PRINCIPLES AND PRACTICES

OF REFRACTION
an elementary treatise on the SCIENCE OF REFIRACTION AS APPLIED TO "SIGHT TESTING" INCLUDING

ESSAYS ON RETINOSCOPY, ASTIGMATISM, OPHTHALMO. SCOPY, ASTHENOPIA, FRAME FITTING AND MUSCUIAR INSUFFICIENCIES, ETC.

WITH
ILLUSTRATIONS

BY
LIONEL G. AMSDEN, Principal, Canadian Ophthalmic College.

PUBlisied by

THE CANADIAN OPTICIAN, Torunto, Canala.

Reg2s

Alos "imy righterl int the l'nitorl state.

00449376

To the Graduates of the Canadian Ophthalmic College.

This volume is dedieated in pleasant remembrance of the many happy hours of study passed together in the acquirement of the Optical Truthes set forth in its pages, and to whose repented reqnests for a non-technical work on refraction, "Principles and Practice" owes its existence.

The Author.

PREFACE.

"The mistiortune af cortuin bunks is the killuger aurk ome hess tw

Mantessuter.
In issuing a new work on the principles of refraction and the methods of measmring and correcting emors of vision, I do mot lay clain to my original theory, and possibly no section of the gromal eovered bit has already been pretty well trodden, and by writers possessing in the eyes of the optical world a greater ehain to distinction than myself.

It is not, however, with a view to contesting with them for the honory pertaining to original researeh that "Principles and Practice "is designed, but is rather an attempt at condensation and elassification of generally accepted optical principles and above all all effort to provide for those possessing no technienl edncation an easy method of attaining to a fair state of optieal proficieney ats applied to what is commonly known as "sight testing."

It is a well recognized fact that practically all the optical text books extant have been written by medical practitioners, and naturally they are too technical to be casy of anderstanding hy the ordinary optical student.

I need, therefore, offer no apology for the minuteness of some of the descriptions offered, particnlarly in the lecture on refraction, which is the corner stone of optical proticiency, nor yet for the curtailment of some of the lecturen-especially that on anatony-where any excess of detail would only lead to confusion without materally aiding in the attainment of the object sought.

I have in each lecture endeavored to condense the essential facts into as short a space as possible, even at the risk of but partially covering the subject, as no one can possibly learn even this small section of optical science from a text book alone. I
have assumed that the stmdent is attomling or will atlond, oral hectures where minnte details will be illustruted and will reppira his" Principles sull Jractice " to prepmer him for the lerture, and if it is tos be of the greateat gexel it mant he comeine allid monst have the subjeet matter upon the solface and be ahsolutely devoid of padding.

This is the phan I have haid out and emdencored to live up (1), abill where important ficts. .ave heen onitted froms some of the lectures it has heen dome movisedly, and the miswing informa tion will he fonnd in the supplementary liotures and essuys in the hatter phyes of tho baso, where the stuldot will probably urive after completing his couse of instruction, and when he his not ouly more time to stady; but, I trust, more knowledge to underistand them.-L. (i.A.

REFRACTION OF LIGHT

LECTURE No. 1

VISION. Vision may br. deseribed as the transformation of surrounding illuminate! objects into ideas containing certain information relative to the nature of these ofjects, and is brought about by the combined and harmonious action of the eye and the brain.

LIGH'T. Light may he described as a force somewhat resembling electricity, inasmuch as it is a mysterions eneroy proligions in its effeets and, in the operation of its forces, shrouled in mystery.

For several centuries scientists remained divinal into opposing sehools on the theory of light. The one contended that it consisted of particles or atoms thrown out from luminous bodies with great velocity in all directions, and affecting the organs of vision somewhat in the same way as ofors affect the olfactory organs. The opposing school looked upun light as a tluid or ether diffused throngh all nature, andin which waves or undulations are produced by the action of the luminous bodies in a manner similar to sounl through the atmosphere. The latter has become the generally accepted theory, and for all practical purposes, so far as the study of hirht in relation to what is commonly called "refraction" is concernel, we can assume that the planets constitute the source of origins hight and that it travels in waves or undulations.

LIGHT RAYS. As has been stated, birht travels in waves-the ripple that inmediately commences to enhrge its circumference upon dropping a pebble in a smosth ponl affording a perfect simile to the action of light-but for the simplifying of the subject ior the purpose of elementary stuly, we took upon this mass of illumination as beiner composed of minute beams or streaks, which we call rays, and in studying the character and direction of these rays and the effect wrourht upon them by various substances, we are able to appreciate the "theory of light."

All rays of light in leaving the point of propagation diverge in all directions and proceed at tremendous speed in straight lines, so that strictly speaking all rays in nature are divergent, but if the luminous point be located at a greater distance than twenty feet all rays proceeding from any one point and divergingr so slightly that they are still able to enter the eye are so shightly divergent that we assume they are parallel, and for all objects beyond this distance-which is turaed infinity-we have parallel rays, while from all points closer than twenty feet we would receive divergent rays.

Provided no obstruction by a different mediun be encountered, says of light once liberated and started in motion would cor"inue their flight indefinitely with their direct: I unchanged and their speed unchecked. If, however, a substance of lifferent nature to the atmosphere be interposed one of three changes would occur, aamely, the rays wili be either refracted, reflected or absorbed. I: a transparent medium of diffet nt density to the atmosphere be passed through, they will be refracted, if a polished surface, such as is represented by a mirror, they will be reflected, and if any form of color they will be absorbed.

THECRY OF REFRACTION. It is entirely with the question of refraction that we have to deal in a study of this nature.

The speed of light has been proved to le about 200,000 iniles per second. It will be readily understood that the speed of any moving borly depends upon two conditions, the motive power and the degree of resistance.

Light, in passing through atmosphere, encounters the minimum of resistance, and upon passing into tramsparent bodies of different density it meets with increased resistance and conseyuently suffers a corresponding decrease in speed. If the ray, in mecting the surface of the denser transparent medimm, comes in contact with it at right angles to its surface, no other effect than the decreased rate of travel is to be observed, and sc far as vision is concerned no effects are
noticeable. But if, in passirg from one medium to the other it meets the surface obliqucly, refraction takes place, that is, the ray will clange its direction by bending toward the point that first came in contact with the denser medium.

If the surfaces of refracting medium be parallel, the ray will bend back again and resume the original direction on eincrging into air.

The point where the rays enter the sccond medium is called the Point of Incidence and when it once more re-enters the air the Point of Emergence.

CAUSE OF REFRACTION. The reason of the change of direction as seen when the light meets obliquely the surface of a denser body is easily comprehcuded by means of the following illustration: $-\Lambda$ detachment of infantry in line formation in marching at a fixed rate of speed will maintain a perfect alignment so long as each man makes the required number of paces in the allotted time, but should one flank or the centre man meet with some obstruction of such a nature that his speed is slackened whilc the remainder are marching at a greater rate, the inevitable result is that the line inust converge or wheel on this pivot man.

Light in ineeting a body of greater density obliquely decreases its speed only at the point of contact, other points still travelling in air at a greater speed and consequently will refract or change front in the direction of the first point of contact.

INDEX OF REFRACTIOA. The degree of refraction will depend upon the amount of obliquity and the difference in density. The ability of any substance to bend rays of light as compared with the standard air is called the index of refraction. The index of air is (1) one, while of crown glass, of which lenses for optical purposes are constructed, is 1.5 .

COMPOSITION OF LENSES. For the purpose of refraction cruwn glass has been generally selected because it posscsses less dispersive property in proportion to its refraction than any other transparent substance.

PRISMS. An optical prism is a three-sided body of glass, or other transparent substance, composed of a base and two sides inclining together and forming an angle at the apex. No two of its sides being parallel, it is impossible to pass light rays through a prism without undergoing refraction. The refraction by means of a prism is always towards its base, and as the eye has knowledge of the position of an object only by means of the direction the rays passed when they enter the pupil, it necessarily follows that in viewing an object through a prism its position is apparently changed in the direction of the apex.

Fig. 1.
Rays of light from X. passing into prism at \mathbb{C}. are refracted towards the
base and the object is apparently seen at X^{\prime}.
ANGLE OF DEVIATION. The intersection of imaginary lines drawn to the prism from where the object really is and where it appears to be forms the angle of deviation.

MEASUREMENT OF PRISMS. Threc different methods have been employed in the measurement of prisms-Refracting Angle, Prism Dioptre and the Centrad.

Refracting Angle-Under this system the prism was numbered according to the nuinber of degrees inchuded in the angle at the apex.

Prism Dioptre-The Prism is nunbered accorling to its refracting power, one which will so charge the direction of light rays proceedir, from an object one meter distant to just such an extent that the position of the object will be apparently moved exactly one centimeter towards the apex of the prisn, would be the unit of this system, and termed a one-prism dioptre.

This system, which is in general use, has the great advantage
of conforming closely to the metrical system of numbering spherical lenses, and greatly simplifies the caiculations necessary in formulating the various sphero-prisinatic combinations necessary in advance eye work.

The Centrad is based upon the same principle, with slight modifications, the difference being that the path over which the object apparently moves under the action of the prism is nieasured along a straight line in one case, while in the latter method its course describes the are of a cirole. The results are practically identical.

CONSTRUCTION OF SPHERICAL LENSES. This

 refractive power, as seen in a prism, of bendin's all rays towards the base or the thickest part, constitutes the fundamental prinsiple upon which all optical lenses are constructed.A spherical lens, so called because its surfaces are sections of perfect spheres, may be said to be composed of numerous prisms, and consisting of two kinds, couver and concave. The convex spherical lens having, as its nane indicates, a convexly curved surface would have its thickest point in the centre and corresponding in its optical action to a number of prisms with their bases arranged around a common centre. All rays of light in passing through would lend towards the thickest part except the ray passing through this point, which is called the axis ray and undergoes no refraction.

OPTICAL CENTRE. The point of a convex glass at which it has greatest thickness is callerl the optical centre, and as at this point both surfaces are parallel there is conserquently no refraction.

The concare glass being thinner at its centre all rays would diverge or refract towards the thickest part, which would be its edges. The optical ccntre of the concare lens wou i beits point of least thickness.

PRINCIPAL FOCUS OF A LENS. The principal focus of a convex lens is the point where parallel rays of light would meet after passing through and undergoing refraction, and its distance from the lens is calied the focal length and depends
upon the curvature of its surface. A plano-convex lens will have its focal length at a distance corresponding to the diameter of the circle of which its surfaces form a section, thus: if the curved line indicating the surface, on being continued would describe a circle of ten inches diameter, parallel $1 . j$ s of light on passing through would converge to a just sufficient amount to enable them to meet at a point on the opposite circumference, and would be called a ten-inch lens. The Principal Focus refers only to parallel rays.

Fig. 2.
A Bi convex spherical lens G. showing refraction of parallel rays of light P. CONJUGATE FOCI. From all points within infinity, however, we would reccive divergent rays, and consequently the point where these rays would meet would be farther removed from the lens, there being greater obliquity for divergent than for parallel rays. The closer the luminous point the greater the divergence and consequently a corresponding recession of the focal point. The various points where divergent rays would meet when proceeding from the different distances within infinity are called the Conjugate Foci. If the luminous point be located exactly at the focal distance light would pass out parallel and wr " ever meet, but for all other distance betwet " the focal lengt. . infinity there would be a corresponding focus on the opposite side of the lens. If the luminous point be situated within the focal distance light will be so divergent that the refraction of the lens cannot overcome it, and will pass out still divergent but of lesser degree than before entering.

FOCUS OF A CONCAVE LENS. The focus of a concave lens is negative, as rays of light in passing through diverge,
and, of course, can never meet. We find the focus by producing the divergent rays forward to a point in front of the lens where they will meet.

Fig. 3.
Diagrann showing the refraction of a concave lens (C) and the negative focal point B.
IB. is a lumnous point sitnated at infinity, and the rays proceeding from it enter the lens C. and are diverged outwards. The focal point is the point B. where the diverging lines meet after being continued back through the lens again.

CYLINDRICAL LENSES. Cylinder lenses, so called

 from the nature of the curvature, are ground upon a cylindrical shaped shell, and their surfaces arc accordingly convex or concave, as the inner or outer curve of such a shell is used. The size of the cylinder on which the glass is ground imparts to the lens its strength or refractive power. As in cylindrical shaped bodies there is one direction in which there is no curvature, there is consequently no refraction in this meridian, and rays passing through it would undergo no deviation.

Fig. 4.
A. cylinder of giass showing sectiun B. C. B. as used in cylindrical lenses.

All other meridians would refract towards the thickest part of the lens. The thickest part of a convex cylinder would correspond to the direction in which there was no curvature, and is called the axis of the cylinder. In a concave cylinder the thickest part would be along its edges.

A convex cylinder would refract light in such a manner that the rays would meet along a line corresponding in direction to its axis, but at the focal length of the curvature, of which its meridian of greatest curvature is composed.

A concave cylinder would act similarly, but the rays instead of meeting along the line would be diverged in opposite directions from the axis.

In the spherical lens we saw that it was practically composed of prisms around a cominon centre with their bases together in convex, and the apices torether in concave.

The cylinder may be similarly described, but the hases and apices would be arranged along a common line-the axis of the cylinder.

The peculiar action of cylindrical lenses producing an apparent lengthening or shortening of the objeet alternately looked at through a convex or concave cylinder is best shown by the ehanged form of a square.

A convex cylinder with axis vertical will lengthen the horizontal sides produeing a horizontal parallelogram; a concave similiarly placed will have the opposite effect.

I'ig. 5.
Fig. 5 represents the meridian of greatest curvature and shows its effects
upon parallel rays.

Fig. 6.
Illustrating the principal meridians of a cylinder.
Fig. 6 shows the plane meridian or axis with parallel rays passing tlirough unchanged in direction.

METHOD OF ANALYZING AND NEUTRALVZING

 It must be borne in mind that the effect of concave and convex lenses, whether spherical or cylindrical, is exactly of opposite nature, and therefore the combination together of a convex and a coneave of equal power would have the effect of entirely destroying the refractive power of both. This is called neutralizing and it is accomplished ia the following manner :If we wish to analyze a spectacle !ens (we will suppose for the purpose of supplying a duplicate). we first find if it is spherical or cylindrical.

As we know, the latter have one direction in which there is no refraction, we rotate the lens, at the same time moving it up and down in front of the eye while looking intently at some near olject. The effect of this up and down motion is that it gives to the object viewed through the crlass an apparently similar motion. If the glass be convex the objects will appear to move in a direction opposite to that taken by the glass, while in concave it apparently moves with it. If the glass be plano, that is, lise no curvature, there will be no motion imparted to the objects viewed through it.

If on looking through t! e lens we noticed objects moving opposite to its motion it would indicate a convex lens, and if this motion was the same for all directions it would be spherical in curve, and the concave spherical lens from the trial case that would stnp all motion would indicate the strengll of the lens.

But if in one direction there was no motion, while moved in all others objects moved with the glass, it would show a cylindrical lens of concave curvature and would require a convex cylinder of equal power with their axes parallel to neutralize.

A very simple plan for the analzying of the varions forms of lenses met with in optical work is to inemorize these three simple rules:

1st. Concave and convex cylinders of cqual strength neutralize when their axes are at the same angle.

2nd. Two cylinders of equal strength and kind with axes the same double the power.

Bred. Two cylinders of the same kind and power with axes crossed at right angles form a spherical of same strength.

But as lenses are frequently constructed in which there is a combination of spherical and cylindrical curvature, there would be no direction in which there would be no motion, alihough a cylindrical lens, owing to the fact that the power of the spherical lens which is present in it would cause objects viewed through it to apparently move in every meridian.

In analyzing them we must, in addition to ascertaining whether the lens is convex or concave, find out first of all whether spherical or cylindrical-and by the tern cylindrical I mean either a plain or simple cylinder in which one surface is plain and the other cylindrical as well as sphero-cylindricalwhere one surface is spherical and the other cylindrical (spherocylindrical).

The following inethod will be found to be a simple way of ascertaining not only the presence of cylindrical power in a lens but also the power of each component part of the glass and the location of the axis of the cylinder.

All that is necessary is a trial case containing the various lenses and a protractor or diagram, in which the various meridians of the circle are marked like the spokes of a wheel and numbered from 0 to 180 -that is just half the circle. Take the lens to be neutralized between the thumb and finger, and looking through it at a straight line (a window sash will
answer), rotate the lens and notiee if the seetion of the line seen through it rotates or remains stationary. If the former, cylindrical power is present; if the latter, the lens has no cylindrieal power and is either spherical, plain glass, or prism.

Now, while moving the glass up and down while fixing some object through it, notiee if the object apparently moves, if so, it proves a spherical glass, and the kind and power is found as already described. If no motion is noticeable it indieates plain or flat glass-neither convex or coneave, although it may be prismatic.

To aseertain the presence and strength of priamatic power fix the eyes intently on a straight line-looking at it through the lens, of course-and eare must be taken to look through the centre, and if the line appears broken in the section seen through the lens as compared with the remainder seen above and below the lens, prismatic power is indieated and the apex of prism is in the direction in which the section of the line appears misplaeed.

The power of the prism is indicated by the prisms from the trial case, which, placed over the lens being neutralized, renders the line straight and unbroken. The prism from the trial case must be placed upon the lens with its base in the direetion in which the line was misplaced.

A cylindrical lens is indieated by the rotating motion given to a line when looked at thruugh the lens which is being rotated.

On continuing the rotating motion slowly it will be found that in two positions only does the line appear unbrokel, in all others the line as seen through the lens is not continuous with the line as seen above and below. These two direetions constitute the principal meridians of the cylinder, and are its axis and its direction of greatest curvature and are always at right angles to each other.

Hwing found ene of these directions, draw an ink line across the lens corresponding to it, and another at right angles to it and another line through the horizontal length of the leas
(we will designate the first lines as No. 1 and No. 2 and the horizontal line No. 3).

Now, if by means of the motion test just described we find that the lens is convex in the direction of the first two ink lines, we have but to neutralize with coneave lenscs from the trial case, which will show us the exact power of the lens in each principal ineridian, and consequently the exact power of spherieal and eyfindrical present in the lens.

For instance, having aseertained and ink-marked the two directions we find in both of them, if the lens is moved up and down, that objeets move in the opposite direetion. This proves the lens to be convex in all meridians. We select a concave lens, of say 1.00 dioptre, and placing it on the lens repent the motion test in the direction of one of the ink lines, when we find that no motion is now noticed. This means that in this direction the lens is 1.00 dioptre eonvex. (We will call this line No. 1.) We now repeat the test with the opposite ink line (called No. 2) and find that 2.00 dioptre coneave lens destroys all motion, so we have 1.00 dioptre convex in all directions that is 1.00 dioptre sphere, and an additional 1.00 dioptre in one direction or 1.00 dioptre cylinder-the axis, of course, being in the dircetion of least power.

Now we have merely to place the ink-marked lens on the protractor with the hine indicating its horizontal lengrth (No.3) corress. nding to the horizontal line of the protrator, and the position of axis is inclieated by the number of the meridian on the protractor upon which the ink line No. 1 is found to rest.

Fig. 7. Protractor.

THE VARIOUS FORMS OF CONCAVE AND CONVEX LENSES. Convex lenses are also called positive, converging and plus (+). Corcave are known as negative, diverging and minus (-). Plus and minus are the terms in general u4e, and the kind of lens is indicated by the algebraic sign preceeding it. Thus, +4 meaning a convex of that strength while - would call for a concave.

There are six different forms or styles of spherical lenses, plano, convex and concave, in which one surface is plane, and the reversc curved, convex or concave.

Bi-concave and Bi-convex, in which both surfaces are equally curved. Periscopic convex and concave, one surface convex, while the reverse is concave. The concave surface always is placed towards the eye.

Fig. 8.
The several kinds of lenses used in refraction: A. Prism. R. Bi-convex. C. Plano convex. D. Bi-concave. E. Plano concave. F. Periscopic convex. G. Periscopic concave.
METRICAL SYSTEM OF NUMbERING LENSES. We have already shown the method of numbering according to their focal length, but for the purpose of uniformity, and also the easier to make mathematical calculations, what is known as the Metrical System has been generally adopted. This consists of
numbering the lens by its refractive power insteml of its focal length. For this purpose the terni dioptre was adopted to indicate the unit lens, viz, a lens of (40 inches) 1 meter length, and as the grenter the refraction the shorter the focal length, the one bears an inverse ratio to the other. For lenses of more than forty inches focal length decinals nre used thus: . $2 \overline{5}, .50$ and .75 , indicating one-guarter, one-half, and three-guarters of a dioptre.

COMPARATIVE TABLE OR INCH AND METRICAL SYSTEM.

HOPTRES

INCHES	
.01 .25	320
2.5	160
.50	80
.75	54
1.00	40
1.25	32
1.50	26
1.75	2.
2.00	20
2.2 .5	18
0.50	16
2.75	14

DOMTHES	INCHES
3.00	$1: 3$
3.2 .5	12
3.50	11
4.00	10
4.50	9
0.00	8
5.50	7
6.00	$6 \frac{1}{2}$
6.50	6
7.00	$5!$
8.00	5

FORMATION OF IMAGES. It has been previonsly stated that light travels in diverging straight lines from the point of propagation, and in order to clearly understand the theory of the formation of images by convex lenses, it will be necessary to consider every ohject which is illuminated by artificial light or original light, as being itself a luminons body, every minute point of which gives off bundles of rays in which: all the rays composing each bundle diverge fro the instant of issuing from each individual point. The light issue, in fact, may almost be said to represent the decomposition of the object, which practically takes the form of the rays themselves,

F16: 9.
The formation of an image by means of a comvex lens. A. 13 . is the object and A' B' the inverled inage. The rays of light travelling divergently from A. B. are collected again by the convex lens and need at A^{\prime} is thins producing a picture of the object .1. B. in an inverted position.
If a convex lens be so placel that some of the rays from taeh bundle pass through they will, in obedience to the huws of refraction, so change their relative direction that although parallel or divergent before entering they will be convergent upon emerring, and ithe former case all the rays of which each bundle consists an which proceeded from one point will, at the focal length of the rens, once more reunite and form there a point, which will be the reproduction or image of the point from which the bundle of rays proceeded. Every other hunde being similiarly affeeted we would have all the points of the object reproduced in relative proportions, but in an inverted position, ns the rays proceeding from the top of the object would, in passing through, pass downwards, and those from below pa sing upwards, crossing in the lens.

This reproduction is called the imare, and its size depends upon the size of the object and its distance. The farther removel the objeet is the smaller will be the illiage.

VISION. When lenses properly arranged for this purpose, together with the necessary chemicals, are used, the process is ealled photography. When the eye is employed, the result is vision. The mechanical operation necessary to the collection of the rays being accomplished by means of the system of lenses of which this organ is composel, and developed through the instrumentality of the nervous system into an iden containing some information relative to the object from which the ray procecded

As in photography the size of the inage depends upon the distance at which the object is placed, the foither removed it is
the smaller will be the image, and consequently the object will be correspondingly reduced in size in our estimation.

REFRACTION OF THE EYE. As has been stated, refraction is the power which any transparent sulstance, by reason of its optical construction, possesses of bending rays of light in such e manner that the direction of travel is ehanged, and when the surfaces are spherically curved, with their thiekest part eorresponding to its geometrical centre, the resultant aetion is the bringing together of divergent or parallel rays, forming at the un'ting point, or foeus, si perfect pieture of the objeet from which the light proeceded.

As we get farther advanced we shall see that the eye is composed of transparent substances of spherieal shape, and that its aetion on rays of light is exactly in aecordance with the laws laid down in regard to refraction by lenses.

Light in passing into che eye is therefore refracted to a foeus, and consepuently forms an image there of the objeet to which it is directed. This function is ealled the refraction of the eve, and is the irst stage of vision.

ACUTENESS OF V'SION. The aeuteness of vision has been aptly deseribed as "The ability of the intelleet to interpret the image," to transpose this light impression into an idea eontaining certain dea. lite information, so that it will be readily understood that the seat of vision is the brain and not the eqe, that the mere faet of the eollection of the light rays into an image or pieture of the objeet looked at does not give us any information until it is acted upon in some mysterious manner by the nervous system. Just as in photorraphy the mere posing in front of a eamera does not supply us with a photograph. The sensitive plate first of all has to be conveyed to the dark room and there developed into the finished pieture. So it is with vision, until the inage be developed in the hidden recesses of the intelleet it conveys no meaning to us.

VISUAL ANGLE. Rays proceeding from the extremities of an object and passing into an eye openel to ieceive thom
will intersect each other while passing through the eye from the front to the rear, that is the ray proceeding from the upper extremity will pass through in a downward direction while that from the lower end will take an upward course. The point where they intersect is called the nodal point, and the angle formed by the intersection is termed the visunl angle. It will readily be seen that as these rays proceed from the extremites of the object, that the farther apart the extremitiss are, or in other words, the larger the object the larger the visual angle, also the closer we approach to the object the larger becomes the angle, so that the size of the visual angle depends upon the size of the object and the distance it is from the eyc. The size of the inage formed in the interior of the ege by means of the optical system will, of nccessity, depend upon the size of the visual angle, as the greater this angle the larger the surface over which the picture is spread, and eonsequently the greater the dimensions of the ohject in the transformed idea in the intellect.

It has been found by experiment that a certain amount of space reguires to be included in the dimensions of the image, in ordar that perfect development of vision may result. The mere fact of an object being exposed in front of an eye is sufficient to reproduce its inage in the interior, hut for subscyuent nervous action necessary to develop the imate into an idea, certain sized imares are necessary. While we are unable to state what amount of surface must be ineluded in the retinal image, we do know how large a visual angle is required to msure a perfect development of the retimal pictures.

The object must be of such a sise and distance that rays from its cxtremities crossing in the eye from a visual angle of not less than five minutes (.). $)$.

Angles are measured in accordance with what proportion of a circle their sides wonld include: for instance, every eircle is composed of 3 bio degrees; if divided into four equal sections by lines drawn at right angles to ench other through the centre, each of these reetions would contain one guarter of the whole circie, therefore, fo durees. If we suit-minite one of these into

90 parts, each one would be an angle of one degree, and wishing to still further reduce the size of the angle, we would divide each one of the sections into sixty parts, ench one of which would contain an angle of one-sixtietio of a degree, or one minute. Minutes being the sub-division of degrees, five of these latter would he the size of the visual angle necessary for clearer vision.

Fig. . 0.
Snellen's Test Type-Distance Chart.
TEST TYPE. As has been already stated, the smallest image which the average hum an eje is capable of developing into perfect vision must form an angle of five mimntes at each nodal point.

In accordance with this established principle, test types have been constructed with letters of various sizes, each one of which, if placed at the distance whicn is indicated on the card, will form an angle of tive minutes. If we know that an eye possessing normal vision can distinguish an object clearly-
therefore read letters-which form an angle of not less than five minutes, and we also possess a series of letters which we know will form an angle of exactly five ininutes when placed a certain distance from the eye, we then have a positive rule of knowing the perfect or imperfect coudition of the eye by its ability or non-ability to read the letters forming this angle of tive minutes.

The Sncllen's Test Type, such as is generally used, consists of several rows of letters of gradually decreasing size, each row leing numbered to indicate the distance at which it could be read.

By means of the Test Type we readily measure the acute-- ess of vision or degrce of sight which an eye possesses, and acord it in the form of a vulgar fraction, having for its numerator the distance at which the type is placed, and for the denominator the number of the smallest line which it is possible to read; thus, if with the type twenty feet away an eye is able to read the line marked 20 , vision would be normal and would be cxpressed 2020 . If the smallest line that could h ad was marked 60 , the acuteness of vision would be $20 / 60$ or unt-third of norinal vision.

Fig. 11.
An illustration of the principle of the Snellen's Test Type, showing visual angle in relation to objects of different sizes at different distances. The various letters located at the distances marked $20,40,60,100,2100$. are seen to subtend the same angle.
SPHERICAL ABBERATION. Although it has been stated that the refraction of a spherical lens is the same for all rays of the same obliquity, this is true in a limited sense only: The avis ray pacsing through the optical centre undergues tu
refraction whatever, as at this point both surfaces of the lens are parallel. The refraction gradually increases the farther we travel from the optical centre towards the edge of the lens, so that the peripheral rays (those passing through the portion farthest removed from the centre) would, as a result of this excess of curvature at the edges, focus somer than the more central rays, conserfuently light proceeding from a point would not re-unite as a peint, but as several points connected-practically a line-as the peripheral rays forusing closer to the lens than all others and the remainder meeting slightly farther back as they pass through a more central point of the lens. This is termed Spherical Abberation, and in the early days of telescopes and microscopes was the despair of scientists and opticians for years, as it practically prevented the use of lenses sufficiently strong or large to be of any service for the construction of powerful instrunents. In lenses such as are used for spectacles. there is !ittle inconvenience felt from Spherical Ableration, they being too small, and the curvatme not great enough to cause any optical defect.

CHROMATIC ABBERATION. Liglit apon be: ag violently refracted becomes decomposed into the various colored rays of Which it is composed, as seen in the rainbow, being the result of the strong light rays from the smm, violently refracted by coming in contact with rain drops, which from their size and shape are very strong convex lenses. This phenomenon which is called Chromatic Abberation, while not entering into considera ion in spectacle lenses, was for over a century a positive bartier to all antronomical pronress, as it rembered astronomical telescopes almost impossible as we undentand them to naly. It was finally overcome by the invention of the achromatic lens, which instad of heing composed of one piece of glass, as was customary, was constructed on a plan of the hmman eye, being composed of several pieces, of different indiras of refraction, cemented together.

ANATOMY OF THE EYE.

LECTURE No. 2

Hasing in view the object for which this work was especially designed, viz the arrangement of the necessary facts comected with vision in such a manner that they can be quickly learned and readily understood, the study of anatomy must necessarily be confined to a comparatively small section of the ocular system.

Fortunately, the amount of groumd which it is necessary to cover to intelligently prescribe lenses is relatively very small, and in making no mention whatever in these pages of numerous portions of the anatomy of the eye, many of which are ver; beautiful, and likewise wonderful in their construction, I have done so advisedly, recognizing that they have, at best. but a relative bearing upon the question of refraction, and a knowledge of which, however satisfactory, is not by any means necessary to doing successful refraction work. But there is one feature to which I wish to draw special attention.

In these days, the intelligent optician is expecter to know pretty nearly everything about the eye, and on account of the prevailing popular ignoran ee on the subject, plentifully trimmed with an unlimited amount of humbug, with which eye-work has been surrounded, he will be askul all manner of questions about it, and he will be constantly looked to for allice when the eyc or sight becomes affected in any way. If lie is able to meet the requirements in this direction, he will inspire his patrons with confidence in his ability to fit them successfully with glasses, without which small hope of successful practice in any profession is possible.

As before stated, the limits of this work scarcely permit more than a brief outline of the more important sections and appendages of the eye, just sufficient to form an intelligent idea of the marvellous ingenuity displayed in its construction, and to lay a sufficient foundation upon which to rest the more practical branches which are to follow.

Fig. 1:?.
The Eye and its appendages.
The eje-ball is of spherical form (or nearly so) and its diameter is slightly less than an inch. It may be said to lie eomposed of three coats or tissues of a inembraneous nature, Selerotie, Choroid, and Retina, closely adhering to each other, forming apparently one capsule, containing the humors-Aqueous, Vitreous and Crystalline Lens, or fluids, but possessing in their elose unity each its own function and charaeteristie.

SCLEROTIC. The external coating, ealled the Selerotic, is eomposed of a tough fibrons tissue, whitish in color in ehildren it is often so thin as to allow the maderlying Choroin to show through, appearing then as bluish white. In the aged the Selerotie is sometines yellow-commonly known as the :inte of the eye) acting as an envelope and protection to the more delieate and sensitive parts within. From the nature of its eonstruetion, it is peeuliarly adapted for this purp se, as well as that or maintaining the ball in ite grobular shape, and serving
as a means of attachment for the muscles that control its movement.

The Sclerotic includes the rear tive-sixths of this outer cont, and is not transparent, thougis possibly translucent. The transparent attachment occupying the remaining front one-sixth of the outer coat is called the Cornea which, from its nature and shape, serves the double purpose of adnitting the light to the interior of the eye, by means of its transparency, and at the same time refracting it as the result of its convexly curved surface.

THE CORNEA has been aptly described as the "Object glass of the ocular canera," performing the same function, in reference to the Retimal image, that the camera objective does to the negntive-being at this point that the first change in the mature of the in-going rays is made, the completion of which, in the one case is photography, in the other vision. The Cornea is practically a transparent continuation of the Sclerotic, but forming a section of a much smaller sphere, like the "bull's eye" on the old-fushioned "dark lantern."

CHOROID. The middle or vascular cont is called the Choroid, and, as the name implies, is principally composed of blood-vessels for the nourishment of the eye. It adheres closely to the inner surface of the Sclerotic, with its front section, Iris, hanging vertically some distanee behind the Cornea, acting as a curtain to " the window of the eye."

In addition to its net-work of blood-vessels it is plentifully supplied with pigment cells eontaining black or dark brown colored matter.

The function of the Choroid, in addition is its nutritive properties already mentioned, is to absorb, by means of its pigmentation, superfluous rays of light, some of which may possibly filter through the transhucent Sclerotic. It is the absence of this pigment which cunstitutes the cause of the distressing blinking of the eyes when exposed to a strong light, so well marked in the Albino, with his pink eyes and colorless
hair, who furnishes us an example of lack of development of the choroidal pignent.

PHOTOPHOBIA. The absence of choroidal pigment, which is termed Photophohia, renders the eye very sensitive to light, and is indicated by a feeling of discomfort and an inclinntion to close the eyes when exposed to a bright light.

Photophobia is relieved by the use of tinted lenses-preferably swoked-of the necussary degree of density to modify the light to the desired amount. Smoked lenses may be had either plano or ground to the strength necessary to correct any existing error of refraction.

THE IRLS or Ruinbow, commonly known as the "color of the eye," is suspended across the eye like a curtain, with the circular aperture, the pnpil, appearing more like a black spot than an opening immediatrly in the rear of the centre of the Cornea. This opening, which seems black simply occause the interior is in charkness, is for the purpose of admitting light to the interior; the Iris, throngh the action of its Sphincter muscles possessing the power of contracting and relaxing, thereby regulating the amount of illumination admitted. In passing from a dark room, where the pupil would be dilated to its fullest capacity in crder to secure the greatest possible amount of light, to the bright sunlight, where the pupil imunediately contracts, protecting the eye from the excessive glare.

ATROPINE. The active principle of belladonnal has the effect of dilatiner the pupil by temporarily paralyzing the muscles of the Iris and suspending accommodation by a similar effect upon the Ciliary Muscle. It is frequently used for oriving for appearance of beanty to the eyes, and in ophthabie practices for enabling the operator to more clearly observe the interior of the eye.

RETINA. The third and innermost zoat, the Retima, is the most delicate, sensitive, and important of all the many wonderful sections of this wonder of creation. Composed principally of nerve cells, its function is necesserily nervous, the mysterious
operation of which is usuatly a sealed book to the layman, wat even to the expert amatomist it is frequently a foreign tongue.

The Ketina may be said to cecupy the same position in reference to the ocular system and vision that the sensitive plate does to the camera and the photograph. We may, for the sake of simplifying matters, look ujon it as a chemically prepared plate, capable of receiving and retaminer for a time. on its surface, imares of surrombling oljects under the focusiner power of the lens system in front of it, of which the Cornea is the tirst. It is practically a continuation or expansion of the Optic Nerve, whieh, entering the globe of the eye at the rear, and spreading ont over its inner surface, receiven the hight impreswions and carries them to the brain, there to underer that mystie transformation, of which we know notiang but its results-Vision.

YELLOW SPOT. The Macula Lutea or Yellow Spot is in the centre of the Retima, in the rear of the centre of the pupit, or nenrly so. Here the sensitiveness of the Retinn reaches its greatest development, and gradually decrenses the further removed from this point. At this point is a round, elevated; yellowish spot, having a central depression at its summit. The Macula Lutea, commonly known as the lellow Spot, is the point of acutest vision, the spot at which it is necessnry to hase the imarre fonnd in order to secure the maximmon of vision. Vision on the Vellow Spot is called direct vision. When the image falls on some part of the Retimm more or less remored from it, the outlines may be distinguished, but the details are lost, and is known as Orientation or Indirect vision.

DIPLOPIA. Although each cye possesses its own complete set of organs, forming on each retina a separate image of the object looked at, under normal condition these two inages are merged as one in the brain.

If, however, from any cause the two eyes are so dirented in reference to the object looked at, that the images do not impinge
on corresponding section of each retinn the effect will be two objeet.s are seen.

This act of secing two objects where one only is looked at is called Diplopia.

OPTIC NERVE In our moderstanding of the functions of nerves, we are apt to associate them with the sensation of pain, but in the case of the Optic Nerve, the only sensation of which it is caprable is light, so that a biow which would agitate it wouhd convey the impression of light. Hashes, and no doubt would account for the "stans" we perceive when riceivaig a violent blow on the head. It belongs to the class of nerves of Special Sense, carrying only impressions of light, as the Olafoctery carries only the impression of odor, or the Auditory carries only the impression of somnd.

The Optic Nerve forms the means of commanication between the seen and the masen, as if it were carrying messages from the material world to the great monown. It forms an essential part of the mysterious developing process like that to which a photographer subjects his negrative in a dark room, converting it into a permanent, lasting reproduction of the original. The point of entrance of the Optic Nerve into the interior of the erlobe of the eyc, is known as the "blind spot," or Optic Dise, from the fact that, at this point, the Retina is non-vensitive to light impressions, and an object so hell that its inage will fall upon the hlind spot cannot be seen.

THE VITREOUS HUMOR occupies the rear four-fitths of the glohular spaee contained within the tunics, and extends from the Yellow Spot forward to the Crystalline Lens. It is a perfeetly transparent jelly-like substance, mal is enclosed in a thin, delicate, transparent sack, called the Hyaline Membrane. The sole function of the Vitreous Humor seems to be that of maintaining the eye-ball in its ghobur shape, which it is well calculated to do. and at the same time possessing sufficient springiness to save the delicate organs from injury in case of shock.

THE CILIARY MUSCLE is situated at the junction of the Selerotic Iris and Cornea. It is commected witl the suspensary ligament in such a way that any contraction of the ciliary will produce a slackening of the liganents mal a conserfuent increase in curvature of the Crystalline Lens as suen in accommodation.

CRYSTALLINE LENS. The Crystalline is so-called from its striking resemblance to a bi-convex lens, both in appearance and function, it is located in the concave space immediately in front of the Vitreous. It eonsists of a highly ehastic transparent capsule, tilled with a transparent jelly-like substance, resembling in appearanee the Vitreous.

It closely resembles a bi-convex lens in form, but with this diflerence, its surfinces are mot equally eurved, its consexity leing grenter on its posterior surfine. It is suspender vertically in front of the Vitreous, and immerliately in rear of the Iris, and is held in place by means of the suspensory ligament, is about eight millimeters in dimmeter and four in thickness (on an average) in the mlult eye. In youth, the hamor of which this lens is composed is soft and mobile, and readily forms to the changed shape of the capsule when acted upon by the ciliary minscle.

The eye posserses the power of tightening and shackening the tension of the suspensory ligament, thus crusing a clange in the convexity of the surfnce of the lens. This function is of the highest importance, and without a clear understanding of its operations, success in fitting cannot be obtained.

It must be borne in mind that the increase in curvature is not brought about ly a direct effort of the ciliary musele pulling its surfaces into a more convex form, but the lens should rather be looked upon as a hollow elastic ball, filled to the greatest degree of tension with its jelly-like contents, which, if unrestrained, would naturally revolve the lens into globular shape nacural to its construction, but being attached by means of a string or ligament completely mound its circmmferener in one meridian, and this string being drawn tight, the lens, from its
mobility, naturally "gives" in the direction of the temsion, and Hattens correspondingly at right angles to it, in just the sume manner that a soft india rubber ball will from the inhormit elasticity of the material, and its contents-air-assume a chobular shape, and, if stepped on, it Ilattens in the direction of pressume, and elongates reversely: so, in the lens, the suspensory. ligrament exerts a pressure, keping the lens in a metly Hattened eomplition, mutil the ciliny musele, which is so eonstrineted as to remose the tension axerted hy the higment, connes into action, when the lens, by means of the elastic properties of the capsule, and the lorce exerted outwird by its eontents, immediately issumes a greater consexity:

As the Crystalline Lens is the principal organ in the refrieting system of the eye, it will be rendily apparent that this spontaneras change in its power will have a momentous effect upon the focusing of hight riys.

As already stated, tha elasticity of the Crystalline Lens, and consequently its resultant increase of curvature under musciar effort decreases with mbancing years, so that, what in: fouth may be profectly mormal, will, by reason of agre, . : \because me for clove range imperfect.

Aphakia is a term used to indicate the absence of the Crystalline Lens. This may be conge. al, or as a result of operation.

To prove the presence or removal of the Crystalline Lens, a simple and effectual method is afforded by the "candle test." Hold a lighted candle close to and in front of the eye under eximination, whieh aets as a mirror reflecting the flame. If the Lens is in position, three reflections will be seen, as the Cornen and front and rear surfaces of the lens each net as different mirrors, chels at a different listiance from the light, consequently the three reflections will be seen at erpally varying distance from the flame.

The absence of the lens will be indicated hy the presence of but one reflection.

116. 14.

Sketch showing the mechanism of accommolation. One half the Crystalline I.ens, Nineing accommolated for mear work, and the other half, F , at rest, aml adapted for listance.
CATARACT. An opacity of the Cigstalline Lens, which in some forms gralmally becomes clouds, and frequently whating out the entrance of light entirely, is called cataract. There are sereral forms of cataract, all of which usually attack persons of alvanced age only. Cases of juvenile enturact are very rare. Cataract generally affects hoth eyes, but rarely simultaneonsly. The only relief consists in the entire removal of the Crystalline Lens, thas remueing the obstaction :o the admission of light.

ApUEOUS HUMOR. This is a thin, sparkling, trmsparent fluid, consisting of water completely filling the space in the eye-ball, between the Crystalline Lens and the Cornen, the Iris haming vertically suspended in the Aqueons, and dividingr the Apueous Chamber into front and rear, the Aqueons Howing through the pupil from one to the other. The secretion of the Agueous is very rapid, as the chambers refill in a few minutes if draned off throuyh a puncture.

These Humors have an intimate eommmiention with each other hy means of very small vessels, or openings, known as Lymphatic Chamels, thromgh which the thids in their interior are constantly changing, and are excreted in the form of tears. When an obstruction in these chamels occurs, the tensiors is increased, cmaning arent hardmess. which gives rise to the dis ease known as Glowcoma.

THE EYE-BROWS. The Eye-brows formed of muscle and thick skin, with a heavy thatching of hairs, afford proteetion to the eye from perspiration, which otherwise would become very troublesome.

THE EYE-LIDS. These consist of two thin moveable folds, entirely devoid of all fatty substance, and armed with long projecting hairs, which ate as an alvance guard to give timely notice of the near approach of a foreign substance.

The luillianey of the Cornea is, in a great measure, due to the action of the eye-lids, whieh, plentifully lubricated by lachrymal secretions, constantly opening and shatting keeps moving any partiele of dust from the Cornea, whieh would otherwise din its lustre and impair its usefulness.

The Conjunetiva forms the Mucous Membrame of the eyes, completely covering the front part of the Selerotic. It is a continuation of the Mucons Membrane of the throat, and is similarly. affeeted under the influence of colds, cte. It is the influned condition of the Conjunctiva which gives the appearance of what is commonly ealled "blood-shot" eyes.

LACHRYMAL APPARATUS. The tears are seereted by the Lachrymal Gland, situated in a hollow excavation in the top of the orbit.

The Lachrymal Gland, together with the numerous duets of whieh the tear system is composed, furnish a complete and truly wonderful cxample of miniature engineering, and constitute a system of water works and sewerace for the cealar system. The tears secreted in the Lachrymal sack act as a reservoir, and under the netion of the lids in winking, are pumped out of the sack, and passing through the duets, empty into the socket, and flowing around the front part of the eyeball, eary with it all foreign auhstances which must of neerssity lodge there, and passing out by means of the Lachrymal duct which empties into the nose, a constant system of lubrication and drainage is kept up, and the eye-ball maintalined, a- its multitude of movements performed without friction.

Fic. 14
TII: MOTOR MCSCIES. B. Superior Rectus. C, Inferior Rectus. I), External Rectus. E, Internal Rectus. I: Inferior Oblique.

Note. The Superior Oblique occupies a position opposite to the Inferior Oblique, and it is impossible to illustrate them both in the same cut.

THE MUSCLES. The Ciliary Muscle has already been discussed in reference to its comection with the Crystalline Lens. Its sole function is to bring about a relaxation of the suspensory ligament, there!'y increasing the curvature and consequent refraction of the lens.

Sphincter Muscles are attached to the Iris, thus embling it to increase or decrease the size of the pupil.

The eye-hall is rotated in various directions by means of the Motor Muscles, six in number-External Rectus, Intemal Rectus, Siperior Rectus, Inferior Rectus, Superior Obligue and Inferior 1)hlique. To possass a clear coneeption of the operations of the Notor Nuscles, it must be borne in mind that the socket is a mere bony exalation in the skull, and that the eye-ball merely rests upon the floor of this cavity, securely packed and padded, it is true. with thick hayers of fat, the Motor Museles forming its means of attachment, one end of the Muscles being
attached to the soeket, and the other embedded in the selerotic. Now, it is very evident that the cye-ball being deposited in this cavity, with the centre of the papil directed straight to the front, while all the muscles are relased, the eye maintaininer its direction towares infinity without muscular effort of my kind, that being its passive normal condition, if any one of the Motor Muscles contract the hall will rotate in the tlirection of the contrated museles.

The Extemal Rectus is situated on the side of the Ball, and the ege rotates ontward in obedience to its action.

Intermal Rectus turns the eye in towards the nose.
Superior Rectus turns the eye upward.
Inferior Rectus rotates it downward.
Superior ant Inferior Oblique are for the purpose of rotating the bal sideways in its posterior axis.
'Two sets of museles can be ustel in conjunction, turning the eye ohlipuely ont, down, ete.

In a disenssion of this nature no deseription of the nerves is necessary further than to state a fact which possiluly is pretty senerally understuod, viz, that all motions of any kind of the limbs, or parts of the body, are aceomplished by means of the muscles, but it must he remembered that the muscles possess no motive power of their own, they are merely the means of applying it, the power itself emanating from the brain, the means of communication heing the nerves. An excellent illustration of the relation of the bram, nerves and maseles is furnisher hy the electric motor, the source of power representing the brain, the electric wires convegian the mysterious power act similarly to the nerves, by whose me:ms the unseen energy is conveyed to that part in which the action is reguired.

The important point in connection with this principle is the fact that the "iliary. Musele and the "Internal Rectus" are -upplied simultaneonsly be the third cranial nerve, showing the intention of nature that these organs should act in harmony and thison.

THE PHYSIOLOGY OF VISION

LECTURE Ňo: 3

As has been stated, images of external objects are formed upon the retina of the cye similarly to pictures in a phorggraphic camera, and the eye, in so far as its dioptric system is concerned, is an optical instrument subject to the same laws of mechanics as other optical instruments. In the camera the first essential for a clear picture is that the instrument mast be properly focused, that is, the sensitive plate for receiving the picture must be situnted at the exact point where the light rays will unite after passing through the lenses of the camera, as here is the point where the imare of the object is formed.

If the sensitive plate is too close or too fir removed from the lens the outlines of the picture are blurred and indistinct, and the form and features of well known objects or persons are scarcely recognizable.

We have a perfect parallel in the hmman eye. If the retina is situated at the distance from the cornea corresponding to the focal length of the dioptric system, a elear pieture of the subject looked at will be made here, and being convegerl to the brain by the optic nerve, we are able instantly to tell, as the result of education and comparison, the exact nature of the object looked at, but if the retina, from an abnomat lengthening of the diameter of the eyc-ball, be situated farther away than the focus of the dioptrics, the rays of lirht having met at that point and crossed and met the retina while diverging, forming there a line instead of a point, and consequently the outhines of the object seen under these conditions would be distorted and indistinct.

Again, if the eye be shortened in its dinncter, the rays upon entering the pupil are converging to a point will not have
had sufficient distance to travel after meeting the cornen, and consequently will strike the retina while still in the aet of converging, and arain a blurred image will result.

From what has been said ahove, it will he readily apparent that eye trouble, as far as the dioptries are concerned, is entirely a fuestion of mathenatics, and nlso that it is of two distinct forms, viz, that in which the diameter of the eye is too long and when it is too short. The exaet mature and name, as well ans sub-division of ench kind will be considered under separate lectures.

EMMETROPIA. This is a tem used to designate a perfect eo-ordination between the refracting power of the dioptrics and the length of the eye-ball, an emmetropie eye being one in which parallel rays of hight focus upon the retina, white the accommodation is at rest.

AMETROPIA. Ametropia is the opposite condition, and is a term used to desirnate an eye that is mathematically incorrect in its construction, and, of course, includes all forms of error which would cause an object to be incorrectly focused, either in front or behind the retina.

AMBLYOPIA. Amblyopia is a term used to indicate an impairment of vision, as a result of some imperfection in the construction or operation of the nervous function of the eye.

To differentiate between Amctropia and Amblyopia:-A condition under which perfect vision is unolitainable as a result of imperfect refraction, would be termed ametropia, while a perfeetly formed image, as the result of a perfect refracting system, friving a faint impression to the intellect if conveyed through the medium of a faulty nervous system wouki be designated amblyopia.

The former being an crror of refraction, is corrected by means of lenses which supply the necessary amount of refracting power, which is absent in the dioptries of the eye, whilc the latter is not subject to treatment by lenses, and consequently does not come within the province of the optician.

In the precceding lectures we have studied the theory of light. We have carefully noticed its natural methorls of motion and its speed.

The effect of the interposition of various bodies of certain curvature as scen in the optical lenses has been horoughly discossed, and the resultant reproduction of the "image" as a result of passing light rays through a convex spherical lens has been clearly illustrated.

Our study of anatony, though brief, has shown that the cornen forms a convexly curved surface, presenting in the normal eye a perfectly spherical or globular surface in all directions, so that rays of light proceeding from a luminous body of its front must fall upon this eurved surface, and obeying the fundanental law of refraction, converge and meet at a point in the ocular system, situated at the focal length of the lens system of which the eye is composed.

We hive studied the theory of the formation of images bymeans of convex lenses and noticed its parallelism in photography. It will be a comparatively easy matter, therefore, for the industrious student, if he understands these primal laws governing the refraction of light and also possessing a fairly intelligent idea of the anatomy of the eye as laid down in these lectures, to pass at once to a consideration of the physiology of vision-to complete a practical fact by the simple operation of uniting two theorics.

The Correa, as has been shown, acts as the objective, and collects upon its surface the rays proceeding from surrounding oljects, and reproduces at its focal length (including, of course, the other lenses of which the eye is composed) the image or photograph of the object from which the light procecded. The Retina, acting as a sensative plate, receives this light impression, which, by means of the optic nerve is eonveyed to the brain, and mysterionsly acted upori in such a manner that the resultant idea contains definite information relative to the nature of the vejuct louked at. This is a vision. Not the unclosing of the
eye-lids pernitting light to fall upon the inner parts; not the changing of its direction by the refractive clements of the eye; not the act of conveyance of light impressions to the brain, these are all means to an end, but the knowledge acquired by these mears constitute what we call vision.

It will be quite apparent from the foregoing that the eye is not the seat of vision, but the brain, and consequently there must be a decided limit to the field of operations in which the application of spectacles can be used in restoring impaired vision. In the act of vision there are two distinct operations by means of entirely different sets of organs. First, there is the operation of refractive organs of the eye. This is purely mechanical, and as such is subject to the known law of mechanics. The light in passing into the eye is first of all refracted by the Cornea, and proceeding inwards through the Aqueons Humor comes in contact with the Crystalline Lens, When it is acrain refracted, and finally through the Vitreous Humor it reached the Retina in the form of an inage or picture of the origrinal object. Yet no vision, this is merely the first or refractive stage

DIOPTRIC SYSTEM-The various organs necessary for the completion of the first stare of vision are collectively called the Dioptric System. They include the Cornea, Crysialline Lens, Aqueous and Vitreous.

NERVUUS SYSTEM-For the completion of the act of seeing, the nervous system of the eye conveys the impression formed upon the Retinn by the Dioptric System to the brain, when the completion is brought about in the mysterious depth of the intellect. For the perfect fulfilment of the act of vision these two distinct conditions are necessary : First, a well defined image must be formed at the Yellow Spot. Seconay, the impression there formed must be conveyed to the brain.

Although the dioptric and nervous systems are entirely distinct, both in character as well as in their fields of operation, one is absolutely essential to the usefulness of the other, as no
matter how accurate and perfect the photographic powers of Dioptric system, if the nervous communications fail to perform their functions vision is not possible. And in spite of the greatest activity in the nervous system, if the Dioptrics are inperfect, eitheri- their transparency, thus preventing the passage of light, or if from being imperfectly focused a blurred image is formed, blindness, or at least imperfect vision must result.

Vision on the Yellow Spot is called direct vision, all other conditions when the ohject is situated obliquely, so that rays from it fall on parts of the Retina removed from the Yellow Spot, is called indircet vision.

In order to distinguish the details of an object clearly, direct vision is necessary, although we may at the same time, by means of indirect vision have a dim knowledge of the presence of surrounding objects.

ACCOMMODiATION-In the foregroing remarks upon refraction as a means of securing images, it has been assumed that the rays enter the eye parallel, but as a matter of fact during the greater part of the time in civilized communities the eycs are directel to near objects, that is, ut distances less than twenty feet.

It will be borne in mind that for all distances within twenty feet the rays meet the eyc in a divergent direction, and require greater refractive power in c:d. $:$ to still continue to focus on the Retina, ald the nearer the eye approaches to the object the greater will the divergence be, and the consequent necessity for additional refractive power.

This increase of refraction in the eye is called Accommodation, and is accomplished by means of the Crystalline Lens increasing the convexity as a result of the force exerted upon it by the Cilliary Muscle, which acts in such a menner that it relieves the tension which the Suspensory Ligament exerts upon the Lens, which, relieved of the flattening pressure, imnediately assume a more convex form as a recult of its own elasticity. The increase in refraction required is in proportion to the
anount of divergence which the rays possess, or, which is the same thing, the distance of the object from which they proceed.

Fig. 15.
An Eumetropic eye with parallel rays a, a, a, a focusing on the Vellow Spot at " (;" with no acconmonation in force, ($\mathrm{F}:$) and divergent rave b), b, b, b, still focusing at " $($ '" by means of aceommodation I).

FAR POINT (PUNCTUM REMOTUM)-Far Point is th at point proceeding from which, the rays will focus upon the Retina without the use of any accommodation. The Far Point, thereforc, of the Einmetropic Eye is situated at infinity.

NEAR POINT (PUNCTUM PROXIMUM)-Near Point is the nearest point at which the eyc can focus rays upon the Retina with the full amount of accommodation in force.

AMPLITUDE OF ACCOMMODATION is the difference in refractive power of the cye when adapted for its far point, with no accommodation in force, and when fully accommodated for its near point; in fact it is the total amount of accommodation which the cyc is capable of exerting with its full muscular effort.

The Ainplitude varics with age. A child of ten years having 14.D: year by year, however this amplitucle decreases, until at the age of forty but 4.50 remains. Below will be found a table giving the amplitude at different ages:

y EARs.	AMPITTUDE.
10 years.	14.00 D .
15 "	12.00 D
20	10.00 D .
30	7.00 D.
40	4.50 D.
5)	. 2.50 D.
60	1.00 D.
70 -	0.00 D .

Range of necommodation is the distance between far and near point.

Proof of Accommolation-By looking through a wire sereen at a distant object it will be found that the object or the screen can be seen clearly alternately, but not simmltancously.

ACCOMMODATION NECESSARY FOR DIFFERENT

 DISTANCES-To find how much accommodation is required to focus rays upon the Retina which procecd from points within intinity, we have merely to divide the distance (in inches) into forty, and the sult is the accommodation in Dioptres. For instance, to see an object clearly at 16 inches from the eye, $40 \div 16=2.50$ would be the aceommodation necessary:The cffect of accommodation being to inerease the refraction of the eyc, the same results would accrue if an additional convex glass were placed in or in $\mathrm{f}_{\mathrm{a}} \neg$ nt of the eye.

When the Cilliary Musele is enticely relaxed, and no accommodation used, we say the eyc is at rest and adapted for its far point.

When fully accommodated it is adapted for its near point. and is the nearness at which we can focus objects on the Retina depende upon the Amplitude of Ace mmorlation, we are able to extet, we can, by simplo measuring the donest distance at which
standard size type can be real find the Near Point. This divided into forty gives the amplitnde of necommorlation.

As age advances the muscular power diminishes, the lens capsule loses its elasticity, and the near point recedes in conнепиенсе.

CONVERGENCE is the ability to direct the visual axis of both eyes to a point within infinity, and is accomplished by menns of the intermal Recti Muscles.

The act of convergence is closely connected with accommodition, both the Internal Rectus and the Cilliary leeing supplied throngh the medium of the same set of nerves.

As accommodation is intended for looking at near points only, for which purpose convergence in like proportion is required, it is clear that we refnire increase of refraction for near points in exactly the same amounts as convergence is used.

METRICAL ANGLE-Metrical Angle is the angle formed by the intersection of the visual axis and the modian line, and we measure conver rence in meter angles in proportion as we mensure aceommodation in dioptres-one dioptre of Acc., and one metre angle convergence being necessary to see clearly at 40 inches. 2 Dioptre Acc. and 2 metre angle of convergence for 20 inches, etc.

The object of the convergence is the directing of the Vellow Spot of cach eye to the same point, so that rays proceding from any one point may fall nponidentical parts of each Retina, otherwise two impressions would he reccived, and being conreyed to the brain separately by each eye, Diplopia would result.
1)HPLOPIA.-Diplopia is the act of seeing two objects when one is looked at. Binocular vision is the simmitaneons use of both eyes while maintaining single vision, and in order to enjoy it to its fnuest extent, it is necessary, not only that the convergence be normal, so that the eyes turn inwarts in unison in order that the corresponding parts of oach Retina rective the
inage, but, also that the refraction of both eyes be approximately the same.

POSITION OF OBJECTS.-The senses ncyuire their information as to the position of an object entirely hy the part of thr detinn the rays inage upon it. An image formed upon the lower section giving sure information that the object is above. If formed to the temporal side the object must be situated to the masal side.

PIN HOLE TESTT.-To ascertain whether imperfect sight is the result of Ametropia, and thus restored by lenses or hy Amblypoia upon which lenses will have no effect, we employ the Pin Hole Dise, which is supplied with the trial case. The Disc eonsists of a black rubber dise with a sinall rount hole in the centre, the effect of which is to close off all riass from entering the eye except the axis ray.

If vision heing below monmal is improved by means of the dise it implies Anctropia, indicating that the vision was imperfect by reason of the incorrect focus of the rays of hirht which are shat out by the disc.

If vision remains equally low throurh the dise as with the naked eve it would indicate Amblyopia, as defeetive condition of the nervous apparatus would not in any way be improved by exciuling badly focused rays.

ANISOMETROPIA is a condition in which the refraction of the two eyes show a marked difference.

ASTHENOPIA-(Eye Strain).-A condition of fatiguc in various parts of the ocular system, oceasioned by some error ol refraction or as the retlex of some disease or physical disubility.

HYPEROPIA.

LECTUKE, No. \downarrow

As has alrealy laen stated, an Einmetropic eye is one in which parailel rays of hight focus upon the retina without the nid of aceommohation. Such an cye is the ident eye, as such a condition is possible only as the result of perfect refraction, and provited the acconmmation aml convergence are normal, perfect vision will be possible at all distances.

In cobsidering the Ametropic eye, viz: one in which the refractive apparatos is mot adapted for focusing parellel rays upon the reima, we have to stbly it mader two distinct fonms, "i\%: When the eye-ball is so short that the focus falls behind the retina, and when, from its abomal ehongition, the focus is in front.

Hypermetropia is a condition of the eye in which the diameter of the eye-hall from the cornea to the Yellow Spot is shorter than the focal lempth of the dioptric system of the eye, and consegnently parallel ritys on passing into sneh an eye would not have converged sutliciently to have met at the Retina, the locus, if such a thing were inossible, would be behinl the Retiar.

Imares formed upon the Retinn under this comlition wonhl lee bharred and indistinet, and an object, althongh seen under an magle of $\boldsymbol{j}^{\prime \prime}$, wonid he unrecognizable.

The only means by which the vision of a Hyperope can be improved is through the aid of increased refraction, which will converge the light rays more rapidly, and thas move the fueal point forward to the Retina. This is accomplished by means of n convex lens. Such a lens placed in a spectacle frame nets upon the rays of light convergently, thus partially performing the function of the dioptric system. As a shicht amount of emm-
vergence having been given to the rays hefore mecting the Cornea, the eye is nhte to nceomplish the remninder and w, mpuire an necurate focus.

The Hyperopic eye, however, possesses within itself a renly means of correcting any ordinary amount of refractive error ly metns of the acommotation, having the same effect as a comex lens in front of the eyre, viz: An increase of the refinetion.

Fiti. 11.
Ibagrant showing Hypropice we with parallel rays focusing belnind the Retina, and convergent rays fochsing th the Retina.

Many people go throush life perfectly maware of their Hyperopie condition, as a result of the assistanee rendered by the accommodation, and were it not for the fact that acemmmodation was intended for use for near olyeets only, aml that Nature rebels at the abouse of her laws, and visits the sins of the trmaressor upon him, we might hwe lat little cause for the correction of Hyperopia.

It has hern shown in mother section of this work how the convergenee and secommodation are hoth lesigned for near work only, and being intended to work in unison, receiving their impulve for such work through the medimm of the simm set of nerves, consequently no affort of acommodation can be exerted without the equivalent anount of convergenee following. Thus with 2. I. Hyperopia before he can see a distant object clearly must exert $\cong .00 \mathrm{D}$. of the accommodation, and the convergence acting simultaneously, his eye would turn inwards and fis a point twenty inches from the egr, which, of course, would prevent a distant oiject from being seen, as it wouli not while the
eye was in this position fall upon the Yellow Spot. So the only means of obtaining clear vision is to accommodate 2.00 D ., at the same time suppressing the converging muscles by an effort of the External Rectus.

Hyperopia is of two forms, Manifest and Latent. The accommodation being constantly used for both far and near points acquires a state of chronic contraction, and even when lenses are supplied to correct the Hyperopia, from long use refuses to entirely relax, and thereby prevents the total amount from being corrected. The anount it is possible to measure by lenses is called Manifest Hyperopia, the remaining portion, which is concealed by the accommodation beir, ${ }^{2}$ termed Latent. In young children it frequently happens that the full amount is latent, but usually only partially so, and with advancing age with its attendant loss of accommodation the Iatent becomes more Manifest.

Atropine is dropped into the eye for the purpose of paralyzing the Ciliary Muscle, and thus permitting the measurement of Latent Hyperopia.

The Hyperopic eye of moderate degree with ample accommodation may have vision equally good with the Emmetrope, but it is secured at the expense of a constant use of accommodation, loth for near and far points, and the evil effects of which will be considered under the heading of Asthenopis.

SYUPTOMS OF HYPEROPIA.-There is usually pain in the region of the pye, and necessarily in the eye-ball itself, but fropuently extending to the temple and brow, and even the back of the heal, and is often mistaken for neuralgia and muscular rheumatism.

The inability to maintain the use of the eyes for rear ohjects for any length of time, without a feeling of drowsiness and an inclination to close the lids, constitutes an unfailing sign of Hyperopia, indicating the inability of the Ciliary Muscle to sustain the extra strain put upon it by reason of the Hyperopic condition.

APPEARANCE OF THE EYE IN HYPEROPIA. Being an undeveloped eye it is usually set deep in the orbit, and of smaller dimensions than the Emmetropic eye, and frequently its brilliancy is less owing to excessive use of accommodation.

The pupil being smaller than in Einmetropia, the Hyperope requires a stronger light in order to secure a sufficient illumination of the retina.

Although the majority of Hyperopes will assert that their vision has always been good until some recent occurrence, such as sickness or an accident, it should be horne in mind that Hyperopia is a congenital disease and has always been present, but its presence has been concealed by an active accommodation which, as a result of some illness becomes weakened, and being no longer able to carry its double burden, the Hyperopia becomes suddenly mánifest.

CAUSES OF HYPEROPIA.-Hyperopin is always congenital. The Hyperopic eye being an undeveloped eye, it is perfectly natural that in new bon infants the eye shonld be like other organs, but partially developed, and consequently Hy peropic.

Development is usually rapid at first, and the infant Hy_{y} perope as the eye-ball becomes elongated becomes Emmetropic, as the anterior-postero length of the balls becomes equal to the foeal length of the Dioptric system of the eye. Those in whom the process of development still continues after this point is reached become Myopes.

RESULTS OF UNCORRECTED HYPEROPIA.-The effects as seen in uncorrected Hyperopia appear in several different form of inconvenience or discomfort, and the old adage pertaining to the practice of medicine "that disease usually attacks the weakest art," holds good in relation to Hyperopia. There are, of course, multitudes of uncorrected Hyperopes not even conscious of the possession of any eye defect whatever, as theirgeneral condition of robust health permits the excessive use of accommodation without apparent fatigue, after having acquired
the habit of using accommodation and convergence in unequal smounts.

There are others who in this effort of disassociation of accommodation and convergence lose control of the converging innscles (Internal Recti) and develope an internal squint, which can only be relieved by the removal of the cause, viz., the correction of the Hyperopia.

Those cases in which the ciliary muscle escapes contrnl produce ciliary spasin, in which we find Hyperopia overcorrected by accommodation and a condition of artificial Myopia existing, which, upon examining by subjective nethods will show poor distant rision, which will be found to be still furher inpaired by plus lenses and to be restored to $20 / 20$ by minus lenses.

It is clear, however, that no concave lens can prove permanently satisfactory, as while it gives normal vision it compels a continnance of the muscular spasm, and wonld be intolerable after a few hours.

This troublesone affection, which is discussed at greater length under the heading of Simulative Myopia, can only be relieved by weak convex spherical lenses gradually increased from time to time as the spasm relaxes.

There are others of the Hyperopic class who, having successfully accomplished the disassociation of accommodation and convergence and become expert in the use of the former without the latter, and showing no signs of squint or spasm, do so at the cost of perpetual pain and strain, the external symptons of which are headache, neuralgia, irritation of the cye-ball and lids, and the various conditions of discomfort as seen in Accommoda. tive Asthenopia, and which will receive fuller treatment under that head.

The fact that Hyperopia requires accommodation for distant vision to the extent of the Hyperopic error, and, of course, the additional amount necessary for the various distances inside infinity, will account for the fact that many Hyperopes, in seeking relief, complain of near vision only being difficult or painful, as it is under the excessive strain necessary to close
points that the nervous system first feels the sffect, but when the distant vision is corrected no difficulty is experienced at near points.

ESTIMATION OF HYPEROPIA.-An eye that sees equally well or better by the aid of a plus glass (at the distant type) than with the naked eye is a Hyperopic eye. The acceptance of a convex lens for distant vision is proof positive of Hyperopia, as under no other conditions is it possible to do this. If the vision is already rormal the strongest glass with which it remains normal is the measure of the Manifest Hyperopia. The Latent, of course, cannot be measured without the use of Atropine, and, if measured, cannot be corrected.

It is important to remember in the dagnosis of Hypcropia, that the existence of perfectly normal dista t vision does not exclude it, as all young Hyperopes can exercise sufficient accommodation to correct any ordinary degree of Hyperopia, and it frequently lappens that the degree of sight possessed by an uncorrected young Hyperope of molerate degree is even better than norinal (20/15). This is not by reason of any higher refractive excellence than that possessed by the Emmetrope, but possibly the result of a keener perceptive faculty of the retina.

Considerable difference of opinion exists as to the most desirable method of treating Latent Hyperopia. Sone authorities maintaining that an overcorrection of the manifest error should be supplied with the object of inducing a relaxation of the accommodation, and thus bringring out and allowing of correction of the greatest possible amount of the Latent.

This plan, while excellent in theory, is inadvisable in practice, as the lenses causing disconfort, few children will perseverc in their use, and thus they defeat the very object for which they were prescribed.

Instances will be found anong children in which the whole mount is Latent, in which case but little headway can be made, as no plus lens is accepted, and there is nothing for the optician to do but to coax a relaxation by weak plus spleres, which, while uncomfortable at distance, can be readily worn for near work.

MYOPIA.

LECTURE No. 5.
Myopia is a condition of the eye in which parallel rays focus in front of the retina.

The distance through the eye-ball from the centre of the cornea to the yellow spot is greater than the focal length of the dioptric system. An object situated at infinity would be imperfectly seen by such an eye from the fact that the refraction of the eye is in excess of what is required to focus rays from infinity, and, possessing no power to reduce the refruction abnormally, the Myope has no means of correcting his Ametropin after the manner of the Hyperope. The refraction of the Myopic eye heing too great for parallel rays, it is only adapted for divergent rays.

There are, therefore, two ways in whieh an object cma become distinetly seen by the Myope.

If we move the object closer to the eye than infinity, the rays proceeding from it will strike the cornea divergently, and the focus falls correspondingly farther back; or by means of a concave lens in front of the eye.

As we saw, while sturlying the theory of refraction, the nearer the objeet approaches to the lens the farther removed in proportion will the focal point be, so in the case of the Myope we have merely to approach the object until the rays have sufficient divergence to enable their focus to fall upon the retina.

The higher the Myopia the closer to the eye will this point be. This point will be the far point of the Myopic eye, and is always at a finite distance.

This accounts for the fact of Myopes being able to see elearly at near point, but having very low distant vision.

As Myopia is a condition of excessive refraction, we can, by the application of a minus lens, neutralize this surplus, and so render them capnble of seeing clearly objects at infinity. As
has been stated, a Myopic eye is capable of focusing only divergent rays, and by placing a concave lens in front of the eye, parallel rays proceeding from an object situated at infinity are refracted divergently before entering the cornea, and a focus on the retina thereby secured. Myopia is essentially an attache of civilization, being the result of continuous use of the eyes for close distances, and though rarely congenital is undoubtedly hereditary.

CAUSES OF MYOPIA.-The most prominent causes then of Myopia are heredity and the excessive use of the eyes for near work at a very early perio! in life, and more particularly the practice of sending very young children to badly lighted schools with inadequate seating accommodation. The seats being eonstructed for larger pupils the reading matter is necessarily very close to the eyes of small scholars, and the excessive convergence thus demanded subjects the soft, yielding coats of the young eye to a continuous strain in turning the eyc inward. This continual strain eventually produces an elongation in the ball, which is in itself Myopia, and demanding more eonvergence still, the tendency is to increase the elongation and consequently the Myopia. Thus may Myopia, in a double sense, be said to breed Myopia.

Imperfectly lighted school-rooms will necessitate the children holding the type very elose in order to secure large retinal innages to compensate for the indistinctness, and hence the tendency to Myopia is again present.

When Myopia is once established, some of the conditions which eombined to produce it are no lonyer present, thus the accommodation is used less or not at all, and since accommodation and convergence are associated through the medimm of this single nerve supply, the Myope frequently finds it easier to give up convergence and to use one eye only fom near vision. and in a short time the convergence becoming it e diffieult is altogether lost, and an external squint or Strabismus is acquired.

The intervention of squint usually precludes any further progress to the Myopia, as the convergence being gone the cause of the increase is removed.

Myopia is also prevalent during the first stage of cataract, the chemical change taking place in the crystalline lens, inducing in softening and extension of the lens.

The importance of preventing the increasc of Myopia in young persons, by the removal of all conditions likely to cause it, should be borne in mind by all opticians.

MALIGNANT MYOPIA. - When Myopia is above 6.00 D. it is called malignant, and is positively dangerous, as the excessive convergence used in uncorrected Myopia of high degree has a tendency through a constant straining of the muscles which are attached to the choroid to increase the length of the ball, therely increasing the Myopia. When this occurs it is called progressive Myopia, and having once started upon the increase, the ruin of the ocular system is usually a matter of time, the continued muscular pressure cansing a bursting of the tunics at the rear of the ball, and is then known as Posterior Straphaloma.

Estimation of Myopia.-The concave lens that will give to parallel rays the exact amount of divergence necessary to enable the refractive power of the eye to focus them upon the retina is the measurc of the Myopia, or, in other words, the minus lens that will give to parallel rays the same divergence as if they proceeded from the far point.

The difhculties peculiar to the correction of Myopin are the lialility to overcorrection, and the disinclination of the Myope to wear a correction for near work.

Myopia is recognized by the fact that distant vision is alzoay's below normal, and is improved by the aid of a concave spherical glass, but as the vision would remain equally high under small amounts of overcorrection, owing to the fact that the patient would use his accommodation to neutralize the amount of overcorrection, great care must be used to avoid supplying a lens which causes this condition.

It must be reniembered that the presence of Myopia is indicated by the condition of low distant vision rendered higher by concave lenses, and consequently the degree of error must be mensured by the improved vision secured by each successive strength of glass which is tried, and under no condition are we so prescribe a glass unless it has enabled the Myopic patient to read some letters which with the preceding weaker lens he was positively unable to read or incorrectly naned.

We are, in no case, to accept the patient's assertion that any glass "is betier" than the preceding one, but to form our judgment and base our conclusion only on his ability to rend some certain letter or letters with the present lens that it was found impossible to accomplish with the preceding weaker number.

The difficulty in inducing Myopic people to wear a correction while using their eyes for close points is easily accounted for by the fact that the near vision of such people is far better without the correction, as the Myopia at a close point acts as a magnifier, and objects are magnified to such an extent that the retina, having become accustomed to the consequent large images, does not readily confornn to normal conditions entailed by the corrections, and is unable, metines, to tolerate the smaller though natural inages produced through the aid of the correction lens.

The difficulties connected with the correction of Myopia are increased by the fret that a great inajority of Myopic eyes are Aınblyopic, and normal vision is impossible even with a perfect correction, and in the anxiety to secure perfect vision there is a tendency to overcorrect.

RESULTS OF UNCORRECTED MYOPIA. In no form of Ainctropia are the results so far reaching and of such a serious nature av in Myopia. Posterior Staphaloma, or bursting of the eye tissues at the rear. Detachment, also hemorrhage of the Retina and a predisposition to cataract may be mentioned as
anong the graver forms of disturbance whieh are directly traceable to uncorrected Myopia in addition to the commoner disarrangements of muscular balance, Muscular Astlienopia, Diplopia, Squint or Strabisיr" ${ }^{3}$.

SIMULATIVE OR ACCOMMODATIVE MYOPIA. This is a false condition of apparent myopis, which will have to be guarded against with great care, or the inexperienced optician will tind himself supplying concave glasses to Hyperopes.

It has already been shown that Hyperopia is a condition in whieh the focal point being located behind the Retina, and being uneorrected by a plus lens, the victinn does not wait to secure an artificial lens but immediately corrects his Hyperopic error by means of his accommodation, but as Hyperopia is present even when distant objects are viewed and accommodation and convergence are so produced by the harmonious aetion of the ciliary and internal recti muscles it is a matter of diffieulty to aceommodate without at the same time converging, and it will readily be understool if convergence is used while looking at a distant object it will be either impossible to see it or it will be seen donble.

The difficulty experienced in acquiring the habit of using convergence and accommodation in unequal amounts usually produces one of three results. Either the Ciliary or the internal rectus escape control, or the patient avoiding this does so by a supreine and constant eflort and at the cost of comfort.

The first condition has already been referrred to as Squint, the last will be discussed later under the heading of Asthenopia. The second condition constitutes Ciliary Spasm.

SYMPTOMS OF MYOPIA.-The prominent eye-ball, while not necessarily an indication of Myopia, is usually so, as the ball from its elongated form is pushed iorward and consequently a greater portion of the selerotic becomes visible.

Excessive Pupillary Width is a frequent accompaniment of Mypoia, inasmuch as many cases of Myopia are
induced by the excessive convergence entailed by a pair of eyea abnorinally far apart. Divergent Squint is in most cases caused by Myopia, and when found Myopia is presupposed. Subvormal Distant Vision is always present in Myopia, and consequently inability to clearly recognize distant objeets may be recepted as a fairly reliable symptom.

Ahmormal Near Vision.-Close objects are clearly seen, but the range over which this occurs is necessarily limited, and the near point is closer than in Einmetropia.

Now, according to the average text book, the symptoms of Myopia are plain and easy to recognize, but I think this statement should be amended to read: "The symptons of Myopia are easy to produce, and the greatest care and judgment is necessary to disclose the real and the apparent condition."

First of all we have genuine Myopia, but "overcorrected," and by the terin overcorrected is meant, not only those casees in which the actual amount of error present has been overcorrected. but those malignant cases in which a " full correction is all overcorrection."

There are two ways in which a real "overcorrection" call be supplied. First, by relying upon the patient's description of his sensations instead of by actual progress made in deciphering the letters on the test card, and, secondly, by omitting the binocular test with plus lenses after full correction hats beetn placed in position.

The very natural anxiety of young opticians to do the $v \in r y$ best that can be done is frequently the cause of supplying is "too full" correction in malignant Myopia.

I need scarcely point out that Myopia of a high degree. having been for years uncorrected, has purformed the work usually devolving upon the ciliary muscle, and the cyer, when used at cloee points, are performing perfeetly without the aid of accommodation, the natural result of which is that the maijg. hant Myope is devoid of any development of ciliary, and, if
occasion arise whieh calls for what in the Einmetrope would be a natural exertion of accommodation, fatigue and discomfort will be the inevitablc result.

This is just the situation in maligant Myopia fully corlected. It presents the spectacle of a baby muscle carrying a man's burden.

There is another feature in the correetion of high Mopia which is wortly of attention, as a prolific cause of Eye Strain. I refer to retinal rather than muscular conditions.

The retina of a highly Myopic eye must certainly have existed in a blissful condition of inertia. Being deprived of distinct images during the whole time that the eyes are not directed to an exceedingly close point, this means that the retina and optic ncrve and that mysterious dark room apparatus that convert the retinal inages into ideas are for the greater part of the time inaetive.

Now, the old adage that a certain nameless gentlcman "finds some mischief still for ille hands" may be equally applicable in a certain sense to idle retinas. Or, more correctly speaking, the retina being idlc, or being used for near objeets only, loses its aptitude for work at distant objects, but the nerve force, the energy, without which the human body, which is the embodiment of miraculous motion, becomes but nerveless clay, is directed into other channels where it can be more profitably employed.

The sudden and full correction of the malignant Myope restoring the acuteness to normal conditions produces on the retina an endless succession of distinct images. No matter whether the eycs be directed to infinity or to the Near Point there is no escape from the duty devolving upon it to assist in conveying these newly-acquired sensations to the developing stage in the recesses of the brain.

What more natural than a retina after long years of indolence should feel fatigued at the sudden imposition of severe exertion. This is surely as rational here as if applied to physical exercise in any of the parts of the body.

The retina, accustomed to a life of indolence, now has to perform a laborer's work, and fatiguc and strain, headache and sometinics nausen are the complaints received concerning the effect of a full correction which restores normal vision to the malignant Myope, and, as few people can know what constitutes perfect vision and everyone realizes the presence of discomfort, an undercorrection for malignant Myope should be generally considered a perfect correction, at all events it is the safer and more generally acceptable onc.

This view is further strengthened by the fact that in those cases where the Myopia has gone uncorrected for years. and Amblyopia is present to a large degree, and a very moderate degree of visual acuity is therefore all that can be got, that a full correction can be worn without discomfort, as the indolence in which the retina has long existed has had the effect of permanently deadening its sensibility, and no matter how perfect the correction, activity sufficient to cause mental fatigue is impassible.

ESTIMATION AND CORRECTION OF MYOPIA. The weakest concave glass that gives the inost vision is at once the measure and the correction for Myopin.

ASTIGMATISM.

LECTURE No. 6.
Astigmatism is of two kinds, Regular and Irregular.
IRREGULAR ASTIGMATISM consists of a general irregularity or non-symmetrical formation of the Cornea. There is no correction for it, and relief is impossible.

REGULAR ASTIGMA'IISM may be described as that condition of the eye in which the rays of light, in passing through the Dioptric system, do not focus at one point, but constitute a series of focal points, corresponding to the different curvatures of the various ineridians.

It will be apparent that from the definition that in Astigmatisin that the Cornea is not spherical in form, but elliptical, the various meridians having each different degrees of curvature.

In studying Aatigmatism we consider only "the ineridian of greatest curvature" and "the meridian of least curvature." The two are known as the Principal Meridians, Mnl are mlways at right angles to each other.

In the foregoing it has been assumed that Astignatism is entirely Corneal, that is, that the malformation is of the Cornea only, and not extended to the Crystalline Lens.

Reference is made, however, by all writers on the snbject, io a condition of Lenticular Astigmatism, implying an elliptical lens. I scarcely think this is the case, but an inclined to believe that the comparatively sinall number of cases of Lenticular Astigmatism net with is owing to a misplaced rather than mis-shapen lenses.

This is quite easy to understand if we experiment with a spherical glass, by looking through it obliquely at an object, when it will be found that a cylindrical effect is experienced. So, likewise, it may be easily possible for the Crystallire Lens to be set obliquely behind the pupil, thus causing the sanne result as if the cylinder glass were placed in front of the eye.

Fig. 17.
Diagram showing the relative positions of the focal points in Simple Hyperopic and Simple Myopic Astiginatism.
A^{\prime} represents the Emmetropic meridian with its focus upon the retina at A
B^{\prime} represents the other principal meridian in Hyperopic Astigmatism with its focus behind the retina at B.

C' represents the other principal meridian in Simple Myopic Astigmatism with its focus in front of the retina at C.

For all practical purposes, however, we can assume all Astignatism to be entirely dependent upon the curvature of the Cornea, and is in proportion to the excess of curvature or want of curvature of the Principal Meridinns as compared with the curvature required to focus parallel rays upon the Retina.

CAUSES OF ASTIGMATISM. Astigmatism is usually congenital, and, as a rule, hereditary. It may be present as the result of accident to the Cornea or an operation such as Sclerotomy. Some authorities claim that Museular Imbalance is a fertile cause of Astiginatism, as the result of the unequal pressure existing in different meridians.

While it is stated that the normal eyc is spherieal in slape, it is a statement that requires qualifying. A slight difference is found in the radii of curvature even in a perfect Emmetropic eye, the Vertical Meridian being very slightly more eurved than the horizontal. It is quite natural, then, that where the difference is sufficiently great to causc Astigmatism that the Principal Meridians lie somewhere near these two directions, with the vertiele being that of the greatest and the liorizontal the meridian of the least curvature.

When this condition is found it is called Astigmatisn with the Rule, and the opposite Astigmatism against the Rule. This would mean that as a rule the Vertical Meridan has a stronger refracting power than the horizontal, a difference of one millineter in the radii, causing about 6.00 D . difference in refraction.

SYMPTOMS OF ASTIGMATISM. Anong the prominent symptoms of Astigmatism of high degree is a general want of symmetry in the features, the nose either shows a lateral curve or possibly a bony projection, or in some instances one eye is slightly higher than the other or at a greater distance from the eentre of the forehead.

In reading the test types the hend is generally tilted over at an oblique angle, and during the process of reading the card this aryle is frequently changed as difficulties in deciphering the letters are encountered

The Astiginat also has a pronounced tendency to miscall many letters which, under the distortion incidental to Astigmatism, assunie other slaapes.

VARIETIES OF REGULAR ASTIGMATISM. Astigmatism is of five kinds, Simple Hyperopic, Compound Hyperopic, Simple Myopic, Compound Myopic, and Mixed.

Simple Hyperopic Astigmatism is a condition in which one Principal Meridian is Emmetropie, having its focus upon the Retina while the other one is Hyperopic, with its focus behind the Retina.

A spherical convex that would bring the latter forward to the Retina would at the same time carry the Emmetropie Meridian forward and make it Myopic. It requires for its correctio. convex cylinder of sufficient strength to correet the Hyperopie Meridian, having its axis corresponding in its direction to the Emmetropic Meridian.

Compound Hyperopic Astigınatism, or Simple Hyperopie Astigmatism combined with Hyperopia, is a condition in whieh the whole refracting surface is too flat, and the various Meridians focus behind the Retina, but at different distances. In its correction a convex spherical is used of the required strength to currect the Meridian of grentest curvature, which of course has its focus nearest to the Retina, combined with a convex eylinder to correct the remaining meridian, the axes parallel to the Meridian of greatest eurvature, that is the least Ametropic Meridian. This glass is called a sphero-eylinder, and is marle by grinding a spherical curve on one surface and a cylindrical one on the converse.

Simple Myopic Astigmatism is a eondition similar to Simple Hyperopic Astiginatism with the exception of the location of the Ametropic Meridian, which in this case is Myopie and has its focus is front of the Retina, the other Principal Meridian, of course, has its focus upon the Retina.

It is corrected by means of a concave cylinder of suffieient strength to reduce the refraction of che Meridian of greatest
curvature to that of the Meridian of least curvature. To affect this the axis would be placed at right angles to the former Meridian.

Compound Myopic Astigmatism. Myopia combined with Simple Myopic Astigmatism, is a condition in which all Meridians focus in front of the Retina, but one principal Meridian more than the other.

It is corrected by a concave sphere of sufficient strength to correct the Meridian of least error combined with a concave cylinder, the exact power necessary to correct the refractive error remaining uncorrected in the opposite Meridian, 'he axis in all cases being at right angles to the Meridian to be corrected by the cylinder.

MIXED AST'IGMATISM. As the name implies, Mixed Astigmatism is a combination of Hyperopic and Myopic Astigmatism, one principal Meridian, that of least curvature, focusing behind the Retina, while the other lias its focus in front.

Mixed Astigmatism is corrected by three different forms or conıbinations of lenses.

First. By Cross Cylinders, in which a convex cylinder of the refuisite strength to correct the Hyperopic Meridian is ground on one surface of the glass, while the reverse side is occupied by a concave cylinder to the amount of the Myopic error. The axes of the two cylinders are, of course, at right angles to coincide with the relative position of the Principnl Meridians.

For example. A case of Mixed Astigmatism with 1.00 D. Hyperopia in the Horizontal and 2.00 D. Myopia in the Vertical Meridian would be corrected by +1.00 Cyl. axis $90 \bigcirc-2.00$ Cyl. axis 180 .

Second. By correcting Hyperopia with plus spherical combined with minus cylinder, the power of which is equal to the sum of Hyperopia and Myopia combined, having the axis at right angles to the Myopic Meridian.

The above case would be corrected as follows: +1.00 Spl . - -3.00 Cyl. axis 180 .

Third. Correct Myopir with minus spherical combined with plus cylinder, the power of which is equal to the sum of the error in both Meridians combined-the axis of cylinder placed at the Myopia Meridian.

The above case would be corrected as follows: -2.00 Sph . C +3.00 Cyl. axis 90 .

The Cross Cylinders being more expensive and no more satisfuctory, the two latter methods are usually employed.

ASTIGMATISM WITH THE RULE. As lasalready been stated, there is a predisposition in all cases of Astigmatism to an excess of curvature in the Vertical Meridian, so that Myopic Astigmatism is usually in the neigborhood of this Meridian, while Hyperopic Astigmatism is usually horizontal or thereabouts. This condition is called "Astigmatism with the Rule," and when the opposite is the case it is known as "Astignatisn against the Rule." This will explain how it is that the axes of plus cylinders are usually set somewhere near 90 and minus cylinders usually have their axis at 180 .

Fig. 18.
Clock Dial Chart for Detecting Astigmatism.

DETECTION AND DIAGNOSIS. The detection of Astigmatism is oy means of radiating lines. For this reason test-cards have been used of different forms, all of which, however, are composed of lines radiating in the various Meridians of the circle, and the presenr: of Astigmatism is indicated by the ability to distinguish lines in some directions more clearly than in otlers. The directions in which the lines appear most distinctly being the meridians of Astignatism, the correcting cylinder would, of necessity, have its axis placed at right angles to this Meridian. The most satisfactory arrangement in the matter of Astigmatic cards consists of four syuare groups or blocks of lines, each group representing the four principal directions, viz. : horizmial, vertical and the two obliques, one at 45° and the other at 185°. The advantage of this card lies in the fact that the grouping of the lines is far more effective on the sight than single lines.

The Ophthalnometer is also used for diagnosing Astigmatism. It consists of an arrangement of prisins conbined with a telescopic tube, by which the curvature of the Cornea is measured in its various meridians, the difference between the greatest and the least representing the Astigmatism. This, of course, means Corneal Astigmatism.

STENOPAIC SLIT. This consists of a round metal dise with a narrow slit across it, and when placed in the trial frame in front of the eye it permits vision through one Meridian of the eye only, and, on being rotated, exposes the various Meridians in succession, and thereby permits the separate measurement of the refraction of the Co nea.

In cases of Mixed Astignatism it is found to be of great assistance, but the successful optician does not rely upon any one method, but uses several for the purpose of verification. It is not the intention here to give the various methods in detail, but to illustrate the physiological condition of the eye in Ametropia and Ennnetropia, showing the optical principles involved in the correction, but leaving applications of these principles to a future lecture.

There is one important feature in connection with the consideration of Astignatic cases, which the young student will do well to recognize at the outset, viz. : that che discomfort experienced as a result of Astigmatism is not at all in proportion to the amount of error. In fact, it bears the reverse ratio, as we find invaiably the smaller the crror the greater the eye-strain and discomfort, and consequently anything above inediocrity in eyc-work is only possible by close attention to small errors.

A MERIDIAN. By the tern Meridian, as applied to the eye, is meant the several directions across the surface of the Cornea, corresponding to degrees of longitude on the earth's surface.

In numbering the Meridians a quadrant scale is used extending over half a circle, and conserjuently containing 180 , as seen on the celluloid semicircular strip of the trial frame accompanying all trial cases. The Horizontal Meridian extending from zero on the right th 180° on the left, and is known as either .0 or 180 , the vertical being at right angles, or just half way, is the 90° Meridian.

THE PRINCIPAL MERIDIANS are the two Meridians of greatest and least curvature, and are located a: right angles to each other, so that having ascertained the position of one the other is found by adding or subtracting 90 from the number of the degree representing it.

For instance, one principal Meridian is at 40° the other will be at 130°,

The Asthenopic syinptoms are somewhat similar to those of Hyperopia, indicating a condition of fatigue produced by constant strain in the effort to secure perfect vision.

DIFFICULTIES TO CONTEND WITH IN THE CORRECTION OF ASTIGMATISM. Astigmatic corrections present two distinct forms of difficulty, those inseparable from all forms of eye examination as met with in testing, and those conditions of discomfort and strain which are frequentily pro-
duced by wearing a perfect correction, and which are the visible signs of the efforts the Astigmatic eye is making to adapt itself to the changed conditions created by the correction.

The difficulties peculiar to the successful diagnosis of astigmatism are largely individual in their nature, and there is little to. be told in a treatise of this kind that will aid the optician in evading them. They must be encountered in actual practice, and the solution of each worked out on its own merits in the light of sound optical principles, but no absolute rule can be applied to the whole.

The occasional mis-statements in regard to the appearance of the Astigmatic lines are to be accounted for either by a misunderstanding of the questions submitted or to a want of retinal perception, and possibly in some instances to freaks of accommodation.

The occusional reverses met with in process of exnmination should not upset the firith of the young gradnate in the soundness of the accepted optical doctrine, but should merely teach him self-relinnce and the inpossibility of mere text-book optics when applied to actual practice.

So in case a certain line has been selected as the brightest on the chart, and the patient has stated that plus lenses improve the dim lines, but on procetding with a plus cylinder with axis at right angles to brightest line no progress is made, but rather a worse condition is produced, and finding on investigating that a minus lens restores the symmetry of the chart, we have only to conclude that one of us was mistaken, ourselves or the patient, it does not matter which, and proceed to the completion of the test.

The occasional freaks of imagination or accommodation, as indicated by the variable colors which the lines of the chart assume during the diagnosis are to be disregarded, and the regular routine followed of increasing the strength of the cylinder in the effort to overcone the preponderating brightness of a certain line.

In low degrees of Hyperopic Astigmatism, it sometimes happens that through involuntary action of accommodation no difference is noticed in the radiating lines of the chart, bence these amounts may be overlooked. This can casily be overcome by placing a weak convex spherical glass in front of the eye under cxamination, thus relaxing the ciliary and allowing a measurcment of the existing error.

Passing to the sccond conclition, under which difficulties are encountered in Astignatic corrections, we have to face the fact that glasses which, according to all the laws laid down in text-books, were correctly titted, and have been instrumental in largely improving the vision, are unacceptable, owing to a feeling of discomfort and strain cxperienced in wearing them.

Now, here we have a condition in which low visual acuity is restored to normal through the medium of ghasses, which must be presumed to be correct in order to accomplish this, and a condition of eye-strain prevailing as a direct result of wearing glasses which arc acknowledged to be a correction for the refractive error.

Let us sce how it is possible to restore vision at the sacrifice of comfort.

In Astigmatism, owing to the fact that one certain Meridian has a greater curvature than any other, the cornea, in addition to its converging power, may be said to have a prismatic power, the Meridian of greatest curvature being its basc, and consequently there will be an inclination of the retinal innage of an upright object where Principal Σ^{\prime} oridians are oblique to tilt over from a vertical position, in the direction of the incridian of greatest curvature. As this would cause distortion and possibly Diplopia-espccially if the Astigmatism in each eye was at a different angle-the oblique muscle, by an effort of contraction, rotates the eyc-ball on its antero-posterior axis in the dircction necessary to restore the retinal images to an upright position.

That this can be done is casily proved by a similar action of the recti muscles, when a prism of weak power is placed before the eye, the inevitable result of which we know is to
change the dircetion of the visual axes in such a manner that they impinge on non-corresponding sections of each retina, but if we experience Diplopia at all it is only monentarily as the recti muscles contracting, rotate the ball until the images correspond and no distortion or Diplopia is experienced.

The oblique museles perform a similar function in uncorrected Astigınatism.

The continual use of the ollique muscle for the purpose of maintaining ercet images under oblique Astiginatism, naturally develops one particular oblique in excess of its opponent, producing a condition in which it is difficult, sometimes impossible, to entircly relax it and permit the ball to assume its normal position of rest.

When the correcting cylinder is applied, the tilting of the image is prevented by it, and consequently there is no occasion for an effort of the oblique as before, but being from long habit of contraction unable to entirely relax the eye-ball is rotated, and the now upright image is rendered oblique in the opposite dircetion unless the opposing oblique exert a restraining effort and prevent it.

It is the continuance of this effort by the undeveloped muscle in checking a shortened robust one that produces the feeling of strain complained of, and which exhibits the phenomenon of cye strain under perfect corrcetion.

There is no methorl of removing this feeling of strain except by perseverance in wearing the corrcction, as the disconfort is owing to the fatiguc of the hitherto undeveloped oblique inuscle being called upon to maintain a continus: check upon the opposing obligue to prevent it rotating the cye-ball as hitherto.

The continuance of the cffort will in most cases result in developing a condition of balance betwecn the two obliques with a conseguent acquisition of perfect comfort. In some cases, however, where th. Astigınatism has been for years uncorrected and the conditions of unequal balance are very pronounced, great difficulty will be found in inducing the patient to persevere with
the correction, and a partial correction will have to be supplied which while giving less vision allows more comfort.

RELATIVE YOSITION OF ASTIGMATISM IN THE TWO EYES. Astigınatism usually is found in corresponding directions in cach cye. If one is vertical, so will the other be also; when one is found to be Astignnatic horizontally, both will usually be the sane. When Astignatism is oblique the direction of Principal Meridians will not be the same, but will generally be at the same angle with the horizontal, thus if Astignatism is at 20° in right eye, that means that that Meridian is 20° from horizontal, and the left eyc being the same would be at 160 . The Astignatism in the right eye points up to the right at an angle of 20° with horizontal line, and that of left eye points up to the left at a similar angle.

ANISOMETROPIA IN ASTIGMATISM. Anisometropia is a condition of Ametropia, in which the amount of error in each eye is of different amount. The generally accepted rule in Anisometropia is that in supplying a correction a difference of more than 2.00 D . cannot he acceptred with comfort. Thus, if right eye be Hypcropic 1.00 D. .nd left cye Hyperopic 4.00 D., we could not fully corrcet the latter, as the great difference in the inage formed by the two lenses woull cause Diplopin. We would, therefore, according to rulc prescribe +1.00 for right cye and +3.00 for left cye.

This rule will have to be modified in actual practice, as it is frequently found that some can accept a correction containing a larger difference while others will not tolerate any difference whatever.

A troublesone case of non-symmetrical Oblique Astignmatism having been fully corrected and vision restored occasions discomfort, and patinut returns complaining that glasses cause a feeling of strai , and in spite of continued perseverance sinall progress seems to be made. If, in addition to radical difference in location of axis of cylinders, there is a difference in anount of Astignatism for cach eye, the burden of the correction will usually be intolerable, and it is well to reduce the correction to even amounts.

PRESBYOPIA.

LECTURE 7.
Presbyopia may be described as that condition in whieh, owing to loss of accommodation, the ncar point has receded beyond eight or nine inches.

It will be noticed by this definition that Presbyopia affects the vision for zear distanee only.

It is, in fact, not an error of vision or disense of the eye, but a physiological change peculiar to everyone at a certain time of life.

In referring to the mechanism of aecommodation, we notice that the amplitude of accommodation depended solely upon the age, the mount decreasing yar by year until in extreme old age absolutely no aecommorlation at all is found.

The near point has been described as the nearest point at which the eye can focus an object with all the aceommodation in force.

The Einmetropic eye in viewing an object located at infinity would use no aceommodation whatever; but if the object is brought nearer than 20 feet, accommodation is required in proportion to the distance. The closer the distance the greatir the amount required. To calculate the amount of accommoilation necessary for any givell distance we have merely to divide the distance (in inches) into forty. An object of $20^{\prime \prime}$ distence would require 2 D . accommodation, an:l at $8^{\prime \prime} 5 \mathrm{D}$. would be required.

Preobyopia would, therefore, naturally be expected at that time of life when the amplitude is less than 5 D . A reference to the age table of Donders would show that this occurs at the age of about forty.

Presbyopia, therefore, is the loss of power necessary to see near objenta, and is clearly indicated by the efforts those suffer-
ing from it make to read or pursue any vocation requiring the use of the eyes at elose pmints.

In reading, when in the early stuges, the type may appear clear at first, but becomes gradually indistinct as the accommodation refuses to sus, in the strain necessary to focus at the point at which the reading matter is hell, and to relieve this struin the type is pushed further away, giving momentary improvement, until the Ciliary Muscle still tiring, a further removal is made, when having sarived at a distance beyond which the type is constructed for, viz, the distance at which the letters will form an angle of $5^{\prime \prime}$, the type is again blurred.

We have here two horns to the dilemma. If the type is appronched it becomes blurred, by reason of the inability to sustain sutficient accommorlation to focus on the Retima, and if removed to a distance at which the accommodation can focus, the letters form a visuai angle so small that no distinet v ion is possible even with a perfect focus.

As l'resbyopia is a loss or want of refractive power, so its correction is necessarily an addition of refractive powers, that is a convex spherical lens.

As Presbyopia is a condition in which the rearest point of distinet vision has receded beyoud eight inches, its presence is assured by the fact that certain type of a standard size camot be read at this distance.

SECOND SIGHT. Instances are occasionally met with in which, after wearing a Presbyopic correction for years, during which period it has been utterly impossible to see at near points without them, people of advanced age suddenly find themsiles able to see for near and far points without glasses and laable to do so with the glasses they have hitherto woin.

The name of Second Sight has been hestowed upon these cases, and they are frequently looked upon as miraculous. The conditions are merely the result of approaching cataract, which in its early stages acts upon the capsule of the lens-hardened and non-elastic with are-ita such a manner that it becomes soft
and elastic onee more and consequently restores accommodation, whose loss was occasioned by this hardening procens peculiar to advancing years. An eye so affected eventually loses its sight as the cataract matures.

CAUSES OF PRESBYOPIA. As Presbyopia is the condition consequent upon loss of accommorlation we have to seek for the eanse in occasion of lost accommodicion.

In discussing anatomy and physiology we saw that accommodation was produced by the aetion of the eiliary muscle upon the Crystalline Lens whieh removed the flattening pressure exerted upon it, by the suspensory ligamont, thus allowing the pressure from within, aeting upon the elastie membrane connprising the eapsule, to force it to spring out and assume a form of greater convexity, thus increasing the refractive power of the eye.

We have seen that advaneing age even in youth affeeted the inherent elasticity of the lens capsule, thus preventing it from responding as fully as formerly to eiliary aetion.

This loss of elasticity increasing year by year until finally so little aceommodation is left that the eye cannot focus at a distanee of eight inehes when Presbyopia is said to be present.

It should be elearly understood that Presbyopia does not affect the distant vision, as an Eminetrope will frequently retain perfect distant vision even in extreme old age, where every vestige of accommodation is gone, consequently glasses supplied for the correction of Presbyopia are aeceptable for near work only and will be useless at distance.

When distance glasses are necessary as wel! as Presbyopie correction they are sometimes preserited in one of the various forms of bifocals which is composed of a glass with tie upper part of suitable power for distance, and the lower seetion of the increased strength neeessary for near work.

SYMPTr;MS OF PRESBYOPIA. The necessity of holding the type at a greater distance from the eye than has always been customary, and the total inability to see it clearly at a
close : int, with an inelination always to seek for a bright light the read by, constitute never-failing symptoms of Presbyopia, and always produce the complaint of fatigue if reading is continued.

The latter symptom is, of eon:se, identical with that of Hyperopia, as in fact the refrac" '. ". \cdot. ${ }^{\text {ations are the same, but }}$ that of Hyperopia is a defer min is lelt at nll distances while Presbyopia is detrimental t $11 n \quad \therefore \quad 11 \cdot 1 \cdot!\cdot$ nlthough tho symptoms are similar and i_{4} " 11 .! ! 'it $n+$ lens) no mistake is possible, as H_{0}, ! ! . . .

 incles, to aseertain if is te.e $!$. . 1 to find the near point. This we do by the nid $f 1$ andis.a d and tape line, tinding the closest point at whin' '.. wnall 'pe cun be read, and measuring with rule or tape, when if it is at eight inches or closer no Presbyopia is present, but if this point is farther removed than eight inches Presbyopia is inclicated, and the greater the distance the higher the amount.

The correction is always the weakest plus sphere that will resture it to eight inches.

In making the test for near print it is important that the eard should be 1 sld closis to the face, several inehes inside the near point, where, of course, it will be found inpossible to read it, nad withdrawing it slowly lane the patient read it inmediately it becomes sufficiently clear. This will be the $n \cdot r$ puint. This distance in inches divided into 40 will give the f. militude of accommodation, which, subtracted from 5-the amount necessary to focus an object at eight inches-will give t'le amount and the strength of the lens neeessary to correct the Presbyopia.

It is inportant in finding the near point with card and rule that the card be held inside the P.P., and slowly withdrawn until ti e point is reached, and noi started outside the P. P. and appronched towards the eyes, as the patient will stop reading
long befire the nctual near point is reached, and the amount of Presby spia indicated will be erroneous.

Grent care should be exercised to avoid an overcorrection, as the inclination of nll Presbyopes is to secure large images, which are only possible by extra strong lenses, allowing them to hold the type at short range. Glasses fitted thus will be highly satisfictory at first, but will surely be returned in a few days with the complaint that they "strain the eyes."

Additions for Presbyopia will have to be made in enses of Simple and Compound Astigmatism as well as in Myopia, occasionally, though, the Myope when Preshyopie merely removes the distant glasses for reauing, thus giving the neeessary inerense in refraetion.

It will he noticed that the Ilyope's distant glasses will be weakened for reading, and the Hyperopic inereased in power.

The following examples of Presbyopic combinations will muke this elear:

An Emmetrope, whose near point is at $20^{\circ \prime}$ would require, reeording to the foregoing rule, nothing for distanee and + 3.00 Sph . for reading. Thus $40+20=2.00,5.00-2.00=$ 3.00.

A Hyperope who is wearing distant correction of +2.00 , and whose nenr point is $11^{\prime \prime}$, would require for reading +1.50 in uddition to the distanee ghasses $=+3.50$. Thus $40 \div$ hy $11=3.50$ (about), $5.00-33.50=1.50,1.50+2.00=+3.50$.

One who is wearing for distance n simple sylinder, say +1.00 Cyl. axis 90 , and whose near point is $40^{\prime \prime}$, woula re ruire for rending +4.00 combined with +1.00 C . axis 90 , written thus: $+400 \mathrm{~S} . こ+100$ Cyl. axis 90 .

Thus 40 divided by $40=1.00 ; 5.00-1.00=4.00$, whieh being a spherieal lens und the distant glass a cylinder, their powers cannot be added, but the two separate lens combined in one lens-spherical on one surface and cylindrical on the other.

If sphero-cylinders are necessary for distance, and additions are necessary for Presbyopia, the spherical power only is changed, the power of the cylinder remaining the same for near and far.

Thus, if $+1.00 \mathrm{~S} .0+50 \mathrm{Cyl}$. axis 90 be the distant correction, and the near point 13 ", we iave merely to add to the spherical power $(+1.00)$ a plus spherical of the required strength, which in this ease will be $+2.00(40 \div 13=3.00$; $5.00-3.00=2.00$), and the reading glass will be +3.00 S . +50 C. axis 90 .

If Myopie grlasses are worn to distanee, and we wish to correet the Preshyopia, we, while alding the necessary plus glass to the distance correction, in reality subtract that amount from this power, as a convex glass combined with a coneave will neutralize the power of each.

Thus, a Myope of 6.00 , finding reading impossible with this correction, seeks a correction for his Presbyopia. Finding his near point at 14 ", you would add to the distant eorrection $+2.25 \mathrm{~S} .(40 \div 14=2.75 ; 5.00-2.7 .5 \div 2.25)-6.00 \mathrm{Sph}$., with +2.75 Sph. added to it, would make -325 as +2.75 would neutralize this anount of $-(6.00$, leaving the balance -3.25 for reading.

In the above examples I have selected cases from all the different forms of error, and with practiee with the lenses from the trial ease no diffieulty should be experienced in fitting Presbyopia, no matter what error of refaeticn it is combined with : for it must be borne clearly in mind that no correction for Preyhyopia is attempted until any existing error of refraction is corrected, and with this correction on ail cases becomes Einmetropic and subject to the same calculations.

We have stated that the correct lens should be of just sufficient strength to restore the near point to eight inches, but it inust not be inferred from this that t. reading distance is eight inches. If care is taken in using the reading eard; eight inches is the nearest point it is possible to focus an object by the use of all the accommodation and the lens
prescribed combined, but not more than one-half the accommodation can be used continuously, so that in relaxing this amount the reading distance would recede th abo'st 14 inches, which would give the best results.

Overcorrecting in Presbyopia is not, only bad optonetry, but bad business, as the struin on the convergence is positively harmful, and the loss of revenue entailed by supplying glasses powerful cnough to correct the Presbyopia for the next five years, instead of requiring them to be exchanged for stronger ones every year or two, is certainly a poor business transaction.

EXCEPTIONS TO EIGHT INCHES AS AN ABSOLUTE RULE. The selection of eight inches as being the point beyond which a recession of near point shall constitute Presbyopia, is a point upon which many opticians differ.

In practice it will have to lie considered as being the best distance that experience could select, but not be adhered to invariably, as in measuring the near point, and supplying ghasses that will restore it to eight inches, we do not calculate upon the Presbyope holding the type at such a close point, but nssume that he will relax at lenst onc-half of his accommontation, thins receding the type to the generally acceptable reading distance of $14^{\prime \prime}$ or 16

Por instance, on measuring we find near point ten inches, thins indicating amplitude of 4.00 D . and Presbyopin of 1.00 D ., and on sapplying a glass of this strength the near point is brokglt to eight inches by the use of all the accommolation (+.00 D. and +1.00 spherical lens), but upon msing only half the total necommodation (2.00 b .) combined with the Preshyopic correction, we lave a total of 3.00 D ., and foensing of course 1:3".

But in advanced are, where we have fomm amplitule is not more than abont 1.00 D), if we supply 400 D . aecording to rule to restore P'. P. we eight inches, the relaxation of even the total amplitude wombly not enalle us to fuens clearly outwile ten inches, eonserpently with a Presbyope advamed in life, and amplitude of acemmodation passed twow ?. 00 b. it is not
advisable tc fit strictly up to the rulc, but undercorrect at least 1.00 D .

While the ability to accommmodate for $8^{\prime \prime}$ would establish the absence of Presbyopia, and would be sufficient reason for refusing to prescribe glasses for near work, under ordinary conditions, exceptional cases will be found in which the patient, while perfectly able to accommodate momentarily to this distance, is unequal to the strain of accommodating for twice the distance continuously, and consequently such people, if engaged in any pursuit in which their eyes arc directed to close points a greater part of their time, will suffer from eye strain and will require glasses, as if actually Presbyopic. Cases of this kind are usually the result of illness or general debility.

Those whose occupation demands that the type be held at a greater distance than $14^{\prime \prime}$ or $16^{\prime \prime}$, such as preachers and pmblic speakers, when notes are used which usually rest on a pulpit or table at least $20^{\prime \prime}$ or $24^{\prime \prime}$ removed from the ejes, would find it utterly impossible to sce at this distance if Preshyopic and corrected b g lenses up to x ", as they would be unable to relax sufficient acceonmodation.

The usual practice is to have the notes typewritten or manuscript, in which the characters are sutficiently large as to form the necessary visual angle at the distance at which they are used, and to supply an undercorrection for the Presbyopia.

Glasses supplied for this purpose will, of course, be unsuited for the ordinary reathing distance, for which parpose a second pair will be required.
(iLAUCOMA - ITS RESEMBI.ANCE TO PRESBYOPIA. Glancoma is a fatal disense whieh frequently attacks the eyes of people in middle life, and as it appears about the Preshyopie age, and is characterized by certain symptoms resembling those of Presbyopia, it is sometmes confounded with it by young opticians.

Glaucoma is a condition in which the drainage system, cabled the filtration angle, is by some means stopped up, and
the secretion of aqueous humor contained in the eye-ball becomes overcharged and a condition of extreme tension exists, which, unless speedily relieved by surgical treatment, results in the total loss of vision.

One of the prominent symptoms of Glatucoma is loss of accommolation, as seen in the necessity for increased strength of reading glnsses, and in this it resembles Presbyopia, but while in Presbyopia the loss is gradual mad slow, requiring about 1.00 D. every five years, in Glaucoma it frequently requires this much in as many months.

Rapid increase then in Presbyopia is to be looked upon with suspicion. With a little experience the optician can learn to recognize between normal and abnormal tension. The normal eye, when pressure is exerted upon it, will "give," hut the Glaucomatous eye will be hard and firm, and when this conlition is present, together with the necessity for rapid increase in strength of realing glass, the case should be referred to the oculist.

In concluding the lecture on Presbyopia, 1 wonld remind the young and uspiring optician that, althongh it is apparently the simplest form of eye error met with, it is a great mistake to treat it carelessly. Imperfectly corrected Preslyyopia will proluce equally disastrous results as those of any other form of error improperly fitted, and as the Presbyopic cases are hy far the most numerous, the chances of error in the aggregate nre proportionately large.

METHOD OF TESTING.

LECTURE No. 8.

Presuming that the student clenrly understands the principles as laid down in the previous lectures, he will experience little difficulty in applying them to the correction of defectise sight, which is the "Be all and end nll" of optical instruction.

There are two distinct inethods of testing the vision, Subjective and Objective.

The first of these includes all systems of measuring the refraction by meuns of questions applied to the patient, by which dingnosis is based upon the information received, while in the Olijective method the knowledge is based upon phenomenia presented to the observer's eye, without any aid from the patient. There are, of course, various instruments in use in operating under either methol, but the trial case constitutes the final test in all cases, and it is this methol, therefore, that will be discussed here.

For this purpose a trial case is neccessalry, containing plus and mimus lenses, both cylindrical and spherical, and a trial frane to place them in position before the vision.

The patient is seated at twenty feet distance from the trial card, which should hang vertically at right angles to the line of vision.
"Tis well for the young optician to cultivate a habit of observation in regard to the external symptoms of "eye error." The fill, prominent eye, pushed rather forward int " prominence by reason of its abnormal length, may indicate Myopia. If, in addition, the patient habitually holds objects close to his eyes to distinguish them, and in looking at distant objects partially closing the eyes in the attempt to secure better vision, possibility becomes certainty.

A small, deep sumken eye, accompanied by a complaint of inability to sustain near vision for any considerable length of time, betokens Hyperop; \imath, while the Astigmat often possesses
the sane want of symmetry in his features that interfere so seriously with vision when found on the Cornea.

The manner also in which the test card is read frequently affords a fair index to the error of refraction, especially Astigınatisın.

The Myopic vision is, of course, below normal, and no effort at his command can improve it one iota. He, therefore, reads down to a certain point readily and correctly, but no effort can proluce any improvement. The Hyperope, however, hesitates frequently, and exerts a supreme effort of the accommorlation to decipher some letters inore intricate than others, but the Astiginat plunges through recklessly, hesitating at nothing, but miscalling several of the letters, and occasionally holding his hea ' sideways to bring into use some particular meridian more cor et in its refraction.

These are mere landmarks, however, to guide us in a pre1: Ary survey, and it is not to be supposed that they take the "the optician's "Theodolite and chain"-the trial set and by which correct distances and calculations are obtained. ieneral success in refraction work is only to be obtained b) stematic effort and close attention to detail, nothing must In sen if "rranted," everything must be proved. sligh ariation of the well-known legal axiom will afford a: rul. work by, viz., "Consider every patient guilty of H_{y} it il proved immocent"

1 juir practice by classifying your cases under two diathet als, "Those who require glasses because they cannot ser, anm thuse who reguire them because they cannot rest."

This really means the two great chasses of eye patients, Asthenopic and non-Asthenopic. In the latter case they have plonded along without glasses as long us sufficient vision is present to enable them to perform their accustomed vocations, sometimes thinking they are discriminated against by Nature in not possensing the normal amount of vision, or, at least, having less than their friends, but in other instances not realizing that they are any lifferent to the rest of mankind.

These cases are simple, as the landmarks are so plain that the merest tyro would stumble on something that would improve vision, even though he possessed little knowlerlge or experience Everything that will inprove vision is a correetion to him. He knows nothing of $20 / 20$. He is easily sutisfied, provided he secs better than before.

The Asthenope, however, is frequently a hypochondriae. He is constantly suffering from a form of nervous trouble, his temper is affected more than his vision, and he is hard to please, because his very condition makes him distrustful of his fellow men, and he is compelled to take his ghasses on trust. I mean he trusts that they will help him. The effect is not instan. taneously effeetive as in the other elass. His sight is probably perfect alrealy, and any benetieial effeet to he derived must neeessarily be the work of time, and will depend upon his faithfuhess in wearing the correction. I need searcely say, that in these eases no amount of error should be considerel too small for correction, partieularly in regard to Astigmatism.

A carcful comparison of Asthenopic cases establishes the fact that the amount of diseomfort is in the opposite degree to the anount of error, that is, the smaller the error the greater the Asthenopia, and a noted English oculist, who has been highly suceessful in treating Asthenopic eases, elaims to have found that the worst eases of discomfort were caused by one quarter dioptre of Astigmatism, and were wholly relieved by the applieation of the neeessary cylinder.

The optician, therefore, who begins his professional eareer by disregrarding low Astigmatism as too insigniticant to notiee, throws away the more lucrative part of his practiee, and is doomed to failure as a refractionist.

We begin by asking our subject to read the letters on the card, noting carefully any that may be misealled, but in no ease prompting him, as they afford exeellent material on which to watch the effect oi our efforts at correction.

If $20 / 20$ is read, Myopia is excluded, and the case is either Eminetropia or Hyperopia, and the former is excluded by the acceptance of a plus glass.

If, therefore, he reads $20 / 20$ without any lens, and a +.25 splerical placed in front of this lowers vision, Emmetropia is assured, but if with it he sees equally well as without, Hyperopia is proved, to correct which we have merely to increase the strength to the strangest convex spherienl lens with whieh he can see as distinctly as with the naked eye, this glass would at once be the ineasure and the eorrection for the Hyperopin.

It will be seen from the above that Hyperopin does not necessarily lower the vision, as in youth, while the amplitude of accommodation is sufficient to correet the error and lenve enough for use at nearer distanees, no defeet of vision is noticed, and the enquiry for ghasses is with a view to relieving the Asthenopin, which is generally present under the manatural use of the Cilinary muscle.

The method of correction is the same in either case, the only difference is in detail, as in the young Hyperope vision is perfeet withont glasses. We therefore do not look for improvement, hut supply the strongest plus glass that will still maintain $\geq 0,20$ vision. In the case of the older patient the vision is below normal, because the aceommodation is insufticient to correct the Hyperopie error, and the vision has first to be restored to 20/20 by a plus lens, and the strongest number supplied that this vision ean be maintained with, otherwise distant vision is being maintained partially at the expense of the aecommodation, which is partieularly what has to be guarded against.

If vision is below normat and is rendered worse by a convex grlass (weak), we try the effeet of a weak eoncave, and if improvement is notieed, Myopia is assured, and in its correetion we apply concave spherical ghasses of inerensed strength, notieing particularly that each succeeding glass gives better vision than the preceding number.

Just here is where the young optician is apt to err in deeiding just what constitutes mproved vision and unless the
following rule in this matter is rigidly idthered to, failure is imminent. "A ghass am only be said to improve vision when with it the patient can real some letters on the trial card that were miscalled or confused without it."

The paticnt's statement of "tint is better" is to be disregarded, and the strength increased only when the previous one has given improvement accorinior to the foregoing rule.

The eorrection, therefore, for Myopia is the wakest minus ghass that gives the bust vision.

If vision is low, and ncither plas nor mimes sphericals give any improvement, or at best, but partially rentorr the vision, we would place in a trial frame the strongest plas or the weakest minus sphere that secmed the greatest amomet of vision, and direct the patient to look at the Astigmatic: Chart, and lecide if all the radinting lines are eqmally distinct mad thack, or if there we some that are more conspicuons for their distinctness.

If the hatter is the conse, on locating the brightest one we direct the attention exclusively to the one at right angles to it, which, of conrse, is dim and indistinct.

Holding a weak plus sphere in front of the ryc, we empuire if it renders this set of limes clearer or more dim. If the former, Hyperopic Astigmatism is present, and we select a convex cylinder of sufficient strength, so phacel in the trial frame that its axis is parallel to the hlurred lines, which will render all lines alike.

An overcorrection is proved by the finct that the lines which without the glass are the most indistince are with it the clearest seen. If a convex sphere renders the blurred line still more dim, we assume Myopic Astigmatism is the cause, and apply a minus cylinder, with axis corresponding to the dimly seen lines, or at, right angles to the brightest section, and the correct strength would the indicated by the fact that all lines were seen alike.

Each eye is tested separately, of course, the eyc not under examination being covered thy the back dise from the trial case.

Having examined each eye, both eyes are uncovered, and if the correetion is perfect, and no Amblyopin is present, vision will be rentored to 20,20 .

We next mensure the near point with the distant correction on, and if this is found to be within right or nine inches the glasses are suitable for all distances, near and far, but if it lie further removed thon this distance Presbyopia is indicated, and additional ghsses me nceessary for rending purposes only.

The amoment necessary to ald to the distment glasses to correct Presbyopin is calculated by the following method:

With the distant glasses on we measure the near point with the reading cad and tape line. This distance, divided into forty and subtracted from five, will be the npproximate correction required. This is to be added, ol eourse, to spherical power of distant correction.

These wonhl be suitable for reading purposes only, the weaker pair being nccessary for distance.

The above rule is based upon the assumption that it is desirable to restore the near print to eight inches.

There are, of course, occasions, such as with prenchers and public spenkers, in which 11 genter distance for nem vision is desired, when it will be necessary to supply n weaker correetion, giving poorer vision at close range, but better at longer distance.

An excellent methorl of refracting young persons, when necommorkation is likely to beactive and interfere with accurate diagnosis, is by menns of what is known as the "forging sy:stem." This method is based mpon the well-known fact thint Myopes do not suffer from cilingy spasm, and the nccommodation is usually dormant.

The fogring system consists merely in making every case Myopic by overcorrection with plus spheres, and working backwirds with minus spheres over it until a correction is reacherl. This phan, to give the best results, must be correctly used, ami not, as is sometimes done, by removing the lens that eatuses the overcorrection ind substit:iting weaker ones, as ench time the
glass is removed the nccommodation is unrestrained and trouble will ensue. Either minus lenses should be used over the plus fogging lens, gradually increasing their strength until a correction is renched, or, if the fogging lens is clunged for a weaker one, the latter must be in place lefore the former is removed.

In young Hyperopes, considernble more of the error is manifested by this method thon were wenk plus sipheres used and gradually increased up to a correction.

PRESCRIPTIONS-WRITING AND RECORDING. It would ahmost seem as if nothing could be said upon the simple matter of copying on to the bhaks providel the necessmy data renarding the description of ghasses and frmmer repuired.
"Tis a fact, nevertheless, that a linge percentage of the prescriptions received by dispensary houses are more or less defective.

It is not at all an umcommon occurrence to receive prescriptions without any signature attached, and the only means of itlentification being the post-mark and the hand-writing, and as many opticians use printed envelopes supplied by dispeusary houses, and the post-marks are usually inelligible, these waifs and strays accummate in prescription houses a hasting monument to the ignorance and carelessuess of the refracting optician.

Omissions of sign or axis to the cylinder render the prescription useless, and the preseription clerk is freguently left to gucss at the material of frnmes.

If scientitic diagnosis and accurate frame fitting are essential to suecess in optometry, correct preseription writing and recording is scarcely of less importance, and there can be little hope of success where prescriptions are not recorded and carelessly written so that their meaning has to be surmised.

Some form of record book for reeording each case in detail and a book of prescription forms is necessary.

The record should contnin all the particulars of eneh case, the age, family history, symptums, visual acuity. with and without glasses, the corrction, and a copy of the preseription furnished and the price charged.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

\qquad
SYMPTOMS. \qquad

METEROPMORIA \qquad PRESEYOPIA

RETINOSCOPY

		SPH.	CYL.	AXIS	PRISM	BASE
$\underset{\Sigma}{\pi}$	H					
	L					
$\underset{\frac{k}{2}}{k}$	R					
	L					

CAT						
WO STYLE OF FRAYE	EYE	PD	$N H$	CREST	BASE	SPECIAL

REMARKS \qquad

Cunces - \qquad
Fig. 19.
Ophthalmic Record Book.
Designed by the author.

All subsequent changes and modifications, and the reasons for making them, should be noted, and, particularly wherc Prcsbyopic corrections are made, the date of any changes should show on the recorl.
ln writing prescriptions, if possible, use the printed forms provided, and write only one prescription oll cach form, and do not write anything else on it. Never mix letters and stock orders all in one communication.

If splerical lenses only are required, fill out the space provided for them, with the strength wanted, prefixing the algebraic sign to show whether convex or concavc, also state size of eye and whether rimmed or rimless.

If cylinders are wanted, the space set apart for them should be filled out and the degree of the axis given. The same applies to splero-cylinders, and in case prisms are wanted, in the plain or in combination, cach space sloould be filled out, without the use of ditto marks.

If frames are required, it is best to quote catalogue number whenever possible, as this indicates material, quality, and style in the shortest possible space.

If a spectacle. give all the neccssary measurements, as shown in the lecture on frane fitting. If eycglasses, it is best to use a fitting set and quote the set number, always giving size of eyc and material in addition.

If rimless are desired, it should be clenrly stated, as it is customary to assmme that rims are wanted, unless instructed to the contrary.

In calculating on size of lenses, bear in mind that rimless lenses are larger than the equivalent number in rimmed, as the latter is the size of inside of cye while the former is that of the outside elgre.

All prescrintions should be numbered and written in duplicatc, for verification in case of dispute, and should contain the name of the patient, dite, and all the necessary particulars,
written as plainly as possible, and the meaning should be made so clear that there can be no two opinions as to what is intencled, and where several prescriptions are mailed at once the signature should be attached to each one.

Fig. 20.

[^0]
FRAMES AND FRAME FITTING.

LECTURE No. 9.
INTRODUCTION.
In the preceding lectures, while treating on the subjeet of lenses, I have shown that the optical centre of a lens is that point at whieh its two surfaces are parallel, and ronsequently the point at whieh light will pass through without undergoing any refraction, and, furthermore, it is the only point of a shperieal lens where this is possible.

The visual axis has been deseribed as a line or ray of light passing from the objeet looked at through the centre of the pupil to the yellow spot.

It is, of necessity, the means by which we know the dircction in whieh the olject is located, as it is in a direetion eorresponding with the visual axis.

If the visual axis undergoes any change of direction before reaching the eye, the position of the object from whieh it proceeds will be apparently ehanred ; this is easily illustrated by viewing an ohjeet through a prism.

The visual axis, in passing from the luminous point to the yellow spot, through the centre of the pupil, ean only deviate from a straight line under the influence of some refracting body, such as a lens.

If glasses are worn then, they have, in addition to their function as a correction of any error of refration, the added power of affecting the apparent locality of the object looked at.

If, as has been shown, the optieal centre is the only point of a spherieal lens that will not refract a may of light, and that light, in passing through all other points, is refracted towards the thickest part, and the visual axis being mothing more nor
less 'han a ray of light, it necessarily follows that, unless the optical centre of the lens exnctly corresponds to the centre of the pupil, the visual axis will be deviated from its straight conrse in passing through the lens, and, instead of impinging upon the yellow spot, will reach some other section of the retina, the consequence of which would, theoretically at least, be Diplopia, or, avoiding this liy a constant contraction of one of the motor muscles, the result would inevitably be muscular Asthenopia, a condition probably far more intolerable than that which the glasses were designed to relieve.

It is important, then, that the lenses should be so phaced before the eye that the optical centres of the eye and the lens exactly coincide.

There are two ways in which the want c! coincidence could be brought about, viz., by reason of a decentered liens or by an ill-fitting frame.

In the present lecture, I propose to discuss the question of frame proportion or disproportion, and will leave the question of lenses to a subsequent lecture.

There are two distinct types of frame used as a means of holding the correcting lenses in position, the Spcctacle and Eyeglass.

PART 1.

SPECTACLES, AND HOW TO ADAPT THEM.

The spectacle frame, from a purely scientific point of view, as a means of sccuring the desired position of lenses, with the least amount of inconvenience and discomfort, is certainly the ideal contrivance. Unfortunately, the traditions associnted with the wearing of spectacles are objectionable to many, esprcially the members of the fior sex, as being formerly associated only with Preshyopia, or old sight-they are an unwelcome reminder that we are no longer as young as we once were. Hence, it is difficult to prevail npon young people to wear them.

It is advisuole, however, in all cases where the features are not adapted to the comfortable wearing of eyeglasses, to endeavor to supply spectaeles.

The various parts of a spectacle are temples, bridge, ejes, end pieces, screws and dowells.

The temples are the pieces that extend along each side of the head, and hold the frame in position.

FIG. 21.
Riding Bow.

Fig. 22.
Straight Temple.
There are two distinct types of temples, Riding and Straight, the former being of fine wire, eurved to hook around the ear, and the latter of stiffened, heary wire, usually halfround, which is eurved to fit closely to the head, but are not hooked, as in the riding temple.

The Cable temple is a modern, improved form of riding temple, and is constructed of a fine coil or spiral, which is slipped over the usual fine wire of the riding temple, thus giving it more substance and, therefore, less liability to cut, while, at the same time, possessing more elasticity.

The Half-riding temple is a compromise between the

strong wire and fitted closely to the head, and the ends being slightly hooked, so as to engage the ears, and thus hold them in position.

A standard R. B. ©emple is 6 inches in length, laid out straight.

A standard Straight temple is $5^{5}!_{2}^{2}$ inches in lengrth.
The Bridge is the connecting link between the two eyes, and it is the most important part of the frame, as, by means of it, the frame is adapted to varions sizes and shapes.

Flg. 23.
Four of the Leading Styles of Spectacle Bridges.
No. 1, "K : " No. 2, "X: " No. B, Common (C) ; No. 4, Saddle (SS).
There are many styles of bridges--Siddle, Snake, Hoop, Areh, Common, "X," "K," etc., but the saddle (SS) and the Common (C) are the only two forms in common use.

The saldle bridge is always supplied with a riding temple frame, and the straight temple is usually fitted with a "C" bridge.

The advantage of the "SS" bridge over the "C" lies in the fact that the former ean be adapted to various dimensions without materially altering the shape of the areh of the bridge.

The hoop britge is used where the distance between the eyes is small, and the nose is broall and requires all the space possible between the lenses.

The " X " bridge is reversible, being used either way, and its only use is in connection with lenses supplied after an operation for cataract, where one eye only is of use, and requires n distance and a reading lens.

The " X " frame is supplied with the distance eorreetion in one eye and the realing lens in the other, so that the wearer, in using his eje for distance, has his distance lens in front of the good eye, and, in elose work, he merely has to turu his frames upside down, bringing the reading lens into position.

The " K " bridge is a modifieation of the " \boldsymbol{X}," and the Snake, of the Saddle.

The saddle bridge is composed of tive areh or erest, by which is meant the hooped eentre section that conforms to the contour of the nose, and the legs or extremities ly whieh adjustments are made.

The eyes are the oval seetions of grooved wire to contain the lenses.

Eyes are of various sizes, No. 1 being the standard size, and the larger sizes being numbered 0,00 and 000 , while the smaller sizes are 2,3 and 4 .

The eyes are usually oval in shape, hut oceasionally are made round for slooting, when a large, vertienl range of vision is wanted, and horse-shoe eye, for use with colored lenses for protection from strong light.

Half eyes are supplied for presbyopie correetions, enabling the wearer to look over the frames for distant vision, and through them for near work. This form of frame is ealled "A Clerical," from the fact that they were first lesigned for preachers who required a correetion for preshyopia in reading their texts or notes, and desired to be rid of it when looking at their congregatior

The end pieee, or joint, is the name given to the small bloek of metal at the outside end of the eye, and containing the screw or dowell, and into which the temple is jointeri.

The screw is for the purpose of opening the eyes to admit the lens, and, when screwed up, to hold it in place.

The dowell is the technical name for the rivet that holds the temples attached to the end piece.

Spectacleware is usmally constructed of steel, alumnico (a nickel alloy), gold filled and solid gold.

Gold is the idenl metal, us it possesses springiness and life to a higher degree than any other inetal.

Gold tilled, as now constructed, furnishes an excellent substitute for solid gold, possessing the color and finish, but lacking in the elasticity.

Steel is capable of a high temper, giving the necessary spring, but its usefulness is impaired by its liability to rust.

Almmnico and all nickel alloys furnish a fine-looking, noncorrosive frame, but they are always soft, and easily lose their slape.

The sane deseription and terms apply to rimless spectacles as I have already given above.

Fiti, 24.
Rimless Spectacle Mountings.
Having decided that the correction is to be supplied in the form of spectacles, it remains for the operator to see that the frame selected possesses the necessitry dimensions to bring the lenses into the proper position in relation to the lines of vision.

In order to secure a scientifically correct adjustment, and at the same time pernit of the highest degree of comfort to the
wearer, the spectacle frame manst coincide in its varions measurements to that of the fince it is designed to fit.

The facial measurements are as follows:
Pupilary Distance (P. D.) heing the distance lefween the centres of the two pupils. Nose height, bemg the clevation of the ridge of the nose above the horizontal line which passes through the centres of the pupils, the thickness of the nose at hase, and the temple width or distance through the heal at the temples. To coincide with these facial dimensions we huve similar terms referring to frame construction.

A spectacle frame is measured for pupilary width-distance from centre of right eyc to contre of left eye. Height of bridge-distance of inside of crest above pupilary line. Base width-distance across the inside of the arch. Position of crestthe po.ition of top of areh in relation to the phane of the lenses and temple width-the distance between open temples one inch ahove the joint.

In masuring a spectacle frame a chart constructed for the purpose is necessary, which by placing the frame upon it we sec at a glance the varions dimensions according to the scale accompanying it.

The position of cres! cannot be measured of if. it and his to be estimated, but it is but a simple matter it a few weeks practice will enable the novice to calculat. 1 . nicety the exact position, merely by looking across the fron Inoticing if the crest projects forward or backward of t . of the lenses, and culculating the distance in sixteent meters

It must be remembered that in this, as well as cat tion for height of bridge, that the lower surface of bridge, $4!$ th. nose will rest when the frame is in position, is th. reckon from.

The following diagram will explain the method of inem ing a spectacle frame :

F1G. 20.
In measuring a spectacle the frame must le true, or false measurements will result

TO MFASURI THF PCPHAARY WIDTH. Place the frame on the chart with the right end of left eye (that is the point at which the bridge is soldered exactly over the " X " that marks the intersection of the circle, the oval, and the horizontal line and the I'. D. will be indicated by the figures at the right-hand end of right eye at the point where the end piece is sollered to it.

The figures above the line are in sixteenth inches, and in millimeters below the line.

THI: HEICHT OF BRIDGF is shown by placing the frame on the chart with the horizontal hine running throngh the centre of each end piece, and the bridge resting upon the vertical scale. The figures to the right being in sixteenth inches ant those to the left in millimeters."

In adapting a speetacle frame to the face the following points are to be considered: The distance batween the eentres of the two eyes of the frome is to exactly coineide with the distanee between the pupils of the person who is to wear it. This is ealled the Pupilary Distanee, commonly abbreviated P. D. The height of the bridge is to be just suffieient to ullow the frame to rest at suel a height that the eyes looking straight to the front look through the centre. If the distance between the centres of the frame be $2!$ inches, and the pationt's P. D. is but $2 l$ inehes, it will be apparent that the centres of the lenses witl be, eath one, It inches farther apart than the pupils of the patient, eonsequently, in wearing a frame of this proportion, the patient would be looking through the lenses If inehes from the centres, and, if the lenses were 4.00 D . in strength, this would
be "funl to a prism of ubont I! degrees, n con lition which the eyc could not tolerate for my length of time.

From this it will be noticed that there are fon ways of decentering by menns of a mistit frome:

A fmome which is too widle in the l. I), one that is too narrow, and when the bidge is too high, and when it is too low.

It mast be borne in mind that a bridge that is ton high has the effect of throwing the lenses tox low, and when the britge is low the lenses will be high.

Ry ohserving, then, the question of P. I). and nose height, we can seenre perfect fitting in regnyl to centers, but, in mblition to this, we lase other considerntions but little less is: porthat.

The position of the lenses, in regn to their distance from the comea, depends entirely upon the position of the crest on top of the hridge as compared with the plane of lenses.

Fic: $2 f$.

FII: 27.

The methorl of adjusting the lenses to the necessary distance demanded by the prominence of the eyehall and length of hashes.

In Fig. 2i, the eyes are deep-set, as usually is the case in Hyperopia, and the bridge is set out from plane of lenses, allowing the lenses to set in close.

In Fig. 27, the eveball is prominent, as generally found in Myopia, and the bridge crcst is set leehind plane of lenses, thus throwing the lenses clear of the lashes.

The ideal position to have the lenses, from a purely seientific point of view, would be touching the comea, hut, as this is an impossibility, the next best place is as near as we con phace them, without coming in contret with the pye laties.

A spectacle frame will have to be constructed according to the prominence of the eyeball and the length of the eye lashes.

A full, prominent eye and long lash will necessitate the crest being adjusted back of the plane of lenses, in order to throw the lenses frrther away, while the small, deep-sunken eye, with its overhanging brow, will refuire the bridge set forward, to allow the lenses to set in elose.

Bear in mind you cannot, with comfort, change the location on the nose where the frame will rest, as nature provided a suitable spot for this purpose at the junction of the nose with the brow, consequently any scheme calculated to alter the proximity of the lenses to the iace must necessarily imply an alteration of the plane of the lenses in relation to the crests of the bridge.

To bring the lense "loser to the face, the crest must be forward; to throw the lenses away from the lashes, the crest must be backward.

A frame which is enrrectly centered, and the crest adjusted to the right position, will insure perfect results optically, but there are other points, which are almost as important, in relation to the comfort of the wearer, which is, after all, the grand object of the correction, and in no particular can a perfect correction be so easily marred as by carelessness in adapting the base width of the bridge to the size and shape of the nose.

A spectacle frame that is supported in its entire weight at one point, and that point the sensitive bone of the nose, will surely be uncomfortable, and is positively unsightly, likewise a nose, that is 洝 inches in thickness at its base, which is forced into the bridge of a spectacle frame $3 / 4$ inches in width, is a sore spot to the wearer, and is bound to prove one to him who fitted it, also.

The bridge should conform to the shape of the nose, and the weight eonsequently divided over all the wearing surface, instead of concentrated is: one spot.

The next point to notice is the temple width, that is, the distance between the temple of frame where they rest against the side of the head.

If they are so narrow as to cut into the flesh like a wrinkle, they will be uncomfortable and unsatisfactory, and if they are so wide that a clear space on each side of the head intervenes between it and the temples, the frame will he very unsteady. The ideal frame just touches the temples, but loos not press.

The temple width can be easily adjusted ly filing the small stop-piece on the end of the temple, thus allowing it to incline outward to the required anount.

Riding temples should be curled to conform to the curvature of the var, in order to distribute the pressure, just as in the case of the bridge.

Straight temples are held in place merely by the pressure they exert on the head, and, consequently, are unsuited for rimless work.

The modern spectacle bridge is constructed of a broad band, the under surface of which, instead of being flat is convex, so tl.at it is adaptable for noses of various inclinations. Occasionally exceptional cases will be found in which the sharp edge of the bridge rests on the nose, instead of the convexed surface; the result, of course, will be an uncomfortable frame, and, possibly, abrasion of the skin. This difficulty can be obviaterl, in a measure, by bending the bridge back and up when the loweredge cuts, and down and forwarl in case the upper edge is pressing on the nose.

Of course but slight adaptation can be made in this way, without materially altering the height of the bridge and position of the crest, so that it may be necessary to order a frame especially constructed with the bridge at the required angle. Almost any alteration can be made successfully, provided n frame is selcetcd that will permit of the change in height and position and still be of the required dimensions.

An ingenious method of cstimating the angle of the bridge has been designed by Mr. Jerry Britton, of Montreal. of which an illustration is given below.

Fig. 28.
The prescription form on which the correction is written is hel. 1 in a vertical position beside the face of the patient, and a small optician's rule is placed on the paper, but projecting over the front edge and adjusted parallel to the nose. A line drawn on the paper along the edge of the rule will necessarily be at the same angle with the edge of the paper as the nose of the patient is with his face.

Several instrmments for the purpose of securingr faeial measurements have been invented and marketed, hut they are generally unsatisfactory. The trial frames accompanying the trial case are graluated with a view to showing the varions dimensions, but the eyes of this frame being large, it is impossible to say when the patient is looking exactly throurh the centres, and any mechanical contrivance, even although giving measurements fairly correct, usually produce a fiane having
the appearance of a "rcady-made," unless the opticinn possesses considerable experience, and is able to supply almost by instinct some of the minor details.

The common-sense method is that of measuring a face for a spectacle frame with a spectacle frame, and for eyemlasses with an eyerlass. For this purpose fitting sets are arranged containing from one to four dozen frames, ench one being difierent in some of its measurements to that of any other contained in the set.

A firimy complete set is composed of three dozen, and are of the most convenient form in ordinary steel frames, fitted with 'ralf riding temples and glazed with plano lenses, and marked with crossed lines intersecting at the centres and having the P. D. nose height, position of crest, and base width etched upon the lenses.

Fig. 29.
Set of Fiting Spectacles.

With this set it is a simple matter to select a frame that is of correct proportions, and we have merely to copy from the etching on the lenses the dimensions of the frame reguired. In out of the wa, measurements it may occasionally he found impossible to find all the measurements desired by means of one frame, but in this event several may be uscd, selecting one for P. D., another for nose height, etc.

While No. 1 is the standard size of eye, it is well to study cosmetical effect, and supply 0 or 00 eye where the face is large, even although the P. D. may be quite ordinary.

Not merely is it imperative that the modern optician should be able to select a frame of the proper dinensions, but it will often be necessary, when time is an object, to adapt a frame of certain dimensions to a face requiring slightly different ones.

For instance, where a frame of $2 \frac{1}{2}$ P. D., $\frac{1}{8}$ height, 7^{18} forward with 3 base is required, and the nearest at hand is $2 \nmid x x_{4}^{1} \times 1_{1}^{1} \times \frac{3}{4}$, and no time is allowed to have a frame made, the competent optician should be able quickly to adapt it to the required dimensions, without disturbing the shape and fit of bridge, by merely bending the legs of the bridge outward, thus increasing the distance between centres.

In a like manner the P. D. can be reduced by bending the legs inward, and the base width increased by spreading the arch, but the last operation would at the same time increase the P.D., which can be again reduced by means of the legs of the saddle.

But little change can be made in the position of crest, as in bending it backward or forward the edge, instead of the broad, flat surface, wruld rest on the nose, causing disconfort and abrasions.

So, likewise, a thor egh understanding of the theory of frame fitting would enable the optician to straighten and true up a frame that is resting in an improper position upon the face.

Occasionally cases are met with in which the eyes are not located at equal distances on each side of the nosc, in which event one leg of the saddle will have to be longer than the other,
in order to bring each lens accurately before each pupil. Bony projections and inalformations of the nose will also have to be dealt with in the same way, making one side of the arch a different curvature to the opposite side as the case inay require.

A spectacle which is tilted up at one side so that one eye is higher thin the other is usually faulty in the temples, which will be found not parallel. A right temple bent upward will drop the right eye lower than the left one. A frame in which one lens is closer to the eye than the other will be also inperfect in the temples. Exanination will usually show that the teniple on the eye that rests too closely does not open as wide as on the other side, and the difficulty is removed by filing the stop piece on end of temple until both temples are set back to the same cxtent.

The uncomfortable pressure of the riding temples on the back of the ear is usually the result of the temples being curled up too short, or a faulty curve of the hook, which should conform to the shape of the ear.

The substitution of a cable temple will sometimes be advisable. A sharp bend in the temple will always give trouble.

In supplying riding temples, care should be used, not only in adapting them in their curvature to the shape of the had and ear, but that they be just of sufficient length to pass around the ear and have the ball at the end rest in the space behind the lobe, and, in cases where the distance to the ear is abmomally long, so that the ball of the temple does not reach to the refinired point, a longer temple should be smpplied, either $61 / 2$ inches or $\overline{7}$ inches, and, when this distance is musually short, a 5 inch or i) $1 / 2$ inch temple should be used.

Where frames are intended for reading purposes only, it is necessary to have the P. D. slightly less than for distance, and the height of hridge greater. thus bringing the lenses closer together and lower, to confonm to the changed p .sition of the eyes in reading.

It is sometimes advisable to supply angular joints to reading frames, thus throwing the lower edge of lenses in elose to the eyes, preventing the wearer from looking molerneath them.

Grab Fronts or Grabs are sometimes used insteal of bitoeals when correetions for Hyperopia and Presbyopia are worn.

They are in the form of a regular speetale front, with hooks at each end for the purpose of attaehing them to the front of the spectaele eontaining the distance correction.

The Grabs of course are fittel with the Presbyopia eorreetion only, so that when in position the strengih of the two pairs are combined.

Fig. 30.
Grab Front.
A eareful attention to details in frame fitting will greatly assist in the achievement of generally satisliactory results in refraction work, as being instrumental in carrying out seientifieally the intentions embodied in the prescription.

A well fitted frame constitntes a lasting advertisement of eompeteney. as everyone ean see it and know whether it fits and whether or not it is beeoming in style.

In fact the correct and comfortable fit of the frame is every bit as important as the correetness of the diagnosis of the error of refinetion.

PART 11.

EYE GLASSES, AND HOW TO FIT THEM.

Eyeglasses to the optician, if he be but imperfectly equipped in knowledge, stock and appliances, are a genuine "bugaboo," and he ahmost comes to dread the anpearance of a
comely femate for eye examination lest she demants eyeghases, irrespective of her nasal channs to recognition.

Many opticians spend half their tinn convineing their customers of the necessity of ghases, mod the other half persuading them not to wear eyeglasses.

This is not as it should be, and is one of the evils growing out of our "short term sehools." as the time is so limited that the student devotes his enercries to the teemiealities of refraction work, looking with disdain upon the apparently simple matters of distance and adjustment incidental to facial fitting.

The fact is, that the correct and harmonions fitting of eycglasses is just as much an art, and as such, has to be learned, as the correction of errors of refraction is of scienee, and the student too often looses sight of the fact that his efforts at frame fitting and adjusting will, to a eertain extent, make or mar his refraction work.

The problem to be faced at the outset is just this: the wearing of spectacles has been for solong associated with the advance of old age that young and attractive females, whose stock in trade consists largely in youthfulness and grood looks, are not going to submit trany such badge of old ate as a pair of spectacles.

Fic. 31.
Fox Fyeglass. The most popular style of modern eveglass.
If you expect to attain to more than mediocrity, then you must attack the eyeglass question, and until you can adjust them to any face that can retain this form of spectacleware, you must not consider yourself a master workman in eyeglass fitting.

A thorough familiarity with the names and uses of the various parts composing an eyeglass is absolutely necessary.

The parts are handle, blocks, eyes, stud or post, guard, spring, serew and hanger.

The guard is the most important part of the eyeglass, as upon it depends the chinging powers of the frane. The stud is the small post to whieh the guards are attached. The spring comnects the two eyes, and is made in several shapes, which are usually distinguished by the catalogue number, but the higharched form is eommonly called a "hoop," while the low spread shape is called "square." A spring eurved forward in the centre is known as a Greeian, while those bent suldenly forward at the posts are "tilted." "Reduced" is the name given to those in whieh the centre is narrower than the ends.

The studs are made of different lengths to secure different P.D. measurements, and are numbered A, B, C, D and E, B being standard, and the sueceeding letters representing $1 \mathrm{~m} / \mathrm{m}$ extension. An "A" post is an abnormally short post for use where very narrow pupilary width is wanted.

The handle on the modern eyeglass is a small neat ring, just large enough to receive the cord.

The law of first importance is the law of gravity. You cannot aehieve any success it jou have your guards do the gripping below the centre of criavit j, as the dead weight of the frames and lenses will topple them over on the most perfect nose.

The gnards should do all their work above their own centre, the lower half merely resting agrinst the side of the nose to maintain the frames straight and rigid.

Another objectionable result of a neglect to do this is seen in the appearance of wrinkles down the nove and face continuons in line of contact of the guards.

It is searcely necessary to state that wrinkles are no more acceptable than spectacles.

Eycrlasses camot he fittel on paper. You may take the facial dimensions very accurately, P.D., thickness of nose at base and erest, and height of nose, and the result may easily be a perfect misfit, as your figures make no calculation on the bony malformations which all noses, especially Astigmatic cases, arr subjert to.

F11. . 32.
1\%eglass loitling Set.
105

Fig. 33.
Complete set of Adjusting Pliers, by which it is possible to convert a Frame from one measurement to another, and also necessary in truing up Eyeglasses and Spectacles.

 Pointed lliers for aljusting Sprong, Bridge, or Conards. Eatid-Komnd Nost Plers allapted for the shanks of Bridges. Sifos Stud lliers for grasping the losts of Rimless liyeglass while adjustuents are made. Sinx-Screw Fixtractor for removing rusty screws. nänt-(inard lliers for curving and straightening (;uards. Bin orming lliers for truing Spectacle Joints. initi-Soldering lliers for holding parts of Spectacles together while being sollered.

A perfect titting eyergss is only possible ly menns of an assortment combining all the leading styles of guard, spring and post, and even with this eqnipment the optician mast be an mept in the nse of the pliers. Gmards are nsmally convexed on their grippingr surfnee, hut there are many noses that require the surfinces concuve, and in most instanees when this is nocessury the eurven vary on each surface, and the iruard must be adajter accordingly.
de it is neeessary to effect the ervipping almost entirely above the centre of gund, the more if lit ean be distributed over the whole length the greater comfon, he less liability to complain. The renson of this is evident, as the greater the surface to spread the pressure over the grenter the power th staud it.

This is one of the reasons why on eyeghas in which the posts are set above the pupilary line are usually more confortable than those of the regular pattern post which are set lower. The higher the posts aro set the greater the amount of the guard that is above the centre of gravity, and consequently the more mripping surface available on them, thus making the pressure less severe and fit more secure.

Never attempt to fit an empty frame, as anyone can wear an eyeglass in this condition if the spring is strong enough. You can neither tell whether the guards are of sueh a form that the complete frame will remain secure, nor can you determine accurately the correctness of the position of the lenses in refercuec to the lashes

lig. 34.
Various lengths of Offset l'osts, used for throwing the lenses farther away from the liyes.

The method of setting the lenses at a grenter distance than nsmal is by means of offet posts, but with every millimeter you give to the offeet you are alding to the tendency to fall off, as yon are again interfering with the centre of gravity in another direction, and as the weight of lenses is placed further out from the point of contact of the guards so will the weight be multiplied by the length of the offiset.

In cases of large pupilary width, use large eyes as mueh as possible to seeure the necessary width rather than extension posts, as not merely is the frame more rigid and exempt from vibration, but the post is not as conspicuons in using the eyes for elose reading distances.

In using Greeian springs it is important to cemember that the frames for not spreat ont right and beft exactly in the same plane in which they lie when elosed, but incline always towards the direction in whieh the spring is ourved, consequently in truing ny atlowance mast be marle by having the onter ends of the lens inclining backwards, so that the whole ryeghss deseribes the section of a cirele, and as the lenses are spread, in inljusting to the faee, they assume a correet position with both lonses parallel.
(e of the chief dillicnties in eyergss fitting is the tendency to "coek up" at the outer ends of the lenses.

This may beowing to faulty spring, guards or nose, or all of them combined.

Fic. 35.
Assortment of Springs in common use.

Fig. 35-R-1), R-1, R-2-Different length Square Springs for use on Offset I:yeglasses. $11-6, \mathrm{H}-\mathrm{i}$-Standard Hoop Springs for Offset Eyeglasses. H-0, H-1-Extra long Hoop Springs. R-3, R-4, R 5-Square Springs of standurd and extra length, for use in connection with Stationary Guard 1:yeglasses. A-2, A-1-Standard and Long Spring for adjustable Eyeglasses.

A spring too shiort or too suddenly bent at the post, a guard with the lower ends too close together, or a malformed nose, with uneven bony protnber ince, will always p. oduce this.

From this it will be readily apparent that a "cocked lens" does not necessarily require it longer spring to rectify it. A slight bend of the spring, at the point where it enters the slot of the post, will throw the onter ends of the lenses down. The same effeet can be produced by bending the shank of the graards in such a manner that the lower ends are more widely separated.

It is entirely a matter of experience and judgment to know which operation should be performed, as although eitler method would throw the lenses into eorrect position when on the fice, only the eorreet mathod would have them straight also when not being worn. In short, the spring should he bent or a longer one supplied, when the nose is too thick to permii the glasses to rest in position without uncomfortaible pinching, but the change should be made $i .1$ the shape and position of guard or gruards when the bone of the nose is of umatuial shape and proportions.

The old alage tant " there are othe: ways of killing a cat hesides hanging" is particularly apt as applied to eyegrass fitting, for while the lone of the nose, at a point close to its junction with the frontal lone, is the generally accepted correct position for the guards to wrip, there wre many cases in which there is practically no bore there, or at most a slight ridge or "kopje," which no eyeglass, even with the tenacity of the modern Boer, conld be expentei to hold.

Cases of this mature have to be treated dificrently, the gripping heing done by sectional guards, in which the chinging process has to be done on the loose skin covering the upper section of the nose, with an independent lower section of the guard resting on the bone to maintain the correct position.

If，as frequently happens in cases of this kind，where the bridge of the nose is depressed the forehead is prominent and protruding，provision will have a be made with a Grecian spring，whieh，instead of joining the two lenses in a plane con－ tinuons with that of the lenses deseribe a erescent forward，thus allowing the protruling frontal hone to extend forward of the phane of the lenses．

Neglect of this will mar the best efforts，as，no matter how firmly gripped，the lenses camot nssume an mpright position， and must of necessity topple forwarl．

There exists eonsiderable difference of opmion monir ex－ perts as to whether the best results are to ie obtained with a stiff spring，aljusted so that very little＂spread＂is made in Weming it，or with a light spriag，set chose，so that a large ＂spread＂is used．My own method is with stiff＂springs，set so that rery little bearing down pressure is exe ted mpon the gnards．Thisumboubtedly ensures greater comfort but requires greater exactness in atjustment．

In the matter of style of ermard，no speeitic advice can be given，ass a guard that is perfect for one case may be useless for another，so that the hest gruard is the guard that fits comfortably and holds seeurely in the case for which it is intrentert．

Generally spenking, the best all round guard is the one that will permit of the grentest degree of adjustment. The "Fox" guard is the father of all gruards, and was a great advantage over all previous efforts. Its great weakness is its total want of adjustability. It eannot be adjusted at all.

The Anehor is very similar to the Fox, with the addition of an independent arm fitted with a pad.

This form of gratd is useful in ilshaped and hollow bridged noses, when the gripping has to be done on the skin and the position maintained by an indepe fent pressure on the bone.

One of the results of dufective fitting is the appearance of abrasions at the erripping points.

These usually are the aftermath of shell-faced guards, where eare has not been used to present the rounded surface to the point of contact.

Many optieians make a rule of always using eork faeings in order to avoid these sore spots, but the fuet is, eork faeing will produce sores of greater magnitude than shell, owing to the faet that in hot weather the eork absorbs the perspiration, and the dust adheres to them and remains a constant source of irritation, grinding the skin by constant frietion.

Shell guards, properly fitted, with the sides roundef off and carefully faced so that they do not bear in the flesh, will give perfeet comfort, and will permit of the greatest adaptability.

Some people, in selecting eyeglasses, express a preference for a certain shape of spring, but the experienced optieian will consider the spring as mueh a part of his preseription as the lenses, and use the style best adapted to each case.

The generai appearance can he largely improved or marred by the kind of spring seleeted. The effeet of a large round face ean be considerably toned down by means of a high hoop spring, while the low square spring would exaggerate the lateral proportions of the face i a ridieulous degree.

Long, narrow, actenuated faces can be transmogrified by the use of wide low springs on cyeglasses with prominent handle.

These may seem sinall points, but they are the ear marks of the competent optician.

Considerable trouble is experienced in the use of rimless glasses by people with heavy, overhanging brows and deep set eyes, as, in sctting the lenses close to the lashes, the upper section comes in contact with the brows, and the warmth of the body communicates itself to the lens, which becomes misty.

It can be overcome by making the lenses D shaped instead of oval, the upper edge being the straight line. If a fairly secure fit can be accomplished, it is advisable to supply rimless eyeglasses without handle or chain, as the additional weight is a diserlvantage. A bole bored in the lens and a silk cord affe the greatest protection.

It is, of course, unnecessary to warn Canadian opticians of the ill-effect of folding-up eyeglasses, as this is so well recognized here that eyeglasses are no longer made in this country with the necessary catch for folding. In England, however, they still consider it of more importance to fold the lenses over each other when not in use, in the same manner that their forefathers did, than it is to have lenses that can be seen through.

If you are not as competent in eyeglass fitting as you are in refracting, do not add to your refracting equipment one cent's worth until you have brought yourself, at least, to an equal state of proficiency in fitting.

If you have intentionally slighted this feature of optical training, untler the impression that it was of secondary importance, you cannot undeceive yourself too quickly.

The public may freq: ently be in ignorance as to whether your ghasses have been a perfect correction, but they do not long remain in ignorance of comfort and elegance, or the absence of these essentials in the means you employ to supply your correction.

A STUDY IN LENSES.

A lens has been deseribed as a transparent object so formed that it will reflect light rays.

The refractive power of a lens will depend upon two conditions, the derree of lensity of the material of which it is constructed and the oblignity of the angle of incidence.

A iew years aro spectacle lenses were constructed largely of so-cnlled "pebble" or lceland Spar, as the refractive power, or rather index of refraction, was high and the material was hard, rendering the surface eal le of acepting a very high polish and not easily scratched.

Of late years the guality of the pebble has greatly deteriorated, while that of ghass has equally improved, until to-day practically all the lenses nsed in spectacleware are nade of ghes.

Ass -ming, therofore, that all lenses are made of glass with the same index of refraction, the difference in refraction in the various strengths is a inestion solely of shape, or, technically speaking, cmrature.

Lenses for the corvection of visual errors are either spherical or cylindrical, and are made with their surface either convex or concave.

Spherical lenses are so called because their surfaces are sections of spheres, and are gronnd to the required curvature by means of cast-iron phates, cnlled "shells," which, being turned by means of automatic lathes to the required curvature, are covered with hot pitch, into which the rongrl piece of glass is stuck, and, after cooling and hardening, this shell is attached to a shaft which revolves it sl why, and a second shell, concaved to fit the desired convexity of the ghass to be ground, is attached to a second shaft, and resting on the glasses in the first shell they are, by means of emery sprinkled over them, ground to the enrvature of the grinding shell.

They are afterwads sumothed and polished with tine emery and rouge.

In bi-convex or bi-crancave broth surfuces are equally curved. In plano-convex or concave one surface is flat and the other possesses all the curvatire.

FIrs. 87.
1 Prim. IS Bi-cronsex (IJanr, Concave. I) Bi-concave. Fi-Plano Concave. F-Periscopic Convex. (;-Periscopic Conrive.

Periseropic lensen have a combination of convex and concave curvatures,

In the Periserpie Convex the inner surface eronsiste of a concave curvature, which in tandard Aracrican lensers is always the same 11.251 enrse, no, matter what the strength of the lens, and the front surface eronsex. Consequertly, the: front mirface
 the total refraction of the lena, as thin arnonat is reanired to neutralize the rev.r.mer curvature of the inner surfact:

In Perimentic Concabe Lemen the front surfare: is alway 1.2. renvex, dall the inner -urface ower chrverl to the: wathe

It incelamed fise the Periomepic lenis, which is her form in General uee that it affords a wider field of vi-ion than rither Doublay or Planno.

Lenses, as already stated, are of two kinds, Convex and Concave, and are known by various other names, Positive, Converging, and plas (+) being used to indicatc Convex, and Negative, Diverging and Minus (-) meaning Concave.

In Canada the algebraic signs + and - are generally used prefixed to the number indicating the power of the lens.

For many years lenses were numbered according to the ineh system, by which method the power of a lens was indicated by the number of inches in its focal length, but this method being complicated where mathematical calculations becane necessary as well, owing to the fact that the length of the inch varies in different countries, the metrical system has of late years come into general use.

By this method the refracting power of the lens and not its focal length is indicated by the number used. The unit of the metrical system is 1.00 dioptre. A glass whose foeal length is one meter ($40^{\prime \prime}$) and the fractional parts indieated by . 25.50 . 7 5, just as in the decinal currency.

The proportion berween the refractive power of a lens in dioptres and its focal length in inches is in an inverse ratio, the higher the refraction the smaller the focal length, for instance, 1.00 dioptre equals 40 inches : 2.00 dioptre equals 20 inches.

To measure the strength of a sphcrical lens we require a scleetion of lenses comprising the various numbers in consex and concave.

We must first know whether the lens to be measured is plus or minns. This we ascertain by fixing the eye upon some oljeet amb interposing the lens move it up and down, and it will be noticed that if the lens possesses any refractive power the object will :apparently move as we move the lens.

If the lera, be convex the object will apparently move to the opposite direction to movement of the lens, but if concave the anstion is in the same direction.

We then seleet from the trial case a lens of opposite kind, and placing it over the lens being measured, the movement test is repated, and finally we find a lens which eombined with it
neutralizes all motion in the object viewed. The power of the lens from the trial case will be the strength of the lens under measurement, but of opposite kind, one being plus, the other minus. This is called neutralizing when referring to spherical lenses, and analyaing in reference to compounds.

The size of a spherical tens is necessarily limited by its power, for as the surfaces are sections of eircles it is evident that a lens whose surfaces are sections of a certain sized circle cannot be constructed of a greater diameter than the circle itself, and even then would be too bulky for use.

This feature, of course, will not be apparent in spectacle lenses, as their size is always below the required himit, but in reading and magnifying glasses it will always have to he considered.

Cylindrical lenses, now so extensively used in the correction of Astigmatism, are of comparatively recent invention. As implied by their title, they are of cylindrical form, being ground on a cylindrical shaped shell, just in the same mammer us spherical lenses, with the exception that the motion of the shell in grinding instead of being rotary is lateral.

It must be clearly understood that the refiractive power of a tens depends upon the curvature of the surfaces or the angle at which the surfaces form with each other.

The spherical lens being curved equally in all dircctions as a section of \therefore globe will refract equally in all meridians. The cylinder has, of course, one direction in which no curvature exists, consequently it has no refraction or power in this meridian.

This absence of curvature can be easily illustrated if we observe an ordinary iron columm of a buildirg. It will he seen at a glance thue it has no curvature towards the length of the column.

The cylinder is a glass ground on this column and conseruently identieal with it in form, and in one direction has no curvature whatever.

This plain meridian is called the axis of the cylinder, and all other meridians are curved differently, those nearest the axis slightly, and that at right angles to it possessing the greatest curvature of cll. It is from the curvature of this meridian of greatest magnitude that the cylindrical lens takes its strength. For instance, if a cylindrieal lens is ground upon an iron coluun of $20^{\prime \prime}$ dianeter, the focal length of meridian of greatest curvature would be at $20^{\prime \prime}$, and it would be a 2.00 D . glass. One prineipal meridian would have no curvature and consequently no focus or refraction, and the others of different foci up to $20^{\prime \prime}$-the glass is numbered according to the power of the greatest meridian.

Cylinders are either plano or compound. In the former cone surface is plano or flat, and the other cylindrical.

In compound or sphero-cylindrical, the one surface is spherical in shape, the other cylindrical. It is thus a combination of these two forms of lenses.

To neutralize a plano-cylinder we have first fo locate the direction of its axis. This we can do by means of the motion test referred to in neutralizing spherieals.

The objeet moving the same direction as the lens indicates coneave and the opposite convex, and no motion at all indicates no refraction.

So, if the object viewed moves with the motion of the lens refraction is proved, and we inerely rotate the lens in our fingers while continuing the motion test, and if the motion continues the sane in all meridians it is spherical, but if in one direction there is no motion the glass is cylindrieal, and the direetion of "no motion" will be its axis.

It will be readily apparent that a sphero-eylindrical lens will produce motion in all direetions, owing to the presence of the sphere in its eomposition, but as the speed of the motion will be greater the stronger the lens, consequently in the direction of the greatest power of the eylinder (that is, at right angles to its axis) the motion will be greatest.

A simpler plan is to fix the eye upon a straight line (a window sash will serve the purpose), and interposing the lens to be measured rotate in front of the rye. If spherical the line will remain straight while the glass is rotated, but if eylindrical it will rotate with the glass.

The line, as seen above and below the glass, will be eontinuous with the section seen through the glass only when the line is parallel or at right angles to the axis of the cylinder. In all other positions the line will be apparently broken at the boundaries of the glass.

Having located, by this method, the two prineipal meridians, and marked then with an ink line, we have merely to neutralize the motion with the trial lenses in these two directions.

The least amount being the power of the splaerieal lens, while the difference in power in the two prineipal meridians will represent the strength of the cyliader, while the degree of its axis is located by means of a protractor, showing the different degrees of the eircle.

Fic. 38.
Protractor for locating Axis of Cylinder.
The power of a lens ean be quickly measured by means of lens gauges which indieate upon a dial the degree of convexity or coneavity of their surfaces.

Prismatic lenses have no foeus, and consiquently are not used in correcting errors of refraction. The power of a prism
consists in apparently changing the position of the object looked at, and as the mincles are nsed for the purpose of directing the eyes to the object when they are defertive, and perform these functions with difficulty, we preseribe prisms to bring the oljeet to where the eyes can le directed with comfort instenl of undergoing the discomfort of bringing the eyes to the objeet.

It will be very evilent, therefore, that if the muscles being defective, and the act of direeting the eyes to the olject being an operation involving pain and discomfort, and which is relieved hy the use of the prism bringing the olject to a pont of rest, that if the mnscular condition is normal and a prism be placed before the eyes, displacing the olyect, it will necessitate a constant effort on the part of one of the muscles to keep the eye directed to the now position.

We have already described a prism as a three-sided figure consisting of two sides, a base and an apex, the two sides inclining together and forming an angle at the apex, and that light in passing through refrates towards the ase or thickest part.

It is merely the fact of difference in thickness that produces the refration. Any transparent snbstance of different density to the atmosphere will eause refraction if in one place it is thicker than in others, a convex lens being thicker in its centre, light refracts towards this point, while in the concave it refracts away from the centre.

A spherieal lens then, if so placed that its optical centre (the thickest part, if eonvex) is not in front of the centre of the pupil, will in addition to its function as a spherical glass, with power to magnify or diminish, posseses that of a prism, and will change the direction of the light rays, passing into the eyes in such a manner that the object will appar to change its position until the muscles are brought into operation and once more restore it.

Spherical lenses are sohl in stock fuantities, and are grated in price, presumably necording to quality. All the varions qualities are ground from the snme stock, the first ipulity of finest lens being the survival of the fittest. Scratches, chips and imperfections in shape, edge or centre, furnishing the reason for consigning them to the various inferior grades.

The most serions defect, and the one least conspicious to the inexpert, is the imperfectly centering or decentred lenses, a condition in which the optical centre is not in the middle of the lens. The optician who prescribes a lens of this kind for Hyperopia is condemming his patient to carry the burden of a prism regardless of his muscular condition.

Spherical lenses are sold in stock fuantities, and are male interchangeable in size in order that they may be mounted in interclangreable franes.

In ordering edged lenses, unless special size is mentioned, it is always assumed that No. 1 is reguired, and orders are filled accordinly, without question.

It should be clearly understood that while the same methorl of indicating the rizes of rimless lenses is used, that the sizes do not coincide, as a one-eye rimbess lens is the size of the outsine of a rim of a one-eye finme, while the one-eye edged lens is necessarily the size of the insine of the rim.

DIMENSIONS OF INTERCHANGEABLE LENSES.

No.

1	Standard			-		36.5 x 27 $\mathrm{T}^{\text {5 }} 111 \mathrm{~m}$:37x28 m/m	
0		size	argre			37.8×28.8	"	$3 \times 5 \times 29$	
00	2	"		"	"	39.7×30.7	"	4) $\times 31$	
000	3	"	\%	"	"	40.9×31.9	"	+1x:30	
2	$!$		smaller	"	"	35 x	"	3 3xz:	

Fig. 89.

Lenses for rimless phrposes are usmally selected from somewhat thicker stock than edged lenses, in orker to insure greater benring surface on the serews.

Rimless ghases are extensively worn, owing to the fact that they are inconspicuous, and lariner lenses man be used than is possible with rimmed grools, thus giving a larger tield to vision withont destroying the proportion essentinl to perfeet cosmetic effeet.

Lenses are innde of colored ghass, either smoke, blue or pink, for the relief of Photophobin. These are male in six slumles, mmbering from No. 1, which is the lightest, to No. 15, the durkest.

In smoke tint a special dark shade called "electric " is male for use in connection with electric lighting plants, or oechpations where a very strong light is neeessnry.

Lenticula: Lenses are of recent invention, and are imade cither in coneave or convex. In the convex form they consist of a cireuhar plano convex dise, of the regnired strengtl, and of about ? s inch dimmeter, cemented on a plano lens: while in the eoncave a plain slab of ghass is used, of ahont one-half the thiekness required to grind the lens required in the ordinary form. In the centre of the glass a ciremar eoncave dise is ground of the required curvature.

Lenticular Lenses are, of eourse, only mbantageous when they are of strong power, sueh as for cataract, or high myopia. They are very light in weight and neat in appearanee. The central part of this lens-that is, the disc-is, of course, the only part that possesses the requisite moment of eurvature, but as in the ordinary lens, when the curvature is spread over the whole surfree of the lens, the periphery is useless owing to aberration, so that this eurtailime of the field is not 14 disadvantage pecular to the Lenticular Lenses.

Bi-focal L is are constructed with $n:$:ew of affording the advantages of perfect adaptation of one glass for near and far work.

They are of four distinct types, Solid, Split, Perfcetion and Cement.

These four are alike in principle, but different in d ais In all of them the lower portion of the lens, through which tha: light rays from near oljects must pass in entering the eyc, is of stronger refractive pover than the upper part, through which distant objects are viewcd. Solid Bi-focals are constructed of one piece, which is tirst ground to the power necessary for rading and ner \cdot work. The lens is then attached to the shell, and the upper section grourd to the curvature required for distance. The prismatic effect introluced in grinding the upper scction to the refraction repuired is so great as to destroy th-ir usefuhess. The slape of the reading section, whieh is an inverted crascent, is also inconvenient.

The Split Bi-focal consists of the half of a complete glass, suitable for reading, combined with half of the distance glass. While not as objectionable as the solid form, they are by no means a satisfactory lens, and have fallen into disuse.

Cemented Bi-fucals are the most common form of double rision glasses, and are made by cementing onio the lower section of the distance glass a thin wafer, possessing the necessary additional power for reading. This wafer is usually made crescent shaped, but can be made to any desirn requised. Canada Balsam is used in cementing, and the prismatic feature is avoided by decentring the wafer a like amount in the opposite direction, one prism thus neutralizing the other:

The only objection to this form is their linbility to blister, that is, the wafer becomes slightly detached with a sudden jar, and ahs: the air between the two surfaces, and interferes witin the ..nsparency. They are, however, easily repaired.

Bi-focal Lenses. 1 Split. 2-Cemented. 3-Perfection.
As the cement bi-focal has become a staple article among opticians, a brief leseription of the methorl of making and repairing will be useful and interesting.

In making a new lens, the main lens of the required strength for distance is eut to the proper size, but not irround (edged). The wafer, of the strength nemessary to increase the power of the distance glass to the strength required for reading, is placed on top of it with one drop of Canada Balsam between them. With a pair of blunt tweezers, the two pieces are held in the flame of an alcohol lamp or Bunsen burner until the cement boils freely. In cooling off, the wafer is aljusted in place, and the air bubbles squeezed out, and the whole is edged to the required size, and the surplus cement clemed off in methylated spirits.

It will; of course, be readily apparent that, in orter to effect an invisible joint between the two surfaces, they must be exactly eorresponding carvature, in order that they may closely attached.

In Periscopic Convex Lenses, the inner circle is always - 1.25, so that the wafers are necessarily + 1.2.).

In Cylindrical Bi-focals, one surface is plano, and consequently requires a wafer with a plain surface.

In Sphero-Cylindrical Bi-focals, the wafer has to be specially ground to fit the curvature of cach glass. This will necount for the large cost of the latter as sompared with the former.

In repairing Cemented Bi-focals, the lenses are warmed in the flame, and the wafer pushed off, and both sections thoroughly cleansed in alcohol, and recemented as in the case of a new lens.

Care must be used in cementing on the proper side.
Perfection Bi-focals are made from two distinct lenses, one adapted for distance and the other for reading.

From the lower half of the distance lens a crescent-shaped section is cut out and the edge ground smooth, and a corresponding piece cut from the centre of the reading glass is fitted to it.

These two latter forms of Bi-focals give good results, and are perfectly satisfactory.

The general objection to Bi-focals is, that in going upstairs the eycs are turned down to see the position of each step, which is located probably four or five feet away, but the lower seetion of the glass is alapted for reading distance (say 16 inches), and consequently the stairs are indistinctly seen, and the wearer is liable to stumble. This, while a disadvantare, is very much less so than that of having to constantly change one's grlass for distance to reading, and can be casily overcome by learning to use the stairs without looking at them.

The Coquille Lens is usually a smoke or blue-tinted glass curved to the form of a shell, from which fact it takes its name. They are worn as a protection from the sun or snow, and are made in two ways.

The ordinary Cofuille, such as is commonly sold for the purpose, is a chcap affair in which the pieces of glass are pressed up while hot, and consequently are full of optical imperfections.

The ground Coyuille is mate from a thiek block of glasis in which the shape is formed by grinding. Their expense prevents their coming into general use.

Shooting Lenses (Diaphram Lenses) consist of either white or colored lenses in which a circular dise of about tive-eights of an inch in diameter is left transparent, the remainder of the lens being frosted.

These lenses, as the name implies, are used for target shooting, for the purpose of curtailing the field of vision and thus enabling the marksman to concentrate his sight upon the target.

Toric Lenses are of reeent invention, and their cost has hitherto prevented their general use.

They embody the optical principles of a sphero-cylinder, but the whole of the compouni curvature is ground upon one surface. A slice cut from a wedding ring would illustrate the from of a convex Toric Lens.

Cross Cylinders, now so little used, unite in one lens two cylinders with their sxes at right angles.

Preseriptions calling for Cross Cylinders are usually reduced to their sphero-cylin!rical equivalent, which are made lower in priee and afforl the same refraction.

Cross Cyhinders are reduced according to the following rulc : U ie a spherical of the same power as a plus cylinder in the combination, with which combine a minus eylinder, whose power is the sum of the two cylinders, having its axis plased the same as the minus cylinder in the origimal eross cylinder. Thus, the following Cross Cylinder +1.00 C . axis $90=-2.00 \mathrm{~S}$. axis 1 so reluced $=+1.60 \mathrm{~S} .=-3.00 \mathrm{C}$ axis 180 . These ean also be redueed by sulstituting a minus sphere and continuing with a plas cylinder the power of which is the suat of the two original cylinders, the axis the same as the plus, cylinder.

In this methorl, the foregoing example would reduce to the following sphero-cyiinder: - . $00=+3.00$ axis 90 .

Sphero-Cylindrical eombinations are of three forms $+=$ + . $-=-$, and $+=-$. When the sphere and cylinder are of the same sign that is, $+=+$ or, $-=-$, it is already in its simplest form, and no reluction is possible: but when $+\infty$ -, or, - -+ is met with, unless the cylindrical power is greater than that of the sphere, the formula is not in its simplest form and will reduce to $+=+$,or, $-こ-$, whichever kind the spherieal is.

A formula of this kind will reduce by the following rule: Subtract the cylindrical form from the spherical, which will
give the correct spherical power with the same sign as the original sphere. Combine with this the original cylinder with sign rad axis changed, thus: +1.00 S . $=-.50$ Cyl. axis 180 is subject to rednction by this rule $+1.00-.50$ equals +.50 O +.50 axis 90 .

The following three rules will, if thoroughly understood, enable the optician to solve the most complicated problen in reduction.

1. Plus and minus cylindricals of the same strength, and axis thie sante degree, neutralize each other, thus: +.50 C. axis $180 \simeq-.50$ axis $180=$ plano.
2. T'wo cylinders of the same strength and kind, and axis at sane degree, double their power, example: +1.00 C . axis 180 $=+1.00 \mathrm{C}$. axis $180=+2.00 \mathrm{C}$. axis 180 .
3. Cross Cylinters of the same kind and strength equal a spherical of the same strength and kind, example: +1.00 C . axis $90=+1.00$ C. axis $180=+1.00 \mathrm{sph}$.

RETINOSCOPY.

THE SHADOW TEST)

Retinoscopy is the methorl of diagnosing errors of refinction by means of light reflected into the eyc, by which the various conditions of Ametropia are indicated by a different appearance and motion of light and shatow effect as the mirror is rotated.

Retinoscopy has bcen so simplitied of hate years, and its vaine becoming better appreciated, it has at iength become the most popular form of objective test.

Retinoscopy has come into general use by opticians hecause its successful practice, while regniring high mechanical skill, demands little or no scientitic knowledge. It is not even necessary to understand the scientific principles nuderlying it, if one can quickly recognize a rapidly-moving shadow, and remember that moving in a certain lirection indicates Hyperopia and in the opposite direction Myopia.

As a means of arriving at detinite rosults with illiterate peop:e and chidren, it is unequalled, and in discerning the presence of spasm. withont the aid of a mydriatic, it is invaluidble.

Another point in which it appeats to the rank and file is in the matter of expense, as it is possible to conduct experiment.s in Retinoscopy, and to arrive at a fair state of proficiency, nt an outlay of five or six dollars, and, as it is more of an art than a science, but little instruction is necessary, as expertness comes from practice not preaching.

The Retinoscope consists of a circular mirror from $\frac{3}{4}$ inches to $1!$ inches in diameter mounted in a metal rim and having a handle attached.

In the centre of the mirror the silser is rmoved, leaving a round peep hole of 2 or $3 \mathrm{~m} / \mathrm{m}$ in diameter. The mirror may be pither that or concave, hut as i'e former has come into general use it will be sufficient to diseuss that form only.

Thorington's Retinoseope, which has become quite popular reeently, consists of a cireular 3_{4}^{3} inch mirror, mounted on a metal back 1! inehes in dismeter, thus griving the alvantage of the small mirror in the interests of scientific cxactness and the convenience of the large dise, which more casily adapts to the eye in operating, as its edge can rest agrainst the side of the nose and thus steady it.

The small mirror, while more difficult to manipulate in the case of a begimer, gives much hetter results when one becomes expert.

The handle, of rubber or ivory, is jointed for covenience in packing, and the sight hole is now usually made by removing the silver instead of perforating the grass.

Fil: 41.
Hand Retinoscope, with plane mirror.
In the practice of Retinoseopy, in addlition to the mirror, a properly arranged light, and lenses for measuring the error are necessary, as well as some form of dark room.

The room should be entircly darkened and the light-of which an argand burner with oll or a Wellsbach gras light are the best-so arranged that it can easily be adjusted to the lesired position.

Fig. 12.
Bracket suitable for oil or gas, and capable of universal adjustment.

The flame should be enclosed in an asbestos chimney, constructed with a circular apperture capable of adjustment-either by means of a series of variated holes or by the use of a diaphram shutter. The light should be phaced about six inches to the left front of the operator, and the patient seated forty inches away directly in front, and it is important that the observer's eye, the patient's eye and the light be at exactly the same elevation, so that the control of the illumination becomes much easier. This can be done by means of the adjustable bracket referred to and the use of adjustable clevating chairs for patient or operator, or both.

The patient should be cautioned not to look direetly at the mirror, but just past the head of the examiner into the darkness, thus avoiding a natural tendency to accommodation in looking at a near object.

It is advisable to have the trial frames in position, and a plus lens, suffieiently strong to fog all accommodation, before the eye not under examination. Having arranged the patient
at 1 metre distance as co fortably is possible, to avoid my movement during the examination, the light is bronght down into position as close as possible on the left front, and the Retinoscope, heh in the right hand, is placed in front of the right eye, pressed up tirhtly urainst the brow and nose to hold it stendy, and the light from the opening in the chimey, shining neross in front of the observer's left eye, strikes the mirror and is reflected back and illmminates the face of the patient with a bright, round spot, everything else being entirely dark.

If the mirror is now slowly tilted back and forwards in a horizontal phane, the illmmination on the patient's thee will move in accordance with the direction in which the mirror is facing. As the rotation is from right to left, the illmmination takes the same direction: and likewise when the mirror is moved from left to right the movement of the illumination is the sams. The small patel of light moving aeross the face and aromed the romm, and always followed by the darkness as it is moved from place to place, and the darkness, or "shadow," as it is termed, always rushing in hehind and moving in the same direction to take the place of the spot just vacated by the light.

The principal point to note in this preliminary observation is that what is commonly known as the "shadow" is merely the bondary of the light, and as the light changes its position sthe mirror is tilted, this boundary between light and darkness moves in relation to it and alway; follows the light, and consequently always moves in the same direction as the mirror is tilted.

Now, in directing the motion of the mirror so that the illmmination falls alirectly upon the pupilary aren, it penetrates the interior of the eye and lights up the retian so that a bright red glow (the Fundus) is discerned, and contiming the motion of the mirror the illumination passes out of the eye and the " slandow " or darkness takes its place.

It is the manner in which this shadow tapes possession of the spaces in the eye just vacated by the light IF it we gather all on: information in Retinoscop;

In Hypropia the movement of the shadow upon the retim is the same as on the wall on across the face - nlways following the direction of hight; hut in Hyopia the motion is in the opposite direction. Thus, if the mirror is rotated from right to left across the lace and, falling on the papil. illominates the retina nul eontinuiner passes across it, and the shadow still follows in the same direction across the rotimatal face, Hyperopia would he indicaterl

If, however, mon the illmmination lalling on the eye the shatow moves neross from the opposite direction, Hyopin is present.
'The method of' measurement is simple, an we have merely to place the conrerting lenses in front of the eye matil the motion is nelutralizen. The safor plan is, if the motion is in the same direction as the mimor, to phace in the trial frame a phas hens just strong enough to profher the reverse motion and subtract | dioptre from it, thas griving the exat correction.

If the motion is aranst the miror, a eoncave lens will be necessary, and the strength ascertained in the snme mamer.

T'o this lens, when making examinations at one metre, must always be added $a-1.00$ D. to compensate for the distance, as the conditions deseribed are natural to intinity, but examination at that distance is impossible, owing to the minuteness of the phenomena presented.

In examinations, therefore, at one motre, moless the infass which nentralized the motion is erreater than +1.001). Hyperopia would not be present, and if this ghass be exactly +1.001). Emnetropia, and if +50 M yopia of ! dioptre would he shown.

The movement of the mirror should be as slow as possible, in order to allow the best "pportunity of seeing the motion of the shadow.

This motion will be found to rary in speed accorling to the degree of error, being slower for high amounts and becoming more rapid as a correction is approached.

Astigmatism is inticated by the fact that in tilting the mirror in different meridians the motion is greater in one than.
in others, also when the tilting does not correspond to one of the principal meridians the motion of the shadow will be found to be in a different plane to that of the mirror, and will take an oblique direction towards one of the principal meridians.

The edges of the illumination will als presint a different apparance in Astigmatism to that of other forms of Ametropin, as in Hyperopia and Myopia the illmmination is circular, and the boundaries present a crescent-shaped picture, while in Astigmatism the illumination presents more the apparance of a broad band of light with straight edges, the long direction being the meridian of Astigmatism.

Fic. 44.
The band of light as seen in Astigmatism.
In the diagnosis of Astignatism with the Retinoscope it is necessary to locate the principal meridians by means of the oblique movement of the shadow referred to, or by the straight edge of the illumination, and neutralize the motion by lenses in these two ineridians only.

If one principal meridian (say 45) already shows no motion, proving it Emmetropic, or, more correctly speaking, if it requires just +1.00 s. to neutralize motion which after allowing - 1.00 for the 1 metre distance would show Emmetropia, while the opposite meridian requires +3.00 to neutralize, we would have the following formula: $+1.00 \mathrm{~s} .=+2.00 \mathrm{c}$ axis $4.5=-1.00 \mathrm{~s}$. equals +2.00 e axis 45 , showing simple Hyperopic Astignatism.

If in both meridians the motion is with the mirror, and above +1.00 D . is required to neutralize the least error, it would indicate Compound Hyperopic Astigmatísm.

The same: methorl of dianoosis wonhl apply to Simple and Compound Myopic Astigmatinan The meridian of least error being correctenl by a spherical of the dusired strengrth, und the opponite meridinu by a cyliwder, the strength of which is always the difference: in error latween the wo principal meridians.

Mixad Astignatisun in present when the movement is with the mirror in one priacipal meridian and requires more than a 1.00 D. to nentrahize it, and is anginst the mirror in the opposite meridian.

The two meridians are located as in every other form of Astigmatiom, and the error in hyperopic meridian corrected by a convex sphere, which, while it corrects the hyperopic meridinn increases the error in the myopic mevidian, which is afterwards corrected by a minus cylinder with its axis located at the hyperopic meridim.

It is also possible to diagnose each meridian separately by correcting the hyperopic error with a convex cylinder with its axis in myopic meridian and power sufficient to neutralize the motion of shadow, and diagnose and correct myopic meridian in n similar manner by the aid of concase cylinder axis in the hyperopic meridian.

This torm of correction wouhl catl for cerse cylinders, which are little ased and are usually redneed to their sphero-cylindrical equivalent, which would be the formula arrived at by the methol of first illustration.

One of the difficulties incidental to Retinoscopy in the simple form described is in the application of the trial lenses to ascertain the anount of error, as being seated at I metre distance from the patient, the examiner has to rise and discontinue his examination with each change of lensus, and to the novice it is like beginning over again to lose the "reflex" after once having secured a clear view

Several contrivances have leen put in practice for crintaining the lenses in a handy form so as to remove the necessity for this interruption. A hand skiascope is sometimes used,
which comsint in mutul or woolen fianm with a handle, mal containing a 小ombla row of lenses ronve \& in onn row moll comcave in the other which the patient bohly in fromt of his
 in Dyopia, mat shiting the fratme up or down :s directed the

III: li
Haml ikinsoone, for use in commection with the Retinotcope.
A somewhat similar Novior is atso nserd mometel upon a stand and containime the honses in a whel, which is revolved in front of the patient's ey ly mems of a rext hed bex the exmminer.

THE (:ENEV A RETINOSCOPE Ovoremmes the diftirulties pertaniner to dation mall Skinseope, as the metal tube through which the patient hooks is a perfect dark roon, and thr Skiascope whel contains all the lenses mecessury to the varions comections. This instromont is fully desmiberl in mather chapter.

The Axomemeter is a useful infunct for giving the degree of the principal menthams in Astighmotism. It consists of a bhate dise with a cireabre apertare abont the siac of the iris, and having a white line drawn throng the rentre from one point on the ciremference to a point opposite and terminating in all arrow point.

The Axomometor is placed in the trial frame in fromt of the eje maler examimation, aml in Astigmatism is revolved until

Iremplar Astigmatiam prestuts appearnaces which ane smbehat romfining to the mevire, bont what is ralle. the

 with by dark spots, and the patehes betwern them shew metion, is marions dirertions.

The "seiswer mosemente" is the name given to the metion of the bamla of light which umber the tiltime momoment of the

 diagnosis of thin form of amer.

Comical (iornen is tolw reconneal by the indication of high Mypi: in the centre of the commen and lessening rapilly towards the e.lige, where in most rases motion with the birror is fonnt.

In berimang the pratice of Retinosedpy the student shoubl nse a Schematio Eye constrneted of metal or candbord, and prearnting all the uppearances of the hmann eyo molur examination.

The Schematic Eye is lomed of two tobers teleseoping into each other, the rear end of one containing a lithograph picture of the retina and the front end of the other contaming a ful comex lens, to represent the comen, the other two ends being opron. Along the onter surface of the inner tube a seate: is placed marked zero in the centre and reading both wass in dioptres. When the tubes arr so idjusted that the rear emb of contside tube is at zero on the scale the eye is set at Emmetropia anl in examinimg with the Retinoscopeall the phenomena of an Emmetropic eye are presenterl.

By sliding the tubes in farther the varion amounts of Hyperopia are secured, and pulling then ont Myopia isprodnced.

Fig. 46
Schematic Eye, for practicing Retinoscopy.
In the practice of Retinoscopy no difficulty will be experienced, with the great majority of cases which present themseives, in securing an accurate diagnosis without the use of any mydriatic, provided the eye not under examination is fogged with a strong convex lens, although the best results of fogging are only to be secured in some such coutrivance as the Geneva Retinoscope, when the eye under examination is in darkness and the one carrying the forging lens is in the light.

OPHTHALMOSCOPY

Fig. 47
Loring Ophthalmoscope.
There are two distinct uses to which the Ophthalmoscope is put : to measure the refraction, and for the purpose of examining the pathologieal condition of the eye and its many parts.

Previous to discussing the methods employed in the use of the Ophthalinoscope as a refracting instrument, I would state that I do not eonsider it at all adapted to the use of the optieian for this purpose, as it is difficult to master, and even in the hands of an expert the results are only approximate and ean be much more quickly and aceurately seeured by the Retinoscope.

There are two methods of measuring the refraction with the Ophtlialinometer, the direet and the inlireet inethod. In the indirect method the light should be plaeed beside and slightly behind the eye under examination, in order that the eye itself may be in darkness, and the light falling upon the mirror in the hand of the operator, who is seated about two feet from the patient, and holding the Ophthalmoscope dirmetly in front of the patient, before and elose to his own eye, reat is buek the light into the eye of the patient, and looking through the sight-hole is thus able to view the interior of the eye, whieh is no longer a dark chamber but brightly illuminated, and the pink background of the retina elearly visible.

Fig. 48
Ophthalmoscopic examination by direct method.
We now look lior the optic dise, and not the yellow spot as many beginners imagine. Having located the dise, which in Emmetropia is round, und has the appearance of a pale moon anong fiery clouds, we interpose the convex lens, which accompanies the instrument, which, being held between the thumb and the forefinger of the hand not in use, is brought down in the line of vision, and at about its own focal length from the patient's cye. Upon seeing the disc clearly through the lens, we move it-the lens-backwards noll forwards, closer to and farther from the eye.

Fig. 49
Ophthalmoscopic examination by indirect method.
If the cye is Emmetropic the size and shape of the dise will remain the same, no matter where the lens is hell.

In Hyperopia the dise appears larger than in Emmetropia, but diminishes in size as the lens is withdrawn.

Rapid diminution denotes high degree and slight change low degree.

In Simple Hyperopic Astigmatism the dise diminishes in onc principal meridian, but remains stationary in the other. The meridinn of Astigmatism is, of course, indicated by the direction in which the change occurs.

In Compound Hyperopic Astigınaisun the disc diminishes in all meridians, but in one more thin in the opposite. The meridian of greatest error is indicated by the direction of greatest motion.

In Myopia the dise is smaller than in Emmetropia, but increases in all meridians as the lens is withdrawn. Rapid increase indicates High Myopia In Simple Myopie Astiginatism the disc increases in the direction of the Astignation only, while in the opposite ineritian its size remains fixed.

In Compound Myopic Astigmatism the dise increases in all meridians, but in the meridian of grentest error the increase is more rapid than in the opposite one.

In Mixed Astigmatism, one meridian increases while the other decreases.

Now, if the above method of dingnosis is clearly understood, the means of correction will suggrest itself.

In Hyperopia the dise is seen to decrease under the motion of the lens, so that we have merely to bring the necessary plus glass in the Ophthalmoscope in front of the sight-hole to stop all change in the size of the disc, and the glass is the measure of the Hyperopia.

The same results are obtained in Myopia by the use of a minus sphere. In Simple Astigmatism the degree of error can be estimated by the strength of the lens necessary to neutralize motion in the direction at right angles to that in which there is no motion.

In Compound Astigınatisn the meridian of least error is measured first, and the glass required to do this represents the spherical power of the correcting formula, while the cylinder is represented by the glass necessary to correct meridian of greatest error, or, more strictly speaking, the amonnt left uncorrected by the glass that correeted the meridians of least error.

In Mixed Astignatism it will reguire a plus glass to correct one meridian and a minus lens in the reverse.

By the direct method the operator is seated in tront of patient with his right eye oppositc the right eye of the patient when examining that eye, and his left eye ofposite the patient's left eye, when that eye is under examination.

With the Ophthalmoscope in position, and at a distance of about ten or twelve inches, the fundus is located, and then the cye is approached as closely as possible. The closest distance at which the fundus can usually be seen is about two inches from the observer's eyc.

If the observer, being Emmetropic, or rendered so, looks through the sight-hole and sees the fundus distinctly, the patient is either Hyperopic or Emmetropic, and upon turning on a weak plus glass. if the fundus is scen less distinctly Emmetropia is proved, but if it is equally or more distinct, Hyperopia is proved, and the strongest plus glass with which it ean be scen distinctly is the measure of the Hyperopia.

If the observer cannot sce the fundus clearly it is usually Myopia, and the weakest concave glass that renders it perfectly distinct is the measure of the error.

Astigmatism is reeognized by the fact that the retinal vessels, which branch out in all directions like the lines on the astigmatic chart, are more clearly scen in one meridian than others.

If the vessels in the vertical meridian are seen distinctly through the weakest convex glass, while the horizontal vessels are rendered indistinet by it, there is Hyperopic Astigmatism in the horizontal meridian, and the axis of the correcting cylinder would be vertical.

If the vessels in the vertical meridian can be seen through a convex glass of certain strength, and those of the horizontal meridian through a stronger one, it indicates Compound Astigmatism The greatest error being horizontal, the axis will be vertical.

Myopic Astigmatism is diagnosed in the same manner, but with the substitution of a minus lens for a plus.

In the Mixed Astigınatism none of the vessels are seen distinctly, and require a plus glass to render them distinct in one meridian and a minus in the other. In correcting, the axis of cylinder wonld, of course, be at right angles to the meridian they are designed to correct.

It will be seen from what we have stated above that the measurement of the refraction by means of the Ophthalmoscope is theoretically a simple matter and easy of understanding, but unfortunately in actual practice it is entirely the reverse. In fact, as an instrument for the optician's use its value is practically destroyed by the fact that without the use of atropine no reliable results are obtainable. By the indirect method not only do we find the results impaired by the aecomnodation of the patient, but that of the observer lends an added degree of nincertainty to what is already little more than guess work. We can, therefore, consider this method of measuring the refraction generally unsatisfactory, under the best of conditions, but in the case of opticians with limited practice, and without the use of atropine, entirely unreliable and unsatisfactory.

A knowledge of the foregoing facts has probably been largely instrumental in deterring opticians generally from learning and practieing the use of the Ophthalmoscope, as its uselessness as a refracting instrument seens to have prevented many from appreciating its value as a means to acquiring general knowledge regarding the symptoms of health and disease, which are an open book to the ophthalmoscopist, whether doctor or optician.

I an not advising in favor of the optician prescribing for diseased conditions of the cye, but I desire on the contrary to
have hin by his knowledge of diseases to avoid prescribing, not merely for disense, but in prescrihing glasses at all for an eye in a diseased condition.

By the term disease I refer, of course, to pathological conditions, not errors of refraction.

By the use of the Ophthalnoscope for this purpose we learn to detect a condition indicating disease in just the same manner ns the dealer in precions stones decides upon the value of gens, simply by means of comparison. By con'raued practice in examining stones of the highest value he learns to recogmize the condition of color, fire and eutting that constitute the highest type of gem, and the ophthalnoscopist, by continuous practice in the examination of eyes of healhy normal conditions, learns to know their general appearance, and consequently is able to recognize an abnormal condition when it presents itself.

There is onc important feature as an indication of health or disense which the ophthalmoscopist attuehes great importance to, viz., the color and appearance of the retina and optic disc, and the difficulty lies largely in deciding just when the slight blurring has passed the border of health and entered that of disease. Just as the jeweler finds it difficult to state when a stone is of perfect color and when a defect of this kind brings it under the heading of " off eolor:"

It will be seen that the line of denarkation between health and disease is as faint as the division between the east and the west.

Basing our judgment upon the color of the interior of the eyc, it is important to know that this color depends upon conditions other than that of health and disease.

The color of the hair and the connplexion vary largely, and we are affected by the amount and color of the pigment, and it is, of course, but matural to expect this same variation in the complexion of the retina, so that while a rosy pink tint is a general indication of health, and a departure from this appearance an indieation of diseasc, this statement is subjeet to qqualifi-
cation by the complexion of the patient, for while the normal retina in a person of light complexion is bright rose color, in a negro it would be nearly purple, so that what would be an indication of disease in the former would be a normal condition in the latter.

The macula, while ocenpying the most prominent position in the retina, is the most difficult to distinguish, and no bloorl vessels are visible. It is situated directly in the line of vision $2 \mathrm{~m} / \mathrm{m}$ to the temporal side of the optic dise, and slightly larger than the disc. In shape it is an irregular oval, with its longr diatneter horizontal.

The color is darker than the rest of the fundos and shates off into an orange-red eolor. The macula is frepnently surrounded by a halo, which is due to refleetion aral must not he considered an abnormal condition.

The optic dise is situated slightly to the nasal side of the central axis of the eye, and is circular, or nearly so, in shape, and size about $1.75 \mathrm{~m} / \mathrm{m}$ dianneter.

The disc is sometimes slightly oval anatomically, and care must be taken not to mistake this for Astigmatism.

The diagnosis is easy, if we remember that in the inlirect method, as we move the olyeetive lens brek and forth, the dise in Astignatisn changes its shape and size, while the dise is actually oval in shape it will remain in this form under all corrections.

The dise is easily seen with the Ophthahoscope, as its color is decidedly lighter than the rest of the fundus, and it will be found that the color varies in different parts of the dise. We sometimes find a slight depression or cupping of the disc, even in health, and which is distinguished from that of glaneoma hy the fact that it does not include the whole disc.

The nargin of eolor around the dise is known as the Choroidal Ring.

In examining the cornea, the oljective lens used hefore the mirror will enable the observer to deteet any form substance or the presence of ulcers.

Conical Cornca can be also detected by this method.
Corneal opacities will appear as black spots on the fundus, and are recognized as corneal by making an oblique examimution.

The various abnormal conditions of the aqucous dependent upon iritis mny also be readily detected in this manner.

The examinntion of the lens is somewhat difficult without atropinc, but frequently a good clear view is obtained.

An opacity in the lens will show, as in corncal opacities, as a dark spot in the fundus. and is sepnrated from atropy of the retina by the following method:

Having excluded the lens and retinn by obligue illuminations, mal finding no corneal opacities, we next make direct illumination and bring them into view, consequently they must be located in the lens or retina.

We now cause the patient to look downwards, and, as the ball rotates, the opncity of necessity changes its position, and if on the lens, which is lueatem in front of the centre of rotation, it will, of conrse, move downwarl with the cornea and other parts so situated, but if upon the retina the movement is upward, as it is situated behind the centre of rotation.

While ang opacity found in the lens is usually an indication of the presence of cataract, an exception is occasionally fonnd in the effects of iritis, which leave spots of pigment attached to the anterior surface of the lens.

There are various forms of cataract, all of which ean be readily diagnosed by the aid of the Ophthalnoscope.

On examining the vitreons the chicf indieations of disease are loss of transpa ency and diminished consistency.

In case of extensive hemorthage no reflex of the fundus can be obtained at all.

Floating particles are oncasionally met with in the vitreons, and are easily detected as the eye is rapidly rotated. They usually appear as black spots, but one variety is sparkling like :insel.

With the exception of hemorrhages these particles do not usmally cause serious discomfort, seeming to be more or less disturbed by cye strain and allayed by the correction.

Changes in the condition of the choroid may be easily detected by this methorl. Choroiditis, or inflamumtion of the choroid, being the most common form of disturbance, and is recognized by pink and yellow spots distributed over the fundus.

Choroiditis is conmon to malignant Myopia resulting from the thinning of the conts under the stretrhing process constantly going on. Retiaal imperfections are quickly recognized by changes of color, and while the optician can faniliarize hinnself with the appearance in health and disease. he, of course, could not diagnose between the many forms of retinal disease without faniliarising hinself with the nature , if the disease to which the retinn is subject.

Retinitns-the most common form-is inlicated by hemorthages and white patches mat fullaess of the veins. The white patches, wheh are of irregular shape, are usually seen in the neighborhood of the dise.

Retinitus is associated with disease of the kidney and other. physical disabilities, so that the optician can only view it as an interesting study, not as a prospective customer.

It will be seen from what has heen sail that the Ophthalmoscope as an instrument for measuring the refraction, of as at direct menns of supplying glasses, is urt adapted to the optician, but as a method of acpuiring useful information it is in valunble, and ite importance has undonbtedly been overlooked ly most opticians.

INSTRUMENTS FOR MEASURING THE REFRACTION.

INTRODUCTORY.

The neeessity for some instrument for measuring the refractive crror in addition to the trial ease is a mueh vexed question annong young refractionists.

There are instruments without end upon the market, and only two distinet reasons for using them.

They are advisable either as an aid to seeuring the most perfeet results in diagnosing errors of refraction, or as an advertisement to attract attention or inspire awe in the bosom of the prospeetive eustomer.

If the latter feature is the sole reason in purchasiug, and the optieian has no knowledge of its use or faith in its usefulness as a means of diagnosing, it matters little which one is used, probably the largest and most impressive would give the best results.

As to the justitieation for this use of instruments, it is possible that mueli could be said on both sides, hut after all has been saill on the question of professional morals and etipuette, the faet remains that people insist upon a eertain unount of "iuss," and will go where it is offered.

A prominent oeulist, for whose opinion I have the highest respeet, refused for many years to invest in an Ophthahmoneter, as he frequently affirned that its "results were only approximate, aud he eould get that with trial lenses." Finding a new instrument of this kind in his office upon a reeent visit, I enquired his reason for this ehange of front. He stated "that he had not ehanged his opinion, but that his patients commented upon the aosenee of this test, and expressed the opinion that his eharge should not be so high as those who made the Ophthahnometer test."

He now has all the instruments he has room for, and charges accordingly.

The principal reason for the general dissatisfaction expressed by those who have some auxiliary test lies in the fact that there is not enough behind the instrument and too mmeh in front of it.

Too mueh is expeeted from the instrument itself, and consequently not enough trouble is taken to become profieient in its use.

By no other conelusion can the perfect results of certain instrmments in the hands of one optician and frilure in the hands of others be accounted for.

Every optician has eome neross a case some day that vanguished him, and he coneludes his means of performing his work are immleguate, and like the lover that has just been jilted, he is "caught on the rebound " by some advertisement or salesiman of the many instruments, mol he manes at his recent reverse uirler the firm eonviction that it will be easy going for him now, and expects the machine to supply the information he ineks, regarfling possible pathological conditions or maseular complientions, and being again disappointed he, in one sweeping eondemmation, consigns it and all other "eye maehines" to perdition.

The fact is, instruments do not supply the phee of knowledge or experienee, they only emplasize the absolute nceessity of these essentials.

They cnnnot do more than furnish the opticinn with the means of traveling to a certain destination by a different ronte to that furnished by the trial ease, aml if this termimal is the same, or nearly so, by both routes, the diagmosis must be pretty accurate, but if the instrument is expeeted to convey him to certain points, all other roads to whieh have been found closed, he will meet with disappointment and failure.

If an instrament, then, is to be of the greatest practical nse to the optician, it would appear that in its operation it be as lifferent as possible from the trial lenses, in fact, it should be some form of objective test, sueh as Retinoscopy, either in its
erude form, or, better still, by means of the excellent aids to be furnished by the Gineva Retinosespe.

The Ophthahmometer of Javal, in myy of its numerous moxlels and mostitications, affords positive information of this kind, and the one ohjection mised mginst it is that its scope is too limited. A prosperous optician-or one who expeets to beshonld not consider three or four instruments (thus including the best of ench style) too much of an equipment. The oculist mad dentist, to secure and maintain a connection, are compelleal to have an equipment many times as costly as this, and possibly their miform suecens is dwe to the fact that they rarely attempt to prnetice without it.

The opticinns of to-dny, gencrnlly spenking, have secured their optical knowledge at n very small ontay, and, as n consequence are apt to conduct their business upon the same plan, hence the temkency, as seen at present, to evade what in other lines of business are considered legitimate nud necessury expenditures.

In armanging their finnces, they plan to do without every possible. "extra," in a specien of false economy, instend of estinating the possible returns to be reasonnbly expected from a judicions outhay for such instruments as will assist in incrensing their trade.

It is a remark common to the better informed and someWhat disappointed optician that "the fakir and peallar usually has all the machines on the market, and rarely pretends, cxcepting to his customers, to understind their uses."

Almitting this to be trne, it is only mother reason why the competent and keritimate optician should employ them, for if the ignorant fakir, with nothing but his instiuments und impudence as his stock-in-trade, can conduct a successfu! optical business. how much more rensonable it is to expect that on with the necessary knowledge-and the instrmment-should do better still.

The same thing applies to the furniture and fittines of the optical room.

Many prominent opticinns ary content whe their test card on their show ease, mil the trial ease on noy article of merchandise in the store, and their exmmimations are comblnctill in the min. \therefore of a miscellaneons collection of persoms and things. and "'an Woudre why the fukir with no knowledge of optica hat an intinate aymintance with limman mature domhl do all the optical work in the locality.

When appromehed upon the subject he nsually hides luhind "professiomal ethics," states "that he can do arond work withont instruments and fine trimmings, and does not winh th he placed in the mame category as the liakir opposition."

Surcly this is a false position, as whether wr wish to be compared or not with these gentlemen, we certainly are (liyg the public) and not at atl to the advantage of the opticinn in circumstance similar to those guoted.

The jossession of a tine and varied nsorotment of instruments, the nent rad tasty arrangement and furnishing of the optical room, the attendance of a neat and well dressed operator has nothing in it of funckery; it is a most matural eompliment to pay to the intelligence of your patrons, and they are friek to upprecinte it wherever it comes from.

The fact that the fakir with his "show rooms and mathines can only attract custom anl cannot satisfy and boll it," does not weaken the case I have male, but rather st rengethens it, nor does it improve the position of the slow-gning legitimatr optician who is in opposition.

Do not for a moment imarine that those who have been attracted by the display, and supplied with chasses and found them useless, will tmor naturally to the antignated optician, they generally look sewhere and tind another attractive optical concern, and they may at length find one of the "legitimate competent opticians," who has leamed something from a sturly of the fakir.

The hair-splitting argoment that "the display of instruments
 in-are used principally for "lisplay, is fuatekery," is only becrging
the question, as both in the matter of honesty and optics you will be judged by your results, and, if these are honest and satisfactory, the display of instruments as an attraction is no more to be condemned than the making of elaborate window displays in watches and jewelry, for the purpose of attracting customers who otherwise might drift by your door into that of some less honest merchant than yourself. This seems more like philanthropy thim roguery.

THE TRIAL CASE.

A good trial case should contain a complete assortment of spherical and cylindrical leases, both convex and concave, together with a set of prisms ranging up to 20 , a selection of tinted lenses, the usual assortment of disc, both stenopaic, pinhole and plain, and a pair of adjustable trial frame ad one pair of phail frames.

Fig. 50.
Institute Trial Case in Oak Box.

The essential point in connection with the selection of a trial case is that, while a complete case is desirable, absolute accuracy in the grinding of lenses is imperative. The young optician, therefore, will do well to have this fact in mind in buying his first trial casc, and to insist upon having the highest quality obtainable, even if unable to procure a complete set.

There are two distinct forms of ring used for containing the lenses in trial cases. The old model, or Natchet, is made of brass stanped up in one piece, and having a flange upon which the lens is fitted and the metal burnished over to hold it in position. The modern ring is made of steel and finished with a joint and serew just as in spectacles.

Fig. 51.
Natchet Trial Ring.

Fig. S2.
Screw Joint Trial Rumg.

The latter is preferable as being more easily held in position, and in case of breakage a new lens is easily inserted, while in the Natehet ring it is impossible to remove and substitute a new lens. The rings are usually finished white for use with the convex lenses and gold plated for concave, thus permitting of ready distinction. In the Institute ring the algebraic sign is cut in the handle, and in both forms the strength of the lens is stamped upon the handle.

Trial lenses are corrmonly made in two sizes, $1 \frac{1}{2}$ " and $14^{\prime \prime}$, the former being in general use.

The important point in regard to the spherical and cylindrical lenses contained in the trial case is accuracy of focus, and exactness in centreing. While the prisin should be carefully marked for position of base.

The trial frume is necessarily a matter of opinion, and each optician has his own particular preference. The best trial frame, however, is the one that possesses the greatest adjustment and is lightest in wcight. The temples should be adjustable for length-the Wells' patent are the best form-also the height, width, and distance out and in inust be capable of ready adjustment, and the quadrant scale be printed on celluloid to renter it easily deciphered. The scale should read from right to left on both eyes to correspond with the metliod in use all over the American continent.

Fic. 59.
Popular form of Trial I'rame.
On English and European frames there appcars to be no standard rule for the construction of these scales, and we find them numbering from zero on the left to 180 on the right on both eyes, also numbering from the inner side outwards-that is, the right eyc would number from right to left, and the left eye from left to right-others are numbered on both eyes from left to right, while to further complicate matters others are numbered each way from the vertical meridian.

In this latter form the vertical meridian is placed at zero, and the meridians outward ure numbered $10 \mathrm{~T} ., 15 \mathrm{~T}$. , etc., (T. for temple) while those inward have the letter " \mathbf{N} " (Nasal) affixed to the number of each ineridian.

This fact will account for apparent errors sometimes made in filling prescriptions of this kind, when no diagram is givell showing direction of axis.

The uses of the several discs have already been referred to, the pinholes for tests for Amblyopia and the stenopaic for Astigmatisin. In using thein the countersunk surface should be placed nearest the eye, thus allowing the light to spread out slightly after passing through.

The Maddox Rod is for use in connection with examinations for muscular unbalance, and may be either red or white.

The Chromatic Disc is sometimes included in trial case outfits, but it is of doubtful use as giving but indifferent rcsults in practice, although theoretically of great scientific value.

Fig. 54.
Chronnatic Disc.
The chromatic test is based on chromatic aberration in which the light is broken up into different colors, and these various colored rays are differently affected by refracting media, thus in passing into the eye they would focus at different points, and in looking at a flame through the disc it would assume different colors in accordance with the condition of the refraction.

Placedo's Dise was formeriy used in diagnosing Astigınatism
of the cornea. It consists of a circular disc, containing alternate rings of black and white with a central aperture and mounted on a handle. On looking through the sight-hole at the cornea* the examiner sees the rings reflected thereon, but in Astigmatism the shape is elliptical, the directions of greatest length indicating one principal meridian. The correction of course would be the glass that would convert these elliptical figures into circles.

FiG. 0 ā
The Prisoptometer.
The Prisoptoncter is the invention of Dr. Culbertson, and consists of a metal frune furnished with set serew for the pur-
pose of attaching it to the table, and containing two prisins so arranged that in looking through the peep-hole at the white round disc that hangs as a target at about 20 ft . distance, the patient sees the disc doubled, and in Enumetropia the edges of the two discs are just tangent while the prisms are revolved through all the different meridinns.

In Hyperopia the two images of the disc are separated, and the plus lens placed in the clip over the peep-hole that bring them in contact, represents the error and its correction.

In Myopia the dises are seen overlapping, and the correction is the concave lens that places them in a tangent position.

Astigmatism is indicated by the fact that as the finger attached to the prism is revolved the two dises revolving around ereh other describe an elliptical course being closer in one meridian and more separated in others.

In simple Hyperopic Astigmatism, the edges of the two images will just touch when the finger points to the Emmetropic meridian, and most widely separated at right angles to it. The convex cylinder placed in the clip with axis at Emmetropic meridian that will render the dises tangent in all meridians will be the correction.

Simple Myopic Astigmatism is dingnosed in the same manner cxcepting that the Astignatic meridian shows the dises overlapping and a concave cylinder is used in the correction.

Compound Astigmatisn is diagnosed in the same manner. by finding the position in which there is least separation or overlapping and correct it with a sphere, then rotate the finger to opposite meridian and correct with a cylinder. The two lenses thus employed would represent the sphero-eylindrical correetion necessary, and the position of the axis wonld be indicated by the position of the pointer.

Mixed Astigmatism is shown by a separation in some meridians and an overlapping in others. The point at which the ireatest amount of separation occurs represents one principal meridian, and the one at right angles to it the other one.

Correction is made by placing a convex sphere in the clip of the strength necessary to bring the dises together in the primeipal Hyperopic meridian combined with a concave cylinder
to give similar results in the Myopic meridian. The axis of the concave cylinder will always be in the Hyperopic meridian.

THE OPHTHALMOSCOPE

The Ophthalmoscope consists of an oblong concave mirror with a central peep-hole of 2 or $3 \mathrm{~m} / \mathrm{m}$ dimneter pisoted at each end and mounted upon a metal dise, to which the bandle is attuched.

On the reverse side of the inctal dise, a wheel with a milled elge and containing several numbers of convex and concave lenses in rotation, is pivoted in such a manner that by rotating the wheel by means of the milled edge each lens in succession is brought in front of the peep-hole of the mirror.

Fig. 56
The Ophthaluoscope

The instrument is used in connection with a specially arranged light in a dark room and the mirror reflects the light into the patient's eye, and the operator looking throngh the peephole is able to recognize the presence or absence of disease by the appearances presented.

As a means of estimating the refractive error, the Ophthalinoscope is of only secondary inportance, althourh it is still used for this purpose by a few old-school practitioners, but its principal valne lies in its use in comnection with the study of pathological conditions.

The uses of the Ophthahoscope have already been deseribed in another section of this work.

THE OPHTHALMOMETER

The Ophthalnometer of Javal and Scheot\% is an instrmment by which the presence of Comenl Astignatism is ensily and quickly recognized objectively.

There nre several variations of the Ophthahometer in use but the same principle is embodied in each.

The instrument consists of n telescol contaning a Nichol prism, mounted upon an adjustable base and surrounded by a dome shape reflector, inside of which are two mires at equal distance on each side of the telescope tube.

In rear of the retlector a dial contaning a puadrant scale is attacherl, and pivoted to the tube is a pointer which, as the former is revolvel, passes through all the meridims indicated upon the seale.

The mires are of tramslucent material, and are ilhminated by means of small incandescent lmops encluserl hehind them.

Attached to the tube, within easy reach of the operator, is a genred wheel which commmicates with the prisms on the inside of the tube, and by means of which the prisms are moved along the tube bringing them closer to or farther removed from the eye under examination, and contaning on its outer circumference a sale showing the radius of curvature of the mornea.

The Ophthalmometer.
Directions for making examinations: The patient is seated in front of the instrument (an adjustable ston or chair being the preferable kind of seat) and the head placed in proper position, by raising or lowering the chin rest until the the upper bar of head rest is phacd just above the patient's eyebrows, und the
eve not to be examined is covered with the blind. See that eyes of patient are level, as this affects the recuracy in obtaining axis.

The patient is then dinected to keep the head upright, and to look steadily into the opening of the tnbe-cye wide open.

The operator adjusts the instrument for height by ineans of the screw-post, then obtains a elear image of the inires by the focusing adjustment, then turns the tube horizontally slightly to right or left until two images of the mires are seen in elose proxinity and equally distinct. An outer image may be seen on cither side of the field of view, but these are always widely separated from the inner ones, and are to be disregarded.

The instrument is now revolved until the long meridian lines of the inages show a single straight and unbroken one. If there is no Astigmatism this condition will be seen at all axial positions, if Astigrmatism, at but two positions.

An axis having thus been oltained, the graluated wheel on either side of the tube is revolved until the shorter lines or spurs of the inages also unite, forming a perfect cross with the longer ones, and the adjustable hand or pointer on left-hand graduated wheel placed coincidentally with the stationary one, this being the first or primary position. You now rotate the instrument 90 degrees, when the long narrow axial lines will again be in alignment without further adjustment. Agrain the short lines or spurs are brought together to give the image the form of n perfect cross (the secondary position), and the variation of curvature of cornea is recorded hetween the two pointers in dioptres and fractions thereof.

If the aetual radius of corneal curvature is desired, it may be read on the outer face of right-hand wheel (the real figures) in millimeters and fractions thereof.

Determination of axis. For convenienee, there are two axis pointers provided, one at right angles to the other, so that when the reading at one meridian has been taken the instrument may be readily turned to the opposite one by moving either pointer to the position on the scale previously occupied by the other.

The corneal curvature is always measured in the meridian indicated by the left-hand pointer, therefor the axis of the eorrecting lens is to be applied at the angle of least variation from urmal as indiented by the left-hand pointer, or of greatest variation as indicated by tlee right-hand pointer.

GENEVA RETINOSCOPE

'The Geneva Retinoscope furnishes a sinple annl eon . enient method of applying the most valuable of the oljective test..

Fic. 58
The Geneva Retinoscope.
The instrument consists of a nickel-plated tulie, mounted upon a plain or aljustable base, withattachments for raising and lowering, and a chin rest to hold the head in position during examination. To this main tube an auxiliary tube is joined at an angle of about 4.5 degrees, at the end of which the illunination is placed inside an asbestos chimney furnished with a diaphragn shutter to regulate the size of light opening.

The light passing down this tube strikes the mirror, which is pivoted at one end of the main tube, and is reflected back through it into the patient's eye at the opposite end.

Pivoted outside and on the top of the main tube, near the end at which the patient's eye is fixed, are two wheels containing convex and concave lenses, by a combination of which all the numbers up to and including 8.00 can be placed in front of the eye by simply turning a thumb-screw attached within reach of the operator. On the end of the tube to which the mirror is attached a qualrant scale is attached, and a small pointer protruding from the inirror on the opposite end from the handle passes over it as the mirror is rotated through the different meridians.

Either electric light or oil can he conveniently used for illuminating purposes, and by its use the necessity for a dark room is removed and the principles of retinoscopy applied in the simplest form possible, and the actnal refractive condition revealed without the assistance of the patient.

DE ZENG SELF-LUMINOUS RETINOSCOPE.

This is a recent invention of $\mathrm{Mr} \mathrm{H} . \mathrm{H}$. De Zeng. and is an exceedingly ingenious method of applying the storage battery to retinoscopy.
lice instrunnent is but little different to the ordinary retinoscope with the exception of the position of the mirror which is placed at an ol! jue angle.

The wires communicating with the battery pass through the handle and are attached to a miniature incandescent lamp enclosed in a barrel which is pivoted to the frame, holding the mirror in such a position that the light passing through a condensing lens in the mouth of the tube strikes the mirror at a convenient angle anu is refiected back into the patient's eye.

Fic: 5?..
De Zeng I.uminous Retinoscope.
The advantages claimed for thi; method of applying the light is, that being attached immovably in the required position in relation to the inirror, the diffieulty of controlling the lightwhieh is a stumbling block to young practitioners-is obvinted, and the whole attention is free to devote to the study of the phenomena presented.

THE OPHTHALMIC CABINET'.

The cabinet is a eonvenient form of holding and showing the type.

The body is made of wood and contains eight cards, including letters, ustignatie, ignoramus and museular tests.

The cards contain an eyelet at the top to which a sord is attached, which passes up to and along the ceiling to a point behind the operator where thay are atterhed to a series of hooks.

By simply releasing any cord the card to which it is attached can be lowered, and when finished with can be restored to its place.

The advantage possessed by the cabinet over the loose carda is in the ease with which each carl can be placed in position and minkly changed.
[. • exchasion of the limes not reguired is also an alvantuge of time in preventing a repetition of letters alrealy 'II.
'1is preservation of the cards from soiling and tearing is \therefore anture peculiar to the cnbinet.

Although not aul i.istrument for monsuring the refraction. the lens gauge is so intimately comnected with sight testing that we offer no apolugy for including it in this artacle.

The lens gauge consists of three steel points projecting from the body of the instrument, two of which are fixed and the centre one resting at its upper end against a bar which is connected with a rack and pinion controlled by a hair spring.

The pinion is pivoted in the centre of the gauge, and the upper pivot projects through the centre of the dial and receives the finger which revolves around it.

In pressing the lens down upon the three steel points the centre one is pushed down until the glass rests upon the two fixed points.

If the glass is flat the centre point will be pressed down level with the other twe, and the finger revolving as the rack is acted upon by the bar will point to zero.

If the lens is convex its centre will force the centre pin below the level of the other two, and the finger rotate to the plus side of the dial and indicate the degree of convexity.

If the lens is minus the centre pin will not come down to the line of the other two, and the finger will remain on the minus side of the dial and indicate the degree of concavity.

In measuring cylinders the lens is rotated on the points, and when the three points meet the glass in the direction of its axis the finger will point to zero, butas it is rotated the finger will gradually rotate towards plus or minus until the points are at right angles to the axis, at which point the power of the cylinder will be indicated. As the rotation is continued the finger will recede back to zero.

THE PHOROMETER.
The Phorometer is constructed for attaching to wall bracket or stand, and contains two cells in each of which rotates a $:$ degree prism, each cell has a border of teeth, and a small gear wheel between the two transmits the novement from one to the other.

A quadrant scale is marked around the edge of each from zero in the centre each way to 10 degrees.

In use the priems are set exactly vertical, and the object viewed through them will be doubled, and if any insufficiency of the lateral muscles exists the objects will not be exactly vertical, in which cuse the prisms are revolved until they are brought verticul, when the kind and amount of error is indiented upon the scale.

Fig. 61.
Phorometer
Since his work his been in the hands of the printer an improved inethol of practicing woth the Ophthalmoseope has been devised and patented liy the Geneva Optical Co., of Chicugo.

The improvement consists in a teleseopie tube atnehed to the lienevn Retinoscope, by which the procese of examination is greatly simplified, ind what was by the old method a mater of great skill regniring many months of putient practice, is now readily aceomplished in a few hours.

FIG, 6:?
New Geneva Retinoscope.
The instrument is illustrated alove and is so simple in construction and operation as to require hut little description.

The light, which may be either gras, oil or electricity is attached near the mirror, mut the telescope tube through which it is reflected acts as a dark room, aml the convex lens mounterd in it greatly magnifies the image and renders examination of the retimal vessels un ensy matter.

The patient's head is held in position by an aljustable rest and the telescope brought into position and focus by means of set screws. By holding the finger up as a target and directing tha eye toward it the whole of the interior can be explored as the finger is slowly mosed al ut to different positions.

To opticians who ham experi need the diffeulties inseparahle from the old method of using the hand instrument without a dilated pupil the " (ifnera" will undoubtedly prove a boon indeed.

ASTIGMATIC VAGARIES.

Astigmatism has been leseribed as a condition in which the rays of light passing through the various meridians of the cornca focus at different points according to the various curvatures possessed liy those different meridians.

The theoretical correction of Astigmatism is a simple matter by means of cylinders possessing the same characteristic of enrvature, so that it is hard to account for the diviculties experiencel by young opticians in the dingnosis and correction of this most common form of eye crror, save upon the assumption that Astigmatisin, while it is a mathematical crror in the construction of the eyeball, mad as such sulject tomathematical calculations in its correction, possesses certain aherrations that frequently render an individual case a law unto itself, and render it nbsolutely impossible to secure satisfactory results in the refracting room soiely by the aid oi theoretical knowledse however sound, and an mlvanced arithmetic.

The fact that the optician of to-day depents so much upon subjertive methods, and has not arrived at an advanced stare of proficiency in some of the various forms of objective testing, is largely responsible for this condition of affars, as in the former methorl not only are we harassed by the many difficnlties presented by accommodative complications, hat we me in a neasure brought down to the same level as our patient in the matter of intelligence.

It is a fact well recognized by experienced opticians that by this method the results achieved in complicated cases are largely proportionate to the intelligence of the patient.

Another point of difficulty is found in the means employed for subjecticely detecting the presence of Astigmatism. I reter to the clock dial or similar form of astigmatic chart. The presence of Astigmatism is ascertained not so much by what the: patient sees as by what he loes not see, and consermently the information is of a negutive puality.

The same objection does not apply to subjective testing for Hyperopia and Myopia as letters are used, and we know positively whether they can be seen distinctly by the fact that they can or cannot be correctly named. Not so with the astigmatic test by means of radiating lines, as the comparative distinctness is partially a question of actual defect and in part of mental dingnosis on the part of the patient to ascertain for himself actual comparative conditions of the various lines, and the resulting sensations have to be clothed in words before the conditions are presented to the examiner, so that it is small wonder if error creeps in.

Many refractionists in examining with the trial case for Astigmatism use nothing but the regrular Suellen type, with cyliaders placed in the frame and rotated before the eye through the different meridians, while the attention is directed to the letters on the card.

This method may be satisfactory when other corroborative tests are userl, but otherwise it would be considered a slipshod way of diagrosing, although it may be resorted to in extreme cases and where the patient's visual accuity and intelligenee are both of low order, and approximate results are all that are expected.

Another difficulty associnted with the shbjective diagnosis of Compond Astigmatism is the extreme difficulty in estimating the correct proportions of spherical and cylindrical power of the correcting formula. 'That this is not at all an inaginative difficulty is proved by the faet that it frequently happens that prescriptions for compounds supplied by different oculists and opticia:s while having the same axis will vary in relative power of sphere and eylinder. One prescribing sty' +1.00 sph . $=+50 \mathrm{cyl}$., while another gives $+75 \mathrm{sph} . 乞+75 \mathrm{cyl}$. A trinl usually shows results identical both in the appearance of the radiating lines and in the degree of vision obtained, and is acconnted for hy the fact that a slight amome of accommodation may interfere with a full correction of Astigmatism, and also the same result brought abra' by a slight overcorrection of the Hyperopin when the Astigmatism is of this variety.

In the carpection of mixed Astigmatism the sane difficulty is present-the ision is necessarily below normal, and while one or two plus or minus spheres of succeeding strength may be tolerated no decided improvement is aceomplished with either. And as the correction is always a combination of phas and ininus it becomes often a whtter of difficulty to decide the relative amounts, as unless a full ormaten of the Hyperopic error is supplied it will be impomable to perfect results from any minus eylinder that may he combined with it.

Again in mixed Astigmatism. where the Myopic and Hyperopic error is about equal in degren, it irequently happens that in process of examination, after havinis neertained that neither plus or minus spherical gives any decided improvement. or possibly but a slight improvement secured with a weak number of either; that the spherical lens is removel from the trial frame and the attention directed to the astigmatice chart with the result that the patient can discern no difference in the radiating lines, all appearing equally blurred, the lines in one principal meritian being indistinet because their focus i :, in front of the retina and the other principal meridims focuset an erflal distance behind it so that the result is general indistinctness of all the lines.

Again, the young optician well grounded in theoreticai optics but with his experience ahead of him, has a case presented to him in which the complaints are of asthenopia entirely, and an examination discloses perfect visual aecuity without henses and the weakest phas renders the letters on the distance card less distinct, and a reference to the astigmatic chart discloses no Astigmatism as the patient declares that they are all equally distinct.

And yet, in spite of these tests carefully made, Astigmatism is frequently found in just the quantities most liable to cause acute asthenopin.

Now here is a formidable list of Astigmatie Vagaries, any or all of which may be encomatered in the course of orkinary practice, and ealling for something more than the rule of thumb,
method in vogue with a certain cless of opticians, who are theoretically well posted and who are anxious to do sound and accurate refraction work. In fact, so contrary to book rule do these cases often prove that many well schooled students in starting to practice become discouraged and jump at the conclusion that Astigmatism cannot be consistently corrected by means of the knowledge or appliances at the disposal of the optician, and send all Astigmatic cases to the oculist under the impression that atropine, or the knowledge and use of drugs may avail.

To thesc I wish to say emphatically that neither atropine or any other drug, or the knowledge of anatomy supposedly possessed in a higher degree by the oculist than by the optician, can avail in the successful dingnosis of errors of refraction, and the solution lies solely in the knowledge hegotten of experience, guided by sound technical training and applied in the light of common sense.

Let us glance over the points already enumerated and consider the moans most generally employed in arriving at the true refractive conditions when employing subjective methods only.

Undoubtedly the first point raised, the intelligence of the patient and the examiner's dependence upon it, is at once a bar to universally correct work by this method, but it is possible to get results generally satisfactory by holding its weak points in view and devoting the attention particularly to then and by carefully avoiding the practice of doing routine work and "fitting by the book."

If most of the mistakes made are tracenble to laek of intelligence and consequent inisunderstunding between patient and examiner, the most natural method of avoiding the mistake is to conduct your examination on a plane to which the intelligence of each patient can fairly be supposed to have access. Working on this basis, the first care on the part of the examiner would be to have his questions thoroughly understool, and secondly, to assure himself heyond a doubt that the patient is telling the whole truth without exaggeration or concealment.

These two conditions may seem s rost ridiculous to the casual reader, but will be appreciated by the practical sturlent.

For instance, in the regulation methol of using the astigmatic chart almost the first question asked by many opticians is "Which lines do you see the most distinctly ?" or "Do any of the lines appear brighter than the remainder?" Both of these questions as quoted are improper and are a fruitful cause of error.

By asking which line is the most distinct we imply that there is a difference and suggest this fact to the patient, so that acting on the power of suggestion it is a simple matter in the case of weak-minded people to instantly discover a difference in distinctness and thus lead to the application of cylinders, or at least canse confusion and disappointment to examiner and patient.

The objection to the second question lies in the liability to a misunderatanding of the most important word in the question -the word "brightest "-and upon the correct interpretation of which the success and accuracy of the whole test appends.

Of the many definitions of the word "bright" one that is genernlly accepted is "of bright color." Now, an astigmatic person in comparing the radiating lines of the astigmatic chart, and asked to select the brightest one, would with this umlerstanding of the word select the dimmest lines, as the cffeet of the dimness peculiar to lines seen under astigmatic conditions is to render black lines grey, and certainly irrey is a brighter eo! : than black. So here we have as the result of a mutuat misumberstanding the patient stating in frood faith the very opposit of what is actually the case.

Coming to the second point, it would seem ahnost inereitible. that one coming for professional assistance wonld wilfulty throw obstacles in the way of a successfinl diagnosis, hat it is a part of the history of refraction that astigmatic people seem to feel the effect of their assymetrical defect even into the very marrow of their disposition and temperament. They are a nervons, uncomfortable, asthenopic, and to n certain extent cross-ntianed section of humanity, and the excitation of their resentment even by imocent mamerisms may render it almost impossible to extract the facts from them even with a foreep.

This section of the genius Ametrope is amenable only to a specie of optical equipment not acquired in the schools nor in the clinics-tact. Higher optical knowledge and greater expertness in the reduction and assimilation of complicated formula avails not in cases of this kind. The only knowledge that is of great service is that of human nature, just as in the case of a successful lawyer. It is not a profound knowledge of law that enables a nember of the bar to extract the truth from an unwilling witness, it is knowledge of human nature, and the swift insight into the weaknesses as they are presented, that enable him to extract answers and sift out the true from the false.

As such an one would cons or force an answer and then proceed to secure an unconscious denial, so does the pastmaster in the science of refraction dig pitfalls for the deceptive patient.

For instance, a certain line being deelared the elearest a phain glass being interposed prolucing a marked change proves the presence of a decided antagonism in the patient.

Other cases show a decided inclination to give you the answer that your manner would seem to indicate, that you expect regarlless of the actual condition.

The experiencel optician will bear me out in the correctness of these statements, and the novice will see in them the explanation of some of the Astigmatic Vagaries, to which he has been a victim.

The difficulty experienced in securing the correct proportion of spliere and cylinder is in part overcome by the use of a cross cylinder in proving the test.

An ordinary trial ring mounted with +50 cylinder combined with - . 0 cylinder with their axes at right angles, held over the correction in the trial frame while the attention is directed to the letters, will increase the refraction in one prineipal meridian and decrease it in a corresponding degree in the other, and will be of great assistance in adjusting closely the proportions of spherical and cylindrieal error.

In the casc of mixed atigmatism the better phan is to work out the hyperopia first by plus spheres and the astigmatic chart.

Take a case in which the usual subjective test has shown the vision to be considerably below normal and the application of a weak plus sphere while not pasitively refused is merely toleratel and, so far as the patient is able to judge, does not improve the vision, neither does it lower the visual accuity. If a succession of stronger plus spheres are applied they are quickly rejected without improving the vision. This condition, while indicating hyperopic conditions, shows conclusively that it camot be simply hyperopia or the visual aceuity would at once improve with each succeeding number of plu. power upplied. If minus spheres are applied the result is mealy the same, a few succeeding weak numlers are tolerated without eausing any pronounced improvement, and then the vision rapilly decreases with any further increase of power.

The toleration of a plus sphere without producing any improvement in a low visual accuity would therefore indicate either simple hyperopic or mixed Astigmatism, and the same conditions being repeated with a minus sphere would exclude the former and almost prove the case to be Astigmatism of the mixed variety.

Now, if in proceeding with the regular routine of subjective testing we bring the astignatic chart into use, and tind no difference in the various meridians, if the student has protited by what has just been suid he will not panse in doubt, but proceed to correct the lyperopie error by plus spheres, and will instantly discover that although with the naked eye no difterence in the radiating lines was discernable, owing to the fact that one principal meridian lyperopic, say one dioptre, and the other one myopic to the same amount, that one particular line or set of lines is more distinct, and if the increase of plus sphere is kept up this line will increase in distinetuess as the opposite one becomes less and less clear, mutil finally the cloarest lines will begin to lose their cleamess and become dim. This will prove the overcomection of hyperopic error, and the previous lens to that which produced the overeorrection would be the measure of the hyperopie factor in the astigmatic condition present.

It is an casy matter now to combine with this glass a minus cylinder, with its axis at right angles to the clearest line, of just sufficient strength to render the lines of equal distinctness, when the vision will be found to be restored to normal conditions, unless sonte amblyopic condition exists.

The remaining point raised is one that will frequently appear in young astignats of low degrec and active accommodation. The conditions are as follows: The complaint is nathenopia and usually the accommodative form is indicated. Suljective teat shows vision to be normal, and the weakest plas sphere is instantly refused, and the inost carcful examination with the astignatic chart fails to disclose any Astigmatism, and the usual muscular tests show orthophoria.

Under routine methods the exmminer has exhansted his resonrees, there is nothing remaining for hin to try lout what he has atrenly tried, and herein lies his way out of the diffenlty. The foging phan shonlil be carried throngh the astignatic test. when it will be found that in a case of this natnre, when no difference in the lines is noticed with the eye unassisted, a difference is instantly noticed when a weak plus sphere is placed in frome of the eye under exanination.

We will smppose that having found this to be the case and +50 sphere brings out the vertical lines the clearest and -25 eyl. axis 180 in combination with it once more renders the lines equally distinct. Now here we have a condition in which no Astigmatism was indiented because all lines were equally distinct, and the same case with a cylinder and still having the astigmatic chart equally clear in all meridians. There is no question as to which is the real and which is the apparent condition, as unless Astigmatism was actually present 110 sphere wonld produce a difference in clearness of the lines and no cylinder conld possibly prodnce a uniform appearance.

On returning to the type on the distance card, we usmally find that while "ithout any glass $20 \div 0$ was possible, with the the correction on that presumably corrccted ant error of refraction vision is lower probably 20,30 or $20 / 40$. If now a -25 sphere be
superimposed upon the previous correction vision will instantly rise to normal, and the correction would be +50 spl . $\bigcirc-25 \mathrm{cyl}$. axis $180 \leftrightharpoons-25 \mathrm{sph} .=+25 \mathrm{sph}$. -25 cyl . axis $180=+25 \mathrm{cyl}$. axis 90 , which usually gives perfect vision anci relieves the asthenopia.

A moment's consideration will reveal the true condition and the cause of the apparent one.

With one-quarter dioptre of simple hyperopic Astignatism the focus of one principal meridian is on the retina and that of the other one-quarter dioptre is in rear, and with the slightest possible degree of accommodation these two focal points are bronglit forward one-eighth dioptre, thus transforming the case into one of mixed Astigmatism with $1 / 8$ dioptre in each meridian, with the two points equally in front and in rear of the retina, and the appcarance of the chart would be symmetrical, just as we find in real inixed Astigmatism, with erpual amounts of each form of error

The application of +50 sph . instantly relaxes the accominodation and lorings the focal points forward in front of the retina, one n quarter dioptre and the other onc-half dioptre, and the real difference in radiating lines is readily apparent. The vision is lowered owing to the fact that even when the correcting cylinder is applied the total focus is one-ruarter dioptre in front of the retina and instant relief is afforded by -25 sphere.

After all has been done that experience and knowledge can suggest, there still remains certain cases in which it is utterly impossible to sccure complete uniformity in the astimmatic chart, and these will usually show with the ophthalinometer more or less irregularity of the cornea, and is impossible of correction.

With this exception there is no valid reason why Astignatic Vngaries should not be controlled, but it must be remembered that they are the children of misrule and are not in subjection to law, and must be met on their own ground with cach case a law unto itself.

MICROCOPY RESOUUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Inc
1653 East Man Street
Rochester, New York 14609
USA
(716) 482-0300-Phone
(716) 288 - 5989 - Fax

AMBLYOPIA.

Ainblyopia is a term with which the but recently graduated optician is familiar, but he is wont to dismiss the conditions signified hy the term as something with which he has nothing to do, and consequently need not devote time to investigating

Amblyopia means, literally, weak or dull vision, but is generally restricted in its application to partial defects of acuteness, with little or no ophthalmoscopic change.

Amaurosis, a term of similar meaning, is generally employed to indicate a more advanced condition of blindness without visible changes, while papilitus and atrophy, both indicating imperfact sight, not dependent upon ametropic errors, in which certain clianges are visible to the observer.

Amblyopia may arise from several different causes Anblyopia Exophopobia is that form of the disease which is the result of a suppression of the image in squint.

This habit of suppression of the image, found in the squinting eye, is acquired for the purpose of preventing the obnoxious effects of diplopia, and once acquired remains permanently, and, in accordance with Nature's inexorable mandate, that "an organ subjected to idleness loses its usefulness, rapidly loses its power of receiving or transl "tting light impressions."

Amblyopia, as seen from the foregoing, is a deteriorated condition of non-sensibility in the retina, or some similar defect of the optic nerve, and may be present with or without the presence of Ainetropia.

Amblyopia may be induced by a defect in the retinal image as seen in maligant Myopia, or high degrees of Astigmatism or Hyperopia. Under these conditions, the retina is not able to perform its natural functions, owing to the fact that these images are never sufficiently clear to permit of retinal activity.

In some of these cases it happens that the best correction that can be obtained fails to give perfect vision, as the sensibility of the retina has already departed, although if glasses are supplied early in life the defect is frequently overcome and a restoration effected as a result of the active use to which the retina. is once more subjected.

Unless the Ametropin is corrected by glasses early in life, no hope of the cure for Amblyopia is to be expected.

Occasionally we find, in making examination for glasses, that the sight of one eye is practically nil, and often the fact is entirely unknown to the patient, who, on being informed of the fact, usually affirms that it must have happened recently, and possibly attributes it to some recent illness. As a rule, however, it may be accepted as a ilact, that the loss of sight has been gradual, and is due to the suppression of the image from some cause ; but at rare intervals cases are found in which the loss of sight has been sudden and complete, and due to a form of paralysis of the optic nerve. Sometimes this will yield to proper treatment, but frequently no relief can be secured and the blindne.s remains permanent.

Toxic Amblyopia, or "smokers' blindness," is a more comınon and deadly form of lost sensitiveness, as its approach is gradual and insiduous.
" The acuteness gradually fails with little or no accompanying pain other than frontal headache accompanied by nervousness. and somstimes loss of sleep and appetite. Few opthalmoscopic changes are noticeable; possibly the disc may be congested and hazy. The defect of sight as described by the patient is "Mist". The pupils show no particular change, save perhaps a sluggish tendency."

The degree of sight for different sections of the retina will be found to be very irregular and variable, and color blindness will toz discovered by_{y} one of the usual tests.

The patients are, of course, usually males and smokers, frequently drinkers as well. Nettleship, from whom I have quoted, states that he attributes the cause to tobacco, and a discontinuance of it offers the only possible hope of recovery.

Occasionally the discease is found in females or non-smoking males, in which cases it is a hereditary form of the same affection. The chances for recovery are good if the failure of sight has been rapid and the case is taken early.

Hemmopia is another iorm of Amblyopia, in which the loss of vision only extends over half the visual field, it is frequently caused by detachment of the retina, sometimes only one quarter of the field is lost, and the dividing line between light and darkness clearly markud. In this form of Amblyopia the optic dise usually shows little change.

Hysterical Amblyopia, or, as it is sometimes called, Hysterical Eye, is an affection of somewhat complex nature, and so closely connected with malingering or feigned blindness as to have frequently been confounded with it.

Drs. Oliver and Noyes, in the celebrated work on the eye, attribute this form of Amblyopia to "disturbances and disorders of the intrinsic and extrinsic inuscular systems."

It is characterizsd by no marked ophthalmoscopic change and marked lowering of the central vision and a diminished l:ght sense and a contraction of the field of vision for colors. Also accommodative Asthenopia, spasm of the Iris and ciliary muscles, monocular Diplopia, paralysis of the extrinsic inuscles and unequality of the pupils.

Amblyopia with the above symptoms has been known to follow a blow on the eye.

Nettleship says: "True Hysterical Amblyopia seems allied with Asthenopia, in which Photophobia irratibility and want of endurance of the ciliary or internal recti muscle is present, acuteness of sight being nearly perfect and refraction normal."

Of the retinal conjunctival and muscular factors any one may be more marked than the others, and it would seem that given a certain state of the nervous system, which may be described as impressionable, and overstimulation of any one of thein is apt to set up an over-sensitive state of the other two. All the symptoms are increased after exercise and vary considerably with the general state of health.

Night blindness (Nyclalopia) may be included in the list of Amblyopias. It is caused by prolonged exposure to strong light thus exhausting the sensibility of the retina. It is usually to be found with cases of scurvy. Sleeping in the bright moonlight will frequently cause it to appear. The fact that in certain countries, where the Lenten festival is religiously observed, it is very prevalent at that seàson, would imply that a lowered physical condition had sometiling to do with it.

A prominent external symptom of night blindness is seen in the appearance of two littie films or scales on the conjunctiva at the inner and outer border of the cornea.

The disorde: usually suhsides by protecting the eyes from stronglight and restoring the tone of the system by nourishing food and tonics.

Micropsia is an affection of the retina by which objects appear diminished in size, and is owing to a diseased condition of the retina by which the rods and cones pertaining to a certain section are spread over a larger surface, thus giving the inpression of reduced size.

Muscae Voilitantes refers to the annoying presence of sinall particles floating in the vitrious and producing the effect of moving bodies in front of the sight. They are not serious, and when caused by Myopia, as frequently happens, are usually relieved b_{j} the correction.

Color blindness does not seem to be common in this country, but whether from the absence of the malady or the scarcity of information and means of diagnosing, I an not prepared to state. In England, applicants for positions in the navy or railway service are required to pass an examination for color blindness,
and it is found that about 4\% are affected. It consists in an inability to distinguish certain colors, and is presumed to arise from some defect of the retina, the exact nature of which has not been clearly shown.

In addition to the various forms of Amblyopia described, many of which may appear as a disease or a symptom of disease, an amblyopic condition may be present as the result of the misuse or overuse of various drugs, and many diseases of parts of the body far removed from the seat of vision may have their reflexes in errorsof refraction as well as diminished acuteness of retinal perception. Among these no affection more surely affects the acuteness than Diabetes and Bright's Disease. In the former the optic nerve becomes affected. It is frequently referred to as Diabetic Amblyopia. The defect varies from a slight diminution of acuteness to complete blindness, and a considerable defect of sight may be present in cases in which the disease which caused it has apparently made little headway.

From the many forms of Amblyopia referred to, and the connection between them and the conditions of serious bodily infirmity, which have been pointed out, it can readily be seen that the serious student of ophthalmic science will find in every case of Amblyopia a problem worth studying and an object lesson in advanced optometry, and a careless passing by of cases so affected will be far less likely to occur with a knowledge of the importance of Amblyopia than would be the case if we merely consider it as "something not subject to correction," and I am convinced that a course of ophthalmoscopic study once inaugurated, it will be found quite as interesting as instructive.

CILIARY SPASM.

Spasm of Accommodation or Ciliary Spasm has been described as an abnormal or involuntary contraction of the ciliary muscle, similar in some respects to the common cramp, such as attacks one when plunged into cold water when in a heated condition.

It will readily be seen that its effect upon the refraction of the eye is to increase it so that an emmetrope would be artificially myopi $:$, hyperopia would be relieved and in many cases would become myopic, while myopia would be increased by its presence, and as the victims have no knowledge of the unnatural use to which the ciliary is subjected, its presence becomes a factor of no small importance in the success or failure of the refracting optician

A Spasm of Accommodation may be either clonic or tonic. In the former case it is produced only under the influence of fixation, a desire for distinct vision, or certain causes which excite the sensibility of the eye, while it ceases as soon as that organ is in respose. In the case of tonic spasm it is permanent and yields only to a mydriatic. Clonic spasm is undoubtedly a very common form of eye trouble in young persons, increasing the refraction and making out of many hyperopic cases artiticial myopes. This spasmodic contraction of the ciliary is usually insignificant as it ceases at the same time as fixation and disappears with advancing years, and it is only in cases of Asthenopia that we are called upon to make the examinations which tinally reveal its presence.

If for no other reason than for the instant detecting of clonic spasm, retinoscopy should be employed by every opticiun who expects to make a professional succers of optics.

As stated, the clonic spasm ceases as soon as the eye is at rest and no attempt is made to ooserve anything, and employing the retinoscope under these conditions we are able to diagnose the refraction and ascertain the error, if any is present.

If upon making the usual test with the trial lenses, we find the refraction noticeably greater than with the retinoscope, that is, find the amount of hyperopia less, or even find myopia indicated we would have sure proof of the presence of clonic spasm.

The tonic spasm presents features that place it outside the scope of the optician and transfers it to the category of medicine, and we need not take time here to dwell on it further than to illustrate a ready method of diagnosis and brief description of its characteristics.

Landolt states that it is difficult to state exactly the cause of tonic spasm, "but it is probably the result of a lesion of a muscular tissue, or is produced by irritation of the motor nerves," which, in commonplace language, simply means that the ciliary muscle, similarly to all other muscles of the human system, is depending for its motive power upon a nervous edict from the brain; that the third nerves being the means of communication, some foreign cause creates a state of excitability in this set which causes it to give to the ciliary muscle the same action as if the intellect had so ordered.

Let me illustrate this point. Suppose you have an electric door-bell which rings upon a button being pressed, which so acts as to close the circuit and make a continuous channel for the electric power to pass on its route, of coursc affecting the mechanism of the bell in such a way as to cause the clapper to vibrate and consequently riuging the bell. Now, the same result will follow if by any means the wires are short circuiced, that is, if another piece of wire should become entangleri in such a manner as to join the two main wires. The power is there and is accidentally applied, as in the tonce spasm the power is there and is applied without any intention upon the part of the intellect to so use it, and, unlike the clonic form, it remains constantly in use and does not cease with fixation.

We are only able without the use of atropine to decide upon tonic spasm by means of its effect upon amplitude of accommodation, as we know what amount of accommodation should be present at different ages, and consequently in measuring the PP.
with distant vision normal-with glasses, if necessary-we are able at once to see if a proportionate amount is present according to age, and if not we would suspect spasm. For instance, a person of 20 years should have amplitude of 10.00 D . and PP. in Emmetropiu would be 4 inches, and finding a case of this age in which anisplitude was only 6.00 D . we would expect spasm 4.00 D . Of coursc the same results are to be expected in paralysis of ciliary, as trat would lessen the amplitude in exactly the same way, but with but little practice you can readily differentiate between them, as spasm carries with it a contracted pupil, while in paralysis it is dilated.

In the tonic form considerable pain in the cilinry is felt, and a cominon symptem is an abnormal secretion of tears. The acuteness of vision is nearly always diminished, frequently simulating inyopia, and is very changeable. The presence of a slight convergent squint would add to the proof. The common nerve supply of the ciliary and internal recti would account for spasm in case of muscular errors.

Having by any of the foregoing syinptoins and methods of examination established the presence of spasm, it is easily classified with the retinoscope, and, if found to be of tonic spasin, we can only resign the case to the oculist.

In your regular practice of refraction you have come across cases in which the refraction, as measured from time to time, shows results which are greatly at variance, and some of you have doubtless pursued your studies far enough to know that this is a fairly accurate indication of the presence of spasm, but if you stop there you have no results. You must diagnose and classify, and if tonic let it go, but if clonic it is open to your efforts.

My own custom was for years, when engrged in doing refraction work, to order for all cases of tonic spasm, irrespective of any error of refraction as indicated by trial lenses, sufficiently strong convex lenses to blur the distant vision. These, of course, it was not possible to wear constantly, but by undergoing slight inconvenience they can be worn part of the time for distance,
and constantly for reading, and the longer they are worn the less discomfort there is felt in wearing them, as their effect is to induce a relaxation, as the only means of obtaining clear vision. If a record is kept of these cases-and you cannot hope for practical results unless you do so-it will be found that subjective tests made previously will reveal more myopia, or less hyperopia, than one made after a course of training by means of a convex glass. I have eyen found the application of a weak convex lens instantly beneficial in diagnosing low amounts of astigmatism, presumed to be present, but which it was found wo be impossible to disclose by the ordinary methods, they evidently being lidden under a mild form of spasm of the ciliary, which prevented the visual accuity from being affected, and also maintains the symmetry of the astigmatic chart, which under the blurring effects of the convex overcorrection blurs only such lines a correspond to the emmetropic meridians, and leaving bright the lines indicating the ineridian of astigmatism. If there is no astigmatism present the lines will blur simultaneunsly.

Ciliary Spasm has been found to be present as the result of a slight abraision of the cornea.

Reflex irritation of the ciliary nerves from some disease possibly far removed from the seat of vision.

Various inflammatory affections of the eye, such as Conjunctivitis Keratitis, Episcleritis, Blepharitis, and it is also found in connection with an overworked condition of the retina.

A marked symptom of spasm is the diminutive pupil together with the variation of the acutencss of vision under different examinations.

The inanner in which the test type is read should put you on your cuard in regard to spasin, as while not constituting an absolutely reliable test, it will in many cases lead you to pause and investigate further before giving a correction.

Indications of the condition are to be noticed in the peculiarit:es incident to the various forms of ametropia in the manner in which the test type is read.

A hyperope, if he have ample accommodation, will read it
off as readily as an emmetrope. Myopia, of course, precludes the possibility of normal vision, and the inyope will read with a fair degree of certainty down the card to a certain point, but beyond that he can make no attempt, while the astigmat will dash through the letters regardless of results, making few pauses and miscalling most of the letters. Unlike the myope, they in not seenn blurred to him, but have taken on other forms under the distorting effects of the elliptical cornea. But the spasmodic individual is usually a backward, undecided sort of a subject, reading the various lines with considersble uncertainty, and at one moment showing visual accuity in excess of what you presently find it. His style is like his condition-spasmodic.

These symptoms being present, you would not bejustified in ordering glasses while the refraction was in this condition. In the absence of atropine you will find the persistent application of a convex lens to exert a relaxing influence upon the cramped condition of the ciliary, but, as before stated, you must learn to distinguish between clonic and tonic, as you but waste your time experimenting on the latter form.

To sum up the conditions and methods of treatinent, we have to look for spasin with an abnormally small pupil, when the method of reading test type is indicativa of this condition, and we are sure of it when repeated examinations give variatile results.

We are able to diagnose and classify by means of retinseupy.
Bear in mind that a discrepancy between amplitude of acconmodation, as found with the tape measure and the hy. table of Donders, is sure indication of spasm or paralysis, and its diagnosis is by means of the pupillary aperture.

Now as to treatment. For tonic nothing can le done other than a long course of treatment with atropine, and also medical treatment with a view of removing the cause.

With the clonic form you cannot fail of at least partial correction if you persevere in the use of plus lenses, increasing the strength from time to time us your examinations show you the spasm yielding to treatment.

ASTHENOPIA.

Asthenopia has been described as a group of syinptoms indicating a condition of fatigue of the ocular muscles.

In its priniary stages it is merely a question of rest and relief from the burden causing the fatigue, and which may either be all error of refraction, heterophoria, or disease of some of the vital organs.

When it is of long standing its effects are far reaching, and becone complicated with nervous affections, and it is difficult to estimate just where they end and to what degree they are capable of relief, even when the correction is applied.

Asthenopia has been differently classified by different writers. Hartridge speaks of it as Accommodative, Muscular and Ruflex. Thorrington, subutitutes Retinal for Reflex, while Drs. Oliver and Noyes in their exhaustive treatise classify it into Ametropic and Heterophoric, these terms, of course, indicating conditions dependent upon errors of refraction and imbalance of the inotor muscles respectively. This list may be advantageously amended to include them all, viz., Accommodative, Muscular, Reflex and Retinal.

Accommodative Asthenopia, as the nane implies, is a condition in which the organs of accommodation show fatigue as the result of some unnatural strain being put upon thein, and is alwhya more or less associated with Hyperopia, Hyperopic Astigmatism or Presbyopia, and relief is usually secured by the correcting lens without much trouble.

The synnptoms of Accommodrtive Asthenopia are irontal headache-especially after using the eyes for near work-the pain may even extend to the neck and shouldors.

The degree of discomfort experienced is not at all in proportion to the amount of Anetropia, as more fyequently the worst cases of Asthenopia arise from the sinallest possible a mount of error and as frequently the extreme cases of ametropia produce no Asthenopia whatever. This nay possibly be due to the fact that witha slight amount of Hyperopin or Hyperopic Astigmatism,
the focus of the light rays is nearly upon the retina, and a slight amount of accommodation continuously exerted practically corrects the error and produces perfect vision, while in ametropia of the higher amounts no effort can effect a correction and the patient learns to recognize objects even although inperfectly focused, and thus while possessing a lower degree of visual acuity is comparatively free from Asthenopic symptons.

From this it will be apparent that in the treatment of patients afficted with Accomınodative Asthenopia no anounts of ametropia are to be considered too sinall for correction, and even in many crses-notably those where a slight spasm of accommodation is present-the error will not at first be apparent, and when discovered will at first accept with dificulty the correcting lens.

Marlow, a noted English specialist in eye work, states that in five hundred cases of Accommodative Asthenopia lie found 50% caused by hyperopic astignnatism of less than $1 / 2$ dioptre, and of these 80% were relieved by the correcting lens.

Another cause of Acconmodative Asthenopia is found in partial or complete paralysis of the ciliary muscle, and while in these cases immediate relief is obtained only by ineans of plus lenses for near work, it is always advisable to send them to the oculist for treatment, as the cause can then be investigated and in many instances removed, and permanent relief secured.

In some instances persistent Accommodative Asthenopia is present, and no relief secured by the correction of the ametropia. These affections are undoubtedly reflex in their nature, and can experience but little benefit at the hands of the optician.

Another feature of this form of Asthenopia, which is a source of considerable trouble to the optician, is the fact that complications incidental to muscular imbalance may be associated with the hyperopic error that causes the ciliary fatigue, and occasionally we find the heterophoria of such a nature that any correction applied for the relief of the hyperopia and its attendant ciliary fatigue only increases the agony by adding to the burden already being borne by a weak recti inuscle.

This would be the case where we have hyperopia with its attendant Accommodative Asthenopia and also insufficiency of the internal rectus; as in supplying the plus correction for the hyperopia we would in bringing the near point closer but increase the amount of convergence necessary for near work. We would thus relieve the ciliary at the expense of the internal rectus, and the second condition would be more intolerable than the first, and no relief for the ciliary by plus lenses can be obtained until the muscular trouble is relieved by the nid of prisms or tenotomy.

Muscular Asthenopia is a condition of fatigue of one or more of the motor muscles, and inay be caused by errors of refraction or be present in emmetropia.

A preponderance of any one muscle over its opponent will furnish sufficient cause for Muscular Asthenopia and when not complicated with any form of ametropia its relief is affected by means of prisms in moderate ases, and by tenotomy in those of a nore severe nature.

Muscular Asthenopia due to insufficient convergence associated with myopia, is usually relievud by the myopic correction, but if assuciated with hyperopir correction is impossible except by muscular treatment.

C snversely insufficiency of the externals finds ready relief in hyperopia by the spherical correction, but in myopia the strain is but increased by the minus spheres that correct the refractive error.

The distinguishing symptoms of Muscular Asthenopia are ocular pain, tenderness of the eyeball, and in many instances where the internals are affected the pain can be located at the inner side of the eyeball, and in extreme cases dimness of vision and diplopia are the attendants of this painful affection.

The treatment has already been given in another lecture on Heterophoria, by means of prisms either for exercise or for wear, and the optician will find these cases so closely allied with and dependent upon the general health that he will do well to keep in touch with the family phyaician.

Retinal Asthenopia, while closely allied to Accommodative Asthenopia, is distinct inasmuch as one is fatigue of the ciliary muscle and the other exhaustion of the retina or, perhaps more correctly speaking, the nervous system of the eye.

It is merely a question of overuse of the eyes, and demands rest and tonic.

Ac mmodative Astlienopia may be present as the result of overwork, but is relieved by using plus glasses to take off the strain on accominodative, but plus glasses would not relieve the strain consequent upon over-work of the retina, and the two conditions while produced by the same cause could not find relief by the same neans.

Reflex Asthenopia is a condition of pain and discomfort in the ccular system, arising from causes entirely removed from the eye or its appendages.

Bright's disease is a prolific cause of Asthenopia in its most revere form.

Certain forms of indigestion will also produce feelings of discomfort and it is only when the optician has carefully examined every imaginable cause of error without arriving at the true cause, and prescribed glasses for any error found and still finding the riscomfort continues, that he begins to seriously consider the presence of the reflex action of physical disaivilities of which he knows nothing, and for which he cannot prescribe even if he did.

It is well, therefore, in all cases of Asthenopia, especially where no immediate progress is made by glasses, to inquire into the conditions of the general health, and in case of ill-health to delay further efforts of relief until the physician has brought about an improved condition.

The connection between nervous complaints and eye error is so close that it is often difficult to decide which is the canse and which the effect, and consequently cases of this nature are better in the hands of the oculist, who is competent to study and prescribe for both conditions, than divided between a general practitioner and an optician.

Asthenopia, in addition to the particular causes already referred to, is undoubtedly largely dependent upon climatic conditions and habits of a people.

The inhabitants of tropical countries are of necessity, as a result of their environment, an indolent people and do not indulge in strenuous exercise, either mental or physical, and for a great part of the year merely vegetate. All the inhabitants being controlled by conditions over which they have no control, there is but little competition, and but little inducement to nervous tension that in more temperate climates is peculiar to modern nations in their effort to secure a share of the world's commerce.

The necessaries of life are ready to hand. The fruit and vegetable production of tropical countries being ample for the necessaries of life and capable of being produced with little effort, the inhabitant of the tropics is a stranger to the anxious struggle that is ever present in colder climates

With the question of a livelihcol always defore them, education as a means of acquiring it is always a matter of serious consideration, and the child of the frigid and temperate zone is almost from infancy preparing for the struggle for existence, and not merely is the actual strain upon organs of sight consequently much greater than in climates where a ready-made livelihood is at hand, but the drain upon the nerve supply is enormous, and has undoubtedly much to do with the presence of Asthenopia.

This view is much strengthened by a consideration of the conditions existing in England and America.

In England, although the proportion of Ametropes is larger than in America, the percentage of people wearing glasses is considerably smaller, and those in England who do wear them are to a large extent Myopes, while in America by far the larger proportion are Hyperopes and Hyperopic Astigmats.

The reason for this is not far to seek. The English have for so long been at the head of ali commercial enterprise that they have as a nation ceased to worry about it, taking it an a
matter of course that they arc bound to get their share both individually and collectively, and the business man does not, as we do, rush after business, but waits for it to eome to him. His nervous energy is not concerned in what we call "hustling" for trade, and the effect is seen in his freedon from nervous uffections, as, although amctropic to a greater degrec than the people of the American continent, the Englisl, wear glasses less owing to the absence of asthenopic symptoms.

A case in point will illastrate the far-reaching effect of the nervous excitement which is eliaracteristic of new world countries. and which seriously affects the condition of the eyes in relation to Asthenopia.

A case which cance to me a few years ago for examination, and which had aheady been treated by two of the leading Canadian oculists, disclosed a considerable amount of mixed astigmatism and severe Asthenopia. The patient whs a girl of sixteen, with a highly nervous temperament, and the various inlasses prescribed, while giving failly good vision, were always more or less unsatisfactory in the matter of comfort. Without inlasses the patient could not read or perform any of the ordinary duties without the greatest degree of discomfort, amounting even to nausea. Four years ago the patient was sent to England to complete her education, and, although applying hersiolf with the greatest diligenee, she felt no ill cffeets, and before completing a year in her new home had discarled masses entirely and continued to do withont them during the four years she was there, but upon returning to her home in Canada, and, athough her studies were completed, and she had comparatively littl. necessity. for use of the eyes for near work, she was compelled to rewne her glasses within a periorl of six montlis.

A second ease that came nolder my notiee is vory similas. A yourg girl utiending a local aeatemy was brought in for. hor examination and diselosed consilerable hyperopie astigmatiom. and intense pain the the result of herstudies. She wa-nhtmately sent to England to completo her atudice and in : : :ment rit
stated that she had entire freedom from asthenopic pains during her sojouru there, tut felt symptoms of their return after being home for three months.

These instaucs of actual experience show how difficult it is for an optician, however well erfuipped. to prescribe for cases of this kind with any positive assurance of success, and the experienced optician will do well to undertake them with a reservation, atud when found complicated with nervons or other distases to resign them at once to the oculist.

MUSCULAR ANOMALIES AND THEIR EFFECTS.

A great deal on this sensational order has bran writum on the subject of the cure and relief of disease by the application of lenses.

In this, as in almost all branches of original research, certain writers have been to the front with startling therorics and original propositions. That nany of these have been sensational and preposterous few will deny, but all of them have cemtained the same gerin of truth, and it is unfortunately owing to the tendency of these writers to exagrerate in the main that the profession has been slow to accept them.

Probably no section of optometry has leeen tha subject of greater difference of opinion than the question of prixinm and their application.

Prisms have at times been "fashionable" among" the prosfession," and again et others have sunk inte, disrepute, so that their employment, in the form of a "fall." has undoubudly deterred many conscientious cpticians from thoroughly ishestigating the question and has ansisted in promaturn! condemmin, the use of prisms as "quackery."

In the light of recent investigutions, however, it is safi- wo affirm that the prism han its legitimate place in the appliances arailable in the practice of mornarn optornetr:

Is it not sufficient for the mucoensfal practitionera wh sutar that they "nucceed without the une of prishs. and ' the: butet have any dissatisfied customer:-

The fact remains that a cortain percontage of erge uonbin is due to muscular imbalance. and if you den hot mese with it someone else does.

There are numerous instrmments available for determining the presence of heterophoria, and they are generally sinple in construction and easy of operation. The great trouble lies in the fact that many of those who do make heterophoric exaininations, in every case, do so in a perfunctory way, and with little faith in the measures they are taking, and less care to insure accuracy in results.

1 wish to state here that exminations for muscular defects made in this perfunctory manner, or, in fact, examinations with only a partial knowledge of the accepted theories of muscular imbalance, is time wasted, and glasses prescribed inder these conditions are more likely to prove a burden than a relief.

It is, of course, impossible in an article of this nature, to attcmpt to teach the science of higher prisins, and it is not iny intention to attempt to more than point the way.

The important fact to lay to heart is, that all eyes have a tendency, in a greater or less degree, to imbalance, just as all eyes are more or less anetropic.

Many eyes, however, possessing considerable defects in their refractive condition still possess perfect acnteness and an utter absence of asthenopia.

Likewise many a case of heterophoria exists in which nu positive eyestrain can be found.

The question then naturally arises, shall we interfere in cases of this nature and attempt to rectify visible errors while not finding any ill-effects of that error? It is probable that right here is the strongest argument against the practice of optometry by opticians.

The far-reaching effects of eyestrain cannot be measured with the optometer and test case.

They extend throngh the entire system, and according : 0 the most advanced authorities, no disease of organs, the most remnte from the organs of vision, can be said to be beyond the the reach of uncorrected eyestrain. To what extent many of
these remote-and some of them deadly-diseases are caused by eyestruin, it is impossible for the optician to judge, possessing no training in anatomy or the liagnosing of disease, and scarcely possessing the right to ask questions of his putient concerning its nature and symptoms.

There is no question, however, on one point, un optician, however well qualified in his profession, has no right to attempt a diagnosis of this kind nor to undertake the care of the disease, but no one will question his right, nay, his duty, to diagnose errors of refraction and heterophoric conditions and to use every means in his power to rectify them, leaving the results as shown in the improved physical condition to the physician, whose business it is to report thereon.

Professor Ranney, one of the greatest of modern authorities on this branch of eye work, claims to have established beyond a doubt that inany so called incurable diseases, such as diabetes, Bright's disease, St. Vitus' dance, etc., may be, and in his experience have been, caused by uncorrected errors or muscular imbalance, or both, and that he has secured relief in a great many cases, and a complete cure in others, by the removal of the cause.

It is not to be understood that the cause is direct, but rather that the persistent strain on the nervous system by a defective ocular system reduces vitality of the whole body to such a low ebb that disease finds a welcome abode in any organ already predisposed, and its natural powers of resistance weakened by enervation.

To fully understand this theory it is necessary to remember the conditions under which we contract disease.

A constitution, with the powers of resistence weakened, falls an easy victim, while others escape. So it is in the cases referred to. Disease, a foe to nature, is always making efforts to effect a lodgment in parts the most susceptible, and a dissention from within reducing the defences below their normal condition offers an eusy access to a foe from without.

If this theory be accepted the field of lator opened up to the opticinn is practically limitless, and certainly furnishes a convincing argument for the higher education of those engaged in optometry and an additional reason for safeguarding the privileges of the profession.

The eycball is deposited in the orbit and surrounded by a cushion of fatty tissue, and attached to it are the motor muscles. six in number.

The motor muscles consist of four recti or straight muscles and two oblique.

They are as follows: Superior Rectus, Infcrior Rectus, Internal Rectus, External Rectus, Superior Oblique, Inferior Oblique.

With all the muscles in a normal condition, and entirely relaxed, the eye is directed to intinity, and is "at rest."

In the act of directing the visual nxis to any point within infinity the internal recti are contracted, thus rotating the eyeballs inward. In the act of retiring them to infinity the exteruals are userl.

In looking upward the sut, riors would be contracted while the inferiors would direct the vision downward.

The oblique inuscles are used for rotating the ball around the antero posterior axis.

Superior rotates the upper section of vertical axis inward.
Inferior rotates the upper section of vertical axis outward.
Adduction is r term used to indicate the power of the internal.

Abluction refers to the external.
The movement of the eye in an oblique direction is accomplished by means of the combined action of two or nore muscles exerting a force from different directions, the ball takes a course between them.

For instance. in looking obliquely up and out the superior and external would be exerted, producing motion in a direction midway between the two muscles.

It will be easily understood from the foregoing that each muscle has its opponent, the external and intermil opposing each other, also the superior and inferior and the two oblignes, and that parallelism of the visual axis of the two eyes without muscular effort is only possible when the oprosing muscless exactly bahance each other, as it is evident that if one prepondernted the eye wonld turn towards it unless restrained by its opponent.

Orthophoria is a term used to indicate a condition of perfect balance between all the inotor inuseles.

Savage says: "This condition in the strictest sense includes the iden that the cxtrinsic muscles have all been perfectly developed, that each has its correct origin, pursucs its proper course through the eye, and is rightly attached to the globe."

Heterophoria is a term used to indicate a condition of unbalance among the motor muscles, the tendency being for the eyeball to rotate towards the preponderating muscles, thus demanding constant restraint on the part of its opponent.

The various forms of Heterophoria are as follows: A tendency to turn in is called Esophoria; a difficulty in converging is called Exophoria: an inclination upward is called Hyperphoria, and a tendency downward is called Cataphoria.

There are also complications of the oblique muscles with any of the above which would occasion Eso Cataphoria, Eso Hyperphoria, Exo Cataphoria, Exo Hyperphoria.

Heterophoria affecting the oblique innseles is known an Cyclophoria. When the inferior obligue is affected, producing a tendency of vertical nxis to rotate outward at the top it is known as Plus Cylophoria, and where the tendency is for them to converge it would be Minus Cyclophoria.

It is evident from what has been stated that Heterophoria in any of its forms is a condition in which a certain muscle is working al a disadvantare as ermpared witia its opponemt.

This may be owing to difference in size and strength, or it may be owing to certain forms of malformation in which one muscle is attached more forward or backward of the opposing muscle.

In the latter case, although of equal strength, the one inserted forward will, as a result of the leverage thas acpuired, produce more motion with leas exertion.

It must be borne clearly in mind, however, that the preponderance of any muscles, from whatever causes, in Heterophoria rarely produces an actual deviation of the axis, owing to the fact that the opposing, and presumably weaker, muscles exerting a continuous check by means of constant contraction, holds the eyes in position, thus preventing diplopia and squint.

It must also be clearly understood that the unnaturul strain to which the weaker muscle is subjected, demands a tremendous amourt of nerve impulse to be constantly supplied for that purpose, and if we consider this impulse as so much motive power -electricity, if you will-and that all the organs of the body depend upon a certain supply in order to perform their allotted function, it is easy to understand that a shortage is likely to prevail somewhere if one set of organs is consuming an abnormal amount. This shortage would mean inability to act and consequently the form of disease natural to the inaction of any partieular organ. If this theory is correct it is not difficult to imagine that the condition of muscular error, demanding an unnatural supply of nerve force, con easily be the indirect eause of many forms of disease and discomfort even in organs entirely remote from the organ of vision.

In the various forms of Heterophoria mentioned the terms Psendo and Intrinsic are used to differentiate hetween a real condition of error in the construction or anatomy of the muscle and a condition of faulty action of a perfect muscle owing to interference in the nerve smpply usually dependent upon some error of refraction.

For the testing of Heterophoria several appliances have been provided, from the simple prism to the phorometers of different designs.

In using the prism test we simply place a prism from the trial case of sufficient strength over one eye-the other being uncovered-and direct the attention to a small gas or candle flame. The power being just sufficiently strong to cause Diplopia two images of the finme are seen, one above the other if the prisin is base vertical and no Heterophoria is present, but if the internals and exterials do not balance the eyes will rotate either out or in, according to which ever muscle preponderates, and a consequent change in the apparent position of the two images, as if the internals preponderate, the eyes rotating inward, the image as seen by the right eye wall appear more to the right, and consequently will no longer appear exactly above the other image ns seen with the left eye. This condition indieates Esophoria.

If the image as seen by the right eye is to the left of the one seen by the left eye the extemals preponderating have turned the eyes outward, indicating Exophoria.

In a like m the prism is used base out or in aml lateral Diplopia is causel ith both images on the same plane in Orthophoria, lut one ele vated or depressed in Hyperphori
'aphoria. lame is in all cases the measure of the Heterophoria.

Fig. 63.-Maidox Rod.
The Miaddox Rod and other similar appliances are used in the same manner, the object being to destroy binocular vision by reason of the transformation effected in the appearance of the object as seen through the rod as compared with vision with the naked eye, so that the vision of the two eyes is thus entirely disassocinted.

The Hame, us seen through the Maddox Rod, assmmes the nppenranse of a long band of light, which in Orthophoria, with the rod horizontal over right eye, runs vertically through the centre of the flane, but in Esophoria is to the right of it and Exophoria to the left of the flame.

With rod on right eye vertically the band of light is seen extending horizontally through the flame, but in right Hyperoinoria, when the right eye has turned upwards, the band will the seen below the Hame, while in right Cataphoria it will appear above.

The degree of error, of course, is indicated by the prism necessary to compel the band of light to pass through the flane, which would be accomplished in Esophorin when the Maddox Rod is in front of right eye by holding before the left eyo a prism tase out of the strength required to bring the Hame as seen by left eye over to the apparent position of the bar of light as seen by right eye, and in a like manner through all the varions forms of Heterophorin, which is a very simple matter if we remember that the object will always appear to move towards the apex of the prism.

Fig. 64.

Fig. 65.

Fig. 64. - The Madiox Roilas applied for insufficiency of the ezterual and internal imuscles.

In fig. 15 the appearance and relative positions of the flame and the bar of light is shown.
A. shows the bar passing throngh the flame as in Orthophoria.
B. The bar is seen to the right of the flame, and with Madtox Rori on the right eye indicates Hosophoria.
C. The bar shown to the left of flame indicates Fixophoria.

Jig. 6x. -The Maddox Rod as applied for tenting the superior and inferiors.
A. Orthophoria with the bar passing throngh centre of flame.
B. Iyperophoria with the bar below the flame.
C. Cataphoria with the bar above the flame.

Another very simple test for the pre sence of Het rophoria -though not of the amonut-is the cover test.

This is done by simply excluding the vision of one eye by means of the black rubber disc from the trial frame, and lave the patient fix the uncovered eye upon some object at distance. This eye will immediately turn in the direction of the ohject designated, while the other eye exciuded from action will turn in unison if Orthopaic, but if Heterophoria is present-ans there is no possibility of binocular vision-will turn towards the preponderating innsele. The movement of the eye excluded from vision can be discerned moving towards the stronger muscle as the other eye fixes the object.

The Phorometer, however, is the most reliable instrument for conducting heterophoric tests, and by its aid the various forms of muscular error are quickiy and accurately diagnosed.

Much has been written and said upon the causes of Heterophoria, but after all has been said we have generally to look for the origin in one or more of the various errors of refraction, and for this reason any attempt to correct Heterophoria by prismatic correction or exercise, until any existing error of refraction has been corrected and had reasonable time in which to produce results, is bad practice, untess the Heterophoria is of such a form that the correction for the Ametropia wial necessarily increase the muscular imbalance, in which case the latter inust be ignored for the present and the inuscular correction proceeded with imnediately.

The symptoms of Heterophoria are those generally cominon to Asthenopia, viz: Headache, pain in the region of the orbit and brow, and possibly extending to the back of the head, and the headrehe of Heterophoria is listinguished from those incidental to stomachic aihments by reason of the fact that in the latter one usually awakens in the morning with the sufferings present, while in the former rest has enabled the nerve supply to become recharged, and it is not until the eyes have again been subjected to unnatural strain in che effort of vision that the piin once more returns.

Headaehe not present upon waking, but ensuing upon the use of the eyes for close work, is usially that of refractive error, while the Asthenopia resultant from the use of the cyes at distance is nearly always Heterophorie.

Asthenopic symptoms, resulting from the use of the eye: 11 a bright, strong light, may be attributed to paralysis of the sphincter., whiel sutfers in the prolonged effort of contracting the pupil.

But it must not 1 o overlooked that the regulation sick headache, which is the invariable result of stomachic disorders, may have its original cause in errors of refration or Heteroploria, or tooth.

Drs. Savage and Ramey, who have investigated muscular anomalies with marked success, both emphasize the connection between muscular errors and many serious ailments which have long banted the skill of the medieat practitioner.

There are two distinct methods of treating muscular errors, either by supplying for regular wear prisms with the base over the defective muscle, or by means of gymnastic exercise by means of prisms, with the base over the preponderating nuscle.

By the latter mathod prisins of just sufficient strength to canse Diplopia are placed with apex in front of defective musele. which thus puts a strain on this muscle, but by a supreme effort this muscle is made to contract and overcome the powei of the prism and fuse the two objects seen, when the freme containing the prisms is raised and the muscles relax, and, on dropping the frane in place again, the object is again doubled and the act of fusion is again repeated. Thus, by repeated exercise of this kind, while increasing, the power of the prisins used from week to week, the defective muscle becomes developed, and in favorable cases it is possible to produce a condition of preponderance in the originally defective muscle.

In case, however, the muscles are fanlty in their attachment to the eyeball, little or no headway cam be made with the use of prisms, and the only relief is by means of tenotomy.

In the correction of vertieal errors-Hyperphoria and Cata-phoria-Savage insists that the whole of the correcting prism should be worm before the defective eye and not divided betwern the two eyes.

Regarding the correction of muscular insufficiencies by gymnastic exercise with prisms its inventor says:-
" While rhythmie contraction and relaxation regulated as to intensity and time will develop any one of the recti muscles, as is developed the hiceps of the blacksmith's arm, the writer would not be understood as believing that one of thesc muscles can be developed out of a low state of weakness into a high state of strength. There are cases of Exophoria that will remain Exophoria still, in spite of the longr-continued rhythnic and graduated exercise, and these cases, to be cured at all, must of eured either by partial tenotomies alone or by those supplemc. ed with rhythmic exercise. The sane may besaichof Exophoria and Hyperphoria. Only low degrees (not more tilan i^{\prime}) of lateral Heterophoria can be converted, by rhythmic exereise alone, into Orthophoria, the higher degrees can be corrected by partial tenotomies, shortenings and exercise combined. While, in suitable cases, the aim of partial tenotomies and shortenings should be to approach Orthophoria, yet the greatest care should be exercised not to go beyond the "balance" line. The safest thing is to leave, for correction by exercise, some of the original condition."

Any one of the recti and either of the obliques weaker than ins opposing muscle, the difference in corresponding strength not being too great, may be developed by rhythnic exercise into a state that will enable it to work harmoniously with its fellow.

In attenpting correction by this nethod then, it is useless tu waste time on any ease in which the error is above a certain quantity.

In Exophoria ti. D. has been found to be the maximuin degree with which satisfnetory progress can be expected. In this form of Heterophoria it is the interna!s that are defected, and the exercise is of such a nature as to put the necessity of strenuous action upon the convergence, just as the physical director will order the wrist machine for strengthoning the power of the forearm.

Having ascertained the degrec of Exophoria by any of the reliable methods given, a pair of prisms, base out, are supplied just strong enough to cause Diplopia, which by an effort of the internals is overcome, and upon raising the frame containing the prisms this muscle instantly relaxes, and upon dropping the frame into position again Diplopia once more appearing, the internals are again called into action, thas developing and strengthening them by continual use in contracting and relaxing.

The progress made will be elearly indicated by the fact that a prism that used yesterday to eause Diplopia is useless to-day, owing to the fact that the increasing power of the internals enables them to instantly overcome the effect of the prism the moment it is placed in position and withont conscious effort. The prisms will have to be inereased in power as this happens until it is found by actual measurement that Exophoria no longer exists.

The exe has to be regularly practiced once or twice a day during periods of tive or ten minutes.

Esophoria is a condition of preponderance in the internals, and consequently it is the externals that have to be exercised.

Prisms ranging from 1 to 3 are used in the same manner as already deseribed in Exophoria, but in the present instance the bases are intward.

In Hyperophoria and Cataphoria the condition of weakness is in the inferior reetus, and one of the exercise prisms is placed, base up, over the ey found to be Hyperophoric, and the other, base down, over the opposite eye whieh, of eourse, is equally Catuphoric.

Weak prisms, not more than 1 or 2, are required, and the exercise must be continued and eondueted as in the forms of error already described.

For the detection of insufficiencies of the oblique muscles the Maddox double prism is nsed when the phorometer is not available.

Fig. 68.
Madilox Double Irism.
One eye being covered w^{i+h} the opagne dise and the double prism base vertical in front 0 inc other the right) a card contatining a horizontal line is us a as a target at about eighteen inches distance. The horizontal line, under the effect of the prism, is instantly seen louble with the two lines exactly parallel.

The opaque dise is then removed from the other eye and a thitd !ine will be seen between the other two, and if the obli, ues are harmoni ,us it will be parallel to the first two lines, but if any insutficiency exists it will appear tilted up or down.

If the middle line appears tilted lown on the right the left superior oblique is insufficient as compared with the left inferior oblique. With the left emds of midd!e and lower line converging insutficiency of the left inferion obligue is indicated.

The same method is applied to the right eye by placing the double prism over the left eye.

Cychophoria - a condition of error in the oblique masclesis a two forms. Plass when the vertical asis inclines outward at the top as a result of preponderating superior oblique, and minns as seen in the inclination of the vertion axis at the bottom owing to preponderating inferior obliques. Sarage's methot of the correction of Cyelophoria is by means of cylinders, usually +1.50 , phaced before cach eye, that it will demand action on the part of the defective muscle to prevent distortion and mananan !inom!ar vison.

To understand the principles involved in this method it is necessary to be thoronghly faniliar with the enndition existing in Cyclophoria, and the effect of a cylinder upon the position and principal direction of the retinal innges.

In Plus Cyclophorin the superior obliques preponderating theoretically rotate the eyeball down and out thus causing the vertical axis to separate at the top. This, if actually occurring, would produce either distorted objects in a slanting outward direction or Diplopia, eitler of which condition prodncing discomfort or strain, is prevented by the restraining power exerted hy the opposing weak inuscle, which is thus kept constantly in a state of contraction at the cost of comfort and health.

The effect of a cylinder placed in front of the eye, in addition to effect upon the refraction, is of prismatic nature, the light rays deviating towards the bases of the prisins of which a cylinder may be saitl to be composed. In the case of a plus cylinder this would be represented by its axis.

The optical effect of this is that retinal image of an upright object would be tilted over towards the direction of the axis if it were set obliquely.

Here, then, we have exactly the condition produced in Cyclophoria, so that it is very evident that if we place the cylinder in such a position that it will necessitate an effort of contraction upon the weakened muscle, thus applying to the obliques the same theory of development by e:iercise that has already been described in reference to the recti inuseles should secure similar results in regard to inuscular development.

It is obvious, of course, that a cylinder so applied is not for constant wear, and it is not intended in any way to correct any error of refraction, but is usel merely as an exercise for a few minutes at a time at repeated intervals.

In case of Oblique Astigmation the wearing of the correction will frequently fail to give satisfaction when complicated by oblique nuscular trouble, and relief will usually be experienced by throwing the axis of cylinder ower in such a position that it
does the work hitherto done by the defective muscle. This position, while producing confort, will scarcely give as high a degree of visual acuity, and the safer plan is to tone up the weak muscle by exercise previous to supplying the correction.

Referring again to the question of Esophoria, it has already been stated that this form of Heterophoria is of two kinds, Intrinsic and Pseudo.

In the former kind the cause is to be fouml in the fact that the internals are cither too strong, too short, or are attached too far forward, or that the externals are abnormally long or weak or attached farther back than the internals. A mal-attachment aiso of the superiors, where this attachment is to the nasall side of vertical meridian, would necessarily create a tendency to Esophoria, and destroy the balance between internals and externals by the added weight of the superiors inwards.

Another cause for Esophoria is also to be found in a condition of abnormal enervation in nerve centres that supply the impulse to the internals, thus causing abormal action on the part of these muscles.

Pseudo Eyophoria is a fictitious condition depending upon the conditions of the ciliary muscle and its relationship to the intermal rectus through their common nerve supply, and is the usual accompaniment of Hyperopia when the balance between ac:ommodation and convergence had ncesssarily been disturbed, and the cause of the tendency over convergence is on account of the nerve impulse nccessary to accommodate being unconsciously supplied also to the internals.

Thus we have a condition of Esophoria, or a tendency to overconverge, without, in any way, having a preponderance of muscular action inwards.

It is self-evident that no treatinent or correction for this is necessary as the correction of the Hyperopia will at once do away with ali abnomal encriation, loth ciliary and internal.

Surare particularly emphasizes a curious fact, when real in the : int of the average text book, the medical authors of which, while chaning to write for the laymen and maxion to receive
their financial support, always have this stereotyperl sentence inserted somewhere in every ehapter: "No test ean: he in muy why reliable unless atropine has been administerel."

Savage's conch inding sentence to one of his best articles on Heterophoria reads as follows: 'All tests for lateral Hrterophoria are wholly unreliable within the first few hours after eyes have been brought under the inthence of a mydrintie."

Exophoria, the tendeney of the axes to interseet finther awiay than the fixation point or possibly to diverge is a condition of preponderanee in the extemals and, like Esophoria, is intrimsic anl pseudo.

In the intrinsic form an actual eondition of preponderanee in the externals in exaetly the same manner as has already been shown in reference to the preponderance of the internals in Esophoria.

The tests for this form of muscular inbalance have already been given, and the means of relief either hy prisms worn with their bases out or by means of grymmastic exereise by prisms with their bases in.

Pseudo Exophoria is usually associated with Myopia, or it may be present as the result of an abormal development of the ciliary musele.

If associated with Myopia it will be found only in near tests, a* Myopia uncorreeted demands little or no aceommodation for near distanees, eonsequently little or no nerve impulse is generated, and as the two functions of aceommolation and convergence have a common nerve supply it is clear that a tendeney to undereonvergs will be experiencod.

The same reasoning applies to eondition of abmormal development of the ciliary, as when direnting the eyes to a close point under these eurditions the act is accomplished by the use oi an abomormally small amount if morve impulse, aml consequently a weak impulse to comerge, thus allowing the externals to preponderate.

Pseudo Exophoria is indicated by the fact that the distant test shows Orthophoria, while the near test gives Exophoria, or when Exophoria is present at both points less for far than near points.

The tests and treatment have already been noted, and, while no correction would be necessary for Pseudo Exophoria associated with Myopia or Myopic Astigmatism other than the correction for the error of refiraction, and in some cases associated by exercise, when an abnormal developinent of the ciliary muscle occasions it, relief would seem possible only through opelation or persistent exercise with a view to producing in the internals a similar condition, thus "forcing a balance."

It is well to remember that in Exophoric conditions, when associated with Hyperopia or Hyperopic Astigmatism, will not permit the acceptance of the correction, as any plus correction would but increase the necessity for convergence, which is already in difficulties owing to the insufficiency of the internals.

The great difficulty lying in the way of all forms of gymnastic treatment for muscular anomalies as practiced by the optician, the process even under favorable circunstances is tedious and the results uncertain, and depends as much upon the hearty co-operation of the patient as upon any technical knowledye possessed by the optician, and in the event of the former failing to taithfully carry out instructions in exercising, no headway is made.

Another feature not without considerable inportance to opticians as now practicing; very few are able to collect any fee for professional services, and the patient usually deinands an estimate for glasses before placing the order, and usually expects a" no cure no pay" guarantee. It is easily seen that the actual value of the glasses is the smallest item in cases of this nature, and it is utterly impossib!. to fix a proportionate charge before undertaking the work, and no one would think of guaianteeing perfect results.

COLOR AND COLOR VISION.

The phenomenon of color and its interpretation in the act of vision has long remaned one of the mysteries of optical science as appied to eye work, and the various hypotheses that have been advanced at different times by the most eminent investigators are still little more than plansible theories, and have never yet been demonstrated to be absolutely true.

It may seem, therefore, somewhat presumptuons to attempt to elncidate a complicated question of this nature in an elementary optical treatise, but I would merely point out that it is not my intention to attempt here to solve the inystery of color and color sense, but merely to transcribe into simple English some of the theories that have come under discussion.

What is known as the "Young-Hemholts" theory has received the greatest measure of support, and it is pretty genera!ly accepted as being the correct solution, but, unfortunately, it has not liitherto been found possible to demonstrate its absolute soundness.

Young's cheory, which was the first io possess any scientific value, was as follows: "It is certain," said he, "that we can produce a perfect sensation of yellow and blue by a mixture of green and red hight, and of green and vioiet light. There are r. yons for supposing that these sensations are always composeri of a combination of separate sensations. This supposition at least simplities the theory of colors, we may therefore accept it with advantage until such time as we shall find it incompatible with some phenomenon. We will, therefore, consider white light as composed of a mixture of three colors only-rei, green and violet."

Tschering, in his reference to color in his lxok "Physiologic Optics," anys regarding this theory: "We snppone each nerve tibre of the retina eomposed of three tihres of the seeond order, ench of these fibres would be provided with a special terminal orgran (a photo-chemieal smbstance) and also with special eentral organ. An irritation of the tirst tibre wonld prohnce n red sensation, and an irritation of the seemal fibre a green sensation, and an irritation of the thirl a violet sensution. These three are termed principnl colors. An irritation of the first two fibres would prorluce yellow, etc. An irritation of the three prodnces white, und the nhsence of all irritation produces n sensation of black.

Hemholta, while ngreeing in the main with Yomg, argnel that each eolor irritated all three fibres at once, but some in a greater degree than others, and the resultant color sensation would be in aceord with whieh ever nerve fibre was most affected.

It will he seen from this that the retima is supposed to possess a form developing faculty, and a color perception power, for which purpose it may he said to be composed of a set of nerves whieh are susceptible to form and mother set susceptible to color, and that the hatter, like the for, have their intinity situnted in the bram, so that while the retimal image by means of the former prodnces in the mind idens and information coneerning the size, whape, rtc., of the object looked ut, the latter elothes it in tints in accordance with the manner in which they are affected by the prepondermace of the effeet on the varions nerve fibres that respond to the different colors of which light is said to be composed.

Thus it will be materstood that color is merely a mental sensation and has no netmal existence, and that objects nppenr red, bhe, green, cte., beemse the chemical mature of their exterior is snch that all but a certain portion of the light is nbsorbed, the remainder being reflected back enters the eye and, acting upon the purtionlar nerve fibre that responds to the partieular portion of the light ray which it represents, the color sensation is thereby prorlaced.

This theory will not the ditficult of comprehension if we bear in mind the results following the violent refraction of pure white light by menns of a powerfal prism. If we place smeh a prism in a dark room without a particle of color on its walls, mul being entirely divested of any furnishings whatsoever, mul admit a ray of light throurh a small opening so that it will pass throngh the prism in prising in, the result will be that on the: perfectly colorless wall appenrs a succession of illuminated sections of different colors, so that it is evident that the effiet prodneed is in the light itself and its aflect upon the organs of sight and not by any artiticial change in the wall itself.
'This womld prove rither that the light is broken up int" several parts each possessing n different tint, or that if these broken parts are really colorless that they are different, from each other in some vital essential, inamuch ns they affect the retina and intellect in such a manmer that they are to the person who views them to all intents and purposes really cobored.

The acceptance of the Youngr. Hemholtz theory nceepts thr latter hypothesis and also necomats for color blindness-that is the inability to correctly distinguish colors-hy the supposition that the nerve fibres which prodnce certain color sensations we imperfect or absent absolutely.

GLOSSARY.

Axis-One of the principal lines through the eentre of a figure. In a cylinder lens it is the phan direetion.
Axis Ray.-.The ray that passes throngh the optical eentre of n lens and which is not refrneted.
Atroirine:-The ive principle of Belladoma.
Agreot's Humon. - 'The fluid eontained in the front chambers of the eye.
Aphakia. - The absence of the crystalline lens.
Ameirropia. - A condition of imperfect refrnction.
Aмнוяора. - Imperfect ision not eunsed by my error of refruetion.
Accommolation. - The: act of increasing the refractive powor of the eye by menns of the erystalline lens.
Astigmatism.-A condition in which the various meridians focus at different points.
Antero-Posterior. From front to rens.
Anvisometropia.-A difference in the refractive eonditions of the two eyes.
Asthenorla. - : "strain: A eomdition of pain and fatigne in the eye or its appendages.
Anpitione. Amplitude of aceommorlation, the total inerense possible by menns of the full use of the ciliary mmsele.
Buixil Siot.-(The point of entrance of). The optie dise.
Catakact:-An opacity of the ergstalline lens through discoloration of its contents.
Cataimoma.- Imperfent condition of the superior rectus.
Centiad.- lonit of measurement of prisin.
Convergext.-Coming together.
Cyilinerir - A kens ground on a eylindrieal shape form.
Chromatic Aberkatios.-The deeomposition of light into colors by mains of violent refraction.
Cornea-The tramsparent section of the outer coat of the eye C'romon.-I'he middle cont of the eye.
 eye.

Chinary Miscle:- The muscle that controls the crymalline lens.
Convemaenck. - The act of turning the visual axis of both cyes to a point closer than infinity.
Dhirtife- -The unit of the metric sysiem of measuring lenses, its fncal length heing 1 mirtre.
Diphopia. - Seemg two objects when one only is looked at.
Divement.- Rays are divergent when they are travelling away from ench other.
1)nsprsive. - Applied to refraction-the net of hreaking light into its elementary colors.
1)eviation.-Clanging direction.

Emmerropic:- A condition of perfect refraction.
Far Ponst--(Punctnm Kemotunn). The point at which an eye can see clearly without any aceommoration.
Fincis (Principal). -The point behind a convex lens where parallel rays will meet after being refracted.
Focl (Conjucate)-Tl: various points behind a lens where the light proceerling from the various points within infinity would ineet after passing throngh the lens.
Giaucoma.-A disease of the eye which canses severe tension, and usually recults in the loss of sight unless speedily relieved.
Hyperopia. - A condition of refractive error in which the focus parrallel rays is behind the retina.
Iris.-The vertical section of the choroid.
Infinity.-A distance of 20 feet or beyond.
Lachrymal Glands.-The system by which the tears are generated.
Luminous. - Pertaininge to light.
Latent Hyperopia.-The amount of hyperopia covered by accommodation and incapable of measurement without atropine.
Metre.-A term of lineal measurement-about 40 inches.
Macula Lutea (Yel" Spot).-The point of greatest sensibility on the . iline.

Metricil A vale.-The anglo formed hy the intervection of the visual axis and the median line.
Meman Line.--An imaginary line running from a point midway between the eyes to intinity.
Merminas.-A dircetion across the cornen passing through the eentre.
Minimum-Least.
Maximum.--Greatest.
Memum. - A body or sulistance.
Motor Muscles.-The muscles hy which the eychall is moval in varions slireetions. They are an follows: External Rectus, Internal Reetus, Superior Reetus, Inferior Rectus, Superior and Inferior Oblique.
Mropa.-A condition of refactive error in whieh the foens of parallel rays is in front of the retina.
Maliniant M"opla. When Myopia is of a high degree $\mathbf{~}_{6.00}$ or more) it is said to be malignant.
Nebtrabiza. - To place convex and concave lenses of equal power and opposite kind together.
Nondl Ponst.-An imaginary point situated just in front of the rear surface of the crystalline lens where the vismal and optic axis cross.
Nean Ponst Punctum Proximumb. -The nearest point possible to focus an oliject with nil the aceommorlation in force.
()prical Cextre.-The point of extreme curvature in a lens.

OpTIC Nerve.-The nerve that eonveys the light impressions from the retina to the brain.
Orrir Axis. - An imarinary line drawn straight from midway between the gellow spot and optic dise through the centre of the pupil.
Ortur Disw:-The point at which the optic nerve enters the int rof the eye.
Ombiqu e.-i wr than alifht angle.

Pishomgy.--The seience treating of the natural ation of the various organs of the body.
Point of Propatiation. - The point from whieh the light procueded.
Paraidel. - Rmening in the same direction.
Fusm.-Threesided figure of glass consisting of a bnse and two sides.
Protratoro-A diagram containing the various degrees of a cicrele. Used for locating the axis of a cylinder:
Peripienal. Near the periphery or ciremmfance of a circle.
Photophobia.- Intolerance of light.
Posterion Staphadoma--The bursting of the eyehall at the rear; usually the result of Progressive Myopia.
Proniressive Miopla.-A eondition in whieh Myopia is increasing.
Principar. Aermonans.- Directions oï greatest and least curvature.
Presibyopla (Old Sight).--A eondition in which near vision is difficult or impossible owing to loss of accommodation.
Remina.-The imer and nervous coat of the eye.
Refraction.--The net of bending or turning aside.
Spherical. Aberration. --The blurring eaused by the imperfeet focosing of a spherieal lens owing to the fact that the central portion of the lens do not refract as mueh ns the parts nearer the edge.
Stapensory Ligament. - The liganent which controls the aetion of the erystalline lens.
Sclerotic.- The miter coat of the cye.
Spherical.-One of the forms of lenses so ealled beeanse its surfaces are sections ol spheres.
Strabisimes (Squint). --A want of parallelism in the visual anes of the two eyes.

Simulative Myopia.-A condition of spasin of the ciliary muscle, which overcorrects a hyperopic condition and renders the eye temporarily myopic.
Socket.-The bony ledge in the skull containing the eyebrll.
Spilncter Muscles.- The set of radiating muscles that control the motion of the iris.
Visital. Angle - The augle formed by the intersection of lines drawn from the extremities of the object looked at to the eye.
Viscial Axis.-An imaginary line drawn from the object looked at to the yellow spot.
Vitmeous Humor.-The jelly-like contents contained in the rear section of the eyeball.

INDEX.

PAGE
Accommorlation, Theory of 37
Amount necessary for different distances 39 39
Amplitude of 39
Amblyopia 34, 178-182
Anetropia 34 34
Anatomy of the Eye 21 21
Angle of Deviation
11
11
Anisometropia 28
Aphakia
29
29
Aqueous Hinmor
Aqueous Hinmor
Aqueous Hinmor 41, 188-194 41, 188-194
Asthenopia
Asthenopia 159-177
Astignatic agaries 56
Astignmatism
56
56
Regular and Irregular
Regular and Irregular
56
56
" Lenticula 58
.. Symptoins of 58
-. Varieties of 59 59
.. With the rule 61
.. Against the rule ;1
.. Relative position in the two eyes 67 67
Anisometropia in 67

- Detecticn and Diagnosis of 12
-. Principal Meridians in 63
، Difficulties met with in Correcting 63-166
Atropine 24
Cataphoria 199
Cataract 29 29
Centrad. 23
Choroid 20
Chronatic Aberration
27
27
Ciliary Muscle 183-187
Ciliary Spasm
137
137
Conical Cornea 6
Conjugate Foci
Conjugate Foci
40
40
Convergence
23
23
Cornea
27-28
27-28
Crystalline Lens
Crystalline Lens 208
Cyclophoria.
Dioptric Systeln 3
Diplopia 25, 10
Fmergence, Point of 3
31
Emmetropia
Eso-Cataphoria 199
Eso-Hyperphoria 199
Esophoria 199
Exo-Cataphoria. 199 199 199
Exoplioria
Exoplioria
Fye-Brows 30
PAGE
PAGE
Fyeglasses and How to Fit Them 102
Nanes of Parts 108
Guards 104-114
Studs 101
Fitting Set 105
Offset Posts 108
Springs 109
. Their Relation to Cosmetic Fffect 112-118
F:ye-Idids 30
Far Point. 38
Formation of limages 14-15
Frames and Frame Fitting 37
Glaucoma 75
Glossary 214-224
Heterophoria 199
11 yperopia 42
Description of 42-43
". Symptoms of Appearance of Eye in. 14 45
". Causes of 45
" Results of ['ncorrected +j-1i
" Estima:ion of 41
Manifest and Latent 11
11 yperphoria 149
Incidence, Point of 3
Instruments for Measuring the Refraction 148-148
Trial Case $152-153$
Rings 15 B
Frame 151
Chromatic Disc. 155
Marldox Roul 155
Placidos Disc. 155
I'risoptometer. 156
Ophthalmoscope 157-159
Ophthalnometer 159-161
Geneva Retinoscope 162
Self Iduminous Retinoscope 163
Oplithalıuic Cabinet. 164
Geneva Lens Gauge. 165
Phorometer 166-167
Combination Geneva Re-
tinoscope and Ophthalmoscope. 167-163
Iris 24
Iachrymal Apparatus 30
Sack 30
Gland 30
Lenses, Composition of 3
Construction of Spherical 5
rocus of a Concave 6
- Cylindrical 7.8
Lenses, Method of Analyzing
" Various Forms of 18
" Metrical Systent of Numbering 13
". Comparative Table of Incli and Metrical System of Numbering 14
- Glass and Pebble 111
- Spherical, Method of (irinding 114
" Prismatic Power in Spherical. 120
" iizes in Kimmed and Rimless. 121
" こolored 123
-. Lenticular. $1: 24$
- IBifocal 124-125
" Coquille $12{ }^{\prime}$
- Sliooting 126
-. Toric $1: 2$
- Comy rund Cylinder and Equivalent Reductions 127-128
Light, Theones of 1
Rays 1
Speed of 2 2
Mericlian 63
Methods of Measuring the Refraction 77
Objective Method $7 ?$
Subjective 77
Metrical Angle 40
Motor Muscles 31-32 31-32
Muschlar Anomalies and Their Fffects 195-208
Myopia 48
" General Description 48-19
" Causes of 49
-. Squint or Strabismins in 49
- Malignant 50
-. Estimation of 50
Results of Incorrected 51
Simulative 52
" Symptoms of 5 2
-. Correction of 55
Near 1'oint 38
Nervous System 36
Cptical Centre 5
Optic Nerve 26
Ophthalmoscopy
Orthophoria 199
Photophobia 24
Physiology of Vision. 33
Pin Hole Test 41
Presbyopia 68
\therefore General Ilefinition 18
- Causes of 70
- Symptoms of 70
-. Diagnosis and Correction 71
" Examples and l'roblens. 72.73
1.AGE
74
Presbyopia, Exception to Rule for Correction 75
Its resemblance to Claucoma 89
Prescription Writing 5
Principal Focus t
Prism Dioptre4
Refracting Angle 2
Refraction, Theory of 3
Cause of 3
Index of 15
of the Eye 24
Retina 130
Retinoscope, Thorington $1: 6$
Geneva 129
Retinoscopy 181-185
Method of Employing187
Scliematic Fye $2:$
Sclerotic Coat 69
Second Sight 88
Spectacles and How to Adjust Them 89
Spectacles 89 89

.. Temples, Styles and Lengths

.. Temples, Styles and Lengths 90 90". Bridges, Various Styles
" Eyes. Shapes and Sizes 91
" Joints. 91

- Material 92
". Rimless 9 93
-. Measurements
. Scale for Measuring 94 94
Measuring Set 112
Grab Fronts 19
Spherical Aberration 91
Sphinctre Muscles fi2
Stenopaic Slit19
Test Type 1, 15
Vision 16
Acuteness of 16-17
Visua' Augle 26
Vitreous Humor24
Yellow Spot

[^0]: Diagram of l form in common use.

