, on the highest peak of a high group of hills, and in the west pasture of J. P. Seay, who lives 7 miles north of San Martine at the "Seven Heart" ranch housc. The peak has a dome-shaped top about 120 meters across. The station is marked according to note 6 , page 84 . The reference mark, a cross cht in the top of a flat rock flush with the surface of the ground, is 10.67 meters from the station in azimuth $254^{\circ} 28^{\prime}$. Two windmills about 3 miles from the station are in azimuth 30° or ${ }^{\prime}$.

Newman (Jeff Davis County, Tex., J. S. H., 1909).-This station is near the United States Geological Survey station of the same name. It is in miles direct S. 3° E. from the section house at San Martine, a station on the Texas \& Pacific Railway, about 2 miles south of the northwest end of the Davis Mountains, and about 2 miles north by east of J. W. McElroy's place. The station is marked according to note 6, page 84. The reference mark is a 20 -penny nail driven flush in the top of a hard rock at the edge of a bluff and is 26.125 meters from the station in azimuth $223^{\circ} 17^{\prime}$. Other distances and azimuths are as follows: High peak, about three-fourths of a mile, $263^{\circ} 35^{\prime}$; Newman, U. S. G. S., about 300 meters $55^{\circ} 40^{\prime}$; Gomez Peak, about $11 / 2$ miles, $188^{\circ} 15^{\prime}$. A blazed pine tree is 2.04 meters east of the station.

Reynolds (El Paso County, Tex., J. S. H., 1909; 1911).-Seven and one-half miles N. $71 / 2^{\circ}$ E. of Boracho, 11 miles direct N. 50° W. from Kent, small towns on the Texas \& Pacific Railway, and on the highcst point of the highest peak near the center of a very prominent high ridge which is about 7 miles north of the railroad and parallel to it. It is in the pasture of the Reynolds Cattle \& Land Co. The station is marked according to note 6 , page 84 . The reference mark, a cross cut in the top of a flat rock flush with the ground, is 14.28 meters from the station in azimuth $19^{\circ} 50^{\prime}$.

Krouse (E1 Paso County, Tex., J. S. H., 1909; 1911). -This station is near the United States Geological Survey station of the same name. It is $81 / 2$ miles N. $15^{\circ} \mathrm{W}$. from Boracho, a station on the Texas \& Pacific Railway, and on the highest peak near the western end of a very prominent ridge which is about 7 miles north of the railroad and parallel to it. The station is about 1 mile east of the Krouse zinc mines and is marked according to note 6 , page 84 . The reference mark, a cross cut in the top of a rock flush with the ground, is 6.49 meters from the station in azimuth $95^{\circ}{ }^{18^{\prime}}$. The cairn at the Geological Survey station Krouse is 4.16 meters distant in azimuth $68^{\circ} 42^{\prime}$.

Chispa (Jeff Davis County, Tex., J. S. H., 1909).-This station is near the United States Geological Survey station of the same name. It is on the highest peak of the mountains about 4 miles north by west from Chispa, a town on the Southern Pacific, and 2 miles northeast of the railroad at its ncarest point. The station is identical with one of the United States Geological Survey reference marks, a bronze bench-mark disk, which marks the station. The reference mark is identical with another of the United States Geological Survey reference marks, a cross cut in the top of a large flat rock, and is 5.51 meters from the station in azimuth $336^{\circ} 51^{\prime}$. The United States Geological Survey station Chispa, marked by a cairn, is about 3 meters from the station in azimuth $312^{\circ} 8^{\prime}$.

Diablo (E1 Paso County, Tex., J. S. H., 1909).-This station is near the United States Geological Survey station of the same name. It is $91 / 2$ miles direct, or 13 miles by road, north by east from Allamore, a station on the Texas \& Pacific Railway, and on the more eastern one of two peaks near the southern extremity of the Diablo Mountains, about $21 / 4$ miles direct, north by east from the old Marvin-Judson silver mine. The station is marked according to note 7 , page 84 . The reference mark is identical with the United States Geological Survey reference mark, a cross cut in a ledge of rock at the end of the peak, and is 7.83 meters from the station in azimuth $234^{\circ} 12^{\prime}$. The United States Geological Survey station Diablo, marked by a cairn, is 3.28 meters from the station in azimuth $256^{\circ} 34^{\prime}$.

Eagle (E1 Paso County, Tex., J. S. H., 1909).-On the highest peak of the Eagle Mountains, locally known as Eagle Peak, 25 miles southeast of Sierra Blanca, a town at the junction of the Southern Pacific and the Texas \& Pacific Railways, and $81 / 3$ miles direct, or 13 miles by road and trail from Dalberg, a station on the Southern Pacific. It is 2 miles northwest of the "Francisco" sheep ranch, and on the same peak as the United States Geological Survey station Eagle, the marking of which could not be found. The station is marked according to note 7 , page 84. The reference mark, a cross cut in a rock over the edge of the hill, is 5.77 metcrs from the station in azimuth $177^{\circ}{ }^{\circ} 1^{\prime}$.

Quitman (El Paso County, Tex., J. S. H., 1909). -The station is near the United States Gcological Survey station of the same name. It is $81 / 2$ miles direct, or 10 miles by road, S. $80^{\circ} \mathrm{W}$. from Sierra Blanca, a town at the junction of the Southern Pacific and the Texas \& Pacific Railways, on the highest peak of the Quitman Mountains ncar the northern end of the Quitman Range, and in the pasture of the Love brothers. The station is marked according to note 7 , page 84 . The reference mark, a cross cut in the top of a large rock, is 3.83 meters from the station in azimuth $357^{\circ} 3^{\prime}$. The United States Geological Survey station Quitman, marked by a cairn, is 2 meters from the station in azimuth $210^{\circ} 58^{\prime}$.

Black (El Paso County, Tex., J. S. H., 1909).-Thirty miles direct and 35 miles by road, N. 23° E. from Sierra Blanca, a town at the junction of the Southern Pacific and the Rexas \& Pacific Railways, and on the highest and most southern point of the southeast end of a small range of isolated mountains known locally as the Black Mountains, but given as the Sierra Prieta Mountains on the United States Geological Survey map of this region. The station is about 400 meters south of the United States Geological Survey triangulation station "Salt," which is marked by a large rock on a very rough peak of about the same height as the one described above. The station is marked according to note 7 , page 84 . The reference mark, a galvanized nail driven into a crevice in a rock 6 inches below its top and on the opposite side of the rock from the station, is 3.39 meters from the station in azimuth $82^{\circ} 54^{\prime}$.

Corduna (Otero County, N. Mex., J. S. H., 1909).-This station is near the United States Geological Survey station of the same name. It is about $11 / 2$ miles north of the Texas-New Mexico boundary, 70 miles by road, or 60 miles direct, north of Sierra Blanca, a town at the junction of the Southern Pacific and the Texas Pacific Railways, and about 3 miles northeast of San Antonio peak, on the highest peak in the vicinity, known locally as Wind Mountain. The station is marked according to note 7, page 84. The reference mark, a cross cut in the top of a rock, is 4.63 meters from the station in azimuth $157^{\circ} 43^{\prime}$. The United States Geological Survey station, Corduna, marked by a cairn, is 7.8 meters from the station in azimuth $170^{\circ} 48^{\prime}$.

North Franklin (El Paso County, Tex., J. S. H., 1909).-This station is near the United States Geological Survey station of the same name. It is io miles direct, or 16 miles by road and trail, north of El Paso, and on the highest pcak of the Franklin Mountains, which is smooth in appearance, rather pointed, and red in color. The station is marked by a United States Geological Survey bench-mark disk, cemented into a drill hole in the solid rock. The disk has inscribed on it the elevation above sea level, $7,14 \mathrm{I}$ feet. The reference mark is the highest point of the upper one of two outcropping rocks on the north side of the ridge, o. 48 meter from the south point and 0.47 meter from the west point of the rock. The top of this rock is about 3 feet above the top of the lower rock, which has a precipitous face about 4 feet high on the north side. The reference mark is 14.61 meters from the station in azimuth $303^{\circ} 38^{\prime}$. The United States Geological Survey station North Franklin, marked by a cairn, is 2.9 meters from the station in azimuth $174^{\circ} 05^{\prime}$.

Jarilla (Otero County, N. Mex., J. S. H., 1909).-On the extreme south peak of the Jarilla Mountain, about $21 / 2$ miles in a direct line N. $26^{\circ} \mathrm{W}$. from the railroad station at Orogrande, a town on the El Paso \& Southwestern Railroad, i mile southwest of the Brice post office, and about one-half mile west of the railroad and wagon road which lead from Orogrande to the Brice post office and mines in that vicinity. The station is marked according to note 7 , page 84 . The reference mark, which is the center of an iron pipe embedded in concrete, is 7.14 meters from the station in azimuth $269^{\circ} 42^{\prime}$. A conical pile of rocks with a stone at the top learing inscription "I. P. Jarilla U.S. M. M." is 9.72 meters from the station in azimuth $275^{\circ} 42^{\prime}$.

Kent (Donna Ana County, N. Mex., J. S. H., 1909).-Twenty-five miles by road northeast of Lascruces, a town on the Santa Fe Central Railway, 9 miles northeast of the mountain town of Organ and 2 miles north of Kent post office, on the most northern

$$
49571^{\circ}-12-7
$$

and highest one of three pcaks close together on Black Mountain. Black Mountain is a spur running east from the San Andreas Range just north of the San Augustine Pass and has a mine on its west side 100 meters from the top. The station is marked according to note 7 , page 84. The reference mark, a cross cut in the top of a flat rock which is 2 feet lower than the station, is 6.86 meters from the station in azimuth $160^{\circ}{ }_{15} 5^{\prime}$.

Florida (Grant County, N. Mex., J. S. H., 1910).-Fifteen miles in a direct line southeast of Deming, a town on the Sonthern Pacific, on the Florida Mountains about 500 meters south of the highest rock peaks at the north end of the mountains. It is on a flat-top knob in the saddle of the mountains, about midway between the high rock peak to the north and the round-top peak to the south. The station is best reached by pack from McDougal's goat ranch, which is southeast of the station. It is marked according to note 7 , page 84 . The reference mark, a cross cut in the rock, is 4.59 meters from the station in azimuth $346^{\circ} 4^{\prime}$.

Cooks (Grant County, N. Mex., J. S. H., 1910).-On Cooks Peak, 20 miles in a direct line north of Deming, a town on the Southern Pacific, and about 3 miles a little west of south from Cooks post office. It is best reached from Grover Bros. ranch, which is on the east side of the peak. The station is marked according to note 7 , page 84 . The reference mark, a cross cut in the rock, is in .62 meters from the station in azimuth $202^{\circ}{ }^{\prime} 3^{\prime}$.

Hermanas (Luna County, N. Mex., J. S. H., 1909).-On the highest one of four hills 3 miles S. 5° E. from Hermanas, a station and junction point on the El Paso \& Southwestern Railroad. The station is marked according to note 7 , page 84 . The reference mark, a cross cut in the top of a large high bowlder, is in 68 meters from the station in azimuth $349^{\circ} 1^{\prime}$.

Red (Grant County, N. Mex., J. S. H., 1910).-Eight and one-half miles in a direct line S. $65^{\circ} \mathrm{W}$. from Deming, a town on the Southern Pacific, and about 20 paces a little north of east of the highest point of Rcd Mountain, a very conspicuous low mountain. The station is marked according to note 7, page 84. The reference mark, a cross cut in the east side of a small rock, is 5.27 metcrs from the station in azimuth $70^{\circ} 52^{\prime}$.

Deming south base (Grant County, N. Mex., J. S. H., 1910).-About 15 miles S. 15° W. from Deming, a town on the Southern Pacific, $1 / 2 / 2$ miles S. 83° E. from the Midland switch on the Deming branch of the El Paso \& Southwestern Railroad, $\mathrm{r} 3 / 4$ miles N. $75^{\circ} \mathrm{E}$. from the ranch house and windmills of R. W. Yeargins, and on F. W. Schweiyer's ranch. The marking at this station is exactly similar to that at Deming north base. (See following description.) The reference mark is 16.58 meters from the station in azimuth $10^{\circ} 53^{\prime}$. Schweiyer's house is about 300 meters from the station in azimuth $79^{\circ} 54^{\prime}$.

Deming north base (Grant County, N. Mex., J. S. H., 1910).-About 6 miles south of Deming, a town on the Southern Pacific, and 2 miles due south of J. M. Kennedy's house, on a broad flat sandy ridge which is 5 or 6 feet above the general level. The station can best be located by bearings to triangulation stations near it. The underground mark at the station is an old-type station mark described on page 84, set in a cylinder of concrete 12 inches in diameter and 6 inches long, and the surface mark is a cap station mark, described on page 83 , on a 3 -inch iron pipe set in a cylinder of concrete 20 inches in diameter and 24 inches long, the top of the concrete and the pipe being flush with the surface of the ground. The reference mark is a 20 -penny nail cemented into the top of a 3 -inch iron pipe which is embedded in a concrete cylinder 18
inches in dianeter and 30 inches long. The top of the concrete is flush with the surface of the ground and the point of the nail projects one-fourth inch above the concrete. It is $19^{\prime} .90$ meters from the station in azimuth $32^{\circ}{ }^{\circ} 7^{\prime}$.

DEMING BASE NET TO SAN JACINTO-CUYAMACA.

PRINCIPAL POINTS.
Burro (Grant County, N. Mex., J. S. H., 1910).-This station is near a United States Geological Survey station. It is on the northeast and highest point of Big Burro Mountain, 16 miles in a direct line south from Silver, a town on the Atchison, Topeka \& Santa Fe Railway, and 23 miles in a direct linc northeast of Lordsburg, a town on the Southern Pacific. It is about 4 miles south of the Silver-Duncan wagon road and about 3 miles in a southerly direction from the Richardson ranch. The station is marked according to note 7 , page 84 . The reference mark is the stem of a United States Gcological Survey brass station mark cemented in a drill hole in the rock, the top or disk part having been broken off, and is 3.145 meters from the station in azimuth 287° or ${ }^{\prime}$. Other distances and azimuths are as follows: One-half inch drill hole in a depression in the top of a rock, 4.800 meters, $208^{\circ} 28^{\prime}$. A large blazed tree on slope, 40.3 meters, $217^{\circ}{ }^{1} 7^{\prime}$.

Chiricahua (Cochise County, Ariz., J. S. H., 1910).-On the most northern one of several high peaks on the crest of the Chiricahua Mountains, about 17 miles west of Rodeo, N. Mex., a town on the El Paso \& Southwestern Railroad, and about 8 miles west-southwest of Postal and 6 miles south-southwest of Paradise, both of which are mining towns. The station is about io meters northwest of the highest point of the west cnd of the peak and several feet lower. The peak on which the station is located is not the highest peak of the ridge. The station is marked according to note 7 , page 84 . The reference mark, a one-half inch drill hole 2 inches decp in the top of a rock on the highest point of the west end of the pcak, is 9.496 meters from the station in azimuth $329^{\circ} \mathrm{O} 9^{\prime}$. Two blazed trees, the first onc having 3 nails in the blaze and the second one 4 nails, are at the following distances and azimuths from the station: 12.18 meters, $304^{\circ} 21^{\prime}$, and 13.61 meters, $202^{\circ}{ }^{\circ} 0^{\prime}$.

Line (U.S. G. S.) (Grant County, N. Mex., J. S. H., 1910).—This station is identical with the Unitcd States Ceological Survey station of the same name. It is on the highest point of Laura Mountain, also called Vanderbilt Mountain, about 15 miles northeast from Duncan, Ariz., a town on the Arizona \& Ncw Mexico Railway, 2 miles from Steeple Rock post office or Carlisle mine, and about one-half mile from the Laura mining camp. The station is marked by a United States Geological Survey triangulation station mark cemented into the solid rock. The reference mark, a cross cut in the highest point of a rock ledge, is 5.020 meters from the station in azimuth $234^{\circ}{ }^{\circ} \mathbf{o r}^{\prime}$.

Graham (U. S. G. S.) (Graham County, Ariz., J. S. H., 1910).-This station is identical with a United States Geological Survey station the name of which is unknown. It is about 16 miles southwest from Safford, a town on the Globe Branch of the Southern Pacific, on the highest point of Graham Mountain, about io meters northcast of the southwest point of the mountain. The station is marked with a United States Geological Survey triangulation station mark cemented into the rock. The reference mark, a one-half inch drill hole one-half inch deep in the top of a large rock, is 13.43 meters from the station in azimuth $248^{\circ} 21^{\prime}$. Two blazed pine trees, 9 inches in diameter,
with a 40-penny nail in the center of the blaze on cach trec, are at the following distances and azinuths from the station: 13.10 meters, $9^{\circ} 45^{\prime}$, and II 95 incters $125^{\circ} \mathbf{2 5}^{\prime}$.

Catalina (Pima County, Ariz., J. S. H., 1910).-On the north spur of what is locally known as Lemon Mountain, the highest peak of the Catalina Mountains, about 22 miles in a direct line northeast of Tueson, a town on the Southern Pacific. The best approach is from the north from the town of Oracle, via the " 3 C " ranch and Camp Apache minc, but the station may also be reached from the south or Tucson side by a trail leading up the Salino Canyon. Timber on the peak obstructs the view except where it has been cleared. The station is marked according to note 7 , page 84 . The reference mark, a United States Geological Survey bench-mark disk cemented into the rock, is 3.215 meters from the station in azimuth $206^{\circ} 04^{\prime}$. A nail in a blazed tree is 8.29 meters from the station in azimuth $51^{\circ} 22^{\prime}$.

Baldy (U. S. G. S.) (Santa Cruz County, Ariz., J. S. H., 19ro).-This station is identical with the United States Gcological Survey station of the same name. It is on Old Baldy or Santa Rita peak, a high prominent peak near the south end of the Santa Rita Range, if miles northwest of Crittenden and 12 miles northwest of Patagonia, towns on the Southern Pacific. It is best reached from Young's ranch via the old mill road. The station is marked with a United States Geological Survey triangulation station mark cemented into the solid rock. The reference mark, which is identical with the United States Geological Survey reference mark, is a cross cut in the top of a rock and 18.22 meters from the station in azimuth $220^{\circ} 53^{\prime}$.

Table (Pinal County, Ariz., J. S. H., igio).-On the highest point of the northeast knob of Table Top Mountain, about 22 miles direct, or 34 milcs by road, southwest from Casa Grande, a town on the Southern Pacific, 12 miles by road west by north from Cucklebur Indian village and 7 miles northwest of the Casa Grande-Vekol wagon road. To reach the station from Cucklebur follow the Vckol road about 5 miles or until the foothills to the north are passed and Table Mountain opens to view up a broad level wash, then turn toward the mountain. The station is marked according to note 7 , page 84 The reference mark, a cross cut in a large flat rock nearly flush with the surface of the ground, is 3.80 meters from the station in azimuth $265^{\circ} 46^{\prime}$.

Superstition (U.S. G. S.) (Pinal County, Ariz., J. S. H., 1910).-This station is identical with the United States Geological survey station called Superstition Point. It is on the highest peak of the Superstition Mountains, 25 miles north of Florence and 25 miles cast of Mesa, towns on a branch of the Southern Pacific, and about 3 miles nortliwest of the Criswell ranch (old Bark's ranch). The peak is rugged, but with care pack animals can be taken within 50 meters of the top. The best approach is from Mesa via the Criswell ranch. The station is marked with a United States Geological Survey disk station mark cemented into a drill hole in the solid rock. The reference mark, a cross cut in the top of a large rock, is 2.265 meters from the station in azimuth $110^{\circ} 33^{\prime}$.

Whitetank (Maricopa County, Ariz., J. S. H., I9Io).-On the more southern one of two knobs of about the same elevation on the lower, larger, and more southern one of the two highest peaks of the Whitetank Mountains, about 22 miles due west of Peoria, a town on the Santa Fe, Prescott \& Phoenix Railway. The station is marked according to note 7 , page 84. The reference mark, a cross cut in the top of a large firm rock, is 5.425 meters from the station in azimuth $203^{\circ} 21^{\prime}$.

Maricopa (Maricopa County, Ariz., J. S. H., 1910).-On the highest and most western peak of a short spur of mountains extending to the eastward on the Maricopa divide, 23 miles direct, or 28 miles by road, southeast of Gila Bend, a town on the Southern Pacific, and about 24 miles direct, or 28 miles by road, northwest of the Vekol mining camp. The peak is onc-half mile north of the Vekol-Gila Bend road and is the most prominent one to be seen in approaching the mountains from the eastward. The station is marked according to note 7 , page 84 . The reference mark, a cross cut in a depression in a large bowlder, is 6.475 meters from the station in azimuth $252^{\circ} 30^{\prime}$.

Mohawk (Yuma County, Ariz., J. S. H., 1910).-On the highest and most southern peak of the Mohawk Mountains, in miles $\mathrm{S} . \mathrm{r}^{\circ} \mathrm{W}$. (true) from Stovall, from which place the peak may be seen, and 16 miles by road from Mohawk, small towns or stations on the Southern Pacific. The station is marked according to note 7, pagc 84 . The reference mark, a cross cut in the top of a bowlder near the edge of a bluff, is 13.31 meters from the station in azimuth $186^{\circ} 28^{\prime}$.

Harquahalla (Maricopa County, Ariz., J. S. H., 1910).-On the highest peak of the Harquahalla Mountains, about if miles direct, or 16 miles by road and trail, east of Wenden, a town on a branch of the Santa Fe, Prescott \& Phoenix Railway, and about 7 miles south of the nearest point of the railroad. The station is marked according to note 7 , page 84 . The reference mark is a cross cut in the top and near the north edge of a large bowlder and has the following description near it: "R. P. C. \& G. S. igıo." It is 8.21 meters from the station in azimuth $88^{\circ} 32^{\prime}$.

Kofa (Yuma County, Ariz., J. S. H., 1910).-On the highest and most westerly mountain at the west end of the Squaw Tank Mountains, 45 miles direct, or 54 miles by road, north by west from Mohawk, a station on the Southern Pacific, 9 miles northwest of the North Star mine or Polaris post office and about 5 miles direct in a westerly direction from the Squaw Tanks. The station is marked according to note 7, page 84 . The reference mark, a cross cut in the top of a fairly solid rock, is 11.22 meters from the station in azimuth $227^{\circ} 39^{\prime}$.

American (U. S G. S.) (Imperial County, Cal., J. S. H., 1910).—This station is identical with the United States Geological Survey station of the same name. It is on the highest point of the most easterly peak of the first range of mountains on the California side of the Colorado River, about 12 miles in a direct line northwest of Yuma, and 3 miles a little south of east from the "American Girl" gold mine. The station is marked with a United States Geological Survey bronze disk station mark cemented into the rock. The first reference mark, a cross cut in a flat rock which is in the saddle south of the station, is $11 / 2$ feet lower than the station and 3.61 meters distant in azimuth 357° 06^{\prime}. The second reference mark, a cross cut in the pinnacle of a large bowlder, is about 6 feet lower than the station and 7.23 meters distant in azimuth $237^{\circ} 23^{\prime}$.

Butte (Riverside County, Cal., J. S. H., 1910).-On the highest and most easterly knob of Black Butte Mountain, about 24 miles direct, or 32 miles by road and trail, N. 23° E. from Imperial Junction, a station on the Southern Pacific, and about 12 miles to the northward of the Chocolate Range of mountains. Black Butte Mountain can be seen from Imperial Junction through a gap in the Chocolate Mountains. The station is marked with a disk station mark described on page 83, cemented into a drill hole in a large flat rock which is in a level spot about 5 meters east and i meter below the highest
point of the ridgc. The first refercnec mark, a cross eut in the top of the lowest and most eastern rock of a large ledge of rocks running west of the station, is 5.445 metcrs from the station in azimuth $21^{\circ} 59^{\prime}$. The seeond reference mark, a cross eut in the east sloping face of an outerop of rock, is 1 foot lower than the station and 4.555 meters distant in azimuth $259^{\circ} 35^{\prime}$.

Powell (Mohave County, Ariz., J. S. H., 1910).-On a peak locally known as Powell Peak, the higher and more eastern one of two peaks on the Arizona branch of the Chemeheuvis Mountains, about 15 miles S. 20° E. from Franconia, a station on the Atchison, Topcka \& Santa Fc Railway and about 30 miles S. 51° E. from the town of Nccdles. The station is marked according to note 7 , page 84. The reference mark, a eross eut in the west face of a rock, is 2 feet lower thian the station and 5.62 meters from it in azimuth $21^{\circ} 11^{\prime}$.

Pine (Mohave County, Ariz., J. S. H., 1910).-On the more southern one of two knobs of the highest peak, locally known as Pinc Pcak, ncar the southern end of the Hualapai Mountains, about 18 miles direct, or 23 miles by road and trail, S. $67^{\circ} \mathrm{E}$. from Yucca, a town on the Atehison, Topeka \& Santa Fe Railway. The station is marked by a disk station mark, deseribed on page 83 , cemented into a drill hole in a large rock about $1 \frac{1}{2}$ feet above the surface of the ground. The reference mark, a large cross eut in the south side of a very large roek which is near the highest point of the peak, is in azimuth $161^{\circ} 13^{\prime}$ from the station.

Chemehuevis (San Bernardino County, Cal., J. S. H., 1910).-On the highest and most southwesterly peak of the Chemehuevis Mountains, 22 miles south by east of Needles, a town on the Atchison, Topeka \& Santa Fe Railway, and about 3 miles east of the Parker-Needles road. The station is marked according to note 7, page 84. The reference mark, a cross cut in the solid rock, is 5 feet lower than the station and 6.42 meters distant in azimuth $7^{\circ} 24^{\prime}$.

Cuyamaca (San Diego County, Cal., A. T. M., 1898; 1910).-About io feet south of the highest point of the backbone of the large ledge that forms the highest part of the southern and highest peak of Cuyamaea Mountain, about 60 miles northeast of San Diego and about 4 miles from Cuyamaea Lake. A light wagon ean be driven to within one-third of a mile of the station. The station was originally marked by a copper bolt cemented in a 1 by 4 inch drill hole, but the copper bolt has since been removed and the center of the drill hole is now the station. The reference marks, eael eonsisting of a cross eut in the roek with a copper bolt set at the intersection, are at the following distances and directions from the station: 2.340 meters, north; 2.145 meters, northeast; and 1.900 meters, south. The roek containing the north reference mark has been broken, but the original position of the mark may be obtained approximately by placing the broken scgments together. In 1910 a cross was cut in the face of a large rock almost direetly under this old mark, the center of this new mark being 2.448 meters from the station.

San Jacinto (Riverside County, Cal., A. T. M., 1898; 1910).-On the highest and most northern peak of San Jacinto Mountain, 33 miles by road and trail from San Jacinto, a town on the Southern California Railway, and 10 miles by road and trail from the summer resort in Strawberry Vallcy called Idylwild. The trail from Idylwild to the peak is steep and rather dangerous in places. The station is marked by a $1 \frac{1}{4}$-ineh drill hole 3 inches deep in the top of a large bowlder 13 feet southwest from the top of the highest
bowlder on the peak. The reference marks, 4 drill holes, each $1 \frac{1}{4}$ inches in diameter and 3 inches deep in rocks on the top of the peak, are at the following distances and azimiths from the station: 17.19 meters, $21^{\circ} 19^{\prime} 14^{\prime \prime} ; 8.75$ meters, $162^{\circ}{ }^{\circ} 6^{\prime} 04^{\prime \prime \prime} ; 3.44$ meters, $252^{\circ} 55^{\prime}$ o9'"; 10.42 meters, $332^{\circ} 59^{\prime} 09^{\prime \prime}$.

KYLE-McCLENNY TO STANTON BASE.

SUPPLEMENTARY POINTS.

Cisco astronomic station (U. S. G. S.) (Eastland County, Tex., W. B., 1908)--Just west of the standpipe in Cisco. The station is marked by a cross and the letters "U. S. G. S." in the top of a stone.

Abilene standpipe (U. S. G. S.) (Taylor County, Tex., W. B., 1908).-The older and taller of the two standpipes at Abilene and on the west side of the town.

Wasp, U. S. G. S. (Fisher County, Tex., W. B., 1908).-This station is practically identical with the United States Geological Survey station of the same name, the stone mark of which was found lying on top of the ground. It is 7 miles direct, or $7^{1 / 2}$ miles by road, N. $17^{\circ} \mathrm{W}$. from Swectwater, a town on the Texas \& Pacific Railway, I mile west of the Sweetwater-White Flat public road and 150 meters east of the SweetwaterClatonville public road, on the highest point of the highest and most prominent peak in the vicinity. The peak has an easy slope on the west side and a stecp bluff on the east side. It is in a pasture owned by Joe Nunn. The station was re-marked according to note 2 , page 84 .

Stanton longitude station (Martin County, Tex., E. S., 191r).-Directly south of station Stanton (see p. 91) and 2.26 meters distant. The station is marked by a standard disk station mark in the top of a concrete pier 18 by 34 inches and 31 inches high. The station mark used is similar to the one described on page 83, except that it has the words "Astronomical station" stamped on the disk in addition to the regular inscription.

STANTON BASE TO DEMING BASE.

SUPPLEMENTARY POINTS.

East (El Paso County, Tex., C. V. H., i911).-On a small mesa-topped hill at the middle and highest part of a long ridge extending east and west about 6 miles north of Boracho, a town on the Texas \& Pacific Railway. The top of the hill is about 30 meters north and south by 50 meters east and west, and the highest part is at the northwest edge, about 20 meters $\mathrm{N} .70^{\circ} \mathrm{W}$. from the station. The station is marked by a cross, the western one of two crosses, cut in the top of a flat rock, which is about 2 feet in diameter and flush with the surface of the ground. A small conspicuous yellow knoll on an adjoining ridge bears N. $5^{\circ} \mathrm{E}$. from the station and Boracho bears S. $3^{\circ} 30^{\prime} \mathrm{W}$.

Boracho (El Paso County, Tex., C. V. H., 1911).-Duc north of Boracho longitude station (see following description) and 6.565 meters distant. The station is marked by a cross on the top of a stone post, 6 by 8 by 20 inches, which projects 1 inch above the ground. A stone post, 6 inches square on top, with a square hole at the center one-half inch deep, surrounded by the letters "U. S. B. M.", is on the south side of the track, directly opposite the section house and 152.34 meters from the station in azimuth 235° o5'. The south end of the roof of the Boracho store and post office is $\mathbf{1 2 2 . 7 4}$
meters from the station in azimuth $262^{\circ} 27^{\prime}$, and the west end of the roof of the section house is in azimuth $224^{\circ} 45^{\prime}$. The southeast corner of a large adobe corral is about 40 meters N. $40^{\circ} \mathrm{E}$. from the station.

Boracho longitude station (El Paso County, Tex., C. V. H., 19I 1).-About 100 meters south of the Texas \& Pacific Railway track and 200 meters southwest of the new section house at Boracho. A concrete pier was built at the station, 14 by 26 inches in cross section, with a notch in the top to give room for the reversing apparatus of the transit. The station is marked by a standard disk station mark sct in the noteh of the concrete pier. The station mark uscd is similar to the one described on page 83 , exeept that it has the words "Astronomical station" stamped on the disk in addition to the regular inscription.

West (El Paso County, Tex., C. V. H., 1911).-About 200 meters from the western end of the first high ridge north of Boracho, a town on the Tcxas \& Pacific Railway. As seen from station Boracho (see p. 103), the station is directly in line with a large bush showing against the sky line about 300 meters east of station Krouse (see p. 96). The station is marked by a cross one-half inch deep eut in the top of a rock 3 feet in diameter, the top of whieh is flush with the surface of the ground.

Allamore (El Paso County, Tex., J. S. H., 1909). -Near a water tank on the north side of the Texas \& Pacific Railway track about 2 milcs west of the Allamore section house. The station is marked aecording to note 8 , page 85 , except that no underground mark was used. The center of the water tank is 8.79 meters from the station in azimuth $338^{\circ} \mathrm{II}$ '. The north rail of the track is 12.49 meters south of the station and the railway fence line is 1.56 meters north.

Cerro Alto (F1 Paso County, Tex., J. S. H., 1909).-On the same peak as the United States Geological Survey station of the same name, at the highest point of the Cerro Alto Mountains, about 40 miles a little north of east of El Paso, and just north of the road leading from Corduna Mountain, near the foot of Mud Peak, to El Paso. The station is marked according to note 7 , page 84 . The refercnce mark, a cross cut in the top of a large rock, is 4.17 meters from the station in azimuth $339^{\circ} 39^{\prime}$. The United States Geological Survey station marked by a cairn, is 70 meters from the station in azimuth ${ }^{1} 5^{8^{\circ}} 50^{\prime}$.

Mesa (El Paso County, Tex., J. S. H., r909).-About ro miles in a direet line S. 89° E. from the post office in El Paso, 4 miles N. 20° E. from Ysleta, a town on the Southern Pacific, and on a long narrow point extending south on the south side of the mesa. This point is the most southern point of the mesa in the vieinity and quite prominent on account of its steep high bluffs on the east, south, and west sides. The station is marked according to note 7 , page 84 . The refcrence mark, a cross cut in a rock near the edge of the bluff, is 15.53 meters from the station in azimuth $327^{\circ} 32^{\prime}$.

El Paso Courthouse (El Paso County, Tex., J. S. H., I9II).-Center of the dome of the courthouse at El Paso.

El Paso Federal Building, center (El Paso County, Tex., J. S. H., r909; 191r).-Cenof the tower of the Federal Building at El Paso.

Mills, El Paso (El Paso County, Tex., C. V. H., i9i). -The tall iron flagstaff on top of the new Mills Building, in the downtown section of El Paso and opposite the post office and Plaza. The station is near the northeast edge of the house over the elevator shaft and at the top of the flight of steps leading to the top of this house.

Weather, El Paso (El Paso County, Tex., C. V. H., I9II). -The iron pole at the center of the small house over the elevator shaft on top of the new El Paso \& Southwestern Railroad Co.'s building at El Paso. The pole is used by the United States Weather Bureau and bears their aerometer at the top.

Presbyterian Church, El Paso (El Paso County, Tex., C. V. H., i9i i).-The wooden finial surmounting the square bell tower over the southeast or main entrance of the brick Presbyterian Church at the corner of Stanton and Boulevard Streets, El Paso.

El Paso longitude station (El Paso County, Tex., C. V. H., 1911).—It was found in 19if that the old longitude station of 1892 had been destroyed and so a new station was established. It is in the western corner of Cleveland Park and about 30 meters west of the new concrete band stand. The station is marked by a concrete pier 18 by 34 inches in cross section with its foundation 3 feet in the ground.

El Paso astronomic station No. I (El Paso County, Tex., I893). -This is one of the United States and Mexico Boundary Commission stations. It is on a sand plain on the east side of the Rio Grande between the river and the Atchison, Topeka \& Santa Fe Railway. The station is marked by a lead plug in the top of a bowlder weighing about 250 pounds buried with its top about 3 inches below the surface of the sand. A notch was made on the near rail of the railroad directly in the line with boundary monuments No. 1 and No. 2, and this notch is 38.68 meters from the station.

Juarez Cathedral (Mexico, J. S. H., 1909). -The cross on the top of the cathedral at Juarez.

Boundary monument No. i (U.S. © Mex.) (New Mexico-Mexico, 1893).-On the west bank of the Rio Grande and 172.6 meters from the center of the channel. It is a cut stone monument 12 feet high, 5 feet square at the base, and $21 / 2$ feet square at the top, with a jacket of concrete 4 feet high around the base.

Boundary monument No. 2, eccentric (U.S. \& Mex.) (Ncw Mexico-Mexico, J. S. H., 1909).-About 3 miles west of El Paso on the west side of the Rio Grande and about I mile from a large smelter. The station is marked according to note 7 , page 84 . Boundary monument No. 2, an obelisk of concrete 4 feet square at the base and 12 feet high, is 9.75 meters from the station in azimuth $149^{\circ} 55^{\prime}$. The above-mentioned smelter is in azimuth $294^{\circ} 12^{\prime}$ from the station.

Boundary monument No. 3 (U.S. ©', Mex.) (New Mexico-Mexico, J. S. H., 1909).About 5 miles west of El Paso. This monument is similar to boundary monument No. 2, described above.

Jarilla longitude station (Otero County, N. Mex., E. S., 1911).-Two and one-half meters east and 0.38 meter south of station Jarilla (see p. 97). The station is marked by a standard disk station mark in the top of a concretc pier 14 by 26 inches and 35 inches high above the solid rock on which it rests. The station mark uscd is similar to the one described on page 83 except that it has the words "Astronomical station" stamped on the disk in addition to the regular inscription.

Deming city waterworks (Luna County, N. Mex., J. S. H., 1909).—High red water tank which supplies Deming with water and which is known as the Deming city waterworks. A United States Geological Survey bench mark is near the base of the tower and it is used to control the vertical angle elevations of the triangulation in this vicinity.

SUPPLEMENTARY POINTS.

Near (Luna County, N. Mex., J. S. H., 1910).-Five miles in a direct line S. 33° W. from Victoria, a station on the El Paso \& Southwestern Railroad, on a high rocky peak, the more eastern one of two peaks in that vicinity and about i mile westnorthwest of the International Mines. The station is marked according to note 7 , page 84. The refcrence mark, a cross cut in the rock, is 4.11 meters from the station in azimuth $116^{\circ} 30^{\prime}$.

Boundary monument No. 39 (U. S. \& Mex.) (New Mexico-Mexico, J. S. H., 1909).An iron monument on a sharp ridge sloping south of the Sicrra Rica Mountains. It is best reached from Victoria, a town on the El Paso \& Southwestern Railroad, via the International Mines. The reference mark, a small cross cut in the top of a rock, is 2.80 meters from the monument in azimuth $221^{\circ} 29^{\prime}$.

Boundary monument No. 3 (U.S. \& Mex.) (New Mexico-Mexico, J. S. H., 1909).About 4 miles southeast of Hermanas, a town on the El Paso \& Southwestern Railroad, and on the first ridge of the Carrizalillo Mountains in a commanding position overlooking the valley to the eastward. The monument is of iron.

Boundary monument No. 32 (U. S. \& Mex.) (Ncw Mexico-Mexico, J. S. H., 1909).A stone monument 4 miles south of Hermanas, a town on the El Paso \& Southwestern Railroad, and on the highest point of the boundary line where it crosses the Carrizalillo Mountains.

Boundary monument No. 40 (U.S. © Mex.) (New Mexico-Mexico, J. S. H., 1910).About $2^{1 / 2}$ miles in a direct line west of the International Mines. It is known as the "upper corner" or "jog," since the boundary line makes a right-angled turn at this point. The monument was occupied eccentrically and the eccentric point marked according to note 7 , page 84 . The monument is 43.570 meters from the point occupied in azimuth $2^{\circ}{ }^{\circ} 6^{\prime}$.

Huachuca (Cochise County, Ariz., J. S. H., 1910).-This station is near a United States Geological Survey station, the name of which is unknown. It is on the highest peak of the mountain, at the north end of the Huachuca range, about in miles south of Huachuca, a town on the Southern Pacific, 4 miles south of Fort Huachuca and about $21 / 2$ miles south of a prominent round-top peak, called Nigger Head peak. The station is marked according to note 7 , page 84 . The reference mark, a one-half inch drill hole one-half inch deep at the edge of a bluff, is 5.78 meters from the station, in azinuth $94^{\circ} 33^{\prime}$. The United States Geological Survey station, marked by a cairn, is 0.6 meter distant, in azimuth $289^{\circ} 35^{\prime}$.

Mule (U.S.G.S.) (Cochise County, Ariz., J. S. H., I9Io).-This station is in approximately the same location as the United States Geological Survey station. It is on the southeast and lower one of the two highest peaks of the Mule Mountains, $7^{1 / 2}$ miles N. 5° W. from Naco, 4 miles northwest of Don Luis, and $21 / 2$ miles west of Bisbee, towns on the El Paso \& Southwestern Railroad. The station is marked by a standard disk station mark, described on page 83 , cemented in the top of a I -inch iron pipe, 18 inches long, which was driven down flush with the surface of the ground. The reference mark, a cross cut in a ledge of rock with a one-half inch drill hole one-fourth of an inch deep at its centcr, is 5.79 meters from the station, in azimuth $210^{\circ} 36^{\prime}$.

Boundary monument No. gI (U.S. \&o Mex.) (Arizona-Mexico, J. S. H., I910).On the center one of three small hills, $4^{1 / 2}$ miles directly east of Naco, a town on the El Paso \& Southwestern Railroad, one-half mile south of the Naco-Douglas road and three-fourths mile south of the railroad. The monument is of iron and rests on a concrete base. It was occupied eccentrically, the eccentric point, marked by a small cross cut in the solid rock, being 3 meters from the monument, in azimuth $104^{\circ} 46^{\prime}$.

Nogales No. 7 (Santa Cruz County, Ariz., J. S. H., I910).-This is one of the United States and Mcxico boundary survey stations. It is on the more northern one of two prominent round-top hills, about 9 miles west by north of Nogales, and about 2 miles north-northwest of the angle in the international boundary line marked by monument No. 127. The station is marked by a five-eighths inch iron rod. Two similar iron rods, one of them 1.605 meters north of the station and the other 1.600 meters south of the station, are the reference marks. A one-half inch drill hole one-half inch deep in the top of a rock is 4.97 meters from the station in azimuth $256^{\circ} 55^{\prime}$.

Boundary monument No. 128 (U.S. \&o Mex.) (Arizona-Mexico, J. S. H., 1910).About 8 miles west of Nogales on the north slope of a ridge, the highest point of the boundary line in this vicinity, and 394 meters west of the angle in the line which is marked by monument No. I27. The eccentric point used is marked by a one-half inch iron rod driven in the ground with about 3 inches of its top projecting. It is i.2I8 meters from the monument in azimuth in $\mathrm{I}^{\circ} \mathrm{O}_{3}$.

Benedict (U. S. G. S.) (Santa Cruz County, Ariz., J. S. H., I9ro).-This station is identical with the United States Geological Survey station of the same name. It is on the highest round hill between the Santa Cruz River and Nogales Creek, about 5 miles south of Calabasas and 4 miles north of Nogales. The station is marked with a standard disk station mark, described on page 83 , cemented into the solid rock. The reference mark, a cross cut in the top of a rock, is 14.37 metcrs from the station in azimuth $230^{\circ} 36^{\prime}$.

Boundary monument No. 120 (U.S. \&o Mex.) (Arizona-Mexico, J. S. H., 1910).On the north slope of a sharp bald ridge threc-fourths of a mile east of Nogales. The monument marks the higlıest point of the boundary in the vicinity of Nogales and overlooks a wide extent of country. The eccentric point used at this station is marked with a standard disk station mark, described on page 83 , cemented in the top of a 1 -inch pipe 18 inches long, flush with the surface of the ground. It is 1.250 meters from the monument in azimuth $89^{\circ} 46^{\prime}$.

Boundary monument No. 121 (U.S. ㅇ Mex.) (Arizona-Mexico, J. S. H., 1910).An iron monument on the north slope of a sharp ridge about 200 meters southeast of the principal street of Nogales. The eccentric point used at this station is marked with a standard disk station mark, described on page 83 , cemented in the top of a 1 -inch pipe 15 inches long, flush with the surface of the ground. It is 2.777 meters from the monument in azimuth $96^{\circ}{ }^{2} 5^{\prime}$.

Nogales No. 5 (Santa Cruz County, Tex., 1893).-This is one of the United States and Mexico Boundary Commission stations. It is on the ridge between Ephraims Canyon and Mariposa Canyon and about 300 meters north of the international boundary line. The station is marked by a one-fourth inch drill hole at the center of a 4 by 4 inch pine stake. Four reference marks, each consisting of a nail at the center of a 2 by 2 inch
pine stub, are at the following distances from the station: 1.008 meters north; 1.171 metcrs east; i.Io2 meters south; and r.041 meters west.

Nogales No. 8 (Statc of Sonora, Mexico, 1893).-This is one of the United States and Mexico Boundary Commission stations. It is on the highest pcak south of the angle in the international boundary linc, marked by monument No. 127. The station is marked by a five-cighths inch iron rod driven in the ground. Two reference marks, each consisting of a nail driven in a tree, are at the following distances from the station: 3.757 meters southeast and 6.570 meters southwest. A nail in a stump northwest of the station is 1.254 meters distant.

Nogales No. 6 (State of Sonora, Mexico, 1893).-This is one of the United States and Mexico Boundary Commission stations. It is on the northwest end of a high ridge southwest of Nogales and near the head of the canyon leading southwest from the Mexican cemetery. The Mexican cemetery is in the canyon running west from the Mexican customhouse in Nogales. A higher parallel ridge is about a mile southwest of the ridge on which the station is located. The station is marked by a five-eighths inch iron rod driven in the ground. Four reference marks similar to the station mark are at the following distances: 1.140 meters north, I.113 meters east, 1.128 meters south, and 1.225 meters west.

Nogales No. 3 (State of Sonora, Mexico, 1893).-This is one of the United States and Mexico Boundary Commission stations. It is on the round-topped reddish hill about I mile east of Nogales. The international boundary line crosses this hill on the north slope. The station is marked by a five-eighths inch iron rod driven in the ground. Four reference marks similar to the station mark are at the following distances: 1.140 meters north, i.o80 meters east, 0.966 meter south, and I.ino meters west.

Nogales No. 4 (State of Sonora, Mexico, 1893).-This is one of the United States and Mexico Boundary Commission stations. It is on one of the highest peaks of the group of hills southwest of Nogales. The station is marked by a five-eighths inch iron rod driven in the ground. Four reference marks similar to the station mark are at the following distances: 0.972 meter north, 0.976 meter east, i.OI 7 meters south, 1.070 meters west.

Nogales No. I (State of Sonora, Mexico, 1893).-This is one of the United States and Mexico Boundary Commission stations. It is on the first hills west of the Sonora Railroad south of Nogales. The station is marked by a 2 by 4 inch pine stake. Four reference marks, consisting of five-eighths inch iron rods driven in the ground, are at the following distances from the station: 1.082 meters north, 1.182 meters east, I. 182 meters south, and I. 220 meters west.

Nogales No. 2 (State of Sonora, Mexico, 1893).-This is one of the United States and Mexico Boundary Commission stations. It is on the first hills west of the Sonora Railroad south of Nogales, on a small peak a few feet lower and about 100 metcrs east of a more prominent peak. The station is marked by a fivc-eights inch iron rod driven in the ground. Four reference marks similar to the station mark are at the following distances: 1.088 meters north, 0.971 meter east, 0.923 meter south; and 0.926 meter west.

Nogales azimuth station (State of Sonora, Mexico, 1893).-This is one of the United States and Mexico Boundary Commission stations. It is on the top of the first ridge east of Nogales and almost in line with International Street produced. The station is
marked by a one-fourth inch drill holc in the top of a 2 by 4 inch pine tree stake. Four reference marks, cach consisting of a nail in the top of a 1 by i inch pine stub, are at the following distances from the station: 0.831 meter north, 0.989 meter east, 1.025 meters south; and 0.844 meter west.

Nogales astronomic station (Santa Cruz County, Ariz., 1893).-This is one of the United States and Mexico Boundary Commission stations. It is in the grounds at the rear of the Montezuma hotel at Nogales. The station is marked by a nail in the top of a rectangular stake. Due north of the station is an old brick longitude pier 17 by 25 inches in cross section. An old brick latitude pier ${ }_{17}$ inches square and 3 feet high above the ground is 2.22 meters north and I .28 meters west of the station. The longitude pier is 1.27 meters due east of the latitude pier.

Nogales south base (State of Sonora, Mexico, 1893).-This is one of the United States and Mexico Boundary Commission stations. It is on the point of a small ridge 9.58 meters east of the center of the tract of the Sonora Railroad at a point about midway between two trestles. The station is marked by a hole in the top of a 2 by 4 inch pine stub. Three reference marks similar to the station mark are at the following distances: 0.765 meter north, 0.845 meter east, and 0.784 meter west.

Nogales north base (State of Sonora, Mexico, 1893).-This is one of the United States and Mexico Boundary Commission stations. It is in the switch yard of the Sonora Railroad south of the Mexican customhouse at Nogales and on the prolongation of the last tangent of the main track before it enters the switch yard. The station is marked by a hole in the top of a 2 by 4 inch pine stub. Three reference marks similar to the station mark are at the following distances: 0.975 meter north, 1.077 meters south, and 0.899 meter west.

Maricopa northwest base (U.S. G. S.) (Pinal County, Ariz., J. S. H., i910).-About one-half mile southeast of Maricopa, a town on the Southern Pacific, 26 feet north of the center of the railroad track, opposite mile post 897 . The station is marked by an iron bench mark post set flush with the ground and surrounded with a collar of concrete. The bottom of the post rests on a rock.

Maricopa astronomic station, eccentric (Maricopa County, Ariz., J. S. H., I910).For the general location of this station see the following description of Maricopa east pier. The station is marked by a nail in the top of a stake. The following distances and azimuths were measured: Maricopa east pier 21.673 meters, $318^{\circ} \mathrm{o7}^{\prime}$; Maricopa west pier 20.544 meters, $321^{\circ} 55^{\prime}$; U.S.G.S.B.M. Maricopa 394.98 meters, $325^{\circ} 12^{\prime}$.

Maricopa east pier (Maricopa County, Ariz., J. S. H., 1910).-This is an old longitude pier. It is west by south of the depot of the Santa Fe, Prescott \& lhoenix Railway at Maricopa and on the opposite side of the track. The station is marked by a standard disc station mark, described on page 83, cemented in the top of a brick pier which is 3 bricks east and west by 2 bricks north and south, 30 inches in the ground and 30 inches above. The following distances were measured: Center of the Santa Fe, Prescott \& Phoenix Railway track, 20.64 meters east; fifth telegraph pole of the same track, 10.64 meters; danger post at a public road crossing on the same railway, 26.39 meters; center of Southern Pacific track, 175.6 I meters south.

Maricopa west pier (Maricopa County, Ariz., J. S. H., 1910).-This is an old latitude pier. It is 1.85 meters directly west of Maricopa east pier (see preceding description).

The station is marked by a standard dise station mark, deseribed on page 83 , eemented in the top of a briek pier, 2 brieks square, 30 inches in the ground and 36 inehes above.

Gila (Yuma County, Ariz., J. S. H., 19II).-On the most northern peak at the northwest end of the Gila Mountains, 2 milcs west of Dome, a station on the Southern Pacific and $15 / 2$ miles south of the railroad where it makes a bend aeross the north point of the mountains. There are other and higher peaks south of the one on which the station is loeated. The station is marked aecording to note 7 , page 84 . The reference mark, a eross eut in a sloping rock face, is 3.00 meters from the station in azimuth $286^{\circ} 51^{\prime}$.

Yuma No. io (Yuma County, Ariz., J. S. H., 1911).-This station was established by the United States and Mexieo Boundary Commission. It is on the highest point of the southern one of two blaek hills on the mesa about 6 miles south by east from Yuma. The station mark is the point of a 40 -penny nail in the eenter of a $\mathrm{I}^{1 / 2} \mathrm{-ineh}$ iron pipe 22 inehes long whieh is filled with eonerete and embedded in a column of eoncrete 10 by 12 by 20 inches, the pipe projeeting 2 inches above the top of the column. The reference marks are a United States Geological Survey bronze beneh mark tablet on an iron post 0.66 meter from the station in azimuth 236° or ${ }^{\prime}$, and a five-cighths-inch iron pin 3.04 meters east of the station.

Yuma azimuth station (Yuma County, Ariz., J. S. H., 1911).—This station was established by the United States and Mexieo Boundary Commission, and it is identical with the United Statcs Geologieal Survey station. It is on the southern peak of a hill called Sierra Prieta, just south of Yuma. The station is marked by a standard disk station mark, described on page 83, eemented in the top of a briek pier whieh is built on solid roek and is I foot high. The reference mark, a United States Geological Survcy bronze bench-mark tablet on the top of an iron post, is 1.10 meters from the station in azimuth $150^{\circ} \mathrm{o} 3^{\prime}$. Three iron bolts are at the following distanecs from the station: 1. 50 meters north, 1.83 meters east, and 1.70 meters southwest.

Yuma west base (Yuma County, Ariz., 1893).-This is one of the United States and Mexieo Boundary Commission stations. It is on the mesa south of Yuma and near the western limit of the Blaisdell farm. The station is marked by a holc in the top of a 2 by 4 inch pine stub. Four referenee marks, eaeh eonsisting of a taek in the top of a pine stub, are at the following distanees from the station: 2.078 meters north, 1.951 meters east, r. 766 meters south, and 2.223 meters west.

Yuma east base (Yuma County, Ariz., J. S. H., 191 I). -This station was established by the United States and Mexico Boundary Commission. It is on the most western peak of a small hill whieh is composed of blaek roek and drifting sand and is about 2 miles southeast of Yuma. The Southern Paeifie Railroad eurves around the south and west sides of this hill. The station is marked by a five-eighths-ineh iron pipe projecting about 2 inehes above the surface of the ground, near the center of a mound of rock whieh was piled around the station for the observer to walk upon. Two iron rods similar to the one marking the station and located at the edge of the mound are at the following distances and azimuths from the station: 1.34 meters, $180^{\circ} 56^{\prime}$; and o. 68 meter $1^{\circ}{ }_{1} 6^{\prime}$; a 1 -ineh hollow iron pipe with top battered is 1.13 meters from the station in azimuth $274^{\circ} \mathrm{o} 7^{\prime}$.

Yuma latitude station (Yuma County; Ariz., C. H. S., 1892). -In the east end of the old adobe building whieh forms part of the north side of the eorral on the Govern-
ment reservation known as the Yuma Quartermaster's Depot Reservation. This depot has been abandoned for several years. The station is marked by a brick pier ${ }_{7} 7$ inches square and 3 feet high. A brick longitude pier is 1.7 meters southeast of the station.

Pilot Knob (San Diego County, Cal., 1893).-This is one of the United States and Mexico Boundary Commission stations. It is on the rocky hill called Pilot Knob, about I mile north of the international boundary line and near the Colorado River. The station is marked by a pine stub. Three reference marks consisting of similar pine stubs are at the following distances from the station: 1.695 meters north-northwest; 2.088 meters east-northeast; and i. 350 meters west-southwest.

Boundary monument No. 204 (U.S. Ef Mex.) (Arizona-Mexico, 1894).-This is an old monument repaired in 1894 by the United States and Mexico Boundary Commission. It is at the western limit of the Yuma Desert mesa and overlooks the Colorado River bottom. The monument is of cast iron plates and has a concrete foundation.

Boundary monument No. 207 (U.S. \& Mex.) (California-Mexico, J. S. H., 1910).A masonry monument at the foot of Pilot Knob Mountain, overlooking the Colorado River Valley, and 81o meters west of monument No. 206. (See below.)

Boundary monument No. 208 (U.S. \& Mex.) (California-Mexico, J. S. H., 1910).An iron monument near a line of heavy sand hills on the same mesa as monument No. 207 (see preceding description) and about 2 miles farther west.

Boundary monument No. 206 (U.S. \& Mex.) (California-Mexico, J. S. H., 1910).An iron monument 229 meters west of the center of the channel of the Colorado River at a point about 6 miles below the mouth of the Gila River.

Yuma No. II (State of Lower California, Mexico, 1893).-This is one of the United States and Mexico Boundary Commission stations. It is on the highest peak of the southeast extension of the sand ridge southwest of Pilot Knob. (See above.) This peak is about I mile almost due east of another sand peak of about the same height. The station is marked by a 2 by 4 inch pine stub. Three reference marks consisting of similar pine stubs are at the following distances from the station: 2.472 meters north; 2.560 meters south; and 2.197 meters west.

Hill (San Bernardino County, Cal., W. B. F., 1893; 1910).-This station is identical with the United States Geological Survey station of the same name. It is about 6 miles northwest of Needles, a town on the Atchison, Topeka \& Santa Fe Railway, 2 miles west of the Colorado River, and about 2 miles northwest of the Dinsmore ranch on the highest sand hill in the vicinity, the highest one between the Dinsmore ranch and the first great wash. The underground mark at the station is a bottlc buried with mouth up, $21 / 2$ feet below the surface of the ground, and the surface mark is a disk station mark described on page 83, cemented in a drill hole in the top of a large irregular rock approximately 18 by 18 by 20 inches in size.

- Knoll (San Bernardino County, Cal., W. B. F., 1893; 1911).-This station is identical with the United States Geological Survey station of the same name. It is on the most prominent knoll on the desert about $11 / 2$ miles due west of the schoolhouse at Needles. The knoll is sharp, with very little room on top, and is covered with rocks. The station is marked as follows: A bottle is buried in a vertical position with the neck up, $21 / 2$ feet below the surface, and 6 inches above this bottle are three others with their mouths toward the center. The surface mark is a standard disk station mark,
described on page 83 , cemented in a drill hole in an irrcgular rock about 15 by 15 by 18 inches in size.

Bluff (San Bernardino County, Ca1., W. B. F., 1893; 1911).-About 6 miles north of the town of Necdles on a prominent high bluff that projects out from the mesa toward the Colorado Rivcr. The bluff is the highest one in the vicinity and about 150 meters west of the river. The station is marked as follows: A bottle is buried in a vertical position with the neck up, $21 / 2$ feet below the surface, and 6 inches above this bottle are thrce others in a horizontal position with their mouths toward the center. The surface mark is a nail in the top of a redwood stake 4 inches square and 2 feet long. The signal was left standing with piles of rock around the center pole and cach of the legs.
C. © G. SuB. M. N ${ }_{8}$, eccentric (San Bernardino County, Cal., J. S. H., 1911).Near the west switch of the Atchison, Topeka \& Santa Fe Railway at Hartoum. The station is marked by a cross on the square head of an iron pipe 18 inches long. The bench mark is opposite a rail rack, 12.32 meters south of the center of the track and 5.015 meters from the station in azimuth $343^{\circ} 26^{\prime}$. The bench mark consists of a standard 3 -inch red metal cap screwed to the top of an iron pipe about 3 feet long set in the ground with about 4 inches exposed. The bottom of the pipe is split in three parts, which are spread to a diameter of about io inches, and a steel plate i foot square is riveted to these flanges.

Needles longitude station (San Bernardino County, Cal.; C. H. S., 1889).-On the Catholic Church lot at Needles, 38.1 feet northwest of the northwest corner of the church and 300 meters from the main track of the Atchison, Topeka \& Santa Fe Railway. The station is marked by a pier constructed of adobe bricks and cement. A latitude picr of similar construction is 27.8 feet south and 3.2 feet east of the station. A cemetery is directly west of the station. Connection was made with the triangulation by means of an eccentric station located on a knoll about 30 feet high ioo feet west of the station.

Bar (San Bernardino County, Cal., W. B. F., 1893; 1908). -Eighty meters west of the schoolhouse on the hill south of Needles and near the edge of a bluff. . The station was marked by a $1 / 2 / 2$-inch iron bar set in cement. The station was reported as probably lost in 1909.

Needles east base (San Bernardino County, Cal., W. B. F., 1893; 1909). This station has been destroycd.

Needles west base (San Bernardino County, Cal., W. B. F., I893; 1909).-On the mesa $11 / 2$ miles northwest of Needles and one-half mile north of the railroad track, at the corner of Q and Vine Streets, in a real estate subdivision of Needles. The station is marked as follows: A bottle is buried with mouth up, $21 / 2$ feet bclow the ground, and 6 inches above this bottle are three others with their mouths toward the center. The surface mark is a copper bolt in the top of a sandstone monument 12 by 12 by 36 inches in size projecting I foot above the surface.

COMPUTATION, ADJUSTMENT, AND ACCURACY OF THE ELEVATIONS.

The zenith distances directly observed at each station were first computed. These zenith distances were corrected for height of the object observed and of instrument so as to refer them all to the ground at each station or to the station marks.

The difference of elevation of each pair of stations in the main scheme was then computed from the observations over the linc joining them by the formula

$$
h_{2}-h_{1}=s \tan 1 / 2\left(\zeta_{2}-\zeta_{1}\right)\left[1+\frac{h_{2}+h_{1}}{2 \rho}+\frac{s^{2}}{12 \rho^{2}}\right]
$$

in which h_{2} and h_{1} areelevations of the stations, ζ_{2} and ζ_{1} are the measured zenith distances as corrected for height of instrument and of object observed, s is the horizontal distance between the stations, and ρ is the radius of curvature.

As there are always two or more lines to each new station, many rigid conditions exist between the observed difference of elevation, even if the connections with the precise leveling were ignored, and the least square adjustment furnishes the readicst accurate means of deriving the required elevations.

The elevations of the primary scheme from the stations of the ninety-eighth meridian triangulation westward to the primary triangulation in California were adjusted in three sets of equations.

The first adjustment involved all stations of the primary scheme from the ninetyeighth meridian to the Stanton basc.

- The sccond adjustment fixed the elcvations of all primary stations from the Stanton base to the Deming base.

The third adjustment fixed the elevations of all the stations of the primary scheme between the stations of the second adjustment and the stations of the California primary triangulation.

In the first adjustment the elevations of Lamb, Patterson, Stanton, Stanton south base, and Stanton north basc were held fixed at $534.80,726.68,825.59,821.20$, and 853.04 meters, respectively. These clevations were determined by the line of precise levels run in igio, each station being a bench mark except Stanton north base, which was determined by precise levels run by the base-line party. The elevations of stations Kyle and McClenny were also held fixed, they having been determined by a previous adjustment. ${ }^{1}$ These two elevations arc 412.4 and 401.6 meters, respectively.

The elevations of the 26 remaining stations connected by the observations are unknowns to be determined by least squares from the 71 observed differences of elevation indicated below.

In the following tabulation there are shown the observed differences of elevation treated in the first adjustment, together with their adjusted values. The weight p assigned to cach observed difference of elevation is inversely proportional to the square of the length s of the line betwcen stations in meters and was conveniently computed by the formula $\log p=9-2 \log s$. The observed difference of elevation is given the sign of the elevation of the second station named minus the elevation of the first. The quantity contained in the last column but onc is the correction to be added to an observed difference of elcvation to obtain the adjusted difference of elevation.

[^13]Kyle-McClenny to Stanton base.

Station I	Station a	$\underset{p}{\text { Weisht }}$	Observed difference of elevations $h_{5}-k_{1}$	Adjusted difference of elevations $h_{5}-h_{1}$	Adjusted minus observed v	$p v^{2}$
			Meters	Meters	Meters	
Kyle	McClenny	O. 55	- I1. 29	- 10.81	+0. 4^{8}	0. 127
Kylc	Rattlesnake	o. 34	+ 77.75	+ 80.75	$+3.00$	3. 060
McClenny	Rattlesnake	I. 00	+92.27	+ 91. 56	-0.71	0. 504
Lacasa	Rattlesnake	-. 76	+ 5.57	+ 5.70	+o. 13	o. 013
Lacasa	Pierce	4. 19	+ 2.22	+ 2.04	-0. 18	-. 136
Lacasa	Flat	I. 5^{8}	+ 8.94	+ 9.37	+0. 43	0. 292
Rattlesnake	Pierce	1. 42	- 3.95	- 3.66	+o. 29	-. 119
Piercc	Hearn	0. 90	+ 8.75	+ 10.25	+1. 5°	2. 025
Pierce	Flat	4. 38	+ 773	+ 7.33	-0. 40	0. 701
Hearn	Springgap	-. 76	+162.98	+164.53	+1. 55	I. 826
Hearn	Lamb ${ }^{\text {L }}$	3. 06	+ 35.00	+ 35.06	+o. 06	0. 011
Flat	Lamb	2. 13	+ 38.36	+ 37.98	-0. 38	0. 308
Flat	Springgap	-. 48	+167.19	+167.45	+o. 26	o. 032
Flat	Hitson (U. S. G. S.)	-. 62	+76.06	+ 75.50	-0. 5^{6}	-. 194
Lamb	Springgap	1. 63	+129.82	+129.47	-0.35	0. 200
Lamb	Hitson (U. S. G. S.)	I. 29	$+37.60$	+ 37.52	-0. 08	0. 008
Springgap	Clayton	-. 74	+45.25	+ 45.68	+o. 43	-. 137
Springgap	Clyde	1. 93	- 31. 54	- 30.44	+1.10	2. 335
Springgap	Kennard	-. 93	- 43.23	- 44.99	-1. 76	2.88I
Springgap	Hitson (U. S. G. S.)	1. 80	- 91.89	-91. 95	-0.06	0. 006
Hitson (U. S. G. S.)	Clyde	4. 28	$+61.20$	+61.51	+o. 31	c. 41 I
Hitson (U. S. G. S.)	- Kennard	3. 12	+ 47.58	+ 46.06	-0. 62	I. 199
Clyde	Kennard	9. 18	-14.98	- 14. 55	+o. 43	I. 697
Clayton	Clyde	1. 35	-76.46	-76. 12	+o. 34	-. 156
Clayton	Buzzard	I. 21	+ 23.30	+ 24.30	+1.00	1. 210
Clayton	Morrison	0. 98	-148.26	-148.78	-0. 52	0. 265
Clayton	Kennard	-. 99	-89.82	-90.67	-0.85	0. 715
Kennard	Buzzard	-. 4^{8}	+113.57	+114.97	+1. 4°	0. 94^{r}
Kennard	Morrison	-. 95	- 56.94	- 58. 11	-1. 17	I. 300
Buzzard	Morrison	2. 72	-173.09	-173.08	+o. 01	0. 000
Buzzard	Hale	2.39	+ 38.64	$+39.09$	+o. 45	0. 484
Buzzard	Sears	1.88	- 156.74	- 156.30	+o. 44	o. 364
Morrison	Sears	2.88	+ 17.25	+ 16.78	-0. 47	0.636
Morrison	Hale	1. 08	+212.39	+212.17	-0. 22	0. 052
Hale	Boyd	13.68	- 2.99	- 2.90	+o. 09	0. 111
Sears	Hale	0. 30	+195.93	+195.39	-0. 54	0. 088
Sears	Boyd	I 94	+193.32	+192.49	-0. 83	I. 336
Sears	Allcn	1. 44	+ 94.70	$+95.56$	+0. 86	1. 065
Hale	Allen	1. 90	- 99.52	- 99.83	-o. 31	-. 183
Boyd	Allen	3. 71	-96.82	- 96.93	-0. 11	0. 045
Boyd	Lloyd	1. 38	+ 20.71	+ 22.17	+1. 4^{6}	2. 942
Boyd	Patterson	I. 21	- 42. 11	-. 43.76	-1. 65	3. 294
Allen	Patterson	I. 80	+ 52.92	+ 53.17	+0. 25	0. 112
Allcn	Lloyd	0.90	+119.35	+119.10	-0.25	0. 056
Patterson	Lloyd	2.47	+ 66.90	+65.93	-0. 97	2. 324
Patterson	Bench	1.88	+ 67.44	+ 66.74	-0.70	0. 921
Patterson	Wolf	2. 70	+ 24.86	+ 24.92	+0.06	0. oro
Lloyd	Bench	16.67	+ 0.85	+ 0.81	-0.04	0.027
Lloyd	Wolf	1.23	-40.98	- 41.01	-0.03	0. 001
Bench	Wolf	I. 53	-40.76	- 41.82	-1 06	I. 719
Bench	Bynum	0. 60	- 94.51	-" 95.44	-0.93	-. 519
Bench	Cuthbert	0. 43	-107.18	- 106. 45	+o. 73	0. 229
Wolf	Bynum	1. 18	- 53.45	-53.62	-0. 17	0. 034
Wolf	Cuthbert	1. 39	-63.68	- 64.63	-0.95	I. 254
Bynum	Cuthbert	3.06	- II. 02	- II. OI	+0. 01	0. 000
Bynum ${ }^{\circ}$	Signal	-. 93	+136.97	$+136.37$	-0.60	0. 335
Bynum	Top	1. 24	+ 75.92	+ 7r.7I	-0. 21	0.055
Cuthbert	Signal	-. 5^{8}	+147.99	+147.38	-0.61	-. 216
Cuthbert	Top	2. 02	+ 83. Or	+ 82.72	-0. 29	0. 170
Signal	Top	I. 27	-65.28	-64. 66	+0. 62	0. 488
Signal	Williams	6. 53	+31.38	$+30.91$	-0. 47	I. 442

Kyle-McClenny to Stanton base-Continued.

9 Station I	Station 2	$\underset{p}{\text { Weight }}$	Observed difference of elevations $h_{r}-h_{1}$	Adjusted difference of elevations $h_{2}-h_{1}$	Adjusted minus observed v	pra
			Meters	Meters	Meters	
Signal	Evart	1. 56	- 18. 15	- 17.25	+o. 90	I. 264
Top	Williams	0. 9^{2}	$+95.16$	+ 95.57	+0.41	a. I 55
Top	Evart	1. 77	$+47.66$	+ 47.41	-0. 25	o. III
Williams	Evart	2. 55	- 47.68	- 48. 16	-0.48	0. 588
Williams	Stanton	-. 99	- 38.88	-39.67	-0. 79	'0.618
Williams	Epley	-. 59	$+\quad 5.06$	+ 3.89	-1. 17	o. 808
Evart	Stanton	-. 73	+ 8.22	$+\quad 8.49$	+0. 27	0. 053
Evart	Epley	o. 76	+ 52.71	+ 52.05	-0. 66	0. 331
Stanton	Stanton S. base	5. 78	- 4.54	- 4.39	+o. 15	o. I30
Stanton	Stanton N. base	2.29	$+28.33$	+ 27.45	-0. 88	1. 773
Stanton	Epley	2. 78	+ 44.14	+ 43.56	-0. 58	-. 935
Epley	Stanton S. base	2. 36	- 47.49	- 47.95	-0.46	-. 499
Epley	Stanton N. base	5.27	- 15.80	- 16. 1 I	-0.31	0. 506
Stanton N. base	Stanton S. base	5. 74	- 32.40	-31.84	+o. 56	1. 800

The probable error of an observation of weight unity derived from the preceding adjustment is ± 0.70 meter. In other words, the reciprocal observations over a line 31.7 kilometers ($192 / 3$ miles) long, this being the length of the line corresponding to unit weight, determined the difference of elevation of two points with such a degree of accuracy that it is an even chance whether the error is greater or less than o.70 meter. The probable errors for lines of other lengths were assumed to be proportional to their lengths.

The probable errors of the elevations of the five stations fixed by precise leveling are about ± 0.05 meter. The probable error approaches this value for stations adjacent to those fixed by precise leveling and is greatest for the most remote stations. Of the elevations least accurately determined, station Buzzard, one of these, has a probable error estimated at not to exceed ± 0.5 meter.

The elevations of the stations of the main scheme from the Stanton base at the east to the Deming base at the west, including four secondary stations, were obtained from the second adjustment as shown in the tabulation below. The elevations of Scar, Odcssa, Hays, and Allamore were held fixed at $880.79,898.70,853.20$, and I 387.33 meters, respectively, these being the elevations as fixed by precise leveling. Four other elevations were held fixed, having been detcrmined by the spirit leveling of the United States Geological Survey and the United States and Mexico Boundary Commission, as follows: Boundary monument No. 2 (U. S. \& Mex.), Deming City Water Works, Boundary monument No. 32 (U. S. \& Mex.), and Boundary monmuent No. 40 (U. S. \& Mex.), and their elcvations are I 307.64, I 324.9 I, I 494.99 , and I 501.39 meters, respectively. The nonreciprocal obscrvations connecting one of these, Boundary monument No. 32 (U.S. $\&$ Mex.), werc used in this adjustment with a weight 0.3 of that assigned to corresponding lines of the main scheme and over which reciprocal observations were obtained.

In addition to the eight elevations held fixed there were the elevations of Stanton south basc and Stanton north basc which were common to the first adjustment and the difference of clevation between the two ends of the Deming base which was held as determined by the precisc leveling, namely, 20.54 meters.

The elevations of the two ends of the Deming base and the 38 remaining stations conncetcd by the observations are unknowns, to be determined by least squares from the 106 obscrved differences of elevation indicated on pages II6 and 117 .

Stanton base to Deming base.

Station 1	Station 2	$\underset{b}{\text { Weight }}$	Observed difference of elevations $h_{5}-h_{1}$	Adjusted difference of elevations $h_{s}-h$	Adjusted minus observed v	$p v^{2}$
			Meters	Meters	Meters	
Stanton N. base	Elkins	3. 38	+ 6.33	+ 5.83	- 0. 50	o. 845
Stanton N. base	Dunn	4. 06	$+\quad 34.08$	$+\quad 33.86$	-0.22	o. 195
Stanton S. base	Elkins	6.92	$+\quad 37.75$	$+\quad 37.67$	0. 08	0. 042
Dunn	Elkins	3.63	- 28.56	- 28.03	-0. 53	I. 020
Dunn	Sear	1. 73	- 4.63	- 6.11	- 1. 48	3. 789
Dunn	Morris	2.27	+ 19.51	+ 19.39	0. 12	0. 033
Elkins	Sear	2.95	+ 21.98	+ 21.92	- 0.06	-. 012
Flkins	Morris	1. 25	+ 47.54	+ 47.42	0. 12	0. 018
Morris	Sear	3. 03	- 24.32	- 25.50	- 1. 18	4. 218
Morris	Bates	16.00	+ 7.46	+ 7.76	+ 0.30	I. 440
Morris	Smith	4. 21	+ 15.07	+ 14.67	- 0.40	0. 674
Scar	Bates	4.81	+ $\quad 34.28$	+ 33.26	1. 02	5.002
Bates	Odessa	6.81	- 15.33	- 15.35	- 0.03	0. 006
Bates	Smith	5.27	+ $+\quad 6.89$	+ 6.91	+ 0.02	0. 002
Smith	Odessa	3.60	- 21.94	- 22.26	- 0.32	o. 368
Smith	Dublin	2.23	+ 58.61	+ $\quad 58.41$	- 0.20	0. 089
Odessa	Dublin	1. 26	+ 79.86	+ 80.67	$+0.81$	0. 827
Dublin	Douro	2. 25	- 43.13	- 43.97	-0.84	1. 588
Dublin	Harris	1. 83	- 100.15	- 98.81	+ 1.34	3. 286
Douro	Curtis	4. 53	- 64.95	- 65.15	0. 20	0. 181
Douro	Harris	I. 30	- 54.07	- 54.84	0.77	0. 771
Harris	Curtis	2. 28	- 10.53	- 10.31	$+0.22$	o. 110
Harris	Eistes	1. 32	- 83.03	- 83.16	- 0.13	0. 022
Harris	Aroya	I. 90	- 46.74	- 46.12	to 0.62	-. 730
Curtis	Estes	0. 85	- 72.39	- 72.85	-0.46	I. 799
Aroya	Estes	2. 90	- 37.65	- 37.04	$+0.61$	I. 079
Aroya	Lee	I. 48	- 6.86	- 7.36	- 0. 50	0. 370
Aroya	Johnson	I. 36	+ 35.30	$+\quad 35.39$	$+0.09$	O. OII
Estes	Lee	I. 85	+ 29.00	$+\quad 29.68$	$+0.68$	o. 855
Estes	Johnson	0. 76	+ 72.55	+ 72.43	-0. 12	-. OII
Hays	Lee	5. 74	- 25.96	- 26.12	- 0.16	o. 147
Johnson	Hays	7.50	- 16.78	- 16.63	$+0.15$	-. 169
Johnson	Sist	-. 97	- 70.35	- 72.09	- 1.74	2. 937
Johnson	Ingle	I. 57	- 35.12	- 34.71	$+0.41$	o. 264
Lee	Sist	1. 08	- 28.99	- 29.34	- 0.35	o. 132
Hays	Sist	I. 99	- 56.27	- 55.46	- 0.81	I. 306
Hays	Ingle	1. 40	- 19.37	- 18.08	+ 1. 29	2. 330
Ingle	Toyah	0. 32	+ 190. 11	+ 194.42	+ 4.3I	5. 944
Ingle	Round	I. 05	+ 154.72	+ 155.75	+ 1.03	I. 122
Sist	Toyah	0.66	+ 232.44	+ 23 I.80	- 0.64	0. 271
Round	Toyah	o. 63	$+\quad 37.98$	$+\quad 38.67$	$+0.69$	-. 300
Round	Newman	0. 32	$+955.32$	+956.94	+ 1.62	-. 839
Round	Seay	0. 60	$+235.42$	+ 235.74	$+0.32$	o. 060
Toyah	Newman	I. 20	+ 917.65	+ 918.28	$+0.63$	0. 476
Toyah	Seay	0. 52	+ 195.86	+ 197.07	+ 1.21	o. 761
Seay	Newman	-. 88	$+721.95$	+ 72 I .21	-0. 74	0. 482
Seay	Reynolds	4. 19	$1+416.11$	$+416.10$	- 0.01	0. 000
Seay	Krouse	2. 65	+ 497.10	+ 497.66	+ 0.56	o. 831
Newman	Chispa	0. 24	-363.69	-362.82	$+0.87$	0. 182
Newman	Krouse	o. 62	- 224.02	- 223.55	- 0. 47	o. 137
Newman	Reynolds	o. 83	- 304.74	- 305. II	- 0.37	O. II 4
Reynolds	Chispa	0. 35	- 60.98	- 57.71	3.27	3. 742
Reynolds	Krouse	29. 3^{8}	+ 81.6I	+ 81.56	- 0.05	0. 073
Krouse Krouse	Chispa	o. 37	1 $-\quad 138.49$ $+\quad 563.04$	+ 139.27	- 0.78	0. 224
Krouse	Diablo	O. 20 0. 47	+ 563.04 $+\quad 260.39$	+ 560.53 $+\quad 262.69$	- 2.51 $+\quad 2.30$	I. 260 2. 486
Diablo	Chispa	-. 43	-401. 32	- 401.96	- 0.64	-. 176
Diablo	Eagle	0.83	- 297.82	- 297.84	- 0.02	0. 000
Diablo	Blaek	0. 45	- 294.69	- 291.91	- 2.78	3. 488
Chispa	Eagle	0. 68	+ 698.64	+ 699.80	+ 1. 16	0.916

Stanton base to Deming base-Continued.

Station 1	Station 2	$\underset{p}{\text { Weight }}$	Observed difference of elevations $h_{1}-h_{1}$	Adjusted difference of elevations $h_{2}-h_{1}$	Adjusted minus observed v	pvz
			Meters	Meters	Meters	
Eagle	Allamore	2. 76	-897.48	-897.47	$+0.01$	0. 000
Blaek	Quitman	-. 30	+ 342.29	+ 343.30	+ 1.0I	0. 306
Blaek	North Franklin	0. 06	+ 490.37	+ 493.48	+ 1.89	o. 214
Black	Corduna	0. 27	+523.83	+ 523.38	- 0.45	0. 054
Quitman	Allamore	0. 44	-652.16	-651.02	+ 1.14	0. 572
Quitman	Diablo	-. 32	- 50.19	- 51.39	I. 20	0. 461
Quitman	North Franklin	0.06	+ 141. 57	+ 148.96	+ 7.39	3.277
Quitman	Cerro Alto	o. 10	+ 34.77	+ 30.31	- 4.46	1. 989
Quitman	Corduna	o. 11	+ 181. 99	+ 180.08	- 1. 91	0. 401
Corduna	Cerro Alto	o. 52	- 150.68	- 149.77	$+0.91$	-. 430
Corduna	North Franklin	o. 11	- 31.93	- 31.12	-0.81	0. 072
Corduna	Kent	0.09	- 90.31	- 85.75	+ 4.56	I. 871
Corduna	Jarilla	0. 20	- 739.00	-740.29	- 1. 29	-. 333
Cerro Alto	Mesa	0.61	-854.44	- 855.16	-0. 72	0. 316
Cerro Alto	North Franklin	0. 41	+ 122.03	+ 118.65	-3.38	4. 684
Mesa	North Franklin	2. 15	+ 972.58	+973.81	+ 1.23	3.253
Mesa	Boundary monument No. 2 (U. S. \& Mex.)	2. 78	$+\quad 95.00$	+ 94.14	- 0.86	2. 057
North Franklin	Boundary monument No. 2 (U. S. \& Mex.)	5.22	-879.99	-879.67	+ 0.32	0. 532
North Franklin	Kent	0. 22	- 56.13	- 53.63	+ 2.50	I. 375
North Franklin	Jarilla	0. 23	-711.37	-709.17	+ 2.20	1. 113
Jarilla	Kent	-. 74	+654.2I	+654.54	$\underline{+} 0.33$	0. 080
Kent	Florida	0.07	+ 1.60	+ 12.36	$+10.76$	8. 103
Cooks	Florida	0. 44	- 416.71	-417.82	- I. II	o. 542
Cooks	Deming N. base	o. 61	-1261.89	-1261. 88	+ 0.01	0. 001
Cooks	Deming eity water works	.1. I3	-1238.49	-1237.95	+ 0.54	-. 330
Cooks	Red	0.67	- 9II. 26	- 911.45	-0.19	0. 024
Florida	Hermanas	o. 47	- 530.04	- 534.06	- 402	7. 557
Florida	Deming S. base	2.22	- 866.13	- 864.60	$+1.53$	5. 197
Florida	Deming N. base	5. 38	-844.26	- 844.06	$+0.20$	o. 215
Florida	Deming eity water	2. 17	-819.80	- 820.13	+ 0.33	0. 236
Derning N. base	Deming city water works	8. 47	+ 23.59	+ 23.93	$+0.34$	0. 982
Red	Deming city water works	5. 78	- 326.43	- 326.50	$+0.07$	0. 029
Red	Deming N. base	5.27	- 350.10	- 350.43	- 0.33	0. 574
Red	Florida	1. 33	+ 492.37	+493.63	+ 1.26	2. 112
Red	Deming S. base	2. 71	- 370.77	- 370.97	- 0.20	0. 108
Red	Hermanas	-. 47	- 42.20	- 40.43	+ 1.77	I. 472
Hermanas	Cooks	o. 14	+ 954.72	+ 951.88	- 2.84	1. 129
Deming S. base	Hermanas	I. 16	+ 331.00	+ 330.54	- 0.46	0. 245
Hermanas	Boundary monument No. 39 (U. S. \& Mex.)	1. 94	- 77.03	- 78.86	- 1.83	6. 497
Hermanas	Near	1.99	+ 38.52	$\begin{array}{r} \\ +\quad 38.38 \\ \hline\end{array}$	- 0.14	0. 040
Near	Boundary monument No. 39 (U. S. \& Mex.)	1923.0	- 117.23	- 117.24	- 0.01	-. 192
Near	Boundary monument No. 40 (U. S. \& Mex.)	179.5	- 148.08	- 147.97	$+0.11$	2. 172
Near ${ }^{1}$	Boundary monument No. 32 (U. S. \& Mex.)	0. 70	- 154.88	- 154.37	$+0.50$	0. 175
Boundary monument No. 39 (U. S. \& Mex.)	Boundary monument No. 40 (U. S. \& Mex.)	236.6	- 30.63	- 30.73	- 0.10	2. 366
Boundary monument No. 39 (U. S. \& Mex.)	Boundary monument No. 32 (U. S. \& Mex.)	0. 62	- 37.64	- 37.13	$+0.51$	0.16I
Hermanas	Boundary monument No. 32 (U. S. \& Mex.)	58. 19	- 116.04	- 115.99	+ '0.05	0. 116

${ }^{1}$ Nonreciprocal observations. Weight is reduced by multiplying by 0.3.

The probable error of an observation of weight unity derived from this second adjustment is ± 0.92 meter. Unit weight eorresponds, as in the first adjustment, to reciprocal observations over a line 31.7 kilometers ($192 / 3$ miles) long.

The probable error of the stations fixed by preeise leveling is about ± 0.05 meter. Station Corduna was assumed to be the one least accurately determined and its probable error was therefore computed as a limiting value and was found to be ± 0.87 meter from the vertical angles alone. When combined with the probable error of the elevations fixed by the precise leveling, it was the same.

In other words, for the least aceurately determined station in the main scheme between the Stanton and the Deming bases there is an even ehance that the elevation is correct within 0.9 meter (or 3 feet), and for most stations in the main seheme the accuraey is greater than this.

The results of the third adjustment, in whieh the stations eoneerned are those from the line Cooks-Hermanas of the second adjustment to the line San JacintoCuvamaea, are shown below in the form used for the first adjustment.

Deming base net to San Jacinto-Cuyamaca.

Station x	Station 2	$\underset{p}{\text { Weight }}$	Observed differcnice of elevations $h_{r}-h_{1}$	Adjusted difference of $\underset{\substack{\text { clevations } \\ h q-h 1}}{ }$	Adjusted minus observed	$p 0^{2}$
Burro	Cooks	0. 23	$\begin{array}{ll} & \text { Meters } \\ +100.46 \end{array}$	$\begin{aligned} & \text { Melers } \\ & +\quad 99.86 \end{aligned}$	$\begin{aligned} & \text { Melers } \\ & -0.60 \end{aligned}$	0.08
Burro	Hermanas	0. 10	- 856.50	- 852.02	+ 4.48	2.00
Chiricahua	Burro	0. 08	- 490.53	- 492.41	- I. 88	0. 28
Chiricahua	Hermanas	0.06	-1351. 17	- 1344.43	+ 6.74	2. 72
Line (U. S. G. S.)	Burro	0. 28	+ 384.65	+ 386.30	+ 1.65	-0. 76
Line (U. S. G. S.)	Chiricahua	0. 08	+ 88 r. 78	+ 878.71	-3.07	0. 75
Graham (U.S. G. S.)	Line (U. S. G. S.)	0. 14	-1192.42	-1190.88	+ 1. 54	-. 33
Graham (U. S. G. S.)	Chiricahua	0. 09	- 308.79	-312.17	-3.38	1. 03
Mule (U. S. G. S.)	Chiricahua	0. 16	+ 702.18	+ 709.81	+ 7.63	9. 31
Mule (U. S. G. S.)	```Boundary monument, No. 9I (U. S. & Mex.)```	4.65	- 765.18	- 765.50	- 0.60	1. 67
Huachuca	Mule (U.S. G. S.)	o. 61	- 317.30	- 317.66	-0.36	0.08
Huachuca	Boundary monument No. ${ }^{\text {Mex }}$ (U. S. $\&$ Mex.)	0. 3^{8}	-1082. 66	-1083.26	-0.36	0. 05
Catalina	Graham (U. S. G. S.)	0. 12	+ 468.65	$+468.95$	+ 0.30	0.00
Catalina	Chiricahua	0. 04	+ 160.51	+ 155.78	- 4.73	0. 89
Baldy (U. S. G. S.)	Catalina	0. 14	- 76.39	- 79.85	- 3.46	I. 67
Baldy (U. S. G. S.)	Chiricahua	o. 04	+ 81. 69	+ 75.93	- 5.76	1. 33
Baldy (U. S. G. S.)	Huachuca	O. 40	- 314.67	- 316.12	- 1.45	o. 84
Nogales No. 71	Huachuca	0. 21	+ 967.19		+0.37	
Nogalcs No. 7^{1}	Boundary monument No. 128 (U. S. \& Mex.)	31. 78	+ 70.20	+ 70.29	+ 0.09	3. 18
Baldy (U. S. G. S.) ${ }^{1}$	$\begin{aligned} & \text { Boundary monument } \\ & \text { No. I28 (U. S. \& } \\ & \text { Mex.) } \end{aligned}$	0. 14	-1213.84	-1213.32	+ 0. 5^{2}	0. 04
Bencdict (U. S. G. S.)	Nogales No. 7	3. 86	+204.07	+ 204.15	+ 0.08	0. 04
Benedict (U. S. G. S.)	Baldy (U. S. G. S.)	0. 86	+1489.35	+1487.80	- 1. 55	2. 06
$\begin{aligned} & \text { Boundary monument } \\ & \text { No. 121 (U.S. \& } \\ & \text { Mex.) } \end{aligned}$	Boundary monument No. I28 (U. S. \& Mex.)	1. 69	+ 442.99	+ 442.07	-0.92	I. 44
Boundary monument No. 121 (U. S. \& Mex.)	Nogales No. 7	4. 82	+ 371. 24	$+371.78$	+ 0. 54	I. 40

1 Nonreciprocal observations. Weight reduced by multiplying by 0.3 .

Deming base net to San Jacinto-Cuyamaca-Continued.

In this third and last adjustment the elevations of twelve stations were taken as fixed. The stations Cooks and Hermanas had been fixed by the second adjustment, their elevations being 2562.86 and 1610.98 meters, respectively. The stations San Jacinto and Cuyamaca had bcen fixed by the adjustment of the California triangulation, their published ${ }^{1}$ elevations being 3301.2 and 1982.9 meters, respcctively. Stations Maricopa astronomic Sta., Maricopa northwest base (U. S. G. S.), Yuma azimuth station, Yuma No. io, Yuma east base, C. \& G. S. Bench mark N $_{6}$, Boundary monuments Nos. 91 and 128 (U. S. \& Mex.) were held fixed from the results of spirit leveling, their clevations being $358.27,359.83,90.91,99.35,79.73,225.46,1480.1$, and 1666.12 meters, respectively. The leveling which fixed thesc elevations was done by the United States Geological Survey, by the United States and Mexico Boundary Commission, and by this Survey.

The elevations of the remaining 26 stations connected by the observations are the unknowns determined by least squares from the 72 observed differences of elevation in the above table.

The probable error of an observation of weight unity derived from this adjustment is $\pm 0.9^{1}$ meter. Unit weight corresponds as in the other adjustments to reciprocal observations over a line 31.7 kilometers ($192 / 3$ miles) long.

Station Graham (U. S. G. S.) may be assumed to be the one least aceurately determined, and the probable error computed forits elevation is ± 0.43 meterfrom the vertical angle measures alone. This probable error, combined with the probable error of the stations fixed by the spirit levcling, may be stated to be ± 0.5 meter.

ELEVATIONS.

The datum for all the elevations is mean sea level.
The stations are in three classes: First, those fixed dircctly by the spirit leveling and of which the elevations are subject to a probable error of ± 0.05 meter; second, the stations in the main scheme fixed by reciprocal measures of vertical angles and which are subject to probable errors varying from ± 0.1 to ± 0.9 meter; and, third, the intersection stations whose elevations are subject to probable errors which may be as great as ± 3 meters in some cases. These elevations are fixcd by measurements of vertical angles which are not reciprocal, the intersection stations not being oecupied.

The accuracy with which each elevation in the main scheme is determined depends mainly upon the remoteness of that station from the nearest one of which the elevation is fixed by spirit leveling, as indicated in elass i of the following table. Station Corduna is probably least accurately determined of all the stations in the main scheme.

For a table to be used in converting feet to metcrs, or vice versa, see pagc 68.

TABLE OF ELEVATIONS

Kyle-McClenny to Stanton base

Station	Point to which elevation refers	Elevation
Class I		Meters
Lamb	Station mark	534.80
Pattersoz	Station mark	736.68
Stanton	Station mark	825.59
Stanton south base	Station mark	821.20
Stanton north base	Station mark	
Class 2		
Kyle	Station mark	412.4
McClenny	Station mark	401.6
Rattlesnake	Station mark	493.2
Lacasa	Station mark	487.4
Pierce	Station mark	489.5
Flat	Station mark	496.8
Hearn	Station mark	499.7
Springgap	Station mark	664.3
Hitson (U. S. G. S.)	Station mark	572.3
Clyde	Station mark	633.8
Kennard	Station mark	619.3 710.0
Clayton	Station mark Station mark	710.0 561.2
Buzzard	Station mark	734.3
Sears	Station mark	578.0
Hale	Station mark	$773 \cdot 3$
Boyd	Station mark	770.4
Allen	Station mark	673.5
I.loyd	Station mark	792.6
Bench	Station mark	793.4
Wolf	Station mark	751.6
Bynum	Station mark	698.0 687.0
Cuthbert Top	Station mark Station mark	687.0 769.7
Signal	Station mark	834.4
Williams	Station mark	865.3
Evart	Station mark	817.1
Epley	Station mark	869.2
Class 3		
Carbon schoolhouse	Top of roof	503.2
Fastland courthouse	Top of dome	467.0
Eastland schoolhouse	Top of roof	457.7
Cisco astronomic station (U. S. G. S.)	Station mark	511.5
Cisco stand pipe	Top	531.2
Cisco Methodist church	Top of cone	519.3
Church 7 miles south of Cisco	Top of roof	517.2
Baird courthouse	Top of dome	538.8
Baird tall church Clyde church	Top of spire	$544 \cdot 7$
Clyde church	Bottom of corre	619.0
Abilene standpipe.(U. S. G. S.)	Top Top of dome	56
Abilene low standpipe	Top of dome	550.6 556.7
Abilene asylum stack	Top	562.0
Church north of Tye	Top of roof	545.8
Tye Baptist church	Top of spire	564.7
Tye Methodist church	Top of spire	559.8
Merkel church	Top of spire	557.9 589.2
Merkel electric light plant	Top of stack	590.0
Merkel tall water tank	Top	584.9
Trent schoolhouse beliry	Top Bottom of cone	595.2 591.8
Eskota water tank	Top	599.4
Sweetwater schoolhouse	Top of roof	677.0
Wasp U. S. G. S.	Station mark	719.1
Roscoe cot ton gin	Top of stack Top of cupola	748.8 746.4
Loraine schoolhouse	Top of dome	746.4 736.4
Colorado west standpipe	Top	693.2
Westbrook Methodist church	Top of spire	675.1
Morgans Peak Muchakooago Peak	Top	700.9
Muchakooago Peak Stanton courthouse	Top of cupola	872.4 839.7

Stanton base to Deming base.

Station	Point to which elevation refers	Elevation
- Class 1		Meters
Scar	Station mark	880.79
Odessa	Station mark	898.70
Hays	Station mark	853.30
Allamore	Station mark	1387. 33
Boundary monument No. 2 (U. S. \& Mex.,	Top of masonry base	130\%.64
Deming city water works	Geolosical Survey H. M.	1324 91
Boundary monument No. 32 (U. S. \& Mex.)	Top of monument	149499
Boundary monument No. 40 (U. S. \& Mex.)	Top of monument	1501.39
Class 2		
Dunn	Station mark	886.9
Elkins	Station mark	858.9
Morris	Station mark	906.3
Bates	Station mark	914.1
Smith	Station mark	921.0
Douro	Station mark	935.4
Dublin	Station mark	979.4
Curtis	Station mark	870.3
Harris	Station mark	880.6
Aroya	Station mark	834.4
Estes	Station mark	797.4
Lee	Station mark	827. 1
Johuson	Station mark	869. 8
Sist	Station mark	797. 7
Ingle	Station mark	835.1
Round	Station mark	990.9
Toyah	Station mark	1029.5
Newman	Station mark	1947.8
Seay	Station mark	1226.6
Reynolds	Station mark	1642.7
Krouse	Station mark	1734.3
Chispa	Station mark	1585.0
Diablo	Station mark	1987.0
Easle	Station mark	3284.8
Quitman	Station mark	2038.3
Black	Station mark	1695.0
Corduna	Station mark	2218.4
Cerro Alto	Station mark	3068.7
North Franklin Mesa	Station mark	2187.3
Jarilla	Station mark	1213.5 1478.1
Kent	Station mark	2132.7
Florida	Station mark	2145.0
Cooks	Station mark	3562.9
Hermanas	Station mark	16r1.0
Near	Station mark	1649.4
Boundary monument No. 39 (U. S. \& Mex.)	Top of monument	1534.2
Red	Station mark	1651.4
Deming north base	Station mark	1301.0
Deming south base	Station mark	1380-4
Newman U.S.G.S.	Top of cairn	1950. 7
Midland courthouse	Top of cupola	868. 1
Odessa courthouse?	Top of cupola	899. 2
Castle Gap M ountain	Top	961.5
Judkins schoolhouse	Top of cupola	894.8
Windmill 2 miles south of Dublin	Center of wheel	987.0
Barstow courthouse	Top of cupola	804.0
Pecos courthouse ${ }^{1}$ Davis Mountain or Black Mountain	Top of cupola Top	${ }^{81157} 7$
High or Sawt ooth Mountain	Top	2342.6
Alamagordo Peak	Top	3603.5
Black Mountain	Top of peak	1638.7
Bear	Top	2449-5
Flat Top	Top	1222.4
Gomez Peak	Top	1996.7 1927.2
Cone	Top	1510.4
Pinnacle	Top	1273.1
Boundary monument No. 3 (U. S. \& Mex.)	Top of masonry base	1257.7
L1 Paso courthouse	Top of tower	1164.9

[^14]Deming base net to San Jacinto-Cuyamaca.

Station	Point to which elevation refers	Elevation
Class I		
Boundary monument No. 9 ((U. S. \& Mex.)	Top of masonry base	$\begin{aligned} & \text { Meters } \\ & \text { s480. 1o } \end{aligned}$
Boundary monument No. 128 (U. S. \& Mex.)	Top of masonry base	1866. 12
Maricopa astronomic station	Station mark	358.37
Maricopa northwest base (U. S. G. S.)	Station mark	359.83
Yuma azimuth station	Station mark	90. 91
Yuma No. ${ }^{10}$	Station mark Station mark	99. 35
Yuma east base	Station mark	79.73 325.46
Class 2		
${ }^{\text {Burro }}$ (${ }^{\text {a }}$)	Station mark	2463.0
Line (U. S. G. S.)	Station mark	2076. 7
Chiricahua	Station mark	2955.4
Graham (U, S. G. S.)	Station mark	3267.6
Mule (U.S. G. S.)	Station mark	2345.6
Huachuca	Station mark	2563.4
Catalina	Station mark	2799.6
Baldy (U. S. G. S.)	Station mark	2879.5
Boundary monument No. 327 (U. S. \& Mex.)	Top of masonry base	1224.0
Benedict (U. S. G. S.)	Station mark	1391.7
Nogales No. ${ }^{7}$ Superstition (U, S. G. S.)	Station mark	1595.8
$\underset{\text { Taple }}{\text { Superstition (U. S. G. S.) }}$	Station mark Station mark	1541.5 1333.0
Maricopa	Station mark	1245.0
Whitetank	Station matk	1218.9
Mohawk	Station mark	842.7
Harquahalla	Station mark	1728.7
Kofa	Station mark	1471.6
Gila	Station mark	493. 5
American (U. S. G. S.)	Station mark	649.0
Pine	Station mark Station mark	2154. 5
Powell	Station mark	2555. 5
Hill	Station mark	245. 5
$\underset{\text { Choll }}{\text { Chehuevis }}$	Station mark Station mark	207.2 1127.9
Butte	Station mark	1368.6
Blufif	Station mark	167. 8
Peak "E", Class 3	Top	1716.4
Peak "D",	Top	2151.5
Peak "C'	Top	3314.7
High sharp peak, north of Needles	Top	1588.6
Boundary monument No. 3 ((U. S. \& Mex.)	Top of masonry base	1437. 6
Boundary monument No. 220 (U. S. \& Mex.)	Top of masonry base	1278.3
Mexican customhouse	Top of dome	1199.9
Nogales courthouse	Base of pedestal	1203. 7
Nogales Catholic church	Top of dome	1394. 1
Nogales public school	Top of dome	1201. 3
Four Peaks, second from north	Top	
Desert Peak	Top	1380.6 2397.0
Comobabi Peak Mare	Top	2397.0 1373.9
Sierra Del Ajo	Top	
Flat Top (center)	Top	868.8
Watson Peak	Top	2595.9
Gila Peak	Top	975
Neediles	Top	
Peak "N0 ${ }^{\text {Peak }}$ "I"	Top	1997.5 328 t .9
Yuma courthouse	Bottom of pole	80.0
Indian school water tank	Top of roof	83.9
Pilot Knob	Top	273. 2
Picacho U.S. G. S. cairn (T)	Top of cairn	592.3
Boundary monument No. 207 (U. S. \& Mex.) Boundary monument No. 206 (U. S. \& Mex.)	Top of masonry base	50.0 37.6
Boundary monument No. 206 (U. S. \& Mex.) ${ }^{\text {Castle Dome }}$	Top of masonry base	37.6 1156.8
Needles public school	Top of east dome	184.0

VERTICAL CIRCLE USED IN TRIGONOMETRIC LEVELING AND FOR MAKING TIME OBSERVATIONS.

No. 9.

No. 10.

triangulation, kyle-mcclenny to allen-boyd.
No. 11.
Sot00

128 THE TEXAS-CALIFORNIA ARC OF PRIMARY TRIANGULATION.
No. 12.

triangulation, stanton base to round-toyah.
No. 13.

TRIANGULATION, ROUND-TOYAH TO BLACK-QUITMAN.
No. 14.

No. 15.

No. 16.

triangulation, nogales and vicinity.

TRIANGULATION, WHITETANK-MARICOPA TO SAN JACINTO-CUYAMACA.

TRIANGULATION, YUMA AND VICINITY.

Index to positions, descriptions, sketches, and elevations.

Station	Position	Description	Sketch	Elevation
A, El Paso.	Page	Page	Number	Page
Abilene:				
Asylum stack. ...	74		10	121
Courthouse dome.	73		10	121
Low standpipe........	74		10	121
Standpipe (U. S. G. S.)	73	103	10	121
Alamagordo Peak	78		14	122
Allen.	76	104	13	22
American (U. S. G. S.)	72	IOI	Io, 11	121
Aroya...	${ }_{71}$	94	${ }^{12}$	122
Astronomic station:				
Cisco..	73	103	10	121
El Paso, No. I.	77	105	14	
Maricopa, eccentric		109	15	123
Nogales..........	79	109	16	
Asylum stack, Abilene	74		10	121
Azimuth station: Nogales.				
Nogales. .		108	16	
Yuma...	8 r	110	18	123
B, E1 Paso. .	77		14	
B, Yuma.	81		18	
Baird:				
Courthouse dome.	73		10	121
Tall church spire.	73		10	121
Baldy (U. S. G. S.)	72	100	15	123
Bar..........	82	112	17	
Barstow courthouse cupola.			12	122
Base.	82		17	
Bates..............	70	92	12	122
Bear, highest point	78		14	122
Bench.............	69	90	$1 \begin{aligned} & 14 \\ & 11\end{aligned}$	12I
Bench mark N_{6}, C. \& G. S., eccen	82	112	17	123
Benedict (U. S. G. S.).	79	107	15, 16	123
Black........	71	97	13, 14	122
Black Mountain, cairn.	78		14	122
Bluff. .	82	112	17	123
Boracho.	76	103	13	
Boracho longitude station.	76	104	13	
Boundary monument (U. S. \& M				
No. I. .	77	105	14	
No. 2.....	77		14	122
No. 2, eccentric.	78	105	14	
No. 3...	78	105	14	122
No. 3 I.	78	106	15	123
No. 32.	78	106	15	122
No. 39.	78	106	15	122
No. 40.	78	106	15	122
No. 91.	79	107	15	123
No. 120.	79	107	16	123
No. 121.	79	107	16	123
No. 128.	79	107	16	123
No. 204.	82	111	18	
No. 206.	82	III	18	123
No. 207.	82	III	18	123
No. 208.	82	III	18	

Index to positions, descriptions, sketches, and elevalions-Continued.

Station	Position	Description	Sketch	Elevation
Bouudary post, Yuma.	Pape 81	Page	Number 18	Page
Boyd...	69	89	IO, 11	121
Burro.	72	99	15	123
Burro U. S. G. S	78		15	
Buttc.	73	101	17	123
Buzzard	69	88	10	121
Bynum.	70	90	11	12 I
C. \& G. S. bench mark N_{6}, eceentric.	82	112	17	123
C, El Paso.	77	14	
Carbon schoolhouse belfry	73		10	121
Castle Dome	81		17	123
Castle Gap Mountain	75		12	122
Catalina.	72	100	15	123
Cathedral, Juarez	77	105	14	
Catholic Church, Nogales.	80		16	123
Cerro Alto.	76	104	14	- 122
Cerro Alto, U. S. G. S. cairn.	76		14	,
Chemehuevis.	73	102	17	123
Chiricahua	72	99	15	123
Chispa.	71	96	13	122
Church:				
Merkel, square spire	74		10	121
North of Tye, belfry.	74	10	121
Seven miles south of Cisco.	73		10	21
Six miles west of Morrison, belfry	74		10	121
Cisco:				
Astronomie station (U. S. G. S.).	73	103	10	12 I
Methodist Church spire.	73	10	12 I
Standpipe...	73		10	12 I
City hall, El Paso	76		14	
City waterworks, Deming.	78	105	14	122
Clayton	69	88	10	121
Clyde.	69	87	10	12 I
Clyde church spirc	73		10	12 I
Colorado, west standpipe	74	II	121
Comobabi Peak	80		15	123
Cone.	75		13	122
Cone Peak.	76		13	
Cone, summit.	78		14	
Cooks. .	72	98	14, 15	122
Corduna.	71	97	14	122
Corduna, U. S. G. S. eairm	76		14	
Courthousc:				
Abilcne, dome.	73	10	121
El Paso.	76	104	14	122
Nogales, dome.	80		16	123
Stanton, cupola.	75		11	121
Yuma, dome.	81		18	123
Curtis.	70	93	12	122
Cuthbert	70	90	11	12 I
Cuyamaca.	73	102	17	
Davis.	75		13	122
Davis Mountain, or Black Mountain, center of highest round peak	75		12	12
Deming:				
City waterworks.	78	105	14	122
North basc.	72	98	14	122
South base	72	98	14	122
Desert Peak	80		15	123
Diablo.....	71	96	13	122
Diablo, U. S. G. S. cairn .	76		13	
Douro	70	93	$!2$	122

Index to positions, descriptions, sketches, and elevations-Continued.

Index to positions, descriptions, sketches, and elevations-Continued.

Index to positions, descriptions, sketches, and elevations-Continued.

8 Station	Position	Description	Sketch	Elevation
Needles.	$P_{a g e}{ }_{81}$	Page	Number 17	Page 123
Needles:				
East base.	82	112	17	
Longitude station.	82	112	17	
Public school, east dome	82		17	123
Schoolhouse tower.	82		17	
West base.	82	112	17	
Newman......	71	95	13	22
Newman U. S. G. S	75		13	122
Nogales: Astronomic station				
Azimuth station.	79	109	16	
Catholic Church	79 80	108	16 16	123
Courthouse dome.	80		16	123
Levy's store flagpole	80		16	12
Mexican customhouse flagstaff	79		16	123
Montezuma Hotel flagpole	79		16	
North base.	80	109	16	
Public school.	80		16	123
South base.	80	109	16	
Nogales No. I .	79	108	16	
Nogales No. 2.	79	108	16	
Nogales No. 3 -	79	108	${ }^{1} 16$	
Nogales No. 4.	79	108	16	
Nogales No. 5.	79	107	16	
Nogales No. 6.	79	108	16	
Nogales No. 7.	79	107	15, 16	123
Nogales No. 8.	79	108	16	
Noonday Peak	78		14	
North base:				
Deming.	72	98	14	122
El Paso.	77		14	
Nogales	80	109	16	
Stanton.	70	91	11, 12	121
North Franklin	71	97	14	122
North Franklin U. S. G. S. cairn.	78		14	
Northwest base, Maricopa (U. S. C	80	109	15	123
Odessa.	70	92	12	122
Odessa courthouse cupola.	75		12	122
Orogrande smelter.	78		14	
Patterson..	69	89	11	121
Peak "A",	83		17	
Peak " B ",	83		17	
Peak " C ",	83		17	123
Pcak " $\mathrm{D}^{\text {" }}$ ".	82		17	123
Peak "E",	82		17	123
Peak "I',	81		17	123
Peak "N".	81		17	123
Pecos courthouse cupola.	75		12	122
Penitentiary, Yuma...	81		18	
Picacho, U. S. G. S. cairn	81		18	123
Pierce.	69	86	10	121
Pilot Knob.	81	III	18	123
Pine.	73	102	17	123
Pinnacle.	75		13	122
Powell.	73	102	17	123
Presbyterian Church, El Paso.	77	105	14	
Public school, Needles, east dome	82		17	123
Public school, Nogales.	80		16	123
Quitman.	71	96	${ }_{13}{ }^{1} 14$	122
Quitman, U.S. G. S. cairn.	76		13, 14	
Rattlesnake.....	69	86	10	121

Index to positions, descriptions, sketches, and elevations-Continued.

Station	Position	Description	Sketch	Elevation
	Page	Pape.	Number	Page
Red.	72	98	14	122
Reynolds.	71	95	13	122
Rincon Peak.	80		15	
Roscoe cotton-gin stack.	74		II	121
Roscoe schoolhouse cupola.	74		11	121
Round.	71	95	12, 13	122
San Jacin to.	73	102	17
Scar.	70	92	12	122
Schoolhouse, Needles, tower.	82		17	
Sears.	69	88	10	12 I
Seay.	71	95	13	122
Sharp Peak	83		17	
Sierra Del Ajo	80		15	123
Signal.	70	90	11	12 I
Silo.	76	14	
Sist.	71	94	12	122
.Smith.	70	93	12	122
South base:				
Deming.	72	. 98	14	122
El Paso.	77		14	
Nogales.	80	109	16	
Stanton.	70	91	11, 12	121
Springgap.	69	87	10	121
Standpipe:				
Abilenc (U. S. G. S.).	73	103	10	121
Cisco.	73		10	121
Stanton.	70	91	11	121
Stanton:				
Courthouse cupola	75		11	12 I
Longitude station	75	103	11	
Nortli base.	70	91	II, 12	121
South base.	70	91	II, 12	121
Superstition (U. S. G. S.).	72	100	15	123
Sweetwater schoolhousc cupola.	74		11	121
Table.	72	100	15	123
Tall water tank, Merkel.	74		10	121
Top.	70	90	11	121
Toyalı.	71	95	12, 13	122
Trent Christian Chureh spire	74		10	121
Trent schoolhouse belfry.	74		10	121
Tye:				
Baptist Chureh spire	74		10	12 I
Methodist Chureh spire.	74		10	121
United States and Mexico bound				
No. 1.	77	105	14	
No. 2.	77		14	122
No. 2, eceentric.	78	105	14	
No. 3 .	78	105	14	122
No. 31.	78	106	15	123
No. 32	78	106	15	122
No. 39.	78	106	15	122
No. 40.	78	106	15	122
No. 91.	79	107	15	123
No. 120.	79	107	16	123
No. 121.	79	107	16	123
No. 128.	79	107	16	123
No. 204.	82	III	18	
No. 206.	82	III	18	123
No. 20%.	82	III	18	123
No. 208.	82	III	18	
Wasp, U. S. G. S.	74	103	11	121
Water tower, Juarez. .	77		14	

Index to positions, descriptions, sketches, and elevations-Continued.

Station	Position	Description	Sketch	Elevation
Watson Peak	Page	Page	Number ${ }^{17}$	Page
Weather, EI Paso.	76	105	14	
West.	76	104	13	
West, El Paso.	76		14	
West base:				
Needles.	82	112	17	
Yuma.	8 I	110	18	
Westbrook Methodist Church spire	74		11	121
West pier, Maricopa.............	80	109	15	
Wheeler's latitude and longitude Fort Bliss), 1878 (lost)	77		14	
Whitetank.	72	100	15, 17	123
Williams.	70	9 I	II	121
Windmill 2 miles south of Dublin	75		12	122
Wolf.	69	90	II	121
Yuma:				
Azimuth station	8I	110	18	123
B.	8 I		18	
Boundary post.	8 r		18	
Courthouse dome.	8I		18	123
East base.	8 I	ı10	18	123
Indian school.	8 I		18	
Indian school water tank	8 8		18	123
Latitude station.	8I	110	18	
Penitentiary.	81		18	
West base.	8 I	110	18	
Yuma No. 9	81		18	
Yuma No. 10.	8 I	110	17, 18	123
Yuma No. ri.	82	1	18	

[^0]: ${ }^{1}$ Some values for this quantity are given on pp .24 and 25 of General Instructions for the feld work of the Coast and Geodetic Survey.

[^1]: 1 See illustration No. 14 in Appendix 4. Report for 1903.

[^2]: 1 See pp. 8a6-9a8 of Appendix 4, Report for 1903.
 ${ }^{8}$ See "1'rimary lsase Lines at Stanton, Texas, and Deming, New Mexico," App. 4, Report for 1920

[^3]: ${ }^{1}$ See "Primary Base Lines at Stanton, Texas, and Deming, New Mexico," Appendix 4, Report for 19 ol .

[^4]: 1 The Stanton base was measured during the interval between the occupation of stations Stantou south base and Elkins.

[^5]: 1 Seventeen days during the season were occupied in measuring the Stanton base. This time was deducted from the total length of the season before preparing the statistics for this season.
 ${ }^{2}$ Each of stations "Butte" and "American" is counted as two stations, as each was occupied twice at different times during the season. See p. 17 .

 The tabulated costs do not include the expense of the reconnoissance. See p. ro.

[^6]: See Appendix 4, keport for 1911, 5. 1\%1. ${ }^{2}$ See Appendix 4, Report for 1903, p. 884. 3 See Appendix 9, Report for 1904, p. 541.

[^7]: 1 See supplementary investigation in 1909 of the Figure of the Earth and Isostasy, p. 20.

[^8]: ${ }^{1}$ See also pp. 224 to 231 of Appendix 4, Report for 1911 , Triangulation along the ninety-eighth meridian, Nebraska to Canada and connection with the Great Lakes.
 ${ }^{2}$ See Appendix 4, Report for 2912, p. 224.

[^9]: 1 The discrepancy between bases in the last column of the table is expressed in terms of the seventh decimal place of logarithms. It is the discrepancy remaining after the angle and side equations have been satisfied. A plus sign before the discrepancy means that the first base mentioned is longer as measured than as computed through the intervening triangulation from ancy means that the first bationed.
 ${ }^{2}$ There were 3 bases connected by this section, Epping, Massachusetts, and Fire Island. The 3 discrepancies were +44 , +3 and +41 .

[^10]: IThis is further bome out in the reduction of 765 astronomic stations in connection with the "Supplementary investigation in 1909 of the figure of the earth and isostasy," by J. F. Hayford. published by the Coast and Geodetic Survey.

[^11]: ${ }^{1}$ Checked by vertical angles only.

[^12]: ${ }^{1}$ No check on this position.

[^13]: $49571^{\circ}-12-8$
 ${ }^{1}$ See Appendix 4, Report for 1903, p. 934.

[^14]: 1 No check on this elevation.

