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PREFACE.

SHORTLY after publication of my "Treatise on Ophthalmic

Lenses," Dr. Swan M. Burnett, of Washington, D. C, kindly

suggested the execution of plastic models of combined cylindrical

lenses, by placing a set of these, conceived and hastily prepared by

himself, in my hands for further elaboration ; with the request, if

possible, also to produce two combinations in which the cylinders were

to be united at angles other than right angles. As the result of my

research, during the time devoted to the construction of the latter more

especially, and with a view to establish confidence in the precision of

these models, this mathematical demonstration is presented.

For convenience of reference, the subject has been divided under

seemingly appropriate headings, liberty being taken to introduce the

qualifying terms—congeneric, as implying cylinders of the same class,

both being convex or concave, and contra-generic, coined by myself to

designate cylinders of the opposite class, convex and concave.

In the theorem for combined congeneric cylinders, the full reduc-

tion of the formula} is given, it being deemed sufficient, in the second

theorem, merely to indicate the means by which the results have been

obtained.

For the benefit of those indisposed to follow the subject in all its

details, it has been thought befitting to append a series of values, cal-

culated by the formula?, which the reader may also easily verify by

practical experiment.

While the diagrams have been prepared with great care, yet they

are somewhat at variance with the laws of true "perspective, it being my
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object, in the interest of greater clearness, to strictly preserve all

important circles and right angles referred to in the text. Two of the

plates have been printed upon detached cards to facilitate reference.

A careful study of these diagrams is urgently advised, since it is to my

truthful conception of them I so largely attribute my success in pre-

senting these general formulae, which, to my knowledge, are the first to

be advanced as containing the known quantities of cylindrical foci and

axial deviation only.

A more simple and convenient form may ultimately be given the for-

mulae, though as here presented it is believed they will prove sufficiently

adequate when their limited application is considered. Their transfor-

mations, as adapted to the requirements of the metric system, which are

given at the close, are also believed to suffice in expression of their

terms in refraction.

The text having been somewhat hastily prepared, I feel obliged to

ask the reader's kind indulgence for its deficiencies, in the hope that

others, in the future, may give this subject, which contains so many

points of interest hitherto unpublished, that consideration of which it

is deserving.

This first publication is therefore confined to an exceedingly

limited edition, particularly as it is likely to prove comprehensive and

of advantage only to ophthalmic surgeons. •

Suspecting my attempt to instruct, while in the capacity of an

optician, may call forth unusual criticism, I trust the same will be

mitigated when it is known that this effort is based upon the mere

recollections of my earlier mathematical studies in Germany, which

were prematurely terminated while in pursuit of a technical profession.

Chas. F. Prentice.

New York, May, 1888.
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I. DIOPTRIC FORMULAE
FOR COMBINED

CONGENERIC CYLINDRICAL LENSES.

1. RELATIVE POSITIONS OF THE PRIMARY AND SECONDARY
PLANES OF REFRACTION.

In the following theorems, a prior knowledge of the established

mathematical deductions applied to lenses, for parallel rays incident in

the immediate vicinity of the optical axis, and in which the lenses'

thicknesses are considered vanishing quantities in proportion to the

focal distances, is taken for granted ; as the formulae here advanced are

to be considered dependent upon those Avhich have not been carried

beyond first approximations. Practically, in almost all cases that occur,

the thicknesses of the combined lenses are very small quantities com-

pared to the other dimensions involved, so that we shall consider the

cylinders to be so thin that their centres may be supposed to coincide,

and in which case the focal distances are to be counted from a plane

perpendicular to the optical axis, in the optical centre of the combined

lenses.

In Plate I, two combined convex cylindrical lenses are shown, which,

while somewhat at variance with the prescribed conditions of thickness,

will, however, better serve to make our subject clear.

The dotted circle shown within the lenses, with its centre at the

optical centre o, shall represent the plane above alluded to.

The passive or axial planes of the cylinders are shown by dotted

parallelograms at A and a, bisecting each other under the angle Aoa

= y in the optical axis at o ; and their active planes of refraction C

and c, which are of necessity at right angles to their correlative axial
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planes, similarly bisect each other at the same point. Hence, < Coc

= < Aoa = y.

The compound lens, thus presented, consists of two congeneric

cylindrical elements, each of which, independently considered, will have

its corresponding focal plane, which, for convenience, we may term an

elementary focal plane of the combination. Thus, E
x
and E2 , at the

focal distances fx
andf2 , are the elementary focal planes for the cylin-

ders C and c, respectively. The cylinder C will consequently have the

property of deflecting a ray, incident at D, perpendicularly from D
x , in

the plane E
x , to the point Z

x
of the axial plane A

X
Z

X , while the cylin-

der c will have the property of deflecting a ray incident at the same

point, perpendicularly from D 2 , in the plane E2 , to the point V
2

of

the axial plane a s
o 2 .

The greatest amplitude of deflection for C will therefore be D
X
Z

X

in the plane E
x , and for c will be D 2

V2
in the plane E2 . It is further

manifest that the refracted ray DV
X
V

2 , contributed by c only, in

attaining to its greatest deflection D 2
V

z
in the plane E2 , would pene-

trate the plane E
x

at V
x , and in it present a proportionate deflection

D
X
VX .

D
X
Z

X
and D

x
V

x ,
being amplitudes of deflection reduced to the

same plane E
x , will bear the same relation to each other as their cor-

responding refractions. Thus,

B
x
Z

x
x \ = D

X
V

X
S
i;

/l J 2

or, D
X
Z

X
= 4-, when D

X
V

X
=4"*

/ 1 /2

which may easily be shown to be the case when the deflections are

measured in a plane one inch from the lens. *

Conditional, therefore, that the deflections are measured, within the

same plane, from a point D
x
of the same line of incidence DD

X , we

may attain to the resultant of two deflections D
X
Z

X
and D

X
V

X , for

any angular deviation existing between them at D
x , by the physical

law governing similarly united forces. D
X
M

X , as the diagonal of the

* "Refraction and Accommodation of the Eye," by E. Landolt, M.D., Paris,

translated by C. M. Culver, M.A., M.D., Philadelphia, 1886 (see page 58).



CONGENERIC CYLINDERS. 11

parallelogram D
x
V

1
M

1
Z

l , will consequently be the resultant deflection

accruing from a combination of the cylinders C and c.

As each cylinder contributes a plane of active and one of passive

refraction, we shall evidently obtain two resultant principal planes for

their combination, the one of greatest refraction, commonly called

the primary plane, DD
x
o

x
o, intersecting the angle Coc = y between

the active planes of refraction C and c, and one of least refraction,

termed the secondary plane, dd2
o
2
o, intersecting the angle Aoa = y

between the passive or axial planes A and a.

The primary plane, in penetrating the plane E
x , will consequently

divide the angle C
x
o

x
c

x
= Coc = y into D

x
o

x
c
x
= a and D 1 o l

C
l

= (3. In the plane E
x
we shall then find the angles a and j3

to be directly dependent upon the associated deflections D
X
Z

X
and

D
x
V

t
for the point D

x
. In the plane E

2
a similar division of the

angle A 2 o 2a 2 ,
by the secondary plane, will be rendered dependent upon

d2 v 2
and d2z 2 for the point d

2
. As to this, the diagram is believed

to be sufficiently clear, without further reference.

Since the resultants D
X
M

X
and d2m 2 will define the directions of

the refracted rays DM
X
and dm

2 , it is further evident that for D and d

to be points of the primary and secondary planes, respectively, they will

have to be so chosen that D
X
M

X
and d2m 2

shall be directed to the opti-

cal axis oo
t
o 2 ; and as we shall later learn, this is but one of the

restrictions which renders a diagram somewhat difficult of construction.

The resultant deflections D
X
M

X
and d

2
m

2
are consequently shown as

being in the primary plane, coincident with D
x
o

x , and in the secondary

plane coincident with d2
o 2 ,

respectively.

For all intermediate points of the circle, we should find the result-

ant deflections to deviate from the optical axis. This has been taken

advantage of in constructing Dr. Burnett's models, and in deter-

mining the directions of twelve refracted rays in each of the figures 2,

Plates II and IV.

The position of the primary plane DD
x
o

x
o, shown as dividing the

angle C
1
o

1
c

1
= y so that

y = « + 0, (l)

will then be determined by fixing the relations existing between a

and (3.
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In the plane E
x , from the triangle D

1
Z

1
M

1 , we have

D
i
Z

1
: Z

i
M

1
= sin < Z

X
M

X
D

X
: sin < Z

X
D

X
M

X ,

< Z^M
X
D

X
= < ZVi*i = a,

by parallelism of and c
1
o

1 ;
and, for similar reasons,

< ZjDj.if, = < B
X
M

X
V, = D

x
o, C\ = 0.

.-. Z^i^ : Z
1
M

1
= sin « : sin (3,

Z,M
X
= D

t
Vx .

.-. D
t
Z

t
: D

x
V

t
= sin « : sin 0 (2)

In the oblique plane DD
2
V2 we find

D
t
V, : D t

F
3
= jDZ?! : DD 2 ;

or, as DZ^ and Z>Z> 2
are the focal distances fx

and

/

2 of the cylinders

C and c, respectively,

D
X
V

X
:D 2 V2

= /, :/2 (3)

Multiplying the equations (2) and (3), we obtain,

A _ A
. . . . ai

Z>2 F2
- sin 0 /, '

K)

Since XJjOj is the radius of the circle indicated, we may, for con-

venience, ascribe to it' the value 1. We shall then have,

D
X
Z

X
= sin < D

x
o

x
Z

x ,

< D
x
o

x
Z

x
= < Ot

o t
Zt
- <Dxo tOx .

< D 1
o

1
Z

1
= 90°— 0.

.-. D
1
Z

1
= sin (90°— 0) = cos 0. . . (5)

In the plane E2
we similarly find,

D
2
V2
= sin < D 2 o 2

V2 ,

< Z> s o 8
V

2
= < Fg0 2 c 8

— < D 2 o 2 c 2 .

.-. < Z)
3
o
2 F2

= 90°— a.

.-. D 2
V

2
= sin (90°— a) = cos «. (6)
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Substituting the values for B
X
Z

X
and D

2
V

2
from (5) and (6) in the

equation (4), we obtain,

cos (3 _ sin « ft <

cos « sin (3 f2

'

or, by multiplying both members of equation by 2 and transposing,

f
2 cos j3 sin (3 = 2 cos « sin « •

.-. sin 2j3 = sin 2« ^ • (7)

The position of the secondary plane dd 2 o 2 o, shown as dividing the

angle A 2 o 2a 2
= y into d 2 o 2a 2

= « and d2 o 2A 2
= (3, provided d

2
o 2

.

is perpendicular to D 2 o 2 , will be determined by similarly fixing the

relations between « and (3.

In the plane E2 , from the triangle d2 z 2
m

2 , we have

d2 z 2 : z 2m 2
= sin < z 2m 2d 2 : sin < z 2d2

m
2 ,

< z 2m 2 d2
= < m 2d2

v
2 ,

by parallelism z
2m 2

and d2
v 2 ;

or, as < m
2
d2 v 2

= < d 2 v 2 o 2
—

< v 2 o 2 d 2
= 90°—

sin < z
2
m 2d2

= sin (90°— «) = cos «.

Similarly, sin < z 2d 2
m 2

= sin (90°— /3) = cos 0.

/. t?2
z 2 : z 2

m 2 = cos « : cos (3,

z 2m 2
= d

2
v

2
.

.: d2
z
2

: d2
v

2
= cos « : cos (3 (8)

In the oblique plane dd 2 z 2 , we find

d
t
z

t
: d 2

z 2
= dd

x
: dd 2 ;

or, as rfd, = /, and rfrfs = /8 ,

d
x
z

t
: d 2

z 2 =/t :/8 (9)
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Multiplying the equations (8) and (9), we obtain,

d
x
z

x _ cos a fi m

d 2 v 2 cos (3 f2

'
(10)

and, since d2 o 2
= d

1
o

1
= radius = 1,

d
x
z

x
= sin < d

1
o

1
A

1
= sin < d 2

o
2
A

2
= sin (3, . (11)

d2 v 2
= sin a (12)

Substituting these values in (10),

sin (3 cos a fx

sin a ~ cos (3 f2

f
.*. 2 sin /3 cos /3 = 2 sin « cos a ^ ;

./

2

f
or, as before, sin 20 = sin 2« '—)-

J 2

As the same relations, deduced from the deflections d
l
z

l
and d2 v 2 ,

under provisions that d2 o 2 J_ D 2 o 2 , are here shown to exist between

a and (3 as were obtained from D
x
Z

t
and D 2

V
2 , we are to conclude

that :

1. The primary and secondary planes of refraction are at

right angles to each other for any angular deviation of the axes

of two combined congeneric cylindrical lenses.

In a further consideration of the relation (7),

f
sin 2/3 = sin 2« ~

,

J 2

we observe the sines of double the angles, which are each always less

f
than 90°, to differ merely by the co-efficient ^ •

J 2

If, therefore, f2 — flf which is the case when the cylinders are of

equal refraction, the sin 2(3 will be equal to the sin 2a, which can only

be the case when « = (3, or, as « + (3 = y, when « = (3 = ~
; hence,

2
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2. For combined congeneric cylinders of equal refraction, the

primary plane equally divides the angle between the active planes

of the cylinders, and the secondary plane similarly divides the

angle between the axial planes of the cylinders.

In case, however, f% > /„ which is the case when the refraction of

the cylinder C is greater than c, then sin 2« > sin 20, or, when « > 3,

so that

3. For combined congeneric cylinders of unequal refraction,

the primary plane, in dividing the angle between the active planes

of the cylinders, will be nearer to the active plane of the stronger

cylinder, and the secondary plane consequently nearer to the axial

plane of the same cylinder.

This is also demonstrated in the diagram.

As, for a combination of two cylinders, C and c, under given angu-

lar deviation of their axes, the only known quantities will bef1,f2 , and

y, it will be necessary to express « and 3 in terms of fx ,f2 , and y.

This we accomplish through the equations

f
sin 2(3 = sin 2« ^ ,

a + 3 = y

;

and, as these also contribute elements of vital importance to future

deductions, we shall seek to reduce in a manner adapted to ultimate

reference by placing

fy = * (13)
J 2

The above equations may then be written

sin 2/3 = h sin (14)

0 = y - « (15)

sin 2/3 = sin 2y cos 2a — cos 2y sin 2« = k sin 2«. . (16)

.\ sin 2y cos 2a = (k + cos 2y) sin 2a.
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\ cos2 2a = 1 — sin2 2a

DIOPTRIC FORMULAE.

k + cos 2y .

sin 2y

(k + cos 2y)
2

.

sin 2a. . (17)

sin2 2y
sin2 2a.

sin 2 2a

sin2 2« =

'(k + cos 2y)
2

sin 2 2y

sin2 2y

+ 1 = 1.

sin2 2y

.-. sin 2a =

Hence, from (17),

cos 2a =

(& 4- cos 2y)
2 + sin2 2y & + 2& cos 2y + 1

sin 2y

\/k2 + 2k cos 2y + 1

k + cos 2y

V/t2 + 2k cos 2y + 1

For convenience, let m = + 2k cos 2y + 1.

sin 2y
sin 2a =

cos 2a

111

k + cos 2y

m

(18)

(19)

(20)

From (15), cos 2(3 = cos 2y cos 2a + sin 2y sin 2a.

Replacing cos 2a and sin 2« by their values from (20) and (19)

gives,

cos 2/3 = v " '(& + cos 2y) cos 2y ^ sin2 2y _ k cos 2y + 1

Resorting to the general formulae 2 cos2 a = 1 + cos- 2a and 2 sin2 a

1 — cos 2a, we may write :

COS2 a = 4r + \ cos 2a,

sin2 a = |- — | cos 2a.

Similarly, cos2 0 = £ + \ cos 2/3,

sin2 0 = \ — \ cos 20.
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Substituting in these for cos 2« and cos 2/3 their values from (20)

and (21) gives,

. 1 1 h + cos iy m 4- k + cos 2y . .

C0S " = 2 + 2 m = 2m~
'

'
(22)

1 1 k 4- cos 2y m — h — cos 2y .
ssm(i = 2~2 m

= 2^ '
'

(23)

1 1 1 4- k cos 2y m + 1 + & cos 2y . .

cos2 0 = s + - - -
7i

• (24)
2 2 m 2m

. „ _ 1 11 + 1; cos 2y m — 1 — & cos 2y ,
sin2 P =r - — - = 5

• (rfoj
2 2m 2m

The angles « and j3 may then be expressed in terms of ft , /8 , and

y, by substituting, in the above formulas, for k and m, their values, as,

for instance,

/ 2

f
4- cos 2y

COS2 a = - 4- -

or, multiplying both terms of fraction by /2 ,

/ll ft +/2
cos 2y

COS a = \ / s 4- x
;

• • * I
1

)V ^ 2 V/1

2 + 2/1/2
cos2y 4-/ 2

2

It will be unnecessary to seek (3 in the same manner, since, by (15),

0 = y - «.

When reducing the above formula, for any given value of y, pur-

suant to reasons later given, it should be observed that

/

3 >/,, in

which case «, within the angle y, is to be counted from the axis of the

weaker cylinder.
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2. POSITIONS OF THE PRIMARY AND SECONDARY FOCAL
PLANES.

The plane DD
1
o

1
o being the primary plane, it follows that all par-

allel rays incident in it between D and o will, after refraction, intercept

the optical axis oo
x
at some point, which will be a point of the primary

focal line. Thus, the final ray DM
X
M

2 , in attaining to its greatest

deflection D
1
M

1
in the elementary plane Elf will establish the limiting

position for the primary focal line by its intersection of the optical axis

oo
1 , at O

t
.

For similar reasons, in the secondary plane, 0 2
will be a point of

the secondary focal line, this intersection of the final ray dm
x
m 2 with

the optical axis being more remote in consequence of the inferior de-

flection d
2
m 2

in the plane E
2 .

Like deflections, for opposite cardinal points of the circle within

the lens, will define the directions of the corresponding final rays,

which are shown as limiting the major and minor axes of the ellipses in

the planes E
1
and E

2 , and consequently also the magnitudes of the focal

lines at O
t
and 0 2 . Thus, 0

2
M

3
represents one half of the secondary

focal line at 0 2 . The primary focal line, in the secondary plane, per-

pendicular to YO^ at O
x , has been omitted, to avoid possible misinter-

pretation of more important points of reference in this region.- All

rays parallel to the optical axis, incident at intermediate points of the

circle within the lens, will, upon refraction, intersect the planes E
x
and

E2
at correlative points of the ellipses drawn.

The region of transition T, or circle of least confusion, will lie

between the planes E
t
and E

2 . (See Plate II, Fig. 2.) Its position

may be determined through a simple formula advanced by Prof. W.

Steadman Aldis, of the University College, Auckland, New Zealand, in

his consideration of the "focal interval" resulting from rays obliquely

incident upon a spherical lens.*

Our object being to determine the distances of the primary and

secondary focal lines or planes from the principal plane within the

combined cylinders, we may proceed as follows :

* Elementary Treatise on Geometrical Optics, W. S. Aldis, M.A., Cambridge,

1886 (see page 39).
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In the primary plane DD
X
M

X , we have

DY-.DD YO
x

: D
X
M

X
.

Substituting, DY — O.o F
x

as the primary focus
;

DD

YO D
x
o

x
= radius = 1.

ft
D. M (26)

In the parallelogram D
x
V

X
M

X
Z

X
, the angle between the forces,

D
x
V

x
and D

X
Z

X ,
being equal to < C

x
o

x
c

x
= y, we have, as the

resultant deflection,

D
X
M

X
= V(l\Z

x r + {B
x
V

x f + 2 (D
t
V

x )
(D

X
Z

X ) cos y, (27)

in conformity with the statical formula,

R = VP* + Q2 + *PQ cos y,

for forces P and Q, acting at the same point, within the same plane,

under the angle y.

Substituting in (27) the value of D
X
Z

X
= cos (3, from (5) ; and of

D y _ A J) 2 F3 , from (3), = cos «, from (6), we obtain,

ft J 2

D
X
M

X
=
\J

cos2
(3 + cos2 « + 2^ cos « cos (3 cos y.

Introducing this value for D
X
M

X
in (26),

(28)

Substituting here, as before.
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To reduce the third member under the radical, we deduce from (15),

cos (3 = cos (y — «) = cos y cos « + sin y sin «.

.*. cos a cos (3 = cos y cos2 « + sin y sin « cos a

= cos y cos 2 « + £ sin y sin 2«
;

and by substituting (22) and (19) for cos2 « and sin 2«,

(m + cos y 4- cos 2y cos y sin 2y sin y
cos « cos j8 = i———- ^ * H s

£
*

2m 2m

But cos 2y cos y + sin 2y sin y = cos (2y — y) = cos y.

(m + & + 1) cos y
,\ cos « cos /3

cos « cos j3 cos y

2m

(m + & + 1) cos2 y

.-. cos « cos /3 cos y =

2m

cos2 y = i (1 + cos 2y).

(m + k + 1) (1 + cos 2y)

2k cos « cos (3 cos y =

4m

m + & + 1 + m cos 2y + k cos 2y + cos 2y

4m

»j & + k2+ & -{-m& cos 2y + &2 cos 2y + k cos 2y

2m

For the first two members under the radical, by substituting values

from (24) and (22), we have

, n , 7 , , m + 1 + k cos 2y + mk2 + ks + &2 cos 2y
cos2

(3 + /t
2 cos2 a = '-— '-.

2m

Consequently, the entire value under the radical,

cos2
(3 + k2 cos2 a + 2k cos a cos (3 cos y

_ m&2 + mk cos 2y + mk + m + &3+ 2&2 cos 2y+ k+ &2+ 2& cos 2y +

1

2m

_ (fc
2+ fccos2y)m+ (fc+ l)m+ fc(/l-2+ 2fccos 2y+ l) + fc

2+ 2&cos 2y+ l—
2m
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Since, by equation (18), k2 + 2k cos 2y + 1 = m2
,

cos2 0 + k2 cos2 a + 2k cos « cos j8 cos y

(k2 + & cos 2y) m -f (& + 1) m + &m2 + ?«2

2m

_ k(k + cos 2y) + (& + !) + (& + 1) m
~ 2

= \ [k (k + cos 2y) + (k + 1) (1 + f»)].

Substituting this under the radical in (29), we obtain,

F
x
= (±
V£ [k (k + cos 2y) + (k + 1) (1 + »*)]

Replacing & and m by their values from (13) and (18),

w - ft

Vs[$£+~*)+(&+0(iV©,+^,y+1

Multiplying both terms of fraction by

/

2 ,

F fxft

V +/ cos 2y) + (/, +/2 )(/3 + VA 9+*AA cos 2r+/2
2
)]

(30)

Transforming, and substituting 1—2 sin2 y for cos 2y, we may,

for convenience in calculating, preferably write,

jp _ ftft
*\ — —

J
=

V ^±Z2̂

-/i/8
sin2 y + (.A +/8)|/

_

/l/a sin*
y

When the cylinders are of equal refraction, /x
being equal to /3

= /,

the above formula, by adequate reduction, assumes the simple form,
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In the secondary plane dd2X0 2 , we have

dX : dd2
— X0

2
: d 2m 2 .

Substituting, dX = O 2 o = F
2

as the secondary focus ;

dd
2
— f% '>

X0 2
= radius = 1.

^2 ~ d2
m

2

^

In the parallelogram d2
v
2
m 2z 2 , the angle between the forces, d2 v 2

and d
2
z
2 ,

being equal to < v 2d2 z 2
= 180°— < A 2o 2a 2 = 180°— y,

d
2
m

2
= y/(d

2
z
2 )

2+{d 2 v 2
)'i -\-% (d 2

v 2 )
(d 2

z 2 ) cos (180°— y).

f f
Substituting the value for d2 z 2

= J
-f d±z

x , from (9), = ^ sin (3,

J i ft

from (11) ; and for d 2 v 2
= sin a, from (12), we obtain,

d 2m 2
= ^j%in2 8 + sin2 a — 2^ sin « sin /3 cos y ;

which introduced in (31) gives,

F2
= /g

^y/ sin2 8 + sin2 « — 2^ sin « sin 8 cos y

Multiplying numerator and denominator by '—r ,

J2

/• •

\J
sin2 B + ("j

1

)

2

sm2 « — 2 sin « sin /3 cos y

and which may then be written,



CONGENERIC CYLINDERS. 23

To reduce the third member under the radical, we have, from (15),

sin /3 = sin y cos « — cos y sin a.

.'. sin a sin (3 = sin y sin « cos a — cos y sin2 «

= £ sin y sin 2cc — cos y {\ — £ cos 2«)

= £ sin y sin 2« + £ cos y cos 2a — |- cos y ;

and by substituting (19) and (20) for sin 2« and cos 2«,

. _ sin 2.y sin y cos 2y cos y + k cos y
sin « sin 0 = £ ' H 1

ft — i cos y2m 2m 3

_ cos (2y — y) + k cos y — m cos y_ __

(1 -+- k — m) cos y
~~ 2m

. . _ 2 (k + k2 — mk) cos2 y
.-. 2a; sin « sm p cos y = — —— •

2m

But cos2 y = £ (1 + cos 2y)

;

+ A;
2 — mk) (1 + cos 2y)

.•. 2k sin« sin|3 cosy -
2m

k-\-k2—mk+ k cos 2y+ &2 cos 2y—mk cos 2y
>

2m '

and for the first two members under the radical, through (25) and (23),

we find,

. „ _ ,, , , m — 1 — k cos 2y + mk- — k3 — k2 cos 2y
sm2

j3 + k2 sm2 « = -—- •

2m

.-. sin2
/3 4- k2 sin 2 a — 2k sin a sin j3 cos y

mk2 + mk cos 2y + mk + m— A?8—2^ cos 2y—k—

k

2—2k cos 2y—

1

2m

(k2+ k cos2y )m + (k+ l) m— k(k2+ 2k cos 2y+ 1 )— (k2+ 2£ cos 2y+ 1

)

2m
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_ (k2 + h cos 2y) m + (k + l)m — fan2 — m2

2m

_ k (k + cos 2y) + (k + 1) — (k + 1) m_ _

= i [* (* + cos 2y) + (* + 1) (1 - to)].

Substituting this under the radical- in (32) and replacing k and to

by their values, we obtain,

Fn
ft

Multiplying both terms of fraction by /2 ,

Fn = Aft

VilA (ft +/2 cos2y) + (/1 +/,)(/,- V/1

2 4-2/
1/8

cos2y+/
2 2)]

(33)

Substituting, cos 2y = 1 — 2 sin2
y,

F -x 2
— /l/l

\/{A^~ftA My-ift +f*W{J±^-7J* sin^y

(HI)

This formula, reduced for cylinders of equal refraction, fi
being

equal to f2
= f, becomes

Ffs =
1 -"cosy* ' ' (

V
>

It may be of interest to note that these formulas differ from those

given for F
x
merely by a minus sign in the denominator.

The preceding formulas being alike applicable for combinations of

convex or concave cylinders, the foci ft
and /2

are to be introduced

as positive values, merely with the restriction that f2 be greater than

or equal to f1 , in either case.
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3. RELATIONS BETWEEN THE PRIMARY AND SECONDARY

FOCAL PLANES.

Since F
x
and F2 have been shown to be dependent upon /2 > and

y, it is evident that, for fixed values of fx
and /8 , the same will be ren-

dered dependent upon successive values of the angle y onl}\

It is further obvious that the refraction of one cylinder will be

affected most by the other when their axes coincide, or when y = 0°,

and least when their axes are at right angles to each other, or when

y = 90°.

We shall, consequently, fix upon the limits of F
t
and F

2
for these

extremes of y.

Introducing y = 0°, and consequently cos 2y = + 1, into the for-

mulae (30) and (33), we obtain, for / 3 > flf

p _ flf2 ftft

f/i [.A (A +/.) + (fx +/,) (/, +A +/,)] /t +/

F0
flf2 _ flf

\/i Ui U% +77) + Ut +77) (A -a -/.)] 0

f /"<>

For Fx
= / 1 2

,. , we shall have as the refraction,

fi + J

2

i- = ~T + 4- ;
consequently,

^1 /l /8

4. When the axes of the congeneric cylinders coincide, the pri-

mary focal plane tvill correspond to that focal plane which is

defined by the sum of the refractions of the cylinders, whereas the

secondary focal plane tvill be at infinity.

This is shown in Plate II, Fig. 1.
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Introducing y = 90°, and consequently cos 2y = cos 180° = — 1,

into (30) and (33), we have, for f2 > fx ,

p __ fifz flfs __ f
1

\/¥l-A (A-/1)+(/i+/s)(/a +A-/i)] " /•

.A /a __ ft/2 j?

2

|/i[-/i(/f-/i) + (/i+/.)(/.-/i+/i)]
" ^

F
x
:F

2 =fx :f2 (35)

As fx
and f2

correspond to the positions of the elementary planes

E
x
and E

2 , it follows that

5. Hie primary and secondary focal planes coincide with their

correlative elementary focal planes, when the axes of the con-

generic cylinders of unequal refraction are at right angles to each

other.

This is demonstrated in Plate II, Fig. 2.

In the same relation (35), if /, = f% , then F
x
= F

z , or

6. The primary, secondary, and elementary focal planes all

merge into one plane, when the axes of the congeneric cylinders of
equal refraction are at right angles to each other.

As in this case we have but one focal plane, the refraction corre-

sponds to that of a spherical lens.

F
t
being adopted as signifying the primary focal distance, it will

have to be less than F
2 ,

yet if ft > f2 , we should find, as a conse-

quence, by the relation (35), Fx > F
2 . To retain the significances of

F
t
and F

2 , it will therefore be convenient to substitute f2 by the

greater given value of cylindrical focus, and ft
by the lesser, as stated

under the formulae, page 24.

By the previous considerations, between the limits of 0° and 90° for

f f
y, we are then to conclude that F

t
will vary between •

1
•

2 - and fx ,
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while Fc, varies between 00 and /8 , as the nearest and most remote

limits of focal distance.

As an illustration, let Fig. 1, Plate II, represent two combined

convex cylinders of unequal refraction, with their axes coincident, and

so united as to permit of the rotation of one of the cylinders upon the

true planes of their faces, about the optical centre 0.

In the position shown (y = 0°), the limiting distance F
x

of the

f f
primary focal line will be •

1
•

2
, which corresponds to the combined

J 1 +/ 2

refraction, -rr + -rr , of the cylinders in the active plane ; and in

J \ J2
^

the secondary plane, F
2
— co

;
consequently, = — = 0, which

corresponds to the refraction in the axial or passive plane of the

cylinders.

The slightest change in the position of one of the cylindrical axes

will give rise to a definite value of the angle y in the Formula III,

thereby bringing F2
within the limits of finite distance, while decreas-

ing the value of F
x
in the Formula II.

For each successive increase in the angle y, the primary focal plane,

corresponding to Flf will recede farther and farther from the lens

towards Et>
while the secondary focal plane, corresponding to F

2 ,

apj)roaches nearer and nearer from 00 to E2 , until y = 90°, when F
l

will have reached E
x , and F2

become merged into E
2 , as shown in

Plate II, Fig. 2.

Eotation of one of the cylinders is thus associated with correspond-

ing changes in the distances F
t
and F2 , while the movements of their

correlative focal planes will be in opposite directions to each other

;

and, as a consequence 1

7. Hie primary and secondary focal planes are conjugate

planes, subject to variations of the angle between the axes of tlie

congeneric cylinders.

It being impossible to construct a truthful diagram, Plate I, with-

out strictly adhering to the principles heretofore explained, it has been

necessary to select elementary foci in marked disproportion to the

curvatures or refractive indices of the cylinders, so as to bring F
2

within the limits of the space allotted.



II. DIOPTRIC FORMULvE
FOR COMBINED

CONTRA-GENERIC CYLINDERS.

/

1. RELATIVE POSITIONS OF THE PRINCIPAL POSITIVE AND
NEGATIVE PLANES OF REFRACTION.

In a combination of convex and concave cylinders, we can no longer

have the primary and secondary planes, which we have learned to con-

sider as planes of greatest and least refraction, but, instead, we shall

have a plane of greatest positive and one of greatest negative refraction,

synonymously with the generally-adopted distinction between convex

and concave lenses, designated by the signs + (plus) and — (minus),

respectively. As the refractions by the convex and concave elements of

the combination are opposing forces, the plane of greatest positive

refraction will evidently lie between the active plane of the convex and

the axial plane of the concave cylinder, while the plane of greatest

negative refraction will be between the active plane of the concave and

the axial plane of the convex cylinder.

In Plate III, therefore, the plane DD
1
o

1
o of greatest positive refrac-

tion is shown between c and A, and the plane dd
1
o

1
o of greatest

negative refraction between C and a, these planes, by provision of their

being at right angles to each other, dividing each of the angles A
1
o

1
c

1

and C
1
o

1
a

i
into « and 0.

To establish the formulae for combined contra-generic cylinders, we

shall therefore have to ascribe another significance to the angles «

and 0.
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The deviation of the axes Aoa is equal to angle A
1
o

l
a

1
= y, and,

since c
x
o

x
is perpendicular to a

x
o

x , « + /3 + y is equal to 90°
;
conse-

quently,

« + j3 = 90° — y (36)

The elementary focal planes E0
and E

x ,
corresponding to the focal

distances /„ and flf respectively, are exhibited on opposite sides of the

combined cylinders ; since E
0 , for the concave cylinder, will be virtual,

and in the negative region before the lens, while E
x , for the convex

cylinder, will be in the positive region behind the lens. Consequently,

for the point D, the convex cylinder c will contribute as its greatest

amplitude of deflection D
X
Z

X ,
perpendicular to a

x
o

x
in the plane E

x ,

while the greatest amplitude of deflection for the concave cylinder C

will be D
0
V

0 ,
perpendicular to A

0
o

0
in the virtual plane E

0
. As the

incident ray at D will be refracted by the concave cylinder, as if ema-

nating from a correlative point V
0
of the virtual axial line F

0
o
0 , it is

evident that the direction of the ray refracted by it would be V
0
BV

1
.

The proportionate deflection contributed by the concave cylinder,

measured in the plane E
x

, will consequently be D
x
V

x
.

Provided the point D be properly chosen, it will be a point of the

plane of greatest positive refraction, that is to say, when the resultant

deflection D
1
M

1 ,
accruing from the associated deflections D

t
V

x
and

D
X
Z

X
in the parallelogram of forces D

x
V

X
M

X
Z

X , is directed to the

optical axis.

To insure D
X
M

X
being so directed, it is obvious that the associated

deflections, D X
Z

X
and D

x
V

x
, must also be measured in the plane E

x ,

in the positive region behind the lens.

Similar reasoning will apply to the point d as being in the plane

dd
x
o

x
o of greatest negative refraction. In this instance, d

x
m

x
being a

force directed from the optical axis, in the plane E
x , is to be taken

negative, synonymously with the plane of greatest negative refraction.

The relations between « and (3 are to be determined by an analogous

method to the one given for congeneric cylinders, whereby we obtain

sin 2a = sin 2/3 ,

J 0

(37)
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as defining the positions of the planes of greatest positive and negative

refraction, which are again at right angles to each other.

We here also find the sines of double the angles to differ by the

f
co-efficient J~ • Hence, when f0

— ft , we shall have « = j3 =
Jo

90°-y
'

2 '

°r'

8. For combined contra-generic cylinders of equal refraction,

the plane of greatest positive refraction equally divides the angle

between the active plane of the convex and the axial plane of the

concave cylinder; and the plane of greatest negative refraction

similarly divides the angle between the active plane of the concave

and the axial plane of the convex cylinder.

In case /„ > fi , then (3 > «
;

or,

9. When the convex cylinder is stronger than the concave cylin-

der, the plane of greatest positive refraction will be nearer to the

active plane of the convex, while the plane of greatest negative

refraction will be proportionately farther from the active plane of

the concave cylinder.

In case f1 > fQ , then a > j3 ;
or,

10. JVJien the concave cylinder is stronger than the convex cylin-

der, the plane of greatest negative refraction will be nearer to the

active plane of the concave, while the plane of greatest positive

refraction tvill be proportionately farther from the active plane

of the convex cylinder.

This is manifest in the diagram.

The values of « and (3 may be expressed in terms of ft , f0 , and y

in a similar manner to that shown in the previous theorem, by placing

4 = h (38)
/ 0

when, by (36) and (37), we shall have,

nf3 h — cos 2y . c. ncos 2j3 = :
—-—- sin 20.

sin 2y
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. sin 2ysm 2j3 = — .

yl'2 — 2& cos 2y + 1

Substituting, in this case,

m — V&2 — 2& cos 2y + 1 (39)

sm 2y .

.-. sm 2/3 = (40)m

k — cos 2y ....
.•. cos 2/3 z= (41)

1— A cos 2y , .

.•. cos 2« = — (42)m v 7

Resorting to the general formulae mentioned on page 16,

m + 1 — h cos 2y
cos2 a = r (43)

2m v 7

m — l + k cos 2y
sm2a = 2^ W
cos2

/3 =
w +V cos2y

-
• m2m v '

. n n m — k + cos 2y ...

Substituting for k and m their values, through (43) we obtain,

/l
.

1 /n — /i COS ^7 /ttt\
COS« = \/^ + -7 — =• • • (VI)

V 2 2 V/0
2 -2/0/1

cos2y +Z, 2

and by equation (36), 0 = 90° - (y + a)
;

the latter equations being all that is requisite to locate the positions of

the principal planes of refraction ; the angle « being counted from the

axis of the convex cylinder.
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2. POSITIONS OF THE POSITIVE AND NEGATIVE FOCAL

PLANES.

The positions of the positive and negative focal planes will evidently

here also be determined by the resultant rays, DM
i
and dm

1 , and their

correlative intersections with the optical axis at O
x
and O

0
.

O
i
m

3
will therefore represent one half the focal line in the positive

region behind the lenses, and O
0
M

3
one half the virtual focal line in

the negative region before the same.

The ellipses shown in the planes E
x
and E0

are of the same signifi-

cance in this as in the preceding combination.

In the plane of greatest positive refraction, DD
1
YO

i , we have

Substituting,

DY: DD
t
= YO

x
: Dt
M

x
.

DY - -- O
t
o = F

x
as the positive

DD
X = /iJ

TO, — Do = radius = 1.

F
x

A
• • («)

In the parallelogram D
x
V1
M

1
Z

1 , the angle between the forces,

D
1
V

1
and D

1
Z

1 , is equal to 180° — y, since D
1
Z

1 A_Zx
o

x , and

D
x
V

x
±A

x
o
x

.

... D XMX
= V(D 1

Z
i
y+(D

l
V

i
)*+ 2(D

1
Z

1
)(D

l
V

1
)coa(180°-y).

In the oblique plane D^V^DV^D^, we find,

D
x
V

x
: DD

X
= D

0
V, : DD 0 .

D
0
V

0
= sin < D

0 o 0
A

0
= sin < D

1
o

1
A

x
= sin (3.

DD, =/0 .
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.-. Dx Vx
= sin 0.

Jo

D^Z
X
= sin (< Z

x
o

x
c

x
— < D

1
o

1
c

1 ) = sin (90° — a) = cos a.

Substituting these values in the equation for D\M
t , formula (47)

becomes,

F) _ A
\ cos' a + (4

1
) sin2

/3— 2 A sin (3 cos « cos y

f
and, by placing — = k, with the aid of the formulae (39), (43), and

/o

(46), upon adequate reduction, we obtain,

ft

Vi \k (k — cos 2y) + (1 — h) (1 + m)]

Replacing & and m by their values, and multiplying both terms of

fraction by f0 ,
gives,

£7 f1 f(1

VilA (A ~fo cos 2y) + (To -/i )(/o + V/T^/o/i cos2y+/1

a
)l

(48)

Substituting, cos 2y = 1 — 2 sin2
y,

^ = /i/o

V (/o /lY
+foA Bin2y+(/,^)l/(/o /l} +/,/^y

(VII)

This formula, when reduced for cylinders of equal positive and

negative refraction, /0
being equal to ft

= f, assumes the simple

form
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In the plane of greatest negative refraction, d^m^dO^X, we obtain,

dX : dd
1
= XO 0.: d

i
m

l
.

Substituting, dX = O
0
o = — F

0
as the negative focus

;

dd
\ — ft ;

XO
0
= do = radius = 1.

~ d

since d
1
m

1
is to be taken negative

F
0
= - (49)0 d^m^

In the parallelogram d
1
v

1
m

1
z

1
, the angle between the forces, d

1
v

1

and d
x
z

x , is again 180° — y ;
hence,

dxm x
= Vid.z.Y+id.v.y^id.z,) (d.v,) cos (180°-y).

In the oblique plane d o v 0
dv

1
d

1 , we find,

d
t
v

x
: dd

x
= d

0
v 0 : dd 0 .

d
0
v

()
= sin (< D

0
o„d

0
— < Z>

0 o 0
^

0 ) = sin (90° — < D
1
o

l
A

1 )

= sin (90° — (3) = cos j3.

dd0
= /0

.

f
.'. d

1
V

1
= '-jr COS |3.

Jo

d
x
z

x
= sin < d

x
o

x
z

x
= sin «.

Substituting these values in the equations for d
1
m

1
and (49), we

have,

A

\J
sin2 a + cos2 P — 2yr sin a cos (3 cos y
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Resorting to the equations (38), (39), (44), and (45), the above may

be given the form, — F
0
=

which differs from the formula given for F
1
merely by a transposition

of the elements in the factor before the second radical, and, consequent-

ly, when reduced to cylinders of equal refraction, also becomes

The formulae (IX) and (X) correspond to those applied to the

Stokes Lens.

In reducing the preceding formulas for given values of cylindrical

foci, f0
is to be substituted by the focus of the concave and ft

by the

focus of the convex cylinder, both being introduced as positive values.

3. RELATIONS BETWEEN THE POSITIVE AND NEGATIVE FOCAL

PLANES.

As in this combination the cylinders likewise affect each other most

when their axes coincide, and least when their axes are diametrically

opposed, we may here also fix upon the limits of F
t
and — F

0
for

y = 0° and y = 90°, as in the previous theorem.

When y = 0°, or cos 2y = + 1, from the formulae (48) and (50)

we find, for f0 > /„

AA

- sin*y+ (/, -/0 )|/ +/o/i sm *
y

(VIII)

Afo AA
|/K-/i(/o-/i) + (^o-/t)(/o+/o-/i)] fo -A
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-F = flfo = _fll
-/i (A -/i ) + (/•-A )(A -/o +/, )]

0

.-. F,:-F
0 = -f^-r : - oo (51)

/o /

1

/" /* .111
For F-. = / 1 17 °-

,- , we have as the refraction — = — -r ;

/o — /l ^1 /1 /o

consequently,

Jl. When the convex cylinder is of greater refraction than the

concave, and their axes are coincident, the positive focal plane will

coincide with that focal plane which is defined by the difference of

the refractions of the cylinders,* whereas the negative focal plane

tvill be at infinity.

Placing y = 0°, or cos 2y = +1, in the formulas (48) and (50), we

have, for f1 > f0 ,

Jp _ fI/O __ ft _ QQ

Vi Ut (A ~/o) ~ (ft ~fo) (A +fx -fo)l
~ 0

p __ ft.fa _ fl fo

V* t/i (A -A) ~ (A -A) (A-A +/o)J
" A -A

'

Ft - - Fo = » : - 7^4-

<

52
>

y i ./ o

f f 1
For — F

0
= •

10
, we have as the refraction =

ft —Jo * 0

{^y -y j ;
consequently,

12. Wlien the concave cylinder is of greater refraction than the

convex, and their axes are coincident, the negative focal plane
will coincide with that focal plane which is defined by the difference

of the refractions of the cylinders,* whereas the positive focal plane
will be at infinity.

This is shown in Plate IV, Fig. 1.

* Or the sum of their refractions when taken as positive and negative elements.



PLATE IV

THE REFRACTION BY COMBINED

CONTRA-GENERIC CYLINDRICAL LENSES
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Introducing y = 90°, or cos 2y = cos 180° = — 1 in the formula

(48) and (50), we have, for f0 %f1}

jp f\fo f\ fo
y1 ~ i/iUWi +/o)+(/o-/i)(/o+/o+/i)]

"

jp fiJo fl/o f

\/\U\ (A +/.) + (/„ -f\ KTo -/o -fx )1 "
~ ^

â : -^o =ft : -/o (53)

From which we deduce :

13. TJie positive and negative focal planes coincide with their

correlative elementary focal planes, when the axes of the contra-

generic cylinders are at right angles to each other.

This is demonstrated in Plate IV, Fig. 2.

Between the limits of 0° and 90°, for f0 > j\ , we have consequently

f f
found F

x
to vary between the limits of :

1 J 0 and fl
behind the

Jo Ji

combined lenses, while F
0

varies between the limits of co and /0
on

the incident side of the same.

The convex cylinder being stronger than the concave, when their

axes coincide their combined refraction will evidently be equal to that

, . 1 1 1 •

of a periscopic convex cylinder, since = — -r- m the active
* \ J i / 0

plane ; and — = — = 0 in the passive plane.

Between the same limits, when /, > f0 ,
F

0
will vary between

Af0— and f0
on the incident side of the combined cylinders, while

F
t
varies between cc and fx

behind the same. (See Plate IV.)

In this case, when the axes coincide, it is evident that the resultant

refraction will be equal to that of a periscopic concave cylinder, since

— ~ — — [\ \ \ in the active plane ; and 4r = — = 0 for

the axial plane.



38 DIOPTRIC FORMULAE.

For an inequality in the refractive power of the cylinders, rotation

of one of them, from 0° to 90°, will therefore be associated with corre-

sponding changes in the positions of the resultant focal planes between

the limits of infinity and the focus of the weaker cylinder on the one

side, and between that focal plane which corresponds to the difference

of their refractions and the focus of the stronger cylinder on the other.

Since in this case the approach of one focal plane is accompanied by a

corresponding recession of the other on the opposite side of the lenses,

their movements are, as in the previous theorem, in opposite directions.

When the cylinders are of equal refractive power, fx
being equal to

/„, it will follow, from the relation (53), that F
x
= F

0 , so that,

between the limits of 0° and 90°, F
t

will vary between infinity and fx

on the positive side, while F
Q

varies between infinity and f0
on the

negative or incident side of the combined cylinders.

Consequently, when the axes coincide, -f- Fx
= + oo and — F0

=
— go. This is evident, since the refractions of equal convex and

concave cylinders, under such circumstances, neutralize each other

throughout.

By the previous considerations we therefore here also find :

14. The positive and negative focal planes are conjugate planes,
subject to variations of the angle between the axes of the contra-

generic cylinders.

The diagram, Plate III, has been constructed in accordance with

the foregoing provisions.



III. DIOPTRAL* FORMULAE.

As the task of reducing dioptres to their focal distances would

render calculation by the preceding formulae somewhat arduous, we

may here introduce the formulas, expressed in refraction, which will

be found exceedingly convenient when applied to combinations of

cylinders of the metric system more especially.

For the focal distance F* we have as the refraction = R,, and

for ft
and f2 ,

similarly, — = r
x
and = r 2 , which may be un-

derstood as signifying dioptres of refraction.

By these, and similar substitutions for other foci, we may then

write :

THE DIOPTEAL EOEMTTLE EOE COMBINED 00NGENEEI0 CYLIITDEES.

, W r 2 + r, cos 2y {W)
2 + 2r

t
r 2

cos 2y + r 2
2

R
t
= f/$(r, +r s )

8—

r

t
r 8

sin2 y + (r
x
+r 2 )V£ (r

2
+r

2 )
2— sin2

y.

(in>)

i? 2
= j/^ (rj +r 2 )

2—

r

t
r 2

sin2 v — (r, + r
2 )V${r 1 + r 2f—i\r 2 sin2

y.

(HH>)

To retain the significances of i?
x
and i?

2 , in calculating, r
x
should

represent the greater cylindrical refraction.

R
x
= r (1 + cos y) (IVD)

R
2
= r (1 - cos y) (YD)

* The adaptation of this adjective would seem justifiable, since the unit

"dioptre" has been chosen in distinction to "dioptric," which, though related, has

another significance.
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THE DIOPTEAL F0RMUL2E FOR COMBINED CONTRA-GENERIC CYLINDERS.

/l 1 r* — r a cos 2y ,inmcos« = y T + r— 1 0 '
• (VIZ))

V ^ 2 ^2 _ 2ri r 0
cos 2y + r

0
2

^1=1^Hrt— r 0 )
2+r

i
r

0
sin2 y —r9)VUr

i
~ ro)*+ r t

ro
sin8 V-

(VILD)

— #<>=—r i(r i

~

ro)
2+ r

i
r o sin2r+ (r o—*i)Vi(r1—r oy+rtr Q

rin*y.

(Villi?)

R
t
= r sin y (IXZ?)

— i2
0
= _ r sin y (XZ>)

If, in (LID) and (IIIZ)), the convex element r e
be replaced by the

concave element — r
0 , we obtain (VILD) and (VIIIZ)).

By the aid of these formulae we may also arrive at the following

significant facts.

The formulas (LLD) and (HID) may be written :

R
i

2 — + rif— r
i
r 2 sin2 r + (

ri+ r 2 )Vi(r 1
+r 2 )

2 — r
t
r2 sin2 y,

Rz
3 — \{r

x
+r 8 )

a—

r

4
r 8 sin 2 y — (r, +r 2)Vi {r

x + r
2 )

2 — r^g sin2
y,

which, by addition, result in the equation,

R
x
* + R^ =

(
r, + r

2 )
2 — 2r

1
rs

sin2 y.

.-. 4- Z^) 2 - 27^7^ = (/ j + r
2 )

2 - 2r
a
r
2
sin2

^.

,\ + R %Y = (r
t + r8 )

8 - 2r
1
r 2 sin2 y + 2R

1
R 2 .
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Multiplying (IID) by (HID), we find,

2R^ R% 2r trs
sin2

y.

R
1
+ R r, + r (54)

From which we conclude :

15. The sum of the primary and secondary refractions is

a constant, being equal to the sunt of the elementary refractions

for any combination, and all deviations of the axes of tivo com-
bined congeneric cylinders*

In the same manner, we obtain from the formulas (VII/)) and

and therefore here also find,

16. The sum of the principal positive and negative refractions

is a constant, being equal to the sum of the positive and negative

elementary refractions for any combination, and all deviations of

the axes of tivo combined contra-generic cylinders.

The total inherent refraction always remaining the same for any

combination, the angle y merely performs the function of allotting the

proportions of refraction R
t
and R

2 , or R
t
and R

0 , in the resultant

principal planes.

By the equations (54) and (55), calculation may be greatly simpli-

fied. R
t
being determined for a specific value of y, we may readily fix

upon R 2
or R

0
by these equations.

This is demonstrated in the appended tables, although it has not

been utilized in calculating ; on the contrary, a study of these led to

the above deductions.

(VIILD),

R
1
— R

n
= r, — r (55)



IV. SPHERO-CYLINDRICAL
EQUIVALENCE.

Since, for any combination of cylinders, the principal planes of

refraction are at right angles to each other for all values of y, there can

be no reasonable doubts, under the provisions made at the opening of

this demonstration, as to the equivalence of a sphero-cylindrical lens to

one composed of combined cylinders. However, the use of such lenses

being at present confined to the correction of errors of refraction in the

human eye, it is evident, from the movements of the eye behind the

fixed lens, that the visual axis cannot at all times coincide with the

optical axis of the lens chosen, so that, in those practical attempts at

substitution, which may at times prove to be unsatisfactory, the cause

might seemingly be explained by the possibility of a difference becoming

manifest for the more peripheral incident rays, although equally distant

from the optical centre of either form of lens. In other words, the

available field in the one may be greater or less than in the other,

which, however, is likely to prove appreciable only in lenses of extreme

curvature, and possibly in combinations of cylinders which widely differ

in their individual refractions. This would remain to be shown.

To substitute a sphero-cylindrical lens for combined cylinders, the

proposition is merely one demanding that the "focal interval" be the

same, at the same distance from the principal plane, at the optical cen-

tre, for each of the compound lenses. The distances F
x
and F2

being

determined for any angular deviation y of the axes, in a combination of

congeneric cylinders, for instance, the substitution is accomplished by

making a sphero-cylindrical lens in which the focus of the spherical

element is equal to F
% , and of the cylindrical element equal to

jf
xF
%r >

or> if expressed by refraction, i sph. = i cyl.
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If the primary and secondary planes of the sphero-cylindrical lens

are to coincide with those resulting from a combination of two definitely

placed congeneric cylinders, the formula (I) and the articles 2 and 3 are

to be referred to.

Comparing the sphero-cylindrical equivalent with the rotating cylin-

ders, reference being had to Plate II, Fig. 2, a reduction of the angle y
from 90° would be equivalent to a spherical element of the focus F2 ,

constantly decreasing from the focus /2
to oo, associated with a cylin-

drical element of the focus Fc ,
constantly increasing from the focus

~7—:—7" t° '
1- 8 -

;
or, in other words, a gradually decreasing po-

./2 ~Ji J 2 + /l

tency of the spherical refraction -
fr , from to — = 0, gives way

to a proportionately increasing cylindrical refraction = , from —r r

j
' *e fx J%

to -r + —- • As an instance, if /\ = f 2
= f, will increase from

/l J2 *c11 2
-y tt = 0 to —r, or twice the refraction of either cylinder. In
/i J ft J

this case, all successive values of cylindrical refraction will therefore

2
be inherent between 0 and —

r -

J •

Should a means be devised to suppress the spherical element for

each successive value of y, the remaining varying cylindrical element

being thus rendered available for measuring corresponding degrees of

astigmatism in the eye, the formulas here advanced would prove of ser-

vice in obtaining the graduations upon the rotating plates of such an

instrument.

While cases of anomalous ocular refraction demanding a correction

by combined cylinders are fortunately exceedingly rare, we may never-

theless be permitted to passingly allude to certain methods of procedure

in such instances. We shall confine the subject to congeneric cylinders.

In a case of astigmatism, for which the diagnosis has resulted in fixing

upon two cylinders combined under the angle y, the lenses are to be with-

drawn from the trial frame and inserted in a graduated cell, so arranged

as to facilitate their being rigidly fixed in any desired position for y.

The positions of the principal planes of refraction are then estimated

for this fixed combination, in the usual manner, without regard to the

nature of the elements constituting it ; the proportions of spherical and
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cylindrical refraction being revealed through neutralization by lenses

from the trial set. The so determined lenses are then to be substi-

tuted in the trial frame, when rotation of the cylinder will lead to that

position of it which is most acceptable to the patient. The spherical

and cylindrical elements will probably then also bear of further modifi-

cation, as a means of excluding any error which may have been caused

by lack of absolute contact of the original cylinders in the cell. The

formulae may be resorted to as a further and more definite verification.

It having been shown that successive changes in the angle y are

associated with corresponding changes of F
x
and Fz , the above sub-

stitution would indeed seem advisable, since the present appliances for

grinding cylindro-cylindrical lenses are not constructed with sufficient

precision to enable opticians to fix the relative positions of the cylinders

beyond mere approximation.

As an illustration, let us select two congeneric cylinders of equal foci,

say 20 inches, combined under the angle y = 60°. Introducing these

values in the formula? (IV) and (V), we find,

• *i ~ l + cos 60° ~ - 16 -63 '

F 20
.

2Q _ 4Q
2 ~ 1 — cos 60°

_
1 - 0.5

_

We then obtain the cylindrical refraction 4r > for the desired Sphero-
id

cylindrical equivalent, from the equation,

JL JL JL
F

x
~ F

%
~ Fc

' (56)

Substituting herein the calculated values for F
i
and F2

gives,

_JL III
13.33 40 ~ Fc

~ 20'

yr = -^q
being the spherical element, we therefore have the sphero-

cylindrical equivalent,

^sph. C^cyl.
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as an available substitute for the cylindro-cylindrical lens,

5jr cyl. axis 0° C ^- cyl. axis 60°,

without regard to a definite position of these lenses before the eye.

By way of comparison, allowing the optician to make an error of

apparently so small an amount as 2°, in producing the same cylindro-

cylindrical lens, we obtain, by introducing y = 62° in the same

formula?,

F - 20 _ 20 _ J0_
1

1 + cos 62° ~~
1 + 0.469 ~ 1.47

—
'

F2
= ?-

0__-__?2_
1 - cos 62°

_
1 - 0.47 ~ 0.53

~

Substituting these values in the equation (56), we have,

13.61 37.73 Fe 21.29'

from which we obtain the sphero-cylindrical lens,

spb- C «Too cyl.
37.73

1 w
21.29

Had the optician been required to make a sphero-cylindrical lens

sph. O cyl. , his execution of it presenting such discrepancies as

-~— sph. O 01 \n cyl., would certainly be rejected as being unsatis-
37. t o 21.29

factory, a notable difference of 2.27 inches focal distance being manifest

in the spherical element.

On the other hand, instances are likely to occur for which it will be

impossible, by the advanced method of neutralization, to accurately

arrive at the sphero-cylindrical equivalent.

Since i cyl. axis 0° C gg
cyl. axis 62° = -1- sph. C~ cyl.,

we should evidently be unable to satisfactorily neutralize such spherical

and cylindrical elements by any of the lenses in the series of a trial set.

In those instances, therefore, where satisfactory neutralization of

the principal planes of refraction cannot be attained for the combined
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cylinders, in the graduated cell, the cylindro-cylindrical lens will have

to be chosen, again under the proviso, however, of a faultless mechan-

ical execution. The sphero-cylindrical equivalent being, however,

generally available, we are to suspect error in our estimation of the

refraction of an eye seeming to demand cylinders combined under acute

or obtuse angles. Having found an opportunity to apply the formulae

in practice, I take pleasure in citing the following case.

A cylindro-cylindrical lens — ^ cyl. axis 0° 3 — ^ cyl- axis 70°

had been prescribed for Mr. Gr. B. Owen, of New York, by his oculist

in Philadelphia, in 1880-'l, the above correction having been worn con-

Q
tinually since that time, while affording vision = - for the left eye.

This case being known to me, I was anxious to make the substi-

tution of the sphero-cylindrical equivalent, which I obtained as follows :

The lenses being congeneric concave cylinders of equal refraction,

by the formulae (IV) and (V), for / = 40 and y — 70°, we have,

it being admissible to neglect the fractions for such focal distances.

By article 2, we find the position of the cylindrical axis equal

— 35°, and consequently the sphero-cylindrical equivalent,

-
go

sph. C - ^ cyl. axis 35°.

This lens has been substituted with the knowledge and to the

entire satisfaction of the patient.

It is therefore obvious that the meridian (125°) of greatest refrac-

tion in the eye had not been disclosed by the diagnosis.

The weak spherical element, in the substituted lens, while being an

appreciable factor to the patient, might easily have been overlooked by

the practitioner.

In similar cases, the advanced formulas must prove of value in fixing

upon the true state of the refraction.

r^im = m -n = 60 >



V. VERIFICATION OF THE
FORMULAE.

In the following tables, the Dioptric and Dioptral Formulae have

been applied to combinations of cylinders of the inch and metric sys-

tems, respectively, it being inadmissible to substitute the generally

adopted inch-system equivalents for dioptres, in calculating, as the

frequent repetitions of the former as factors in the dioptral formulae

would increase the neglected differences to an unwarrantable degree.

For the purpose of obtaining reliable results, the calculations have

been carried to the fifth decimal place under the radicals. The

angles 30°, 45°, and 60° have been chosen so as to exhibit appreciable

differences in the corresponding resultant refractions, which are thereby

also brought within the lens-series of the inch and metric systems.

The elementary foci and refractions have, in a measure, been arbitrarily

selected, it being noticeable that the secondary refraction will generally

be beyond the limits of neutralization for combinations of weaker cylin-

ders, in which the axes deviate by less than 30°.

The Approximates given for refraction, in Table 1, will at times

appear to conflict with the articles 15 and 16
;

this, however, is to be

attributed to changes of proportion occasioned by the adopted substitu-

tions.

To substantiate the resultant refractions given in the tables,

through the experiment of neutralization, the cylindrical axes should

first be accurately determined, when the cylinders are to be so united

as to insure absolute contact of their plane surfaces.

Great care should also be taken to accurately and rigidly combine

the cylinders under the specified angles, as the slightest variation will

prove misleading. In the practical experiment, the observer's eye will

generally" fail to appreciate the neglect of fractions made necessary by

the available lenses of an oculist's trial case.
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1. TABLES IN VERIFICATION OF THE DIOPTRIC FORMULA.
FOR COMBINED CONGENERIC CYLINDERS.

Elementary
Foci.

Axial
Deviation.

Primary
Focus.

Primary
Refraction.

Secondary
Focus.

Secondary
Refraction.

A < fi- y Ft (Approximate.) F3
(Approximate.)

le C 24

a a

30°

45°
60°

10.2576
11.1555
12.5559

Vio
Vn
1/12

149.7422
68.8347
40.7773

1/160

1/72

1/40 .

FOR COMBINED CONTRA-GENERIC CYLINDERS.

Elementary
Foci.

Axial
Deviation.

Positive
Focus.

Positive
Refraction.

Negative
Focus.

Negative
Refraction.

ft > A- 7 +Ft (Approximate.) -F0 (Approximate.)

14 010 35°
45°

60°

16.9799
13.2046
11.2537

+ 1/16

+ 1/13

+ 1/11

32.9799
21.2046
16.5870

-1/32
—1/22
-1/16

fo < fi- y +Fi
(Approximate.) -F0 (Approximate.)

ll C 20
ti it

ti ii

30°

45°
60°

47.5527
30.4131
23.7316

+ 1/48

+ 1/30

+ 1/24

23.5527
18.4131
15.7315

-1/24
-1/18

-Vl6

2. TABLES IN VERIFICATION OF THE DI0PTRAL FORMULA.
FOR COMBINED CONGENERIC CYLINDERS.

Elementary
Refractions.

Axial
Deviat'n.

Primary
Refraction.

Secondary
Refraction. B!+B a=

rt > r2 7 Ri (Approx.) B z (Approx.)

2.5 C 1.5D.

i t a

30°

45°

60°

3.75Z).

3.46

3.09

3. 752).*

3.5

3.

0.25D.
0.54
0.91

0.25D.
0.5
1.

4D.
4
4

FOR COMBINED CONTRA-GENERIC CYLINDERS.

Elementary
Refractions.

Axial
Deviat'n.

Positive
Refraction.

Negative
Refraction. B 1—B 0=

ri-i-o
rx > -r0 7 +Bt

(Approx.) —Bo (Approx.)

+4C -2.752).
66 66

6 6 6 6

30°

45°

60°

2.397D.
3.052
3.564

+ 2.5Z).

+ 3.

+ 3.5

1.147Z).

1.802
2.314

-1.25D.
-1.75
-2.25

+ 1.25D.
+ 1.25

+ 1.25

rt < -r0 7 +B t
(Approx.) —B 0 (Approx.) R 1 —BB =

fx—To
+ 2C-2.75Z).

ti n

i
<< <<

30°

45°
60°

0.856D.
1.325
1.690

+ 0.757).

+ 1.25

+ 1.75

1.606D.
2.075
2.440

-1.5D.
-2.
-2.5

-0.752).
-0.75
-0.75

* If 42). be written, then 2^+22., = 4.252)., which would be more refraction

than is inherent in the combination, yet in neutralizing by AD. the error will scarcely

be detected.
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