

RAILROAD CONSTRUCTION.

THEORY AND PRACTICE.

A TEXT-BOOK FOR THE USE OF STUDENTS IN COLLEGES AND TECHNICAL SCHOOLS.

${ }_{\mathrm{BY}}$
WALTER LORING WEBB, C.E., Associate Member American Society of Civil Engineers; Assistant Professor of Civil Engineering in the University of Pennsylvania;
etc.

FIRSTEDITION.
first thousand.

NEW YORK:
JOHN WILEY \& SONS.
London: CHAPMAN \& HALL, Limited.
1900.

L'

TWO COPIES RECEIVED.
L 10 rary of 60 n 8 BrOs Ofiladot the
APR 301900
Ggegster of Copyriteote
second copr, $a, 8196$
Leb. 51,1900

61540
'Coprright, 1899,
ву
WALTER LORING WEBB.

PREFACE.

The preparation of this book was begun several years ago, when much of the subject-matter treated was not to be found in print, or was scattered through many books and pamphlets, and was hence unarailable for student use. Portions of the book have already been printed by the mineograph process or have been used as lecture-notes, and hence have been subjected to the refining process of classroom use.

The author would call special attention to the following features:
a. Transition curves; the multiform-compound-cirve method is used, which has been followed by many railroads in this country; the particular curves here developed have the great advantage of being exceedingly simple, and although the method is not theuretically exact, it is demonstrable that the differences are so small that they may safely be neglected.
b. A system of earthwork computations by means of a sliderule (which aceompanies the volume) which enables one to compute readily the volume of the most complicated earthwork forms with an accuracy only limited by the precision of the cross-sectioning.
c. The " mass curve" in earthwork; the theory and use of this very valuable process.
d. Tables I, II, III, and IV have been computed ab novo. Tables I and II were checked (after computation) with other tables, which are generally considered as standard, and all discrepancies were further examined. They are believed to be perfect.
e. Tables V, VI, VII, and IX have been borrowed, by permission, from "Ludlow's Mathematical Tables." It is believed that five-place tables give as accurate results as actual field practice requires. Tables VIII and X have been compiled to conform with Ludlow's system.

The author wishes to acknowledge his indebtedness to Mr. Chas. A. Sims, civil engineer and railroal contractor, for reading and revising the portions relating to the cost of earthwork.

Since the book is written primarily for students of railroad engineering in techmical institutions, the author has assumed the usual previous preparation in algebra, geometry, and trigonometry.

Walter Loring Webb.

[^0]
TABLE OF CONTENTS.

CHAPTER I
RAILROAD SURVEYS.
page
Reconnoissance. 1

1. Character of a reconnoissance survey. 2. Selection of a general route. 3. Valley route. 4. Cross-country route. 5. Mountain route. 6. Existing maps. 7. Determination of relative elevations. 8. Hori- zontal measurements, bearings, etc. 9. Importance of a good reconnoissance.
Preliminary surveys 8
2. Character of survey. 11. Cross-section method. 12. Cross- sectioning. 13. Stadia method. 14. "First" and "second" pre- liminary survey.
Location surveys 13
3. "Paper Location." 16. Surveying methods. 17. Form of
Notes.

CHAPTER II.

ALIGNMENT.

Simple curves.. . . 18
18. Designation of curves. 19. Length of a subchord. 20. Length of a curve. 21. Elements of a curve. 22. Relation between T, E, and Δ. 23. Elements of a 1° curve. 24. Exercises. 25. Curve location by deflections. 26. Instrumental work. 27. Curve location by two transits. 28. Curve location by tangential offsets. 29. Curve location by middle ordinates. 30. Curve location by offsets from the long chord. 31. Use and value of the above methods. 32. Obstacles to location. 33. Modifications of location. 34. Limitations in location. 35. Determination of the curvature of existing track. 36. Problems.
page
Compound curves 3737. Nature and use. 38. Mutual relations of the parts of a com-pound curve having two branches. 39. Modifications of location.40. Problems.
Transition curves. 4341. Superelevation of the outer rail on curves. 42. Practical rulesfor superelevation. 43. Transition from level to inclined track.44. Fundamental principle of transition curves. 45. Multiform com-pound curves. 46. Required length of spiral. 47. To find the ordi-nates of a 1°-per- 25 -feet spiral. 48. To find the deflections from anypoint of the spiral. 49. Connection of spiral with circular curve andwith tangent. 50. Field-work. 51. To replace a simple curve by acurve with spirals. 52. Application of transition curves to compoundcurves. 53. To replace a compound curve by a curve with spirals.
Vertical curves 61
54. Necessity for their use. 55. Required length. . 56. Form of curve. 57. Numerical example.
CHAPTER III.
EARTHWORK.
Form of excavations and embaniments. 6458. Usual form of cross-section in cut and fill. 59. Terminal pyra-mids and wedges. 60. Slopes. 61. Compound sections. 62. Widthof roadbed. 63. Form of sulgrade. 64. Ditches. 65. Effect ofsodding the slopes, etc.
Earthwork surveys 7266. Relation of actual volume to the numerical result. 67. Pris-moids. 68. Cross sectioning. 69. Position of slope-stakes.
Computation of volume r670. Prismoidal formula. 71. Averagiug end areas. 72. Middleareas. 73. Two level ground. 74. Level sections. 75. Numericaiexample, level sections. 76. Equivalent sections. 77. Equivalentlevel sections. 78. Threc-level sections. 79. Computation of prod-ucts. 80. Five-level sections. 81. Irregular sections. 82. Volumeof an irregular p!ismoid. 83. True prismoidal correction for ir-regular prismoids. 84 Numerical example ; irregular sections;volume, with true prismoidal correction. 85. Volume of irregularprismoid, with approximate prismoidal correction. 86. Illustrationof value of approximate rules. 87. Cross-sectioning irregular sections.88. Side-hill work. 89. Borrow-pits. 90. Correction for curvature.91. Eccentricity of the ceuter of gravity. 92. Center of gravity ofside-hill sections. 93. Examples of curvature correction. 94. Accu-
racy of earthwork computations. 95. Approximate computations from profiles.
Formation of embankments 11196. Shriukage of earthwork. 97. Allowauce for shrinkage. 98.Methods of forming embankments.
Computation of haul 11699. Nature of subject. 100. Mass diagram. 101. Properties ofthe mass curve. 102. Area of the mass curve. 103. Value of themass diagram. 104. Chauging the grade line. 105. Limit of freehaul.
Cost of earthwork 126106. General divisions of the subject. 107. Loosening. 108. Load-ing. 109. Hauling. 110. Choice of method of haul dependent ondistance. 111. Spreading. 112. Keeping roadways in order. 113.Repairs, wear, depreciation, and interest on cost of plant. 114. Super-intendence and incidentals. 115. Contractor's profit. 116. Limit ofprofitable haul.
Blasting 142117. Explosives. 118. Drilling. 119. Position and direction ofdrill-holes. 120. Amount of explosive. 121. Tamping. 122. Ex-ploding the charge. 123. Cost. 124. Classification of excavatedmaterial. 125. Specifications for earthwork.
CHAPTER IV.
tRESTLES.126. Extent of use. 127. Trestles vs. embankments. 128. Twopriucipal types.
Pile trestles 155
129. Pile bents. 130. Methods of driving piles. 131. Pile-driving formulæ. 132. Pile-points aud pile-shoes. 133. Details of design. 134. Cost of pile trestles.
Framed trestles. 162135. Typical design. 136. Joints. 137. Multiple-story construc-tion. 138. Span. 139. Foundatious. 140. Longitudinal bracing.141. Lateral bracing. 142. Abutments.
Floor systems 167143. Stringers. 144. Corbels. 145. Guard-rails. 146. Ties ontrestles. 147. Superelevation of the outer rail on curves. 148. Pro-tection from fire. 149. Timber. 150. Cost of framed timbertrestles.
page
Design of wooden trestles 174
151. Common practice. 152. Required elements of strength. 153.Strength of timber. 154. Loading. 155. Factors of safety. 156.Design of stringers. 157. Design of posts. 158. Design of caps andsills. 159. Bracing.
CHAPTER V.
TUNNELS.
Surveying 185160. Surface surveys. 161. Surveying down a shaft. 162. Under-ground surveys. 163. Accuracy of tunnel surveying.
Design 190164. Cross-sections. 165. Grade. 166. Lining. 167. Sbafts.168. Drains.
Construction 195
169. Headings. 170. Enlargement. 171. Distinctive features of various methods of construction. 172. Ventilation during construc- tion. 173. Excavation for the portals. 174. Tunnels $v s$ s open cuts. 175. Cost of tunneling. :
CHAPTER VI.
CULVERTS AND MINOR BRIDGES.
176. Definition and object. 177. Elements of the design.
Area of the waterway. 203
178. Elements involved. 179. Methods of computation of area. 180. Empirical formulæ. 181. Value of empirical formulæ. 182. Results based on observation. 183. Degree of accuracy required.
Pipe culverts 208
184. Advantages. 185. Construction. 186. Iron-pipe culverts.187. Tile-pipe culverts.
Box culverts 212188. Wooden box culverts. 189. Stone box culverts. 190. Old-rail culverts.
Arch culverts 215
191. Influence of design on flow. 192. Example of arch-culvertdesign.
Minor openings 216
193. Cattle-guards. 194. Cattle-passes. 195. Standard stringer and I-beam bridges.

CHAPTER VII.

BALLAST.
PAGE
196. Purpose and requirements. 197. Materials. 198. Crosssections. 199. Methods of laying ballast. 200. Cost.

CHAPTER VIII.

TIES
AND OTHER FORMS OF RAIL SUPPORT.
201. Various methods of supporting rails. 202. Economics of ties.

Wooden ties

203. Choice of wood. 204. Durability. 205. Dimensions. 206. Spacing. 207. Specifications. 208. Regulations for laying and renewing ties. 209. Cost of ties.

Preservative processes for wooden ties
 232

210. General principle. 211. Vulcanizing. 212. Creosotiug. 213. Burnettizing. 214. Kyanizing. 215. Wellhouse (or zinc-tannin) process. 216. Cost of treatiug. 217. Economics of treated ties.
Metal ties
211. Extent of use. 219. Durability. 220. Form and dimensions of metal cross-ties. 221. Fastenings. 232. Cost. 223. Bowls or plates. 224. Longitudinals.

CHAPTER IX.

RAILS.
225. Early forms. 226. Present standard forms. 227. Weight for various kinds of traffic. 228. Effect of stiffness on traction. 229. Length of rails. 230. Expansion of rails. 231. Rules for allowing for temperature. 232. Chemical composition. 233. Testing. 234. Rail wear on tangents. 235. Rail wear on curves. 236. Cost of rails.

CHAPTER X.

RAIL-FASTENINGS.

Rail-joints
237. Theoretical requirements for a perfect joint. 238. Efficiency of the ordinary angle-bar. 239. Effect of rail-gap at joints. 240. Supported, suspended, and bridge joints. 241. Failures of rail-joints. 242. Standard angle-bars. 243. Later designs of rail-joints.

[^1]PAGE
Spikes 263247. Requirements. 248. Driving. 249. Screws and bolts. 250.Wooden spikes.
Track-bolts and nut-loces 266
251. Essential requirements. 252. Design of track-bolts. 253.
Design of nut-locks.
CHAPTER XI.
switches and crossings.
Switch construction 271
254. Essential elements of a switch. 255. Frogs. 256. To find the frog number. 25\%. Stub switches, 258. Point switches. 259. Switch-stands. 260. Tie-rods. 261. Guard-rails.
Mathematical design of switches 278262. Design with circular lead rails. 263. Effect of straight frog-rails. 264. Effect of straight point-rails. 265. Combined effect ofstraight frog rails and straight point-rails. 266. Comparison of theabove methods. 267. Dimensions for a turnout from the outer sideof a curved track. 268. Dimensions for a turnout from the innerside of a curved track. 269. Double turnout from a straight track.270. Two turnouts on the same side. 271. Connecting curve from astraight track. 272. Connecting curve from a curved track to theoutside. 273. Connecting curve from a curved track to the inside.274 . Crossover between two parallel straight tracks. 275. Crossoverbetween two parallel curved tracks. 276. Practical rules for switch-laying.
Crossings 300
277. Two straight tracks. 278. One straight and one curved track.279. Two curved tracks.
Appendix. The Adjustments of Instruments. 303
Tables.
I. Radii of curves 314
II. Tangents and external distances to a 1° curve. 318
III. Switch leads and distances. 321
IV. Transition curves 322
V. Logarithms of numbers 325
VI. Logarithmic sines and tangents of small angles. 345
VII. Logarithmic sines, cosines, tangents, and cotangents. 348
VIII. Logarithmic versed sines and external secants. 393
IX. Natural sines, cosines, tangents and cotangents. 439
X. Natural versed sines and external secants 444
XI. Useful trigonometrical formulæ 449
Index 451

RAILROAD CONSTRUCTION.

CIIAPTER I.

RAILROAD SURVEYS.

The proper conduct of railroad surveys presupposes an adequate knowledge of almost the whole subject of railroad engineering, and particularly of some of the complicated questions of Railroad Economics, which are not generally studied except at the latter part of a course in railroad engineering, if at all. This chapter will therefore be chiefly devoted to methods of instrumental work, and the problem of choosing a general route will be considered only as it is influenced by the topography or by the application of those elementary principles of Railroad Economics which are self-evident or which may be accepted by the student until he has had an opportunity of studying those principles in detail.

RECONNOISSANCE SURVEYS.

1. Character of a reconnoissance survey. A reconnoissance survey is a very hasty examination of a belt of country to determine which of all possible or suggested routes is the most promising and best worthy of a more detailed survey. It is essentially very rough and rapid. It aims to discover those salient features which instantly stamp one route as distinctly superior to another and so narrow the choice to routes which are so nearly equal in value that a more detailed survey is necessary to decide between them.
2. Selection of a general route. The general question of running a railroad between two towns is usually a financial rather than an engineering question. Financial considerations usually determine that a road must pass through certain more or less important towns between its termini. When a railroad runs through a thickly settled and very flat country, where, from a topographical standpoint, the road may be run by any desired route, the "right-of-way agent" sometimes has a greater influence in locating the road than the engineer. But such modifications of alignment, on account of business considerations, are foreign to the engineer's side of the subject, and it will be hereafter assumed that topography alone determines the location of the line. The consideration of those larger questions combining finance and engineering (such as passing by a town on account of the necessary introduction of heavy grades in order to reach it) is likewise ignored.
3. Valley route. This is perhaps the simplest problem. If the two towns to be connected lie in the same valley, it is frequently only necessary to run a line which shall have a nearly uniform grade. The reconnoissance problem consists largely in determining the difference of elevation of the two termini of this division and the approximate horizontal distance so that the proper grade may be chosen. If there is a large river running through the valley, the road will probably remain on one side or the other throughout the whole distance, and both banks should be examined by the recomnoissance party to determine which is preferable. If the river may be easily bridged, both banks may be alternately used, especially when better aligmment is thereby secured. A river valley has usually a steeper slope in the upper part than in the lower part. A uniform grade throughout the valley will therefore require that the road climbs up the side slopes in the lower part of the valley. In case the "ruling grade" * for the whole road is as great as or greater

[^2]than the steepest natural ralley slope, more freedom may be used in adopting that alignment which has the least costregardless of grade. The natural slope of large rivers is almost invariably so low that grade has no influence in determining the choice of location. When bridging is necessary, the river banks should be examined for suitable locations for abutments and piers. If the soil is soft and treacherous much difficulty may be experienced and the choice of route may be largely determined by the difficulty of bridging the river except at certain farorable places.
4. Cross-country route. A cross-country route always has one or more summits to be crossed. The problem becomes more complex on account of the greater number of possible solutions and the difficulty of properly weighing the advantages and disadrantages of each. The general aim should be to choose the lowest summits and the highest stream crossings, provided that by so doing the grades between these determining points shall be as low as possible and shall not be greater than the ruling grade of the road. Nearly all railroads combine cross-country and valley routes to some extent. Usually the steepest natural slopes are to be found on the cross-country routes, and also the greatest difficulty in securing a low through grade. An approximate determination of the ruling grade is usually made during the reconnoissance. If the ruling grade has been previously decided on by other considerations, the leading feature of the reconnoissance survey will be the determination of a general route along which it will be possible to survey a line whose maximum grade shall not exceed the ruling grade.
5. Mountain route. The streams of a mountainous region frequently have a slope exceeding the desired ruling grade. In such cases there is no possibility of securing the desired grade by following the streams. The penetration of such a region may only be accomplished by "development"-accompanied perhaps by tumneling. "Development" consists in deliberately increasing the length of the road between two extremes of elevation so that the rate of grade shall be as low as desired.

The usual method of accomplishing this is to take advantage of some convenient formation of the ground to introduce some lateral deviation. The methods may be somewhat classified as follows:
(a) Running the line up a convenient lateral valley, turning a sharp curve and working back up the opposite slope. As shown in Fig. 1, the considerable rise between A and B was

Fig. 1.
surmounted by starting off in a very different direction from the general direction of the road; then, when about one-half of the desired rise had been obtained, the line crossed the valley and continued the climb along the opposite slope. (b) Switch$b a c k$. On the steep side-hill $B C D$ (Fig. 1) a very considerable gain in elevation was accomplished by the switchback $C D$. The gain in elevation from B to D is very great. On the other hand, the speed must always be slow ; there are two complete stoppages of the train for each run; all trains must run backward from C to D. (c) Bridge spiral. When a valley is so narrow at some point that a bridge or viaduct of reasonable length can span the valley at a considerable elevation above the bottom of the valley, a bridge spiral may be desirable. In

Fig. 2 the line ascends the stream valley past A, crosses the stream at B, works back to the narrow place at C, and there crosses itself, having gained perhaps 100 feet in elevation. (d) Tunnel spiral. This is the reverse of the previous plan.

It implies a thin steep ridge, so thin at some place that a tunnel through it will not be excessively long. Switchbacks and spirals are sometimes necessary in mountainous countries, but they should not be considered as normal types of construction. A region must be very difficult if these devices camnot be avoided.

Rack railways and cable roads, although types of mountain railroad construction, will not be here considered.
6. Existing maps. The maps of the U. S. Geological Survey are exceedingly valuable as far as they have been completed. So far as topographical considerations are concerned, they almost dispense with the necessity for the reconnoissance and "first preliminary" surveys. Some of the State Survey maps will give practically the same information. County and township maps can often be used for considerable information as to the relative horizontal position of governing points, and even some
approximate data regarding elevations may be obtained by a study of the streams. Of course such information will not dispense with surveys, but will assist in so planning them as to obtain the best information with the least work. When the relative horizontal positions of points are reliably indicated on a map, the recomoissance may be reduced to the determination of the relative elevations of the governing points of the route.
7. Determination of relative elevations. A recent description of European methods includes spirit-leveling in the reconnoissance work. This may be due to the fact that, as indicated above, previous topographical surveys have rendered unnecessary the "exploratory" survey which is required in a new country, and that their reconnoissance really corresponds more nearly to our preliminary.

The perfection to which barometrical methods have been brought has rendered it possible to determine differences of elevation with sufficient accuracy for reconnoissance purposes by the combined use of a mercurial and an aneroid barometer. The mercurial barometer should be kept at "headquarters," and readings should be taken on it at such frequent intervals that any fluctuation is noted, and throughout the period that observations with the aneroid are taken in the field. At each observa_ tion there should also be recorded the time, the reading of the attached thermometer, and the temperature of the external air. For uniformity, the mercurial readings should then be "reduced to 32° F." Before starting out, a reading of the aneroid should be taken at headquarters coincident with a reading of the mercurial. The difference is one value of the correction to the aneroid. As soon as the aneroid is brought back another comparison of readings should be made. Even though there has been considerable rise or fall of pressure in the interval, the difference in readings (the correction) should be substantially the same provided the aneroid is a good instrument. The best aneroids read directly, to $\frac{1}{100}$ of an inch of mercury and may be estimated to $\frac{1}{1000}$ of an inch-which corresponds to about 0.9 foot difference of elevation. In the field there should be read,
at each point whose elevation is desired, the aneroid, the time, and the temperature. These readings, corrected by the mean value of the correction between the aneroid and the mercurial, should then be combined with the reading of the mercurial (interpolated if necessary) for the times of the aneroid observations and the difference of elevation obtained. [See the author's "Problems in the Use and Adjustment of Enginecring Instruments," Prob. 22.] Important points should be observed more than once if possible. Such duplicate observations will be found to give surprisingly concordant results even when a general fluctuation of atmospheric pressure so modifies the tabulated readings that an agreement is not at first apparent. Variations of pressure produced by high winds, thunder-storms, etc., will generally vitiate possible accuracy by this method. By "headquarters" is meant any place whose clevation above any given datum is known and where the mercurial may be placed and observed while observations within a range of several miles are made with the aneroid. If necessary the elevation of a new headquarters may be determined by the above method, but there should be if possible several independent observations whose accordance will give a fair idea of their accuracy.

The above method should be neither slighted nor used for more than it is worth. When properly used, the errors are compensating rather than cumulative. When used, for example, to determine that a pass B is 260 feet higher than a determined bridge crossing at A which is six miles distant, and that another pass C is 310 feet higher than A and is ten miles distant, the figures, even with all necessary allowances for inaccuracy, will give an engineer a good idea as to the choice of route especially as affected by ruling grade. There is no comparison between the time and labor involved in obtaining the above information by barometric and by spirit-leveling methods, and for reconnoissance purposes the added accuracy of the spirit-leveling method is hardly worth its cost.
8. Horizontal measurements, bearings, etc. When there is no map which may be depended on, or when only a skeleton
map is obtainable, a rapid survey, sufficiently accurate for the purpose, may be made by using a pocket compass for bearings and a telemeter, odometer, or pedometer for distances. The telemeter [stadia] is more accurate, but it requires a definite clear sight from station to station, which may be difficult throngh a wooded country. The odometer, which records the revolutions of a wheel of known circumference, may be used even in rough and wooded country, and the results may be depended on to a small percentage. The pedometer (or pace-measurer) depends for its accuracy on the actual morement of the mechanism for each pace and on the uniformity of the pacing. Its results are necessarily rough and approximate, but it may be used to fill in some intermediate points in a large skeleton map. A handlevel is also useful in determining the relative elevation of various topographical features which may have some bearing on the proper location of the road.
9. Importance of a good reconnoissance. The foregoing instruments and methods should be considered only as aids in exercising an educated common sense, without which a proper location cannot be made. The recomnoissance survey should command the best talent and the greatest experience available. If the general route is properly chosen, a comparatively low order of engineering skill can fill in a location which will prove a paying railroad property; but if the general route is so chosen that the ruling grades are high and the business obtained is small and subject to competition, no amount of perfection in detailed alignment or roadbed construction can make the road a profitable investment.

PRELIMINARY SURVEYS.

10. Character of survey. A preliminary railroad survey is properly a topographical survey of a belt of country which has been selected during the reconnoissance and within which it is estimated that the located line will lie. The width of this belt will depend on the character of the country. When a railroad
is to follow a river having very steep banks the choice of location is sometimes limited at places to a very few feet of width and the belt to be surveyed may be correspondingly narrowed. In very flat country the desired width may be only limited by the ability to survey points with sufficient accuracy at a sonsiderable distance from what may be called the "backbone line" of the survey.
11. Cross-section method. This is the only feasible method in a wooded country, and is employed by many for all kinds of country. The backbone line is surveyed either by observing magnetic bearings with a compass or by carrying forward

Fig. 4.
absolute azimuths with a transit. The compass method has the disadvantages of limited accuracy and the possibility of
considerable local error owing to local attraction. On the other hand there are the advantages of greater simplicity, no necessity for a back rodman, and the fact that the errors are purely local and not cumulative, and may be so limited, with care, that they will cause no vital error in the subsequent location survey. The transit method is essentially more accurate, but is liable to be more laborious and troublesonie. If a large tree is encountered, either it must be cut down or a troublesome operation of offsetting must be used. If the compass is employed under these circumstances, it need only be set up on the far side of the tree and the former bearing produced. An error in reading a transit azimuth will be carried on throughout the survey. An error of only five minutes of arc will cause an offset of nearly eight feet in a mile. Large azimuth errors may, however, be avoided by immediately checking each new azimuth with a needle reading. It is advisable to obtain true azimuth at the beginning of the survey by an observation on the sun or Polaris, and to check the azimuths every few miles by azimuth observations. Distances along the backbone line should be measured with a chain or steel tape and stakes set every 100 feet. When a course ends at a substation, as is usually the case, the remaining portion of the 100 feet should be measured along the next course. The level party should immediately obtain the elevations (to the nearest tenth of a foot) of all stations, and also of the lowest points of all streams crossed and even of dry gullies which would require culverts.
12. Cross-sectioning. It is usually desirable to obtain contours at five-foot intervals. This may readily be done by the use of a Locke level (which should be held on top of a simple five-foot stick), a tape, and a rod ten feet in length graduated to feet and tenths. The method of use may perhaps be best explained by an example. Let Fig. 5 represent a section perpendicular to the survey line-such a section as would be made by the dotted lines in Fig. 4. C represents the station point. Its elevation as determined by the level is, say, 158.3 above datum. When the Locke level on its five-foot rod is placed at
C, the level has an elevation of 163.3. Therefore when a point is found (as at a) where the level will read 3.3 on the rod, that

Fig. 5.
point has an elevation of 160.0 and its distance from the center gives the position of the 160 -foot contour. Leaving the long rod at that point (a), earry the level to some point (b) such that the level will sight at the top of the rod. b is then on the 165 -

Fig. 6.
foot contour, and the horizontal distance $a b$ added to the horizontal distance ac gives the position of that contour from the center. The contours on the lower side are found similarly. The first rod reading will be 8.3 , giving the 155 -foot contour. Plot the results in a note-book which is ruled in quarter-inch squares, using a scale of 100 feet per inch in both directions.

Plot the work up the page; then when looking ahead along the line, the work is properly oriented. When a contour crosses the survey line, the place of crossing may be similarly determined. If the ground flattens out so that five-foot contours are very far apart, the absolute elevations of points at even fiftyfoot distances from the center should be determined. The method is exceedingly rapid. Whatever error or inaccuracy occurs is confined in its effect to the one station where it occurs. The work being thus plotted in the field, unusually irregular topography may be plotted with greater certainty and no great error can occur without detection. It would even be possible by this method to detect a gross error that might have been made by the level party.
13. Stadia method. This method is best adapted to fairly open country where a "shot" to any desired point may be taken without clearing. The backbone survey line is the same as in the previous method except that each course is limited to the practicable length of a stadia sight. The distance between stations should be checked by foresight and backsight-also the vertical angle. Azimuths should be checked by the needle. Considering the vital importance of leveling on a railroad survey it might be considered desirable to run a line of levels over the stadia stations in order that the leveling may be as precise as possible; but when it is considered that a preliminary survey is a somewhat hasty survey of a route that may be abandoned, and that the errors of leveling by the stadia method (which are compensating) may be so minimized that no proposed route would be abandoned on account of such small error, and that the effect of such an error may be easily neutralized by a slight change in the location, it may be seen that excessive care in the leveling of the preliminary survey is hardly justifiable.

Since the students taking this work are assumed to be familiar with the methods of stadia topographical surveys, this part of the subject will not be further elaborated.
14. "First" and "second" preliminary surveys. Some engineers advocate two preliminary surveys. When this is done,
the first is a rery rapid survey, made perlaps with a compass, and is only a better grade of recomnoissance. Its aim is to rapidly develop the facts which will decide for or against any proposed route, so that if a route is found to be unfarorable another more or less modified route may be adopted without having wasted considerable time in the survey of useless details. By this time the student should have grasped the fundamental idea that both the recomoissance and preliminary surveys are not surveys of lines but of areas; that their aim is to survey only those topographical features which would have a determining influence on any railroad line which might be constructed through that particnlar territory, and that the value of a locating engineer is largely measured by his ability to recognize those determining influences with the least amount of work from his surveying corps. Frequently too little time is spent on the comparative study of preliminary lines. A line will be hastily decided on after very little study; it will then be surveyed with minute detail and estimates carefully worked up, and the claims of any other suggested route will then be handicapped, if not disregarded, owing to an unwillingness to discredit and throw away a large amount of detailed surveying. The cost of two or three extra preliminary surveys (at critical points and not over the whole line) is utterly insignificant compared with the probable improvement in the "operating value" of a line located after such a comparative study of preliminary lines.

LOCATION SURVEEYS.

15. "Paper location." When the preliminary survey has been plotted to a scale of 200 feet per inch and the contours drawn in, a study may be made for the location survey. Disregarding for the present the effect on location of transition curves, the alignment may be said to consist of straight lines (or "tangents') and circular curves. The "paper location" therefore consists in plotting on the preliminary map a succession of straight lines which are tangent to the cireular curves connect-
ing them. The determining points should first be considered. Such points are the termini of the road, the lowest practicable point over a summit, a river-crossing, etc. So far as is possible, having due regard to other considerations, the road should be a "surface" road, i.e., the cut and fill should be made as small as possible. The maximum permissible grade must also have been determined and duly considered. The method of location differs radically according as the lines joining the determining points have a very low grade or have a grade that approaches the maximum permissible. With very low natural grades it is only necessary to strike a proper balance between the requirements for easy alignment and the avoidance of excessive earthwork. When the grade between two determined points approaches the maximum, a study of the location may be begun by finding a strictly surface line which will connect those points with a line at the given grade. For example, suppose the required grade is 1.6% and that the contours are drawn at 5 -foot intervals. It will require 312 feet of 1.6% grade to rise 5 feet. Set a pair of dividers at 312 feet and step off this interval on successive contours. This line will in general be very irregular, but in an easy country it may lie fairly close to the proper location line, and even in difficult country such a surface line will assist greatly in selecting a suitable location. When the larger part of the line will evidently consist of tangents, the tangents should be first located and should then be connected by suitable curves. When the curves predominate, as they generally will in mountainous country, and particularly when the line is purposely lengthened in order to reduce the grade, the curves. should be plotted first and the tangents may then be drawn connecting them. Considering the ease with which such lines may be drawn on the preliminary map, it is frequently advisable, after making such a paper location, to begin all over, draw a new line over some specially difficult section and compare results. Profiles of such lines may be readily drawn by noting their intersection with each contour crossed. Drawing on each profile the required grade line will furnish an approximate idea of the
comparative amount of earthwork required. After deciding on the paper location, the length of each tangent, the central angle (see $\S 21$), and the radius of each curve should be measured as accurately as possible. Since a slight error made in such measurements, taken from a map with a scale of 200 feet per inch, would by accumulation cause serious discrepancies between the plotted location and the location as afterward surveyed in the field, frequent tie lines and angles should be determined between the plotted location line and the preliminary line, and the location should be altered, as may prove necessary, by changing the length of a tangent or changing the central angle or radius of a curve, so that the agreement of the check-points will be sufficiently close. The errors of an inaccurate preliminary survey may thus be easily neutralized (see $\$ 33$). When the preliminary line has been properly run, its "backbone" line will lie very near the location line and will probably cross it at frequent intervals, thus rendering it easy to obtain short and numerous tie lines.
16. Surveying methods. A transit should be used for alignment, and only precise work is allowable. The transit stations should be centered with tacks and should be tied to witnessstakes, which should be located outside of the range of the earthwork, so that they will neither be dug up nor covered up. All original property lines lying within the limits of the right of way should be surveyed with reference to the location line, so that the right-of-way agent may have a proper basis for settlement. When the property lines do not extend far outside of the required right of way they are frequently surveyed completely.

The leveler usually reads the target to the nearest thousandth of a foot on turning-points and bench-marks, but reads to the nearest tenth of a foot for the elevation of the ground at stations. Considering that $\frac{1}{1000}$ of a foot has an angular value of only 7 seconds at a distance of 300 feet, and that one division of a level-bubble is usually about 30 seconds, it may be seen that it is a useless refinement to read to thousandths unless corresponding care is taken in the use of the level. The leveler
should also locate his bench-marks outside of the range of earthwork. A knob of rock protruding from the ground affords an excellent mark. A large nail, driven in the roots of a tree, which is not to be disturbed, is also a good mark. These marks should be clearly described in the note-book. The leveler should obtain the elevation of the ground at all station-points; also at all sudden breaks in the profile line, determining also the distance of these breaks from the previous even station. This will include the position and elevation of all streams, and even dry gullies, which are crossed.

Measurements should preferably be made with a steel tape, care being taken on steep ground to insure horizontal measurements. Stakes are set each 100 feet, and also at the beginning and end of all curves. Transit-points (sometimes called "plugs" or "hubs'") should be driven flush with the ground, and a "witness-stake," having the " number" of the station, should be set three feet to the right. For example, the witness-stake might have on one side " $137+69.92$," and on the other side " $\mathrm{PC} 4{ }^{\circ} \mathrm{R}$," which would signify that the transit hub is 69.92 feet beyond station 137, or 13769.92 feet from the beginning of the line, and also that it is the "point of curve" of a " 4° curve" which turns to the right.

Alignment. The alignment is evidently a part of the location survey, but, on account of the magnitude and importance of the subject, it will be treated in a separate chapter.
17. Form of Notes. Although the Form of Notes cannot be thoroughly understood until after curves are studied, it is nere introduced as being the most convenient place. The right-hand page should have a sketch showing all roads, streams, and property lines crossed with the bearings of those lines. This should be drawn to a scale of 100 feet per inch-the quarterinch squares which are usually ruled in note-books giving convenient 25 -foot spaces. This sketch will always be more or less distorted on curves, since the center line is always shown as straight regardless of curves. The station points ("Sta." in first column, left-hand page) should be placed opposite to their
sketched positions, which means that even stations will be recorded on every fourth line. This allows three intermediate lines for substations, which is ordinarily more than sufficient. The notes should read ur the page, so that the sketch will be properly oriented when looking ahead along the line. The other columns on the left-hand page will be self-explanatory when the subject of curves is understood. If the "calculated bearings" are based on azimuthal observations, their agreement (or constant difference) with the needle readings will form a valuable check on the curve calculations and the instrumental work.

FORMI OF NOTES.
[Left-hand page.]
[Right-hand page.]

CHAPTER II.

ALIGNMENT.

In this chapter the alignment of the center line only of a pair of rails is considered. When a railroad is crossing a summit in the grade line, although the horizontal projection of the alignment may be straight, the vertical projection will consist of two sloping lines joined by a curve. When a curve is on a grade, the center line is really a spiral, a curve of double currature, although its horizontal projection is a circle. The center line therefore consists of straight lines and curves of single and double curvature. The simplest method of treating them is to consider their horizontal and vertical projections separately. In treating simple, compound, and transition curves, only the horizontal projections of those curves will be considered.

SIMPLE CURVES.

18. Designation of curves. A curve may be designated either by its radius or by the angle

Fig. 7. subtended by a chord of unit length. Such an angle is known as the "degree of curve" and is indicated by D. Since the curves that are practically used have very long radii, it is generally impracticable to make any use of the actual center, and the curve is located without reference to it. If $A B$ in Fig. 7 represents a unit chord (C) of a curve of radius R, then by the above defini-
tion the angle $A O B$ equals D. Then $A O \sin \frac{1}{2} D=\frac{1}{2} A B=$ $\frac{1}{2} C$.

$$
\begin{equation*}
\therefore R=\frac{\frac{1}{2} C}{\sin \frac{1}{2} D} \tag{1}
\end{equation*}
$$

or, by inversion,

$$
\begin{equation*}
\sin \frac{1}{2} D=\frac{C}{2 R} \tag{2}
\end{equation*}
$$

The unit chord is variously taken throughout the world as 100 feet, 66 feet; and 20 meters. In the United States 100 feet is invariably used as the unit chord length, and thronghout this work it will be so considered. Table I has been computed on this basis. It gives the radius, with its logarithm, of all curves from a $0^{\circ} 01^{\prime}$ curve up to a 10° curve, varying by single minutes. The sharper curves, which are seldom used, are given with larger intervals.

An approximate value of R may be readily found from the following simple rule, which should be memorized:

$$
R=\frac{\check{5730}}{D}
$$

Although such values are not mathematically correct, since R does not strictly vary inversely as D, yet the resulting value is within a tenth of one per cent for all commonly used values of R, and is sufficiently close for many purposes, as will be shown later.
19. Length of a sub-chord. Since it is impracticable to measure along a curved are, curves are always measured by laying off 100 -foot chord lengths. This means that the actual are is always a little longer than the chord. It also

Fig. 8. means that a subchord (a chord shorter than the unit length) will be a little longer than the ratio of the angles subtended would call for. The truth of this may be scen without calcu-
lation by noting that two equal subchords, each subtending the angle $\frac{1}{2} D$, will evidently be slightly longer than 50 feet each. If c be the length of a subchord subtending the angle d, then, as in Eq. (2),

$$
\sin \frac{1}{2} d=\frac{c}{2 R},
$$

or, by inversion,

$$
\begin{equation*}
c=2 R \sin \frac{1}{2} d . \tag{3}
\end{equation*}
$$

The nominal length of a subchord $=100 \frac{d}{D}$. For example, a nominal subchord of 40 feet will subtend an angle of $\frac{40}{100}$ of D°; its true length will be slightly more than 40 feet, and may be computed by Eq. 3. The difference between the nominal and true lengths is maximum when the subchord is about 57 feet long, but with the low degrees of curvature ordinarily used the difference may be neglected. With a 10° curve and a nominal chord length of 60 feet, the true length is 60.049 feet. Very sharp curves should be laid off with 50 -foot or even 25 foot chords (nominal length). In such cases especially the true lengths of these subchords should be computed and used instead of the nominal lengths.
20. Length of a curve. The length of a curve is always indicated by the quotient of $100 \Delta \div D$. If the quotient of $\Delta \div D$ is a whole number, the length as thus indicated is the true length-measured in 100-foot chord lengths. If it is an odd number or if the curve begins and ends with a subchord (even though $\Delta \div D$ is a whole number), theoretical accuracy requires that the true subchord lengths shall be used, although the difference may prove insignificant. The length of the are (or the mean length of the two rails) is therefore always in excess of the length as given above. Ordinarily the amount of this excess is of no practical importance. It simply adds an insignificant amount to the length of rail required.

Example. Required the nominal and true lengths of a $3^{\circ} 45^{\prime}$ curve having a central angle of $17^{\circ} 25^{\prime}$. First reduce
the degrees and minutes to decimals of a degree. ($100 \times 17^{\circ} 25^{\prime}$) $\div 3^{\circ} 45^{\prime}=1741.667 \div 3.75=464.444$. The curve has four 100 -foot chords and a nominal chord of 64.444 . The true chord should be 64.451 . The actual are is

$$
17^{\circ} .4167 \times \frac{\pi}{180^{\circ}} \times R=464.527
$$

The excess is therefore $464.527-464.451=0.076$ foot.
21. Elements of a curve. Considering the line as running from A toward B, the beginning of the curve, at A, is called the point of curve $(P C)$. The other end of the curve, at B, is called the point of tangency (P ' $)$. The intersection of the tangents is called the vertex (V). The angle made by the tangents at V, which equals the angle made by the radii to the extremities of the curve, is called the central angle (Δ). $A V$ and $B V$, the two equal tangents from the vertex to the $P C$ and $P T$, are called the tangent distances (T). The chord $A B$ is called the long chord ($L C$). The intercept $H G$ from the middle

Fig. 9. of the long chord to the middle of the are is called the middle ordinate (M). That part of the secant $G V$ from the middle of the arc to the vertex is called the external distance (E). From the figure it is very easy to derive the following frequently used relations:

$$
\begin{align*}
T & =R \tan \frac{1}{2} \Delta \tag{4}\\
L C & =2 R \sin \frac{1}{2} \Delta \tag{5}\\
M & =R \operatorname{vers} \frac{1}{2} \Delta \tag{}\\
E & =R \operatorname{exsec} \frac{1}{2} \Delta \tag{7}
\end{align*}
$$

22. Relation between $\boldsymbol{T}, \boldsymbol{E}$, and Δ. Join A and G in Fig. 9. The angle $V A G=\frac{1}{4} \Delta$, since it is measured by one half of the
arc $A G$ between the secant and tangent. $A G O=90^{\circ}-\frac{1}{4} \Delta$.

$$
A V: V G:: \sin A G V: \sin V A G
$$

$$
\begin{align*}
& \sin A G V=\sin A G O=\cos \frac{1}{4} \Delta \\
& T: E:: \cos \frac{1}{4} \Delta: \sin \frac{1}{4} \Delta \tag{8}\\
& T=E \cot \frac{1}{4} \Delta .
\end{align*}
$$

The same relation may be obtained by dividing Eq. 4 by Eq. 7, since $\tan \alpha \div \operatorname{exsec} \alpha=\cot \frac{1}{2} \alpha$.
23. Elements of a 1° curve. From Eqs. 1 to 8 it is seen that the elements of a curve vary directly as R. It is also seen to be very nearly true that R varies inversely as D. If the elements of a 1° curve for various central angles are calculated and tabulated, the elements of a curve of D° curvature may be approximately found by dividing by D the corresponding elements of a 1° curve having the same central angle. For small central angles and low degrees of curvature the errors involved by the approximation are insignificant, and even for larger angles the errors are so small that for many purposes they may be disregarded.

In Table II is given the value of the tangent distances, external distances, and long chords for a 1° curve for various central angles. The student should familiarize himself with the degree of approximation involved by solving a large number of cases under various conditions by the exact and approximate methods, in order that he may know when the approximate method is sufficiently exact for the intended purpose. The approximate method also gives a ready check on the exact method.
24. Exercises. (a) What is the tangent distance of a $4^{\circ} 20^{\prime}$ curve having a central angle of $18^{\circ} 24^{\prime}$?
(b) Given a $3^{\circ} 30^{\prime}$ curve and a central angle of $16^{\circ} 20^{\prime}$, how far will the curve pass from the vertex? [Use Eq. 7.]
(c) An 18° curve is to be laid off using 25 -foot (nominal) chord lengths. What is the true length of the subchords?
(d) Given two tangents making a central angle of $15^{\circ} 24^{\prime}$. It is desired to comnect these tangents by a curve which shall pass 16.2 feet from their intersection. How far down the tangent will the curve begin and what will be its radius? (Use Eq. S and then use Eq. 4 inverted.)
25. Curve location by deflections. The angle between a secant and a tangent (or between two secants intersecting on an arc) is measured by one half of the intercepted are. Beginning at the $P C$ (A in Fig. 10), if the first chord is to be a full chord we may deflect an angle $V A a\left(=\frac{1}{2} D\right)$, and the point a, which is 100 feet from A, is a point on the curve. For the next station, b, deflect an additional angle $b A a\left(=\frac{1}{2} D\right)$ and, with one end of the tape at a, swing the other end until the 100 -foot point is on the line $A b$. The point b is then on the curve. If the final chord $c B$ is a subchord, its additional deflection ($\frac{1}{2} \alpha$) is something less than $\frac{1}{2} D$. The last deflection

Fig. 10. ($B A V$) is of course $\frac{1}{2} \Delta$. It is particularly important, when a curve begins or ends with a subchord and the deflections are odd quantities, that the last additional deflection should be carefully computed and added to the previous deflection, to check the mathematical work by the agreement of this last computed deflection with $\frac{1}{2} \Delta$.

Example. Given a $3^{\circ} 24^{\prime}$ curve having a central angle of $18^{\circ} 22^{\prime}$ and beginning at sta. $4^{7}+32$, to compute the deflections. The nominal length of curve is $18^{\circ} 22^{\prime} \div 3^{\circ} 24^{\prime}=18.367 \div$ $3.40=5.402$ stations or 540.2 feet. The curve therefore ends at sta. $52+72.2$. The deflection for sta. 48 is $\frac{68}{100} \times \frac{1}{8}\left(3^{\circ} 2 t^{\prime}\right)$ $=0.68 \times 1^{\circ} .7=1^{\circ} .156=1^{\circ} 09^{\prime}$ nearly. For each additional 100 feet it is $1^{\circ} 42^{\prime}$ additional. The final additional deflection for the final subchord of 72.2 feet is

$$
\frac{72.2}{100} \times \frac{1}{2}\left(3^{\circ} 2 t^{\prime}\right)=1^{\circ} .227 t=1^{\circ} 1 t^{\prime} \text { nearly } .
$$

The deflections are

$$
\begin{aligned}
& \text { P. C.... Sta. } 47+32 \ldots .0^{\circ} \\
& 48 \ldots \ldots \ldots 0^{\circ}+1^{\circ} 09^{\prime}=1^{\circ} 09^{\prime} \\
& \text { 49......... } 1^{\circ} 09^{\prime}+1^{\circ} 42^{\prime}=2^{\circ} 51^{\prime} \\
& 50 \ldots \ldots \ldots \ldots 2^{\circ} 51^{\prime}+1^{\circ} 42^{\prime}=4^{\circ} 33^{\prime} \\
& 51 \ldots \ldots \ldots \ldots 4^{\circ} 33^{\prime}+1^{\circ} 42^{\prime}=6^{\circ} 15^{\prime} \\
& 52 \ldots \ldots \ldots . .6^{\circ} 15^{\prime}+1^{\circ} 42^{\prime}=7^{\circ} 57^{\prime} \\
& \text { P. T.......52 } 2+72.2 \ldots .7^{\circ} 57^{\prime}+1^{\circ} 14^{\prime}=9^{\circ} 11^{\prime}
\end{aligned}
$$

As a check $9^{\circ} 11^{\prime}=\frac{1}{2}\left(18^{\circ} 22^{\prime}\right)=\frac{1}{2} \Delta$. (See the Form of Notes in § 17.)
26. Instrumental work. It is generally impracticable to locate more than 500 to 600 feet of a curve from one station. Obstructions will sometimes require that the transit be moved up every 200 or 300 feet. There are two methods of setting off the angles when the transit has been moved up from the $P C$.
(a) The transit may be sighted at the previous transit station with a reading on the plates equal to the deflection angle from that station to the station occupied, but with the angle set off on the other side of 0°, so that when the telescope is turned to 0° it will sight along the tangent at the station occupied. Planging the telescope, the forward stations may be set off by deflecting the proper deflections from the tangent at the station occupied. This is a very common method and, when the degree of curvature is an even number of degrees and when the transit is only set at even stations, there is but little objection to it. But the degree of curvature is sometimes an odd quantity, and the exigencies of difficult location frequently require that substations be occupied as transit stations. Method (a) will then require the recalculation of all deflections for each new station occupied. The mathematical work is largely increased and the probability of error is very greatly increased and not so easily detected. Method (b) is just as simple as method (a) even for the most simple cases, and for the more difficult cases just referred to the superiority is very great.
(b) Calculate the deflection for each station and substation throughout the curve as though the whole curve were to be located from the $P C$. The computations may thus be completed and checked (as above) before begimning the instrumental work. If it unexpectedly becomes necessary to introduce a substation at any point, its deflection from the $P C$ may be readily interpolated. The stations actually set from the $P C$ are located as usual. Rule. When the transit is set on any forward station, backsight to ANY previous station with the plates set at the deflection angle for the station sighted at. Plunge the telescope and sight at any forward station with the deflection angle originally computed for that station. When the plates read the deflection angle for the station occupied, the telescope is sighting along the tangent at that station-which is the method of getting the forward tangent when occupying the PT. Even though the station occupied is an unexpected substation, when the instrument is properly oriented at that station, the angle reading for any station,, forward or back, is that originally computed for it from the $P C$. In difficult work, where there are obstructions, a valuable check on the accuracy may be found by sighting backward at any visible station and noting whether its deflection agrees with that originally computed. As a numerical illustration, assume a 4° curve, with 28° curvature, with stations $0,2,4$, and 7 occupied. After setting stations 1 and 2 , set up the transit at sta. 2 and backsight to sta. 0 with the deflection for sta. 0 , which is 0°. The reading on sta. 1 is 2°; when the reading is 4° the telescope is tangent to the curve, and when sighting at 3 and 4 the deflections will be 6° and 8°.

Fig. 11.

Occupy 4; sight to 2 with a reading of 4°. When the reading is 8° the telescope is tangent to the curve and, by plunging the telescope, 5,6 , and 7 may be located with the originally com-
puted deflections of $10^{\circ}, 12^{\circ}$, and 14°. When occupying 7 a backsight may be taken to any visible station with the plates read ing the deflection for that station; then when the plates read 14° the telescope will point along the forward tangent.

The location of curves by deflection angles is the normal method. A few other methods, to be described, should be considered as exceptional.
27. Curve location by two transits. A curve might be located more or less on a swamp where accurate chaining would be exceedingly difficult if not impossible. The long chord $A B$ may be determined by triangulation or otherwise, and the elements of

Fig. 12.

Fig. 13.
the curve computed, including (possibly) subchords at each end. The deflection from A and B to each point may be computed. A rodman may then be sent (by whatever means) to locate long stakes at points determined by the simultaneous sightings of the two transits.
28. Curve location by tangential offsets. When a curve is very flat and no transit is at hand the following method may be
used: Produce the back tangent as far forward as necessary. Compute the ordinates $O a^{\prime}, O b^{\prime}, O c^{\prime}$, etc., and the abscisse $a^{\prime} a$, $b^{\prime} b, c^{\prime} c$, etc. If $O a$ is a full station (100 feet), then

$$
\left.\begin{array}{rr}
O a^{\prime}=O a^{\prime} & =100 \cos \frac{1}{2} D, \text { also }=R \sin D \tag{9}\\
O b^{\prime}=O a^{\prime}+a^{\prime} b^{\prime} & =100 \cos \frac{1}{2} D+100 \cos \frac{3}{2} D \\
\text { also }=I_{i}^{\prime} \sin 2 D \\
O c^{\prime}=O a^{\prime}+a^{\prime} b^{\prime}+b^{\prime} c^{\prime} & =100\left(\cos \frac{1}{2} D+\cos \frac{3}{2} D+\cos \frac{5}{2} D\right) \\
\text { etc. } & \text { also }=R i \sin 3 D
\end{array}\right\}
$$

$$
\left.\begin{array}{rr}
a^{\prime} a= & 100 \sin \frac{1}{2} D, \text { also }=R \text { vers } D \\
b^{\prime} b=a^{\prime} a+b^{\prime \prime} b & \left.=100 \sin \frac{1}{2} D+100 \sin \frac{3}{2} D\right) \\
c^{\prime} c=b^{\prime} b+c^{\prime \prime} c & =100\left(\sin \frac{1}{2} D+\sin \frac{3}{2} D+\sin \frac{5}{2} D\right) \tag{10}\\
& \text { also }=R \operatorname{vers} 3 D
\end{array}\right)
$$

etc.
The functions $\frac{1}{2} D, \frac{3}{2} D$, etc., may be more conveniently used without logarithms, by adding the several natural trigonometrical functions and pointing off two decimal places. It may also be noted that $o b^{\prime}$ (for example) is one half of the long chord for four stations; also that $l^{\prime} b$ is the middle ordinate for four stations. If the engineer is provided with tables giving the long chords and middle ordinates for varions degrees of curvature, these quantities may be taken (perhaps by interpolation) from such tables.

If the curre begins or ends at a substation, the angles and terms will be correspondingly altered. The modifications may be readily deduced on the same principles as above, and should be worked out as an excreise by the student.
29. Curve location by middle ordinates. Take first the simpler case when the curve begins at an even station. If we consider (in Fig. 14) the curve produced back to z, the chord $z a=$ $2 \times 100 \cos \frac{1}{2} D, A^{\prime} a=100 \cos \frac{1}{2} D$, and $A^{\prime} A=a m=z n=$ $100 \sin \frac{1}{2} D$. Set off $A A^{\prime}$ perpendicular to the tangent and $A^{\prime} a$ parallel to the tangent. $A A^{\prime}=a a^{\prime}=b b^{\prime}=c c^{\prime}$, etc. $=$ $100 \sin \frac{1}{2} D$. Set off $a a^{\prime}$ perpendicular to $a^{\prime} A$. Produce $A a^{\prime}$
until $a^{\prime} b=A^{\prime} a$, thus determining b. Succeeding points of the curve may thus be determined indefinitely.

Suppose the curve begins with a subchord. As before $r a=A m^{\prime}=c^{\prime} \cos \frac{1}{2} d^{\prime}$, and $r A=a m^{\prime}=c^{\prime} \sin \frac{1}{2} d^{\prime}$. Also $s z$ $=A n^{\prime}=c^{\prime \prime} \cos \frac{1}{2} d^{\prime \prime}$, and $s A=z n^{\prime}=c^{\prime \prime} \sin \frac{1}{2} d^{\prime \prime}$, in which

Fig. 14.

Fig. 15.
$\left(d^{\prime}+d^{\prime \prime}\right)=D$. The points z and a being determined on the ground, $a a^{\prime}$ may be computed and set off as before and the curve continued in full stations. A subchord at the end of the curve may be located by a similar process.
30. Curve location by offsets from the long chord. (Fig. 16.) Consider at once the general case in which the curve commences with a subchord (curvature, d^{\prime}), contains with one or more full chords (curvature of each, D), and ends with a subchord with curvature $d^{\prime \prime}$. The numerical work consists in computing first $A B$, then the various abscissæ and ordinates. $A B=2 R \sin \frac{1}{2} \Delta$.

$$
\begin{align*}
A a^{\prime}=A a^{\prime} & =c^{\prime} \cos \frac{1}{2}\left(\Delta-d^{\prime}\right) ; \\
A b^{\prime}=A a^{\prime}+a^{\prime} b^{\prime} & =c^{\prime} \cos \frac{1}{2}\left(\Delta-d^{\prime}\right)+00 \cos \frac{1}{2}\left(\Delta-2 d^{\prime}-D\right) ; \\
A c^{\prime}=A a^{\prime}+a^{\prime} b^{\prime}+b^{\prime} c^{\prime} & =c^{\prime} \cos \frac{1}{2}\left(\Delta-a^{\prime}\right)+100 \cos \frac{1}{2}\left(\Delta-2 d^{\prime}-D\right) \tag{11}\\
& +100 \cos \frac{1}{2}\left(\Delta-2 d^{\prime \prime}-D\right) ;
\end{align*}
$$

also

$$
=A B-B c^{\prime} \quad=2 R \sin \frac{1}{2} \Delta-c^{\prime \prime} \cos \frac{1}{2}\left(\Delta-d^{\prime \prime}\right)
$$

$$
\begin{align*}
& \begin{array}{ll}
a^{\prime} a=a^{\prime} a & =c^{\prime} \sin \frac{1}{2}\left(\Delta-d^{\prime}\right) ; \\
b^{\prime} b=a^{\prime} a+m b & =c^{\prime} \sin \frac{1}{2}\left(\Delta-d^{\prime}\right)+100 \sin \frac{1}{2}\left(\Delta-2 d^{\prime}-D\right) ; \\
c^{\prime} c=b^{\prime} b-n b & =c^{\prime} \sin \frac{1}{2}\left(\Delta-d^{\prime}\right)+100 \sin \frac{1}{2}\left(\Delta-2 d^{\prime}-D\right) \\
\text { also } & =c^{\prime \prime} \sin \frac{1}{2}\left(\Delta-d^{\prime \prime}\right) .
\end{array} \quad-100 \sin \frac{1}{2}\left(\Delta-2 d^{\prime \prime}-D\right) ;
\end{align*}
$$

The above formulæ are considerably simplified when the curve begins and ends at eren stations. When the curve is very long a regular law becomes very apparent in the formation of all terms between the first and last. There are too few terms in the above equations to show the law.
31. Use and value of the above methods. The chief value of the above methods lies in the possibility of doing the work without a transit. The same principles are sometimes employed, even when a transit is used, when obstacles prevent the use of the normal method (see $\S 32, c$). If the terminal tangents have already been accurately determined, these methods are useful to locate points of the curve when rigid accuracy is not essential. Track foremen frequently use

Fig. 16. such methods to lay out mimportant sidings, especially when the engineer and his transit are not at hand. Location by tangential offsets (or by offsets from the long chord) is to be preferred when the curve is flat (i.e., has a small central angle Δ) and there is no obstruction along the tangent, or long chord. Location by middle ordinates may be employed regardless of the length of the curre, and in cases when both the tangents and the long chord are obstructed. The above methods are but samples of a large number of similar methods which have been devised. The choice of the particular method to be adopted must be determined by the local conditions.
32. Obstacles to location. In this section will be given only a few of the principles involved in this class of problems, with illustrations. The engineer must decide in each case, which is
the best method to use, and it is frequently advisable to derise a special solution for some particular case.
a. When the vertex is inaccessible. As shown in $\S 26$, it is not absolutely essential that the vertex of a curve should be located on the ground. But it is very evident that the angle between the terminal tangents is determined with far less probable error if it is measured by a single measurement at the rertex rather than as the result of numerons angle measurements along the curve, involving several positions of the transit and comparatively short sights. Sometimes the location of the tangents is already determined on the ground (as by $b n$ and am, Fig. 17), and it is required to join the tangents by a curve of given radius. Method. Measure $a b$ and the angles $V b a$ and $b a V . \Delta$ is the sum of these angles. The distances $b V$ and $a V$ are computable from the above ciata. Given Δ and R, the tan-

Fig. 17.

Fig. 18.
gent distances are computable, and then $B b$ and $a A$ are found by subtracting $b V$ and $a V$ from the tangent distances. The curve may then be run from A, and the work may be checked by noting whether the curve as run ends at B-previously located from b.
b. When the point of curve (or point of tangency) is inaccessible. At some distance ($A s$, Fig. 18) an unobstructed line $p n$
may be run parallel with $A V . \quad n v=p y=A s=R$ vers α.

$$
\therefore \quad \text { vers } \alpha=\Lambda s \div R . \quad n s=p s=R \sin \alpha .
$$

At y, which is at a distance $p s$ back from the computed position of A, make an offset $s A$ to p. Rim $p m$ parallel to the tangent. A tangent to the curve at n makes an angle of α with $n p$. From n the curve is run in as usual.

If the point of tangency is obstructed, a similar process, somewhat reversed, may be used. β is that portion of Δ still to be laid off when m is reached. $\quad t m=t l=R \sin \beta . \quad m z=$ $t B=l x=R$ vers β.
c. When the central part of the curve is obstructed. α is the central angle between two points of the curve between which a chord may be run. α may equal any angle, but it is preferable that α should be a multiple of D, the degree of curve, and that the points m and n should be on even stations. $m n=$ $2 R \sin \frac{1}{2} \alpha$. A point s may be located by an offset ks from the chord $m n$ by a similar method to that outlined in $\S 30$.

The device of introducing the dotted curve $m n$ having the same radius of curvature as the other, although neither necessary nor advisable in the case shown in Fig. 19, is sometimes the best method of surveying around an obstacle. The offset from any point on the dotted curve to the corresponding point on the true

Fig. 19. curve is twice the "ordinate to the long chord," as computed in § 30 .
33. Modifications of location. The following methods may be used in allowing for the discrepancies between the " paper location" based on a more or less rough preliminary survey and the more accurate instrumental location. (See § 15.) They are also frequently used in locating new parallel tracks and modifying old tracks.
a. To move the forward tangent parallel to itself a distance x, the point of curve (A) remaining fixed. (Fig. 20.)

$$
\begin{array}{r}
V^{\prime} k=B^{\prime} r=x^{\prime} \\
V V^{\prime}=\frac{V^{\prime} h}{\sin h V V^{\prime}}=\frac{x^{\prime}}{\sin \Delta} \tag{13}\\
A V^{\prime}=A V+V V^{\prime}
\end{array}
$$

The triangle $B m B^{\prime}$ is isosceles and $B m=B^{\prime} m$.

$$
\begin{gather*}
R^{\prime}-R=O^{\prime} O=m B=\frac{B^{\prime} r}{\operatorname{vers} B^{\prime} m B}=\frac{x^{\prime}}{\operatorname{vers} \Delta} \\
\therefore \quad R^{\prime}=R+\frac{x^{\prime}}{\operatorname{vers} \Delta} \cdot . \tag{14}
\end{gather*}
$$

The solution is very similar in case the tangent is moved inward to $V^{\prime \prime} B^{\prime \prime}$. Note that this method necessarily changes the

Fig. 20.

Fig. 21.
radius. If the radius is not to be changed, the point of curve must be altered as follows:
b. To move the forward tangent parallel to itself a distance x, the radius being unchanged. (Fig. 21.) In this case the whole
curve is moved bodily a distance $O O^{\prime}=A A^{\prime}=V V^{\prime}=B B^{\prime}$, and moved parallel to the first tangent $A V$.

$$
\begin{equation*}
B B^{\prime}=\frac{B^{\prime} n}{\sin n B B^{\prime}}=\frac{x}{\sin \Delta}=A A^{\prime} \tag{15}
\end{equation*}
$$

c. To change the direction of the forward tangent at the point of tangency. (Fig. 22.) This problem involves a change (α) in the central angle and also requires a new radius. An error in the determination of the central angle furnishes an occasion for its use.
$R, \Delta, \alpha, A V$, and $B V$ are known. $\quad \Delta^{\prime}=\Delta-\alpha$.

$$
\begin{gather*}
B s=R \text { vers } \Delta . \quad B s=R^{\prime} \text { vers } \Delta^{\prime} . \\
\therefore \quad R^{\prime}=R \frac{\operatorname{vers} \Delta}{\text { vers }(\Delta-\alpha)} \cdot . \quad . \quad . \tag{16}\\
A s=R \sin \Delta . \quad A^{\prime} s=R^{\prime} \sin \Delta^{\prime} . \\
\therefore \quad A A^{\prime}=A^{\prime} s-A s=R^{\prime} \sin \Delta^{\prime}-R \sin \Delta . \tag{17}
\end{gather*}
$$

The above solutions are given to illustrate a large class of problems which are constantly arising. All of the ordinary

Fig. 22.

Fig. 23.
problems can be solved by the application of elementary geometry and trigonometry.
34. Limitations in location. It may be required to run a curve that shall join two given tangents and also pass through a given point. The point (P, Fig. 23) is assumed to be determined by its distance ($V P$) from the vertex and by the angle $A V P$ $=\beta$.

It is required to determine the radius (R) and the tangent distance $(A V) . \quad \Delta$ is known.

$$
\begin{aligned}
P V G & =\frac{1}{2}\left(180^{\circ}-\Delta\right)-\beta=90^{\circ}-\left(\frac{1}{2} \Delta+\beta\right) \\
P P^{\prime} & =2 V P \sin P V G=2 V P \cos \left(\frac{1}{2} \Delta+\beta\right) . \\
P S V & =\frac{1}{2} \Delta . \quad \therefore \quad S P=V P \frac{\sin \beta}{\sin \frac{1}{2} \Delta} \\
A S & =\sqrt{S P \times S P^{\prime}}=\sqrt{S P\left(S P+\overline{P P P^{\prime}}\right)}
\end{aligned}
$$

$$
=\sqrt{V P \frac{\sin \beta}{\sin \frac{1}{2} \Delta}\left[V P \frac{\sin \beta}{\sin \frac{1}{2} \Delta}+2 V P \cos \left(\frac{1}{2} \Delta+\beta\right)\right]}
$$

$$
=V P \sqrt{\frac{\sin ^{2} \beta}{\sin ^{2} \frac{1}{2} \Delta}+\frac{2 \sin \beta \cos \left(\frac{1}{2} \Delta+\beta\right)}{\sin \frac{1}{2} \Delta}} .
$$

$$
S V=V P \frac{\sin \left(\frac{1}{2} \Delta+\beta\right)}{\sin \frac{1}{2} \Delta}
$$

$$
A V=A S+S V
$$

$$
\begin{equation*}
=\frac{V P}{\sin \frac{1}{2} \Delta}\left[\sin \left(\frac{1}{2} \Delta+\beta\right)+\sqrt{\sin ^{2} \beta+2 \sin \beta \sin \frac{1}{2} \Delta \cos \left(\frac{1}{2} \Delta+\beta\right)}\right] . \tag{18}
\end{equation*}
$$

$R=A V \cot \frac{1}{2} \Delta$.
In the special case in which P is on the median line $O V$, $\beta=90^{\circ}-\frac{1}{2} \bar{\Delta}$, and $\left(\frac{1}{2} \Delta+\beta\right)=90^{\circ}$. Eq. (18) then reduces to

$$
A V=\frac{V P}{\sin \frac{1}{2} \Delta}\left(1+\cos \frac{1}{2} \Delta\right)=V P \cot \frac{1}{4} \Delta
$$

as might have been immediately derived from Eq. (8).

In case the point P is given by the offset $P K$ and by the distance $V K$, the triangle $P K V$ may be readily solved, giving the distance $V P$ and the angle β, and the remainder of the solution will be as above.
35. Determination of the curvature of existing track. (a) Using a transit. Set up the transit at any point in the center of the track. Measure in each direction 100 feet to points also in the center of the track. Sight on one point with the plates at 0°. Plunge the telescope and sight at the other point. The angle between the chords equals the degree of curvature.
(b) Using a tape and string. Stretch a string (say 50 feet long) between two points on the inside of the head of the outer rail. Measure the ordinate (x) between the middle of the string and the head of the rail. Then

$$
\begin{equation*}
R=\frac{\text { chord }^{2}}{8 x} \text { (very nearly). } \tag{19}
\end{equation*}
$$

For, in Fig. 24, since the triangles $A O E$ and $A D C$ are similar, $A O: A E:: A D: D C$ or $R=\frac{1}{2} \overline{A D}^{2} \div x$. When, as is usual, the are is very short compared with the radius, $A D=\frac{1}{2} A B$, very nearly. Making this substitution we have Eq. (19). With a chord of 50 feet and a 10° curve, the resulting difference in x is .0025 of an inch-far within the possible accuracy of such a method. The above method gives the radius of the inner head

Fig. 24. of the outer rail. It should be diminished by $\frac{1}{2} g$ for the radius of the center of the track. With easy curvature, however, this will not affect the result by more than one or two tenths of one per cent.

The inversion of this formula gives the required middle ordinate for a rail on a given curve. For example, the middle ordinate of a 30 -foot rail, bent for a 6° curve, is

$$
x=900 \div(8 \times 955)=.118 \text { foot }=1.4 \text { inches. }
$$

Another much used rule is to require the foreman to have a string, knotted at the centre, of such length that the middle ordinate, measured in inches, equals the degree of curve. To: find that length, substitute (in eq. (19)) $5730 \div D$ for R and $D \div 12$ for x. Solving for chord, we obtain chord $=61.8$ feet. The rule is not theoretically exact, but, considering the uncertain stretching of the string, the error is insignificant. In fact, the distance usually given is 62 feet, which is close enough for all purposes for which such a method should be used.
36. Problems. A systematic method of setting down the solution of a problem simplifies the work. Logarithms should always be used, and all the work should be so set down that a revision of the work to find a supposed error may be readily done. The value of such systematic work will become more apparent as the problems become more complicated. The two solutions given below will illustrate such work.
a. Given a 3° curve beginning at Sta. $27+60$ and running to Sta. $32+45$. Compute the ordinates and offsets used in locating the curve by tangential offsets.
b. With the same data as above, compute the distances to locate the curve by offsets from the long chord.
c. Assume that in Fig. $17 a b$ is measured as 217.6 feet, the angle $a b V=17^{\circ} 42^{\prime}$, and the angle $b a V=21^{\circ} 14^{\prime}$. Join the tangents by a $4^{\circ} 30^{\prime}$ curve. Determine $b B$ and $a A$.
d. Assume that in a case similar to Fig. 18 it was noted that a distance $(A s)$ equal to 12 feet would clear the building. Assume that $\Delta=38^{\circ} 20^{\prime}$ and that $D=4^{\circ} 40^{\prime}$. Required the value of α and the position of n. Solution:

$$
\begin{aligned}
& \text { vers } \alpha=A s \div R \quad A s=12 \quad \log =1.07918 \\
& R \text { (for } 4^{\circ} 40^{\prime} \text { curve) } \quad \log =3.0892 \hat{3} \\
& \alpha=8^{\circ} 01^{\prime} \quad \log \text { vers } \alpha=7.9899 \hat{4} \\
& n s=R \sin \alpha \\
& \log \sin \alpha=9.1444 \hat{5} \\
& \log R=3.0892 \hat{3} \\
& n s=171.27 \\
& \log =\overline{2.23369}
\end{aligned}
$$

e. Assume that the forward tangent of a $3^{\circ} 20^{\prime}$ curve having a central angle of $16^{\circ} 50^{\prime}$ must be moved 3.62 feet inward, without altering the $P . C$. Required the change in radius.
f. Given two tangents making an angle of $36^{\circ} 18^{\prime}$. It is required to pass a curve through a point 93.2 feet from the vertex, the line from the vertex to the point making an angle of $42^{\circ} 21^{\prime}$ with the tangent. Required the radius and tangent distance. Solution: Applying eq. (18), we have

$\begin{array}{r} 2 \\ \beta=42^{\circ} 21^{\prime} \\ \frac{1}{2} \Delta=18^{\circ} 09^{\prime} \\ \left(\frac{1}{2} \Delta+\beta\right)=60^{\circ} 30^{\prime} \\ .20667 \end{array}$	\log $=0.30103$ $\log \sin$ $=9.52 S 4 t$ $\log \sin$ $=9.4934 \hat{6}$ $\log \cos$ $=\frac{9.69234}{9.3152 \hat{7}}$
$\log \sin ^{2} \beta=9.65688 . \ldots45382$	
2) 9.s1987. 66049	
$\begin{aligned} 9.9099 \hat{3} \ldots \ldots . & .81271 \\ \text { nat } \sin 60^{\circ} 30^{\prime} & =.870 \hat{3} \end{aligned}$	
1.6830 ô	$\log =\overline{\overline{0.22610}}$
$V P=93.2$	$\log =1.9694 \hat{\mathrm{i}}$
	2.1955 î
	$\log \sin \frac{1}{2} \Delta=9.493+\hat{6}$
$\underline{\text { tang. dist. } A V=503.56}$	$\log =\overline{2.70205}$
	$\log \cot \frac{1}{2} \Delta=10.48437$
$\underline{R=1536.1}$	3.15642
$\overline{D=} 3^{\circ} 44^{\prime}$	

COMPOUND CURVES.

37. Nature and use. Compound curves are formed by a succession of two or more simple curves of different curvature. The curves must have a common tangent at the point of compound curvature (P.C.C.). In mountainous regions there is frequently a necessity for compound curves having several changes of curvature. Such curves may be located separately as a succession of simple curves, but a combination of two
simple curves has special properties which are worth investigating and utilizing. In the following demonstrations R_{2} always represents the longer radius and R_{1} the shorter, no matter which succeeds the other. T_{1} is the tangent adjacent to the curve of shorter radius (R_{1}), and is invariably the shorter tangent. Δ_{1} is the central angle of the curve of radius R_{1}, but it may be greater or less than Δ_{2}.
38. Mutual relations of the parts of a compound curve having two branches. In.Fig. 25, $A C$ and $C B$ are the two branches of

the compound curve having radii of R_{1} and R_{2} and central angles of Δ_{1} and Δ_{2}. Produce the arc $A C$ to n so that $A o_{1} n=\Delta$. The chord $C n$ produced must intersect B. The line $n s$, parallel to CO_{2}, will intersect $B O_{2}$ so that $\mathrm{Bs}=\mathrm{sn}$ $=O_{2} O_{1}=R_{2}-R_{1}$. Draw $A m$ perpendicular to $O_{1} n$. It will be parallel to $l k$.

$$
\begin{align*}
& B r=s n \text { vers } B s n \quad=\left(R_{2}-l_{1}\right) \text { vers } \Delta_{2} \\
& m n=A O_{1} \text { vers } A O_{1} n=R_{1} \text { vers } \Delta \\
& A k=A V \sin A V k \quad=T_{1} \sin \Delta \\
& A k=h m=m n+n h=m n+B r . \\
& \therefore T_{1} \sin \Delta=R_{1} \text { vérs } \Delta+\left(R_{2}-R_{1}\right) \text { vers } \Delta_{2} . \tag{20}
\end{align*}
$$

Similarly it may be shown that

$$
\begin{equation*}
T_{2} \sin \Delta=R_{2} \text { vers } \Delta-\left(R_{2}-R_{1}\right) \text { vers } \Delta_{1} \tag{21}
\end{equation*}
$$

The mutual relations of the elements of compound curves may be solved by these two equations. For example, assume the tangents as fixed (Δ therefore known) and that a curve of given radius R_{1} shall start from a given point at a distance T_{1} from the vertex, and that the curve shall continue through a given angle Δ_{2}. Required the other parts of the curve. From Eq. (20) we have

$$
\begin{align*}
R_{2}-R_{1} & =\frac{T_{1} \sin \Delta-R_{1} \operatorname{vers} \Delta}{\operatorname{vers} \Delta_{2}} \\
\therefore R_{2} & =R_{1}+\frac{T_{1} \sin \Delta-R_{1} \operatorname{vers} \Delta}{\operatorname{vers}\left(\Delta-\Delta_{1}\right)} \tag{22}
\end{align*}
$$

T_{2} may then be obtained from Eq. (21).
As another problem, given the location of the two tangents, with the two tangent distances (thereby locating the $P C$ and $P T$), and the central angle of each curve; required the two radii. Solving Eq. (20) for R_{1}, we have

$$
R_{1}=\frac{T, \sin \Delta-R_{2} \text { vers } \Delta_{2}}{\text { vers } \Delta-\operatorname{vers} \Delta_{2}} .
$$

Similarly from Eq. (21) we may derive

$$
R_{1}=\frac{T_{2} \sin \Delta-R_{2}\left(\operatorname{vers} \Delta-\operatorname{vers} \Delta_{1}\right)}{\operatorname{vers} \Delta_{1}}
$$

Equating these, reducing, and solving for R_{2}, we have
$R_{2}=\frac{T_{1} \sin \Delta \operatorname{vers} \Delta_{1}-T_{2} \sin \Delta\left(\operatorname{vers} \Delta-\operatorname{vers} \Delta_{2}\right)}{\text { vers } \Delta_{2} \operatorname{vers} \Delta_{1}-\left(\text { vers } \Delta-\operatorname{vers} \Delta_{1}\right)\left(\text { vers } \Delta-\operatorname{vers} \Delta_{2}\right)}$.
Although the various elements may be chosen as above with considerable freedom, there are limitations. For example, in Eq. (22), since R_{2} is always greater than R_{1}, the term to be added to R_{1} must be essentially positive-i.e., $T_{1} \sin \Delta$ must be
greater than R_{1} vers Δ. This means that $T_{1}>R_{1} \frac{\text { vers } \Delta}{\sin \Delta}$, or that $T_{1}>R_{1} \tan \frac{1}{2} \Delta$, or that T_{1} is greater than the corresponding tangent on a simple curve. Similarly it may be shown that T_{2} is less than $R_{2} \tan \frac{1}{2} \Delta$ or less than the corresponding tangent on a simple curve. Nevertheless T_{2} is always greater than T_{1}. In the limiting case when $R_{2}=R_{2}, T_{2}=T_{1}$ and $\Delta_{2}=\Delta_{1}$.
39. Modifications of location. Some of these modifications may be solved by the methods used for simple curves. For example:
a. It is desired to move the tangent $V B$, Fig. 26, parallel to itself to $V^{\prime} B^{\prime}$. Run a new curve from the $P . C . C$. which shall reach the new tangent at B^{\prime}, where the chord of the old curve

Fig. 26.

Fig. 27.
intersects the new tangent. The solution is almost identical with that in § 33, a.
b. Assume that it is desired to change the forward tangent (as above) but to retain the same radius. In Fig. 27

$$
\begin{align*}
\left(R_{2}-R_{1}\right) \cos \Delta_{2} & =O_{2} n \\
\left(R_{2}-R_{1}\right) \cos \Delta_{2}^{\prime} & =O_{2}^{\prime} n^{\prime} \\
x=O_{2} n-O_{2}^{\prime} n^{\prime} & =\left(R_{2}-R_{1}\right)\left(\cos \Delta_{2}-\cos \Delta_{2}^{\prime}\right) . \\
\cos \Delta_{2}^{\prime} & =\cos \Delta_{2}-\frac{x}{R_{2}-R_{1}} . \tag{24}
\end{align*}
$$

The P.C.C. is moved backward along the sharper curve an angular distance of $\Delta_{2}^{\prime}-\Delta_{2}=\Delta_{1}-\Delta_{1}^{\prime}$.

In case the tangent is moved inward rather than outward, the solution will apply by transposing Δ_{2} and $\Delta_{2}{ }^{\prime}$. Then we will have

$$
\begin{equation*}
\cos \Delta_{2}^{\prime}=\cos \Delta_{2}+\frac{x}{R_{2}-R_{1}} \cdot \cdot \cdot . \tag{25}
\end{equation*}
$$

The P.C.C. is then moved forward.
c. Assume the same case as (b) except that the larger radius comes first and that the tangent adjacent to the smaller radius is moved. In Fig. 28

$$
\begin{aligned}
& \left(R_{2}-R_{1}\right) \cos \Delta_{1}=O_{1} n \\
& \left(R_{2}-R_{1}\right) \cos \Delta_{1}^{\prime}=O_{1}^{\prime} n^{\prime}
\end{aligned}
$$

Fig. 28.

$$
\begin{align*}
x=O_{1}^{\prime} n^{\prime}-O_{1} n & =\left(R_{2}-R_{1}\right)\left(\cos \Delta_{1}^{\prime}-\cos \Delta_{1}\right) . \\
\cos \Delta_{1}^{\prime} & =\cos \Delta_{1}+\frac{x}{R_{2}-R_{1}} . \tag{26}
\end{align*} .
$$

The P.C.C. is moved forward along the easier curve an angular distance of $\Delta_{1}^{\prime}-\Delta_{1}=\Delta_{2}-\Delta_{2}^{\prime}$.

In case the tangent is moved inward, transpose as before and we have

$$
\begin{equation*}
\cos \Delta_{1}^{\prime}=\cos \Delta_{1}-\frac{x}{R_{2}-R_{1}} . \tag{27}
\end{equation*}
$$

The P.C.C. is moved backward.
d. Assume that the radius of one curve is to be altered without changing either tangent. Assume conditions as in Fig. 29. For the diagrammatic solution assume that R_{2} is to be in-
creased by $O_{2} S$. Then, since $R_{2}{ }^{\prime}$ must pass through O_{1} and extend beyond O_{1} a distance $O_{1} S$, the locus of the new center must lie on the are drawn about O_{1} as center and with $O S$ as

Fig. 29. radius. The locus of O_{2}^{\prime} is also given by a line $O_{2}^{\prime} p$ parallel to $B V$ and at a distance of R_{2}^{\prime} (equal to $S \ldots$. . P.C.C.) from it. The new center is therefore at the intersection O_{2}^{\prime}. An arc with radius $R_{2}{ }^{\prime}$ will therefore be tangent at B^{\prime} and tangent to the old curve produced at new P.C.C. Draw $O_{1} n^{\prime}$ perpendicular to $O_{2} B$. With O_{2} as center draw the arc $O_{1} m$, and with O_{2}^{\prime} as center draw the arc $O_{1} m^{\prime}$. $m B=m^{\prime} B^{\prime}=R_{1} . \quad \therefore m n=\dot{m}^{\prime} n^{\prime}=$ $\left(R_{2}^{\prime}-R_{1}\right)$ vers $\Delta_{2}^{\prime}=\left(R_{2}-R_{1}\right)$ vers Δ_{2}.

$$
\begin{align*}
& \therefore \text { vers } \Delta_{2}^{\prime}=\frac{\left(R_{2}-R_{1}\right)}{\left(R_{2}^{\prime}-R_{1}\right)} \text { vers } \Delta_{2} \\
& O_{1} n=\left(R_{2}-R_{1}\right) \sin \Delta_{2} \\
& O_{1} n^{\prime}=\left(R_{2}^{\prime}-R_{1}\right) \sin \Delta_{2}^{\prime} \tag{29}
\end{align*}
$$

$B B^{\prime}=O_{1} n^{\prime}-O_{1} n=\left(R_{2}^{\prime}-R_{1}\right) \sin \Delta_{2}^{\prime}-\left(R_{2}-R_{1}\right) \sin \Delta_{2}$.
This problem may be further modified by assuming that the radius of the curve is decreased rather than increased, or that the smaller radius follows the larger. The solution is similar and is suggested as a profitable exercise.

It might also be assumed that, instead of making a given change in the radius R_{2}, a given change $B B^{\prime}$ is to be made. Δ_{2}^{\prime} and R_{2}^{\prime} are required. Eliminate R_{2}^{\prime} from Eqs. 28 and 29 and solve the resulting equation for Δ_{2}^{\prime}. Then determine R_{2}^{\prime} by a suitable inversion of either Eq. 28 or 29.

As in 83 and 33 , the above problems are but a few, although perhaps the most common, of the problems the engineer may meet with in compound curves. All of the ordinary problems may be solved by these and similar. methods.
40. Problems. a. Assume that the two tangents of a compound curve are to be 348 feet and 624 feet, and that $\Delta_{1}=$ $22^{\circ} 16^{\prime}$ and $\Delta_{2}=28^{\circ} 20^{\prime}$. Required the radii.

$$
\left[A n s . R_{1}=326.92 ; \quad R_{1}=1574.85 .\right]
$$

b. A line crosses a valley by a compound curve which is first a 6° curve for $46^{\circ} 30^{\prime}$ and then a $9^{\circ} 30^{\prime}$ curve for $8 t^{\circ} 16^{\prime}$. It is afterward decided that the last tangent should be 6 feet farther up the hill. What are the required changes? [Note. The second tangent is evidently moved outward. The solution corresponds to that in the first part of \& 39, c. The P.C.C. is moved forward 16.39 feet. If it is desired to know how far the P.T. is moved in the direction of the tangent (i.e., the projection of $B B^{\prime}$, Fig. 28 , on $V^{\prime} B^{\prime}$), it may be found by observing that it is equal to $n n^{\prime}=\left(R_{2}-R_{1}\right)\left(\sin \Delta_{1}-\sin \Delta_{1}^{\prime}\right)$. In this case it equals 0.65 foot, which is very small because Δ_{1} is nearly 90°. The value of $\Delta_{2}\left(46^{\circ} 30^{\prime}\right)$ is not used, since the solution is independent of the value of Δ_{2}. The student should learn to recognize which quantities are mutually related and therefore essential to a solution, and which are independent and non-essential.]

TRANSITION CURVES.

41. Superelevation of the outer rail on curves. When a mass is moved in a circular path it requires a centripetal force to keep it moving in that path. By the principles of mechanics we know that this force equals $G v^{2} \div g R$, in which G is the weight, v the velocity in feet per second, g the acceleration of gravity in feet per second in a second, and R the radius of eurvature. If the two rails of a curved track were laid on a level (transversely), this centripetal force could ouly be furnished by the
pressure of the wheel-flanges against the rails. As this is very objectionable, the outer rail is elevated so that the reaction of the rails against the wheels shall contain

Fig. 30. a horizontal component equal to the required centripetal force. In Fig. 30, if ob represents the reaction, oc will represent the weight G, and ao will represent the required centripetal force. From similar triangles we may write $s n: s m:$: $a o: o c$. Call $g=32.17$. Call $R=$ $5730 \div D$, which is sufficiently accurate for this purpose (see § 19). Call $v=5250 V \div 3600$, in which V is the velocity in miles per hour. $m n$ is the distance between rail centers, which, for an $80-\mathrm{lb}$. rail and standard gange, is 4.916 feet. $s m$ is slightly less than this. As an average value we may call it 4.900 , which is its exact value when the superelevation is $4 \frac{3}{4}$ inches. Calling $s n=e$, we have

$$
\begin{align*}
e=\operatorname{sm} \frac{a O}{o c} & =4.9 \frac{G v^{2}}{g R} \frac{1}{G}=\frac{4.9 \times 5280^{2} V^{2} D}{32.17 \times 3600^{2} \times 5730} . \\
e & =.0000572 \nabla^{2} D . \quad . \quad . \quad . \quad . \tag{30}
\end{align*}
$$

It should be noticed that, according to this formula, the required superelevation varies as the square of the velocity, which means that a change of velocity of only 10% would call for a change of superelevation of 21%. Since the velocities of trains over any road are extremely variable, it is impossible to adopt any superelevation which will fit all velocities even approximately. The above fact also shows why any overrefinement in the calculations is useless and why the above approximations, which are really small, are amply justifiable. For example, the above formula contains the approximation that $R=5730 \div D$. In the extreme case of a 10° curve the error involved would be about 1%. A change of about $\frac{1}{2}$ of 1% in
the velocity, or say from 40 to 40.2 miles per hour, would mean as much. The error in e due to the assmmed constant value of $s m$ is never more than a very small fraction of 1%. The rail-laying is not done closer than this. The following tabular form is based on Eq. 30 :

SUPERELEVATION OF THE OUTER RAIL (IN FEET) FOR VARIOUS VELOCITIES AND DEGREES OF CURVATURE.

Velocity Miles per.Hour.	Degree of Curve.									
	1°	$\because 0$	3°	4°	5°	6°	$\overbrace{}^{\circ}$	8°	9°	10°
30	. 05	. 10	. 15	. 20	. 26	31	. 36	. 41	46	
40	. 09	. 18	. 27	. 37	. 46	. 55	. 64	. 73	. 82	
50	. 14	. 29	. 43	. 57	. 71	. 86				
60	. 20	. 41	. 62	. 82						

42. Practical rules for superelevation. A much used rule for superelevation is to "elevate one half an inch for each degree of curvature." The rule is rational in that e in Eq. 30 varies directly as D. The above rule therefore agrees with Eq. 30 when V is about 27 miles per hour. However applicable the rule may have been in the days of low velocities, the elevation thus computed is too small now.

Another (and better) rule is to "elevate for the speed of the fastest trains." This rule is further justified by the fact that a four-wheeled truck, having two parallel axles, will always tend to run to the outer rail and will require considerable flange pressure to guide it along the curve. The effect of an excess of superelevation on the slower trains will only be to relieve this flange pressure somewhat. This rule is coupled with the limitation that the elevation should never exceed a limit of six inches -sometimes eight inches. This limitation implies that locomotive engineers must reduce the speed of fast trains around sharp curves until the speed does not exceed that for which the actual superelevation used is suitable. The heavy line in the tabular form ($\S 41$) shows the six-inch limitation.

Some roads furnish their track foremen with a list of the superelevations to be used on each curve in their sections. This method has the advantage that each location may be separately studied, and the proper velocity, as affected by local conditions (e.g., proximity to a stopping-place for all trains), may be determined and applied.

Another method is to allow the foremen to determine the superelevation for each curve by a simple measurement taken at the curve. The rule is developed as follows: By an inversion of Eq. 19 we have

$$
\begin{equation*}
x=\text { chord } d^{2} \div 8 R \tag{31}
\end{equation*}
$$

Putting x equal to e in Eq. 30 and solving for "chord," we have

$$
\begin{align*}
{\text { chor } d^{2}} & =.0000572 V^{2} D 8 R \\
& =2.621 V^{2} . \\
\text { chord } & =1.62 \mathrm{~V} . \tag{32}
\end{align*}
$$

To apply the rule, assume that 50 miles per hour is fixed as the velocity from which the superelevation is to be computed. Then $1.62 V=1,62 \times 50=81$ feet, which is the distance given to the trackmen. Stretch a tape (or even a string) with a length of 81 feet between two points on the inside head of the outer rail or the outer head of the inner rail. The ordinate at the middle point then equals the superelevation. The values of this chord length for varying velocities are given in the accompanying tabular form.

43. Transition from level to inclined track. On curves the track is inclined transversely; on tangents it is level. The transition from one condition to the other must be made gradu-
ally. If there is no transition curve, there must be either inclined track on the tangent or insufficiently inclined track on the curve or both. Sometimes the full superelevation is continued through the total length of the curve and the "run-off" (having a length of 100 to 200 feet) is located entirely on the tangents at each end. In other practice it is located partly on the tangent and partly on the curve. Whatever the method, the superelevation is correct at only one point of the run-off. At all other points it is too great or too small. This (and other causes) produces objectionable lurches and resistances when entering and leaving curves. The object of transition curves is to obviate these resistances.
44. Fundamental principle of transition curves. If a curve has variable curvature, beginning at the tangent with a curve of infinite radius, and the curvature gradually sharpens until it equals the curvature of the required simple curve and there becomes tangent to it, the superelevation of such a transition curve may begin at zero at the tangent, gradually increase to the required superelevation for the simple curve, and yet have at every point the superelevation required by the curvature at that point. Since in Eq. (30) e is directly proportional to D, the required curve must be one in which the degree of curve increases directly as the distance along the curve. The mathematical development of such a curve is quite complicated. It has, however, been developed, and tables have been computed for its use, by Prof. C. L. Crandall. The following method has the advantage of great simplicity, while its agreement with the true transition curve is as close as need be, as will be shown.
45. Multiform compound curves. If the transition curve commences with a very flat curve and at regular even chord lengths compounds into a curve of sharper curvature until the desired curvature is reached, the increase in curvature at each chord point being uniform, it is plain that such a curve is a close approximation to the true spiral, especially since the rails as laid will gradually change their curvature rather than maintain a uniform curvature throughout each chord length and
then abruptly change the curvature at the chord points. Such a curve, as actually laid, will be a much closer approximation to the true curve than the multiform compound curve by which it is set out. There will actually be a gradual increase in curvature which increases directly as the length of the curve.
46. Required length of spiral. The required length of spiral evidently depends on the amount of superelevation to be gained, and also depends somewhat on the speed. If the spiral is laid off in 25 -foot chord lengths, with the first chord subtending a 1° curve, the second a 2° curve, etc., the fifth chord will subtend a 5° curve, and the increase from this last chord to a 6° curve is the same as the uniform increase of curvature between the chords. The same spiral extended would run on to a 12° curve in $(12-1) 25=275$ feet. The last chord of a spiral should have a smaller degree of curvature than the simple curve to which it is joined. If the curves are very sharp, such as are used in street work and even in suburban trolley work, an increase in degree of curvature of 1° per 25 feet will not be sufficiently rapid, as such a rate would require too long curves. $2^{\circ}, 10^{\circ}$, or even 20° increase per 25 feet may be necessary, but then the chords should be reduced to 5 feet. Such a rapid rate of increase is justified by the necessary reduction in speed. On the other hand, very high speed will make a lower rate of increase desirable, and therefore a spiral whose degree of curvature increases only $0^{\circ} 30^{\prime}$ per 25 feet may be used. Such a spiral would require a length of 375 feet to run on to an 8° curve, which is inconveniently long, but it might be used to run on to a 4° curve, where its length would be only 175 feet. Three spirals have been developed in Table IV, each with chords of 25 feet, the rate of increase in the degree of curvature being $0^{\circ} 30^{\prime}, 1^{\circ}$ and 2° per chord. One of these will be suitable for any curvature found on ordinary steam-railroads.
47. To find the ordinates of a 1°-per- 25 -feet spiral. 'Since the first chord subtends a 1° curve, its central angle is $0^{\circ} 15^{\prime}$ and the angle $a Q V$ (Fig. 31) is $7^{\prime} 30^{\prime \prime}$. The tangent at a makes an angle of 15^{\prime} with $V Q$. The angle between the chord $b a$ and
the tangent at a is $\frac{1}{2}\left(30^{\prime}\right)=15^{\prime}$, and the angle $b a b^{\prime \prime}=\frac{1}{2}\left(30^{\prime}\right)+15^{\prime}$ $=30^{\prime}$. Similarly the angle $c b c^{\prime \prime}=\frac{1}{2}\left(45^{\prime}\right)+30^{\prime}+15^{\prime}=67^{\prime} 30^{\prime}$ $=1^{\circ} 07^{\prime} 30^{\prime \prime}$, and the angle $d c d^{\prime \prime}$ is $2^{\circ} 0^{\prime}$. The ordinate a $a a^{\prime}$ $=25 \sin 7^{\prime} 30^{\prime \prime}$, and $Q a^{\prime}=25 \cos 7^{\prime} 30^{\prime \prime} . \quad Q b^{\prime}=Q a^{\prime}+a^{\prime} b^{\prime}$ $=Q a^{\prime}+a b^{\prime \prime}=25\left(\cos 7^{\prime} 30^{\prime \prime}+\cos 30^{\prime}\right) . \quad b b^{\prime}=b^{\prime} b^{\prime \prime}+b b^{\prime \prime}$ $=25\left(\sin 7^{\prime} 30^{\prime \prime}+\sin 30^{\prime}\right)$. Similarly the ordinates of c, d, etc., may be obtained.

Fig. 31.

Fig. 32.
48. To find the deflections from any point of the spiral. $a Q V=7^{\prime} 30^{\prime \prime}$. Tan $b Q V=b b^{\prime} \div Q b^{\prime} ; \tan c Q V=c c^{\prime} \div Q c^{\prime} ;$ etc. Thus we are enabled to find the deflection angles from the tangent at Q to any point of the spiral.

The tangent to the curve at c (Fig. 32) makes an angle of $1^{\circ} 30^{\prime}$ with $Q V$, or $c m V=1^{\circ} 30^{\prime}$. $Q c m=c m V-c Q m$. The
value of $c Q m$ is known from previous work. The deflection from c to Q then becomes known.
$a c m=c m V-c a p=c m V-c a q-q a p . \quad c a q$ is the deflection angle to c from the tangent at a and will have been previously computed numerically. $q a p=15^{\prime}$. acm therefore becomes known.

$$
\begin{aligned}
& b c m=\frac{1}{2} \text { of } 45^{\prime}=22^{\prime} 30^{\prime \prime} \\
& d c n=\frac{1}{2} \text { of } 60^{\prime}=30^{\prime} .
\end{aligned}
$$

$e c n=e c d^{\prime \prime}-n c d^{\prime \prime}, n c d^{\prime \prime}=c m V, \tan e c d^{\prime \prime}=\left(e e^{\prime}-d^{\prime \prime} d^{\prime}\right) \div c^{\prime} e^{\prime}$, all of which are known from the previous work.

By this method the deflections from the tangent at any

Fig. 33.
point of the curve to any other point are determinable. These values are compiled in Table IV. The corresponding values of these angles when the increase in the degree of curvature per chord length is 30^{\prime}, and when it is 2°, are also given in Table IV.
49. Connection of spiral with circular curve and with tangent. See Fig. 33.* Let $A V$ and $B V$ be the tangents to be comected by a D° curve, having a suitable spiral at each end. If no spirals were to be used, the problem would be solved as in simple curves giving the curve $A M B$. Introducing the spiral has the effect of throwing the curve away from the vertex a distance $M M^{\prime}$ and reducing the central angle of the D° curve by 2ϕ. Continuing the curve beyond Z and Z^{\prime} to A^{\prime} and B^{\prime}, we will have $A A^{\prime}=B B^{\prime}=M M^{\prime} . \quad Z K^{\prime}=$ the x ordinate and is therefore known. Call $M^{\prime} M^{\prime}=m . \quad A^{\prime} N=x-R$ vers ϕ. Then

$$
\begin{equation*}
m=M M^{\prime}=A A^{\prime}=\frac{A^{\prime} N}{\cos \frac{1}{2} \Delta}=\frac{x-R \text { vers } \phi}{\cos \frac{1}{2} \Delta} . \tag{33}
\end{equation*}
$$

$$
\begin{align*}
N A & =A A^{\prime} \sin \frac{1}{2} \Delta=(x-R \text { vers } \phi) \tan \frac{1}{2} \Delta . \\
V Q & =Q K-K N+N A+A V \\
& =y-R \sin \phi+(x-R \operatorname{rers} \phi) \tan \frac{1}{2} \Delta+R \tan \frac{1}{2} \Delta \\
& =y-R \sin \phi+x \tan \frac{1}{2} \Delta+R \cos \phi \tan \frac{1}{2} \Delta . \tag{34}
\end{align*}
$$

When $A^{\prime} N$ has already been computed, it may be more convenient to write

$$
\begin{align*}
V Q & =y+R\left(\tan \frac{1}{2} \Delta-\sin \phi\right)+A^{\prime} N \tan \frac{1}{2} \Delta . \tag{35}\\
V M^{\prime} & =V M+M M^{\prime} \\
& =R \operatorname{exsec} \frac{1}{2} \Delta+\frac{x}{\cos \frac{1}{2} \Delta}-\frac{R \operatorname{vers} \phi}{\cos \frac{1}{2} \Delta} . \tag{36}\\
A Q & =V Q-A V \\
& =y-R \sin \phi+(x-R \text { vers } \phi) \tan \frac{1}{2} \Delta .
\end{align*}
$$

Example. To join two tangents making an angle of $34^{\circ} 20^{\prime}$ by a $5^{\circ} 40^{\prime}$ curve and suitable spirals. Use 1°-per- 25 -feet

[^3]spirals with five chords. Then $\phi=3^{\circ} 45^{\prime}, x=2.999, \frac{1}{2} \Delta$ $=17^{\circ} 10^{\prime}$, and $y=124.942$.
(Eq. 33)
(Eq. 36)

50. Field-work. When the spiral is designed during the original location, the tangent distance $V Q$ should be computed and the point Q located. It is hardly necessary to locate all of the points of the spiral until the track is to be laid. The extremities should be located, and as there will usually be one and perhaps two full station points on the spiral, these should
also be located. Z may be located by setting off $Q K=y$ and $K Z=x$, or else by the tabular deflection for Z from Q and the distance $Z Q$, which is the long chord. Setting up the instrument at Z and sighting back at Q with the proper deflection, the tangent at Z may be found and the circular curve located as usual, its central angle being $\Delta-2 \phi$. A similar operation will locate Q^{\prime} from Z^{\prime}.

To locate points on the spiral. Set up at Q, with the plates reading 0° when the telescope sights along $V Q$. Set off from Q the deflections given in Table IV for the instrument at Q, using a chord length of 25 feet, the process being like the method for simple curves except that the deflections are irregular. If a full station-point occurs within the spiral, interpolate between the deflections for the adjacent spiral-points. For example, a spiral begins at Sta. $56+15$. Sta. 57 comes 10 feet beyond the third spiral point. The deflection for the third point is $35^{\prime} 0^{\prime \prime}$; for the fourth it is $56^{\prime} 15^{\prime \prime}$. $\frac{10}{25}$ of the difference ($21^{\prime} 15^{\prime \prime}$) is $8^{\prime} 30^{\prime \prime}$; the deflection for Sta. 57 is therefore $43^{\prime} 30^{\prime \prime}$. This method is not theoretically accurate, but the error is small. Arriving at z, the forward aligmment may be obtained by sighting back at Q (or at any other point) with the given deflection for that point from the station occupied. Then when the plates read 0° the telescope will be tangent to the spiral and to the succeeding curve. All rear points should be checked from z. If it is necessary to occupy an intermediate station, use the deflections given for that station, orienting as just explained for \approx, checking the back points and locating all forward points up to z if possible.

After the center curve has been located and z^{\prime} is reached, the other spiral must be located but in reverse order, i.e., the sharp curvature of the spiral is at z^{\prime} and the curvature decreases toward Q^{\prime}.
51. To replace a simple curve by a curve with spirals. This may be done by the method of $\$ 49$, but it involves slifting the whole track a distance m, which in the given example equals 0.87 foot. Besides this the track is appreciably shortened,
which would require rail-cutting. But the track may be kept at practically the same length and the lateral deviation from the old track may be made very small by slightly sharpening the curvature of the old track, moving the new curve so that it is wholly or partially outside of the old curve, the remainder of it with the spirals being inside of the old curve. It is found by experience that a decrease in radius of from 1% to 5% will answer

Fig. 34.
the purpose. The larger the central angle the less the change. 'The solution is as indicated in Fig. 34.

$$
\begin{align*}
O^{\prime} N & =R^{\prime} \cos \phi+x \\
O^{\prime} V & =O^{\prime} N \sec \frac{1}{2} \Delta \\
& =R^{\prime} \cos \phi \sec \frac{1}{2} \Delta+x \sec \frac{1}{2} \Delta . \\
m & =M M^{\prime}=M V-M^{\prime} V \\
& =R \operatorname{exsec} \frac{1}{2} \Delta-\left(O^{\prime} V-R^{\prime}\right) \\
& =R \operatorname{exsec} \frac{1}{2} \Delta-R^{\prime} \cos \phi \sec \frac{1}{2} \Delta-x \sec \frac{1}{2} \Delta+R^{\prime} . \tag{38}\\
A Q & =Q K-K N+N^{\prime} V-V A \\
& =y-R^{\prime} \sin \phi+\left(R^{\prime} \cos \phi+x\right) \tan \frac{1}{2} \Delta-R \tan \frac{1}{2} \Delta \\
& =y-R^{\prime} \sin \phi+R^{\prime} \cos \phi \tan \frac{1}{2} \Delta-(R-x) \tan \frac{1}{2} \Delta . \tag{39}
\end{align*}
$$

The length of the old curve from Q to $Q^{\prime}=2 A Q+100 \frac{A}{D}$.
The length of the new curve from Q to $Q^{\prime}=2 L+100 \frac{\Delta-2 \phi}{D^{\prime}}$, in which L is the length of each spiral.

Example. Suppose the old curve is a $7^{\circ} 30^{\prime}$ curve with a central angle of $35^{\circ} 40^{\prime}$. As a trial, compute the relative length of a new 8° curve with spirals of seven chords. $\phi=7^{\circ} 0^{\prime}$; $\frac{1}{2} \Delta=19^{\circ} 20^{\prime} ; R$ (for the $7^{\circ} 30^{\prime}$ curve) $=764.489 ; R^{\prime}$ (for the 8° curve) $=716.779 ; x=7.62 \mathrm{~s}$.

[Eq. 38]	$R^{\prime}=\begin{array}{r} 45.687 \\ 716.779 \end{array}$		$\begin{gathered} R \\ \text { exsec } \frac{1}{2} \Delta \end{gathered}$	$\begin{aligned} & 2.88337 \\ & 8.77642 \end{aligned}$
				1.65979
			R^{\prime}	2.85533 ¢
	762.466		$\cos \phi$.	9.99675
			$\sec \frac{1}{2} \Delta$	0.02521
		753.953		2.8773 ¢
			x	0.88241
			$\sec \frac{1}{2} \Delta$	0.02521
		8.084		0.90762
	762.037	762.037		
	$m=0.429$			
[Eq. 39]	$y=174.722$	-	$\begin{gathered} R^{\prime} \\ \sin \phi \end{gathered}$	$\begin{aligned} & 2.8553 \widehat{S} \\ & 9.0858 \hat{9} \end{aligned}$
		87.353		1.94128
			R^{\prime}	2.85583 \%
			$\cos \phi$	9.99675
			$\tan \frac{1}{2} \triangle$	9.54512
	249.606			$2.3972 亏 5$
			$\begin{aligned} R & =764.489 \\ x & =7.628 \end{aligned}$	
			756.861	$2.8790 \hat{1}$
			$\tan \frac{1}{2} \Delta$	9.54512
		265.543		$2.4241 \hat{3}$
	424.328	352.896		
	$A Q=71.432$			

The length of the old curve from Q to Q^{\prime} is

$$
\begin{aligned}
& 100 \frac{\Delta}{D}=100 \frac{38.667}{7.5}= \\
& 2 A Q=2 \times 71.432= \\
& \text { New curve }: 100 \frac{\Delta-2 \phi}{D^{\prime}}=100 \frac{38.667-14.000}{8.0}=308.333 \\
& 2 L=2 \times 175 \quad=\frac{350.000}{\frac{142.864}{658.420}} \\
& \text { Difference in length }=\frac{658.333}{0.087}
\end{aligned}
$$

Considering that this difference may be divided among 22 joints (using 30 -foot rails) no rail-cutting would be necessary. If the difference is too large, a slight variation in the value of the new radius R^{\prime} will reduce the difference as much as necessary. A truer comparison of the lengths would be found by comparing the lengths of the arcs.
52. Application of transition curves to compound curves. Since compound curves are only employed when the location is limited by local conditions, the elements of the compound curve should be determined (as in $\$ \delta 38$ and 39) regardless of the transition curres, depending on the fact that the lateral shifting of the curve when transition curves are introduced is very small. If the limitations are very close, an estimated allowance may be made for them.

Methods have been devised for inserting transition curves between the branches of a compound curve, but the device is complicated and usually needless, since when the train is once on a curve the wheels press against the outer rail steadily and a change in curvature will not produce a serious jar even though the superelevation is temporarily a little more or less than it should be.

If the easier curve of the compound curve is less than 3° or 4°, there may be no need for a transition curve off from that branch. This problem then has two cases according as transition curves are used at both ends or at one end only.
a. With transition curves at both ends. Adopting the method of $\S 49$, calling $\Delta_{1}=\frac{1}{2} \Delta$, we may compute $m_{1}=M M_{1}{ }^{\prime}$. similarly, calling $\Delta_{2}=\frac{1}{2} \Delta$, we may compute $m_{2}=M M_{2}^{\prime}$. But

Fig. 35.
M_{1}^{\prime} and M_{2}^{\prime} must be made to coincide. This may be done by moving the curve $Z^{\prime} M_{1}^{\prime}$ and its transition curve parallel to $Q^{\prime} V$ a distance $M_{1}^{\prime} M_{3}$, and the other curve parallel to $Q V$ a distance $M_{2}^{\prime} M_{3}$. In the triangle $M_{1}^{\prime} M_{3} M_{2}^{\prime}$, the angle at $M_{1}^{\prime}=90^{\circ}-\Delta_{1}$, the angle at $M_{2}^{\prime}=90^{\circ}-\Delta_{2}$, and the angle at $M_{3}=\Delta$.

Then $M_{1}^{\prime} M_{3}=M_{1}^{\prime} M_{2}^{\prime} \frac{\sin \left(90^{\circ}-\Delta_{2}\right)}{\sin \Delta}=\left(m_{1}-m_{2}\right) \frac{\cos \Delta_{2}}{\sin \Delta^{2}}$.
Similarly $M_{2}^{\prime} M_{9}=M_{1}^{\prime} M_{2}^{\prime} \frac{\sin \left(90^{\circ}-\Delta_{1}\right)}{\sin \Delta}=\left(m_{1}-m_{2}\right) \frac{\cos \Delta_{1}}{\sin \Delta}$.
b. With a transition curve on the sharper curve only. Compute $m_{1}=M M_{1}^{\prime}$ as before; then move the curve $Z_{1} M_{1}^{\prime}$ parallel to $Q^{\prime} V$ a distance of

$$
\begin{equation*}
M_{1}^{\prime} M_{4}=m_{1} \frac{\cos \Delta_{2}}{\sin \Delta} \tag{41}
\end{equation*}
$$

The simple curve $M A$ is moved parallel to $V A$ a distance of

$$
\begin{equation*}
M M_{4}=m_{1} \frac{\cos \Delta_{1}}{\sin \Delta} \tag{42}
\end{equation*}
$$

If Δ_{1} and Δ_{2} are both small, $M_{1}^{\prime} M_{4}$ and $M M_{4}$ may be more than m_{1}, but the lateral deviation of the new curve from the old will always be less than m_{2}.
53. To replace a compound curve by a curve with spirals. The solution is somewhat analogous to that of $\S 51$. Compute m_{1} for the sharper branch of the curve, placing $\Delta_{1}=\frac{1}{2} \Delta$ in Eq. 38. Since m_{1} and m_{2} for the two branches of the curve must be identical, a value for R_{2}^{\prime} must be found which will satisfy the determined value of $m_{2}=m_{1}$. Solving Eq. 38 for \boldsymbol{R}^{\prime}, we obtain

$$
\begin{equation*}
R^{\prime}=\frac{R \operatorname{vers} \frac{1}{2} \Delta-m \cos \frac{1}{2} \Delta-x}{\cos \phi-\cos \frac{1}{2} \Delta} \tag{43}
\end{equation*}
$$

Substituting in this equation the known value of $m_{1}\left(=m_{2}\right)$ and calling $R^{\prime}=R_{2}{ }^{\prime}, R=R_{2}$, and $\Delta_{2}=\frac{1}{2} \Delta$, solve for $R_{2}{ }^{\prime}$. Obtain the value of $A Q$ for each branch of the curve separately by Eq. 39, and compare the lengths of the old and new lines.

Example. Assume a compound curve with $D_{1}=8^{\circ} ; D_{2}=4^{\circ}$; $\Delta_{1}=36^{\circ}$ and $\Delta_{2}=32^{\circ}$. Use 1°-per- 25 -feet spirals; $\phi_{1}=7^{\circ} 0^{\prime}$; $\phi_{2}=1^{\circ} 30^{\prime}$. Assume that the sharper curve is sharpened from $8^{\circ} 0^{\prime}$ to $8^{\circ} 12^{\prime}$.
§ 53.
[Eq. 38]

$R_{2}^{\prime}=$	$\frac{169.209}{699.326}$ 868.535 857.970
$m_{1}=\frac{967.399}{1.136}$	

$\stackrel{R_{1}}{\operatorname{exsec} 36^{\circ}}$	$\begin{aligned} & 2.8558 \widehat{8} \\ & 9.3730 \hat{3} \end{aligned}$
	2.22842
$\begin{gathered} h_{1}^{\prime} \\ \cos \phi_{1} \\ \sec \Delta_{1} \end{gathered}$	2.84468
	9.99675
	0.09204
	2.9334
$\begin{gathered} x_{1} \\ \sec \Delta_{1} \end{gathered}$	0.88\% 41
	0.09\%0t
	0.97445

R_{2}	3.15615
vers 32°	9.181% ô
	2.33i85
$m_{1}=1.136$	0.05938
$\cos 32^{\circ}$	9.92842
	9.98350

1.726
215.974
$R_{2}{ }^{\prime}=1424.54$
[Eq. 39]
$y_{1}=174.722$
504.302

ALIGNMENT.
[Eq. 43]
217.700

nat. $\cos \phi=.99966$ nat. $\cos \Delta_{2}=.84805$
$\left[4^{\circ} 1^{\prime} 22^{\prime \prime}\right]$

[Eq. 39]

$y_{2}=74.994$	37290	$\begin{gathered} R_{2}{ }^{\prime} \\ \sin \phi_{2} \end{gathered}$	$\begin{aligned} & 3.15367 \\ & 8.41792 \end{aligned}$
			$1.5715 \hat{9}$
		$\tan \frac{1}{2} \Delta\left(\Delta_{2} \stackrel{\cos \phi_{2}}{=} 32^{\circ}\right)$	$\begin{aligned} & 3.15367 \\ & 9.99980 \\ & 9.79579 \end{aligned}$
889.843			2.9493 Y
		$\begin{aligned} & R_{2}=1432.69 \\ & x_{2}=0.76 \end{aligned}$	
		$\begin{array}{r} 1431.93 \\ \tan \frac{1}{2} \triangle \end{array}$	$\begin{aligned} & 3.15592 \\ & 9.79579 \end{aligned}$
	894.770		2.95171
$\begin{aligned} & 964.837 \\ & 932.060 \end{aligned}$	932.060		
$A Q_{2}=32.777$			

For the length of the old track we have :

$$
\begin{aligned}
100 \frac{\Delta_{1}}{D_{1}}=100 \frac{36^{\circ}}{8^{\circ}} & =450 . \\
100 \frac{\Delta_{2}}{D_{2}}=100 \frac{32^{\circ}}{4^{\circ}} & =800 . \\
A Q_{1} & =78.563 \\
A Q_{2} & =\frac{32.777}{1361.340}
\end{aligned}
$$

For the length of the new track we have:

$$
\begin{aligned}
& 100 \frac{D_{1}-\phi_{1}}{D_{1}^{\prime}}=100 \frac{29^{\circ}}{8^{\circ} .20}=353.659 \\
& 100 \frac{\Delta_{2}-\phi_{2}}{D_{2^{\prime}}}=100 \frac{30^{\circ} .5}{4^{\circ} .023}=758.140 \\
& \text { Spiral on } 8^{\circ} 12^{\prime} \text { curve } \quad 175.000 \\
& \text { " " } 4^{\circ} 01^{\prime} 22^{\prime \prime} \text { " } 75 . \\
& \text { Length of new track }=1361.799 \\
& \text { " " old " }=1361.340 \\
& \text { Excess in length of new track }=0.459 \text { feet. }
\end{aligned}
$$

Since the new track is slightly longer than the old, it shows that the new track runs too far outside the old track at the P.C.C. On the other hand the offset m is only 1.136 . The maximum amount by which the new track comes inside of the old track at two points, presumably not far from Z^{\prime} and Z, is very difficult to determine exactly. Since it is desirable that the maximum offsets (inside and outside) should be made as nearly equal as possible, this feature should not be sacrificed to an effort to make the two lines of preeisely equal length so that the rails need not be cut. Therefore, if it is found that the offsets inside the old track are nearly equal to m (1.136), the above figures should stand. Otherwise m may be diminished (and the above excess in length of track diminished) by increasing $L_{i_{1}}{ }^{\prime}$ very slightly and making the necessary consequent changes.

VERTICAL CURVES.

54. Necessity for their use. Whenever there is a change in the rate of grade, it is necessary to eliminate the angle that would be formed at the point of change and to comnect the two grades by a curve. This is especially necessary at a sag between two grades, since the shock caused by abruptly forcing an upward motion to a rapidly moving heavy train is very severe both to the track and to the rolling stock.
55. Required length. Theoretically the length should depend on the change in the rate of grade, the greater change requiring a longer curve. The importance of this was greater in the days when link couplers were in universal use and the "slack" in a long train was very great. Under such circumstances, when a train was moving down a heavy grade the cars would crowd ahead against the engine. Reaching the sag, the engine would begin to pull out, rapidly taking out the slack. Six inches of slack on each ear would amount to several feet on a long train, and the resulting jerk on the couplers, especially those near the rear of the train, has frequently resulted in
broken couplers or even derailments. A vertical curve will practically eliminate this danger if the curve is made long enough, but the rapidly increasing adoption of close spring couplers and air-brakes, even for freight trains, is obviating the necessity for such very long curves. Two hundred feet may be considered sufficiently long for all ordinary changes of grade. Four hundred feet would probably suffice for the greatest change ever found in practice.
56. Form of curve. In Fig. 36 assume that A and C, equi-

Fig. 36.
distant from B, are the extremities of the vertical curve. Bisect $A C$ at e; draw $B e$ and bisect it at h. Bisect $A B$ and $B C$ at k and l. The line $k l$ will pass through h. A parabola may be drawn with its vertex at h which will be tangent to $A B$ and $B C$ at A and B. It may readily be shown from the properties of a parabola that if an ordinate be drawn at any point (as at n) we will have

$$
\begin{align*}
& s n: e h(\text { or } h B):: \overline{A m}^{2}: \overline{A e}^{2} \\
& s n=e h \frac{A m^{2}}{A e^{2}} \quad . \quad \cdot \quad \cdot \tag{44}
\end{align*}
$$

Since the elevation of any point along $A B$ or $B C$ is readily determinable, the elevation of any point on the curve may be computed by adding the correction $s n$.
57. Numerical example. Assume that B is located at Sta. $16+20$; that the curve is to be 200 feet long; that the grade of $A B$ is -0.8%, and of $B C+1.2 \%$; also that the elevation of B above the datum plane is 162.6 . Then the elevation of the various points is as follows: $A, 163.4 ; C, 163.8 ; e$,
$\frac{1}{2}(163.4+163.8)=163.6 ; h, \frac{1}{2}(163.6+162.6)=163.1$. Then $e h=0.5$. The elevations of the points on the curve are:

A theoretical inaccuracy in the above method lies in the fact that eh and all parallel lines are not truly vertical. In the above case the variation from the vertical is $0^{\circ} 07^{\prime}$, while the effect of this variation on the elevations in this case (as in the most extreme cases) is absolutely inappreciable. The grades in the figure are necessarily very greatly exaggerated, which increases the apparent inaccuracy.

CHAPTER III.

EARTHWORK.

FORM OF EXCAVATIONS AND EMBANKMENTS.
58. Usual form of cross-section in cut or fill. The normal form of cross-section in cut is as shown in Fig. 37, in which $e . . g$ represents the natural surface of the ground, no matter how irregular; $a b$ represents the position and width of the re-

Fig. 37.
quired roadbed; $a c$ and $b d$ represent the "side slopes" which begin at a and b and which intersect the natural surface at such

Fig. 38.
points (c and d) as will be determined by the required slope angle (β).

The normal section in fill is as shown in Fig. 38. The points c and d are likewise determined by the intersection of the required side slopes with the natural surface. In case the required roadbed ($a 6$ in Fig. 39) intersects the natural surface, both cut

Fig. 39.
and fill are required, and the points c and d are determined as before. Note that β and β^{\prime} are not necessarily equal. Their proper values will be discussed later.
59. Terminal pyramids and wedges. Fig. 40 illustrates the general form of cross-sections when there is a transition from cut to fill. $a \ldots g$ represents the grade line of the road which passes from cut to fill at d. sdt represents the surface profile. A cross-section taken at the point where either side of the roadbed first cuts the surface (the point m in this case) will usually be triangular if the ground is regular. A similar cross-section should be taken at o, where the other side of the roadbed cuts the surface. In general the earthwork of cut and fill terminates in two pyramids. In Fig. 40 the pyramid vertices are at n and k, and the bases are $l h m$ and $o p q$. The roadbed is generally wider in cut than in fill, and therefore the section lhm and the altitude $l n$ are generally greater than the section opq and the altitude $p k$. When the line of intersection of the roadbed and natural surface ($n o d k m$) becomes perpendicular to the axis of the roadbed (ag) the pyramids become wedges whose bases are the nearest convenient cross-sections.
60. Slopes. a. Cuttings. The required slopes for cuttings vary from perpendicular cuts, which may be used in hard rock which will not disintegrate by exposure, to a slope of perhaps

4 horizontal to 1 vertical in a soft material like quicksand or in a clayey soil which flows easily when saturated. For earthy materials a slope of $1: 1$ is the maximum allowable, and even this should only be used for firm material not easily affected by

Fig. 40.
saturation. A slope of $1 \frac{1}{2}$ horizontal to 1 vertical is a safer slope for average earthwork. It is a frequent blunder that slopes in cuts are made too steep, and it results in excessive work in clearing out from the ditches the material that slides down, at a much higher cost per yard than it would lave cost to take it out at first, to say nothing of the danger of accidents from possible landslides.
b. Embankments. The slopes of an embankment vary from $1: 1$ to $1.5: 1$. A rock fill will stand at $1: 1$, and if some care is taken to form the larger pieces on the outside into a rough dry wall, a much steeper slope can be allowed. This method is sometimes a necessity in steep side-hill work. Earthwork embankments generally require a slope of $1 \frac{1}{2}$ to 1 . If made steeper at first, it generally results in the edges giving way, requiring repairs until the ultimate slope is nearly or quite $1 \frac{1}{2}: 1$. The difficulty of incorporating the added material with the old embankment and preventing its sliding off frequently makes these repairs disproportionately costly.
61. Compound sections. When the cut consists partly of earth and partly of rock, a compound cross-section must be

Fig. 41.
made. If borings have been made so that the contour of the rock surface is accurately known, then the true cross-section may be determined. The rock and earth should be calculated separately, and this will require an accurate knowledge of where the rock "runs out"-a difficult matter when it must be determined by boring. During construction the center part of the earth cut would be taken out first and the cut widened until a sufficient width of rock surface had been exposed so that the rock cut would have its proper width and side slopes. Then the earth slopes could be cut down at the proper angle. A "berm" of about three feet is usually left on the edges of the rock cut as a margin of safety against a possible sliding of the earth slopes. After the work is donc, the amount of excavation that has been made is readily computable, but accurate preliminary estimates are difficult. The area of the cross-section of earth in the figure must be determined by a method similar to that developed for borrow-pits (see $\S 89$).
62. Width of roadbed. Owing to the large and often disproportionate addition to volume of cut or fill cansed by the addition of even one foot to the width of roadbed, there is a natural tendency to reduce the width until embankments become unsafe and cuts are too narrow for proper drainage. The cost of maintenance of roadbed is so largely dependent on the drainage of the roadbed that there is true economy in making an
ample allowance for it. The practice of some of the leading railroads of the country in this respect is given in the following table, in which are also given some data belonging more properly to the subject of superstructure.

WIDTH OF ROADBED FOR SINGLE AND DOUBLE TRACK-SLOPE RATIOSDISTANCES BETWEEN TRACK CENTERS.

Road.	Single Track.		Double Track.		Slope Ratios.		
	Cut.	Fill.	Cut.	Fill.	Cut.	Fill.	
A., T. \& Santa Fé. ...	$\left\{\begin{array}{l}98 \\ 28 \\ 22^{\prime} \text { earth } \\ \text { rock }\end{array}\right.$	${ }^{20}$	$\because 8 \times$	\cdots	$1: 1$ $1 / 4: 1$	$1.5: 1$	
Chi., Burl. \& Quincy	$14+(2 \times .5) *$	16	$28+(2 \times 5)$	30	1.5: 1		14^{\prime}
Chi., Mil. \& St. Paul.	$18+(2 \times 6)$	20 to 24	$31+(2 \times 6)$	33 to 37	1.5 : 1	$1.5: 1$	13^{\prime}
C., C., C. \& St. Louis Illinois Central	$20+(2 \times 4)$	20 18	$33+(2 \times 4)$	33	$1.5: 1$ $1.5: 1$	$1.5: 1$ $1.5: 1$	13^{\prime}
Erie	$20^{\prime} 81 /{ }^{\prime \prime}$	$20^{\prime} 81 / 2^{\prime \prime}$		33' $91 / 2^{\prime \prime}$	1.5 : 1	1.5 : 1	13^{\prime}
Lehigh Valley	$14+(2 \times 3.5)$	16^{2}	$27+(2 \times 3.5)$	30^{2}	1:1	1.5 : 1	13^{\prime}
L. S. \& Michigan So.		. 16.	$33+(2 \times 7.25)$	32	1.5:1	1.5: 1	13^{\prime}
Louisville \& Nashv. .	$13+(2 \times 4.5)$	16	$\cdots \cdots \cdots$. \cdot....	1:1	$1.5: 1$	
Michigan Central...	- \times -		$33+(2 \times 2.5)$	33	1.5 : 1	$1.5 ; 1$	13^{\prime}
N. Y. N. H. \& H....	そ21' ${ }^{\prime \prime}$ earth		30	${ }_{30^{\prime}}^{30}{ }^{\prime \prime}$	1.5:1	$1.5: 1$	12'
Norfolk \& Western...	$\left\{\begin{array}{lll}21^{\prime} & 2^{\prime \prime} & \text { earth } \\ 16^{\prime} & \text { rock }\end{array}\right.$	$17^{\prime} 9^{\prime \prime}$	$34^{\prime} 2^{\prime \prime}$ earth 29^{\prime} rock	$30^{\prime} 2^{\prime \prime}$ \ldots	15 $1 / 4: 1$ $1 / 2: 1$	$1.5: 1$ $\} \ldots$.	13^{\prime} 13^{\prime}
Pennsylvania...... \{	19' $9^{\prime \prime}$ light traffic	$19^{\prime} 9^{\prime} \stackrel{2}{\prime \prime}^{\prime \prime}$	$31^{\prime} 4^{\prime \prime}+(2 \times 4)$	$31^{\prime} 4^{\prime \prime}$	1.5:1	$1.5: 1$	$12^{\prime \prime} 2^{\prime \prime}$
Union Pacific...	$14+(\approx \times 3.5)$	16			1:1	$1.5: 1$	

[^4]It may be noted from the above table that the average width for an earthwork cut, single track, is about 24.7 feet, with a minimum of 19 feet 2 inches. The widths of fills, single track, average over 18 feet, with numerous minimums of 16 feet. The widths for double track may be found by adding the distancebetween track centers, which is usually 13 feet.
63. Form of subgrade. The stability of the roadbed depends largely on preventing the ballast and subsoil from becoming saturated with water. The ballast must be porous so that it will not retain water, and the subsoil must be so constructed that it will readily drain off the rain-water that soaks through the ballast. This is accomplished by giving the subsoil a curved form, convex
upward, or a surface made up of two or three planes, the two outer planes having a slope of about $1: 24$ (sometimes more and sometimes less, depending on the soil) and the middle plane, if three are used, being level. When a circular form is used, a crowning of 6 inches in a total width of 17 or 18 feet is generally used. Occasionally the subgrade is made level, especially in rock-cuts, but if the subsoil is previonsly compressed by rolling, as required on the N. Y. C. \& H. R. R. R., or if the subsoil is drained by tile drains laid underneath the ditches, the necessity for slopes is not so great. Rock cuts are generally required to be excavated to one foot below subgrade and then filled up again to subgrade with the same material, if it is suitable.
64. Ditches. " The stability of the track depends upon the strength and permanence of the roadbed and structures upon which it rests; whatever will protect them from damage or prerent premature decay should be carefully observed. The worst enemy is water, and the further it can be kept away from the track, or the sooner it can be diverted from it, the better the track will be protected. Cold is damaging only by reason of the water which it freezes; therefore the first and most important provision for good track is drainage." (Rules of the Road Department, Illinois Central R. R.)

The form of ditch generally prescribed has a flat bottom $12^{\prime \prime}$ to $24^{\prime \prime}$ wide and with sides having a minimum slope, except in rock-work, of $1: 1$, more generally $1.5: 1$ and sometimes $2: 1$. Sometimes the ditches are made V-shaped, which is objectionable unless the slopes are low. The best form is evidently that which will cause the greatest flow for a given slope, and this will evidently be the form in which the ratio of area to wetted perimeter is the largest. The semicircle fulfills this condition better than any other form, but the nearly vertical sides would be difficult to maintain. (See Fig. 42.) A ditch,

Fig. 42. with a flat bottom and such slopes as the soil requires, which approximates to the circular form will therefore be the best.

When the flow will probably be large and at times rapid it will be advisable to pave the ditches with stone, especially if the soil is easily washed away. Six-inch tile drains, placed 2^{\prime} under the ditches, are prescribed on some roads. (See Fig. 43.) No better method could be devised to insure a dry subsoil. The ditches through cuts should be led off at the end of the cut so that the adjacent embankment will not be injured.

Wherever there is danger that the drainage from the land above a cut will drain down into the cut, a ditch should be made near the edge of the cut to intercept this drainage, and this ditch should be continued, and pared if necessary, to a point where the outflow will be harmless. Neglect of these simple and inexpensive precautions frequently causes the soil to be loosened on the shoulders of the slopes during the progress of a heary rain, and results in a landslide which will cost more to repair than the ditches which would have prevented it for all time.

Ditches should be formed along the bases of embankments; they facilitate the drainage of water from the embankment, and may prevent a costly slip and disintegration of the embankment.
65. Effect of sodding the slopes, etc. Engineers are unanimously in favor of rounding off the shoulders and toes of embankments and slopes, sodding the slopes, paving the ditches, and providing tile drains for subsurface drainage, all to be put in during original construction. (See Fig. 43.) Some of the highest grade specifications call for the removal of the top layer of vegetable soil from cuts and from under proposed fills to some convenient place, from which it may be afterwards spread on the slopes, thus facilitating the formation of sod from grassseed. But while engineers favor these measures and their economic value may be readily demonstrated, it is generally impossible to obtain the authorization of such specifications from railroad directors and promoters. The addition to the original cost of the roadbed is considerable, but is by no means as great as the capitalized value of the extra cost of maintenance resulting from the usual practice. Fig. 43 is a copy of

Fig. 43.-"Whittemore on Railifay Excavation and Embaniments," Trans. Am. Soc. C. E., Sept. 1894
designs* presented at a convention of the American Society of Civil Engineers by Mr. D. J. Whittemore, Past President of the Society and Chief Engineer of the Chi., Mil. \& St. Paul R.R. The "customary sections" represent what is, with some variations of detail, the practice of many railroads. The " proposed sections" elicited unanimous approval. They should be adopted when not prohibited by financial considerations.
66. Relation of actual volume to the numerical result. It should be realized at the outset that the accuracy of the result of computations of the volume of any given mass of earthwork has but little relation to the accuracy of the mere numerical work. The process of obtaining the volume consists of two distinct parts. In the first place it is assumed that the volume of the earthwork may be represented by a more or less complicated geometrical form, and then, secondly, the volume of such a geometrical form is computed. A desire for simplicity (or a frank willingness to accept approximate results) will often cause the cross-section men to assume that the volume may be represented by a very simple geometrical form which is really only a very rough approximation to the true volume. In such a case, it is only a waste of time to compute the volume with minute numerical accuracy. One of the first lessons to be learned is that economy of time and effort requires that the accuracy of the numerical work should be kept proportional to the accuracy of the cross-sectioning work, and also that the accuracy of both should be proportional to the use to be made of the results. The subject is discussed further in $\S 94$.
67. Prismoids. To compute the volume of earthwork, it is necessary to assume that it has some geometric form whose volume is readily determinable. The general method is to consider

[^5]the volume as consisting of a series of prismoids, which are solids having parallel plane ends and bounded by surfaces which may be formed by lines moving continuously along the edges of the bases. These surfaces may also be considered as the surfaces generated by lines moving along the edges joining the corresponding points of the bases, these edges being the directrices, and the lines being always parallel to either base, which is a plane director. The surfaces thus developed may or may not be planes. The volume of such a prismoid is readily determinable (as explained in $\$ 70$ et seq.), white its definition is so very general that it may be applied to very rough ground. The "two plane ends" are sections perpendicular to the axis of the road. The roadbed and side slopes (also plane) form three of the side surfaces. The only approximation lies in the degree of aceuracy with which the plane (or warped) surfaces coincide with the actual surface of the ground between these two sections. This accuracy will depend (a) on the number of points which are taken in each cross-section and the accuracy with which the lines joining these points coincide with the actual cross-sections; (b) on the skill shown in selecting places for the cross-sections so that the warped surfaces shall coincide as nearly as possible with the surface of the ground. In fairly smooth comntry, erosssections every 100 feet, placed at the even stations, are sufficiently accurate, and such a method simplifies the computations greatly; but in rough country cross-sections must be interpolated as the surface demands. As will be explained later, carelessness or lack of judgment in cross-sectioning will introduce errors of such magnitude that all refinements in the computations are utterly wasted.
68. Cross-sectioning. The process of cross-sectioning consists in determining at any place the intersection by a vertical plane of the prism of earth lying between the roadbed, the side slopes, and the natural surface. The intersection with the roadbed and side slopes gives three straight lines. The intersection with the natural surface is in general an irregular line. On smooth regular ground or when approximate results are accept-
able this line is assumed to be straight. According to the irregularity of the ground and the accuracy desired more and more " intermediate points" are taken.

The distance (d in Fig. 44) of the roadbed below (or above) the natural surface at the center is known or determined from

Fig. 44.
the profile or by the computed establishment of the grade line. The distances out from the center of all "breaks" are determined with a tape. To determine the elevations for a cut, set up a level at any convenient point so that the line of sight is higher than any point of the cross-section, and take a rod reading on the center point. This rod reading added to d gives the height of the instrument (H. I.) above the roadbed. Subtracting from H. I. the rod reading at any "break" gives the height of that point above the roadbed (h_{l}, k_{l}, h_{r}, etc.). This is true for all cases in excavation. For fill, the rod reading at center minus d equals the II. I., which may be positive or negative. When negative, add to the " H. I." the rod readings of the intermediate points to get their depths below "grade"; when positive, subtract the "H. I." from the rod readings.

The heights or depths of these intermediate points above or below grade need only be taken to the nearest tenth of a font, and the distances out from the center will frequently be suffi-
ciently exact when taken to the nearest foot. The roughness of the surface of farming land or woodland generally renders useless any attempt to compute the volume with any greater accu racy than these figures would imply unless the form of the ridges and hollows is especially well defined. The position of the slopestake points is considered in the next section. Additional diseussion regarding eross-sectioning is found in $\$ 82$.
69. Position of slope-stakes. The slope-stakes are set at the intersection of the required side slopes with the natural surface, which depends on the center eut or fill (d). The distance of

Fig. 45.
the slope-stake from the center for the lower side is $x=\frac{1}{2} b$ $+s(d+y)$; for the up-hill side it is $x^{\prime}=\frac{1}{2} b+s\left(d-y^{\prime}\right)$. s is the "slope ratio" for the side slopes, the ratio of horizontal to vertical. In the above equation both x and y are unknown. Therefore some position must be found by trial which will satisfy the equation. As a preliminary, the value of x for the point $a=\frac{1}{2} b+s d$, which is the value of x for level crosssections. In the case of fills on sloping ground the value of x on the down-hill side is greater than this; on the up-lifl side it is less. The difference in distance is s times the difference of elevation. Take a numerical case corresponding with Fig. 45. The rod reading on c is $2.9 ; d=4.2$; therefore the telescope is $4.2-2.9=1.3$ below grade. $s=1.5: 1, b=16$. Hence for the point a (or for level ground) $x=\frac{1}{2} \times 16+1.5 \times 4.2=$ 14.3. At a distance out of 14.3 the ground is seen to be about? feet lower, which will not only require $1.5 \times ?=4.5$ more, but
enough additional distance so that the added distance shall be 1.5 times the additional drop. As a first trial the rod may be held at 24 feet out and a reading of, say, 8.3 is obtained. 8.3 $+1.3=9.6$, the depth of the point below grade. The point on the slope line (n) which has this depth below grade is at a distance from the center $x=8+1.5 \times 9.6=22.4$. The point on the surface (s) having that depth is 24 feet out. Therefore the true point (m) is nearer the center. A second trial at 20.5 feet out gives a rod reading of, say, 7.1 or a depth of 8.4 below grade. This corresponds to a distance out of 20.6. Since the natural soil (especially in farming lands or woods) is generally so rough that a difference of elevation of a tenth or so may be readily found by slightly varying the location of the rod (even though the distance from the center is the same), it is useless to attempt too much refinement, and so in a case like the above the combination of 8.4 below grade and 20.6 out from center may be taken to indicate the proper posicion of the slope-stake. This is usually indicated in the form of a fraction, the distance out being the denominator and the height above (or below) grade being the numerator; the fact of cut or fill may be indicated by C or F. Ordinarily a second trial will be sufficient to determine with sufficient accuracy the true position of the 'slope-stake. Experienced men will frequently estimate the required distance out to within a few tenths at the first trial. The left-hand pages of the note-book should have the station number, surface elevation, grade elevation, center cut or fill, and rate of grade. The right-hand pages should be divided in the center and show the distances out and heights above grade of all points, as is illustrated in § 84. The notes should read UP the page, so that when looking ahead along the line the figures are in their proper relative position. The "fractions" farthest from the center line represent the slope-stake points.

COMPUTATION OF VOLUME.

70. Prismoidal formula. Let Fig. 46 represent a triangular prismoid. The two triangles forming the ends lie in parallel
planes, but since the angles of one triangle are not equal to the corresponding angles of the other triangle, at least two of the surfaces must be warped. If a section, parallel to the bases, is

Fig. 46.
made at any point at a distance x from one end, the area of the section will evidently be

$$
A_{x}=\frac{1}{2} b_{x} h_{x}=\frac{1}{2}\left[b_{1}+\left(b_{2}-b_{1}\right)^{\frac{x}{l}}\right]\left[h_{1}+\left(h_{2}-h_{1}\right) \frac{x}{l}\right]
$$

The volume of a section of infinitesimal length will be $A_{x} d x$, and the total volume of the prismoid will be *

$$
\begin{aligned}
\int_{0}^{l} A_{x} d x= & \frac{1}{2} \int_{0}^{l}\left[b_{1}+\left(b_{2}-b_{1}\right)^{x^{2}}-\frac{1}{l}\right]\left[h_{1}+\left(h_{2}-h_{1}\right) \frac{x}{l}\right] d x \\
= & \frac{1}{2}\left[b_{1} h_{1} x+\left(b_{2}-b_{1}\right) \frac{h_{1}}{\frac{x^{2}}{2 l}}+b_{1}\left(h_{2}-h_{1} \frac{x^{2}}{2 l}\right.\right. \\
& \left.+\left(b_{2}-b_{1}\right)\left(h_{2}-h_{1}\right) \frac{x^{3}}{3 l^{2}}\right]_{0}^{l} \\
= & \frac{1}{2}\left\{b_{1} h_{1} l+\left[\left(\partial_{2}-b_{1}\right) h_{1}+b_{1}\left(h_{2}-h_{1}\right)\right]_{2}^{l}+\left(b_{2}-b_{2}\right)\left(h_{2}-h_{1}\right) \frac{l}{3}\right\}
\end{aligned}
$$

[^6]\[

$$
\begin{align*}
\int_{0}^{l} A_{x} d x & =\frac{l}{2}\left[\frac{1}{3} b_{1} h_{1}+\frac{1}{6} b_{1} h_{2}+\frac{1}{6} b_{2} h_{1}+\frac{1}{3} b_{2} h_{2}\right] \\
& =\frac{l}{6}\left[\frac{1}{2} b_{1} h_{1}+\frac{1}{2} b_{1}\left(h_{1}+h_{2}\right)+\frac{1}{2} b_{2}\left(h_{1}+h_{2}\right)+\frac{1}{2} b_{2} h_{2}\right] \\
& =\frac{l}{6}\left[\frac{1}{2} b_{1} h_{1}+4\left(\frac{1}{2} \cdot \frac{l_{1}+b_{2}}{2} \cdot \frac{h_{1}+h_{2}}{2}\right)+\frac{1}{2} b_{2} h_{2}\right] \\
& =\frac{l}{6}\left[A_{1}+4 A_{m}+A_{2}\right], . . \cdot . \cdot . \cdot . . \tag{45}
\end{align*}
$$
\]

in which A_{1}, A_{2}, and A_{m} are the areas respectively of the two bases and of the middle section. Note that A_{m} is not the mean of A_{1} and A_{2}, although it does not necessarily differ very greatly from it.

The above proof is absolutely independent of the values, absolute or relative, of b_{1}, b_{2}, h_{1} or h_{2}. For example, h_{2} may be zero and the second base reduces to a line and the prismoid becomes wedge-shaped; or b_{3} and h_{2} may both vanish, the second base becoming a point and the prismoid reduces to a pyramid Since every prismoid (as defined in $\S 67$) may be reduced to a combination of triangular prismoids, wedges, and pyramids, and since the formula is true for any one of them individually, it is true for all collectively; therefore it may be stated that*

The volume of a prismoid equals one sixth of the perpendicular distance between the bases multiplied by the sum of the areas of the two bases plus four times the area of the middle section.

While it is always possible to compute the volume of any prismoid by the above method, it becomes an extremely complicated and tedious operation to compute the true value of the middle section if the end sections are complicated in form. It

[^7]therefore becomes a simpler operation to compute volumes by approximate formule and apply, if necessary, a correction. The most common methods are as follows:
71. Averaging end areas. The volume of the triangular prismoid (Fig. 46), computed by averaging end areas, is $\frac{l}{2}\left[\frac{1}{2} b_{1} h_{1}-+\frac{1}{2} b_{2} h_{2}\right]$. Subtracting this from the true volume (as given in the equation above, Eq. (45)), we obtain the correction
\[

$$
\begin{equation*}
\frac{l}{12}\left[\left(b_{1}-b_{2}\right)\left(h_{2}-h_{1}\right)\right] . \tag{46}
\end{equation*}
$$

\]

This shows that if either the h 's or b 's are equal, the correction vanishes; it also shows that if the bases are roughly similar and b varies roughly with h (which usually occurs, as will be seen later), the correction will be negative, which means that the method of averaging end areas usually gives too large results.
72. Middle areas. Sometimes the middle area is computed and the volume is assumed to be equal to the length times the middle area. This will equal $\frac{l}{2} \times \frac{b_{1}+b_{2}}{2} \times \frac{h_{1}+h_{2}}{2}$. Subtracting this from the true volume, we obtain the correction

$$
\begin{equation*}
\frac{l}{24}\left(b_{1}-b_{2}\right)\left(h_{1}-h_{2}\right) \tag{47}
\end{equation*}
$$

As before, the form of the eorrection shows that if either the h 's or b 's are equal, the correction vanishes; also under the usuab conditions, as before, the correction is positive and only one-half as large as by averaging end areas. Ordinarily the labor involved in the above method is no less than that of applying the exact prismoidal formula.
73. Two-level ground. When approximate computations of earthwork are sufficiently exact the field-work may he materially redueed by observing simply the center cut (or fill) and the
natural slope α, measured with a clinometer. The area of such a section (see Fig. 48) equals

Fig. 47.

Fig. 48.

$$
\frac{1}{2}(a+d)\left(x_{l}+x_{r}\right)-\frac{a b}{2}
$$

But

$$
x_{l} \tan \beta=\alpha+d+x_{l} \tan \alpha,
$$

from which

$$
x_{l}=\frac{a+d}{\tan \beta-\tan \alpha} .
$$

Similarly,

$$
x_{r}=\frac{a+d}{\tan \beta+\tan \alpha} .
$$

Substituting,

$$
\begin{equation*}
\text { Area }=(\alpha+d)^{2} \frac{\tan \beta}{\tan ^{2} \beta-\tan ^{2} \alpha}-\frac{\alpha b}{2} \tag{48}
\end{equation*}
$$

The values $\alpha, \tan \beta, \tan ^{2} \beta$ are constant for all sections, so that it requires but little work to find the area of any section. As this method of cross-sectioning implies considerable approximation, it is generally a useless refinement to attempt to compute the volume with any greater accuracy than that obtained by averaging end areas. It may be noted that it may be easily proved that the correction to be applied is of the same form as that found in $\S 71$ and equals

$$
\frac{l}{12}\left[\left(x_{l}^{\prime}+x_{r}^{\prime}\right)-\left(x_{l}^{\prime \prime}+x_{r}^{\prime \prime}\right)\right]\left[\left(d^{\prime \prime}+a\right)-\left(d^{\prime}+a\right)\right]
$$

which reduces to
Correction $=\frac{l}{6}\left\{\left[\left(a+d^{\prime}\right) \frac{\tan \beta}{\tan ^{z} \beta-\tan ^{2} \alpha^{\alpha^{\prime}}},-\left(a+d^{\prime \prime}\right) \frac{\tan \beta}{\tan ^{2} \beta-\tan ^{2} \alpha^{\prime \prime}}\right]\left[d^{\prime \prime}-d^{\prime}\right]\right\}$. (49)
When $d^{\prime \prime}=d^{\prime}$ the correction vanishes. This shows that when the center heights are equal there is no correctionregardless of the slope. If the slope is uniform throughont, the form of the correction is simplified and is invariably neyative. Under the usual conditions the correction is negative, i.e., the method generally gives too large results.
74. Level sections. When the comntry is very level or when only approximate preliminary results are required, it is sometimes assumed that the cross-sections are level. The method of level sections is capable of easy and rapid computation. The area may be written as

$$
\begin{equation*}
(a+d)^{2} s-\frac{a b}{2} \tag{50}
\end{equation*}
$$

Fig. 49.
This also follows from $\mathrm{E} q$. (48) when $\alpha=0$ and $\tan \beta=\frac{\mathbf{1}}{s}$. s here represents the "slope ratio," i.e., the ratio of the horizontal projection of the slope to the vertical. A table is very readily formed giving the area in square feet of a section of given depth and for any given width of roadbed and ratio of side-slopes. The area may also be readily determined (as illustrated in the following example) without the use of such a table; a table of squares will facilitate the work. Assuming
the cross-sections at equal distances $(=l)$ apart, the total approximate volume for any distance will be

$$
\begin{equation*}
\frac{l}{2}\left[A_{0}+2\left(A_{1}+A_{2}+\ldots A_{n-1}\right)+A_{n}\right] . \tag{51}
\end{equation*}
$$

The prismoidal correction may be directly derived from Eq. (46) as $\frac{l}{12}\left[2\left(a+d^{\prime}\right) s-2\left(a+d^{\prime \prime}\right) s\right]\left[\left(\alpha+d^{\prime \prime}\right)-\left(\alpha+d^{\prime}\right)\right]$, which reduces to

$$
\begin{equation*}
-\frac{l s}{6}\left(d^{\prime}-d^{\prime \prime}\right)^{2} \quad \text { or } \quad-\frac{l}{12} \frac{b}{a}\left(d^{\prime}-d^{\prime \prime}\right)^{2} \tag{52}
\end{equation*}
$$

This may also be derived from Eq. (49), since $\alpha=0$, $\tan \alpha=0$, and $\tan \beta=2 a \div b$. This correction is always negative, showing that the method of averaging end areas, when the sections are level, always gives too large results. The prismoidal correction for any one prismoid is therefore a constant times the square of a difference. The squares are always positive whether the differences are positive or negative. The correction therefore becomes

$$
\begin{equation*}
-\frac{l}{12} \frac{b}{a} \Sigma\left(d^{\prime} \sim d^{\prime \prime}\right)^{2} \tag{53}
\end{equation*}
$$

75. Numerical example : level sections. Given the following center heights for the same number of consecutive stations 100 feet apart; width of roadbed 18 feet; slope $1 \frac{1}{2}$ to 1 .

The products in the fifth column may be obtained very readily and with sufficient accuracy by the use of the slide-rule described in $\S 79$. The products should be considered as $(a+d)(a+d) \div \frac{1}{s}$. In this problem $s=1 \frac{1}{2}, \frac{1}{s}=.6667$. To apply the rule to the first case above, place 6667 on scale B over 89 on scale A, then opposite 89 on scale B will be found
118.8 on scale A. The position of the decimal point will be evident from an approximate mental solution of the problem.

Sta.	Center Height.	$a+d$	$(a+d)^{2}$	$(1+d)^{2} s$	Areas.	$d^{\prime} \sim d^{\prime \prime}$	$\left(d^{\prime} \sim d^{\prime \prime}\right)^{2}$
17	2.9	8.9	79.21	118.81	118.81		
18	4.7	10.7	114.49	171.74	[343.48	2.1	3.24 4.41
19	6.8	12.8	163.84	245.76 469 13	$\times 2=\begin{aligned} & 491.52 \\ & 939 \\ & 818\end{aligned}$	4.9	24.01
20	11.7	17.7	313.29	469.93	$\times 2=\begin{aligned} & 939.86 \\ & 312.12\end{aligned}$	7.5	56.25
$\stackrel{21}{22}$	1.6	10.7 7.6	104.04 57.76	(06.06	${ }_{86.64}$	2.6	$6 . \pi 6$

$$
\begin{aligned}
& \text { 2292.43 } \\
& 94.67 \\
& \frac{a b}{2}=\frac{6 \times 18}{2}=54 \\
& 10 \times 54=\frac{540}{1752.43} \\
& \frac{1752.43 \times 100}{2 \times 27}=3245 \text { cub. yards }=\text { approx. vol. } \\
& \text { Corr. }=-\frac{100 \times 18}{1 \approx \times 6 \times 27} \times 94.67=-91 \text { cub. } y \mathrm{ds} . \\
& 3245-91=3154 \text { cub. } \mathrm{yds} . \quad=\text { exact volume. }
\end{aligned}
$$

The above demonstration of the correction to be applied to the approximate volume, found by averaging end areas, is introduced mainly to give an idea of the amount of that correction. Absolutely level sections are practically unknown, and the error involved in assuming any given sections as truly level will ordinarily be greater than the computed correction. If greater accuracy is required, more points should be obtained in the cross-sectioning, which will generally show that the sections are not truly level.
76. Equivalent sections. When sections are very irregular the following method may be used, especially if great accuracy is not required. The sections are plotted to scale and then a uniform slope line is obtained by stretching a thread so that the undulations are averaged and an equivalent section is obtained. The center depth (d) and the slope angle (α) of this line can be obtained from the drawing, but it is more convenient to measure the distances (x_{t} and x_{r}) from the center. The area
may then be obtained independent of the center depth as follows: Let $s=$ the slope ratio of the side slopes $=\cot \beta=\frac{b}{2 a}$. (See Fig. 48.) Then the

$$
\begin{align*}
\text { Area } & =\frac{1}{2}\left(\frac{x_{l}+x_{r}}{s}\right)\left(x_{l}+x_{r}\right)-\frac{x_{r}}{s} \frac{x_{r}}{2}-\frac{x_{l} x_{l}}{s}-\frac{a b}{2} \\
& =\frac{x_{l} x_{r}}{s}-\frac{a b}{2} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot . \tag{54}
\end{align*}
$$

The true volume, according to the prismoidal formula, of a length of the road measured in this way will be
$\frac{l}{6}\left[\frac{x_{l}^{\prime} x_{r}^{\prime}}{s}-\frac{a b}{2}+4\left(\frac{x_{l}^{\prime}+x_{l}{ }^{\prime \prime}}{2} \frac{x_{r}{ }^{\prime}+x_{r}^{\prime \prime}}{2} \frac{1}{s}-\frac{a b}{2}\right)+\frac{x_{l}{ }^{\prime \prime} x_{r}{ }^{\prime \prime}}{s}-\frac{a b}{2}\right]$.
If computed by averaging end areas, the approximate volume will be

$$
\frac{l}{2}\left[\frac{x_{l}^{\prime} x_{r}^{\prime}}{s}-\frac{a b}{2}+\frac{x_{1}{ }^{\prime \prime} x_{r}^{\prime \prime}}{s}-\frac{a b}{2}\right] .
$$

Subtracting this result from the true volume, we obtain as the correction

$$
\begin{equation*}
\text { Correction }=\frac{l}{6 s}\left(x_{l}^{\prime \prime}-x_{l}^{\prime}\right)\left(x_{r}^{\prime}-x_{r}{ }^{\prime \prime}\right) \tag{55}
\end{equation*}
$$

This shows that if the side distances to either the right or left are equal at adjacent stations the correction is zero, and also that if the difference is small the correction is also small and very probably within the limit of accuracy obtainable by that method of cross-sectioning. In fact, as has already been shown in the latter part of $\S 75$, it will usually be a useless refinement to compute the prismoidal correction when the method of cross-sectioning is as rough and approximate as this method generally is.
77. Equivalent level sections. These sloping "two-level" sections are sometimes transformed into "level sections of equal area," and the volume computed by the method of level sections ($(74$). But the true volume of a prismoid with sloping ends does not agree with that of a prismoid with equivalent bases and level ends except under special conditions, and when this method is used a correction must be applied if accuracy is desired, although, as intimated before, the assumption that the sections have uniform slopes will frequently introduce greater inaccuracies than that of this method of computation. The following demonstration is therefore given to show the scope and limitations of the errors involved in this much used method.

In Fig. 50, let d_{1} be the center height which gives an

Fig. 50.
equivalent level section. The area will equal $\left(a+d_{1}\right)^{2} s-\frac{a b}{2}$, which must equal the area given in $\S 76, \frac{x_{r} x_{r}}{s}-\frac{a b}{2} . \quad s=\frac{b}{2 a}$.

$$
\begin{align*}
& \therefore\left(a+d_{1}\right)^{2} s=\frac{x_{r} x_{r}}{s}, \\
& \text { or } \quad a+d_{1}=\frac{\sqrt{x_{r} x_{r}}}{s} \tag{56}
\end{align*}
$$

To obtain d_{1} directly from notes, given in terms of d and α,
we may substitute the values of x_{l} and x_{r} given in $\S 73$, which gives

$$
\begin{equation*}
a+d_{1}=(a+d) \frac{\tan \beta}{\sqrt{\tan ^{2} \beta-\tan ^{2} \alpha}}=\frac{a+d}{\sqrt{1-s^{2} \tan ^{2} \alpha}} \tag{57}
\end{equation*}
$$

The true volume of the equivalent section may be represented by

$$
\frac{l s}{6}\left[\left(a+d_{1}^{\prime}\right)^{2}+4\left(\frac{a+d_{1}^{\prime}}{2}+\frac{a+d_{1}^{\prime \prime}}{2}\right)^{2}+\left(a+d_{1}^{\prime \prime}\right)^{2}\right] .
$$

From this there should be subtracted the volume of the "grade prism" under the roadbed to obtain the volume of the cut that would be actually excavated, but in the following comparison, as well as in other similar comparisons elsewhere made, the volume of the grade prism invariably cancels out, and so for the sake of simplicity it will be disregarded. This expression for volume may be transposed to

$$
\frac{l s}{6}\left[\frac{x_{l}^{\prime} x_{r}^{\prime}}{s^{2}}+4\left(\frac{\sqrt{x_{l}^{\prime} x_{r}^{\prime}}}{2 s}+\frac{\left.\left.\sqrt{\overline{x_{l}^{\prime \prime} x_{r}^{\prime \prime}}}\right)^{2}+\frac{x_{l}^{\prime \prime} x_{r}^{\prime \prime}}{2 s}\right] . . . s^{2}}{s^{2}}\right.\right.
$$

The true volume of the prismoid with sloping ends is (see §76)

$$
\left.\frac{l}{6}\left[\frac{x_{l}^{\prime} x^{\prime}}{s}+4\left(\frac{i x_{l}^{\prime}+x_{l}^{\prime \prime}}{2}\right)\left(\frac{x_{r}^{\prime}+x_{r}^{\prime \prime}}{2}\right) \frac{1}{s}\right)+\frac{x_{l}^{\prime \prime} x_{r}^{\prime \prime}}{s}\right]
$$

The difference of the two volumes
$=\frac{l}{6 s}\left(x_{l} x_{r}^{\prime}+x_{l}{ }^{\prime \prime} x_{r}{ }^{\prime}+x_{l}{ }^{\prime} x_{r}{ }^{\prime \prime}+x_{l}{ }^{\prime \prime} x_{r}{ }^{\prime \prime}-x_{l}{ }^{\prime} x_{r}^{\prime}-2 \sqrt{ } \overline{x_{l}^{\prime} x_{r}^{\prime} x_{l}^{\prime \prime} x_{r}^{\prime \prime}}-x_{l}^{\prime \prime} x_{r}{ }^{\prime \prime}\right)$
$=\frac{l}{6 s}\left(\sqrt{x_{l}^{\prime} x_{r}^{\prime \prime}}-\sqrt{\left.x_{l}^{\prime \prime} x_{r}^{\prime}\right)^{2}}\right.$.
This shows that "equivalent level sections" do not in general give the true volume, there being an exception when
$x_{l}{ }^{\prime} x_{r}{ }^{\prime \prime}=x_{l}{ }^{\prime \prime} x_{r}^{\prime}$. This condition is fulfilled when the slope is uniform, i.e., when $\alpha^{\prime}=\alpha^{\prime \prime}$. When this is nearly so the error is evidently not large. On the other hand, if the slopes are inclined in upposite directions the error may be very considerable, particularly if the angles of slope are also large.
78. Three-level sections. The next method of cross-sectioning in the order of complexity, and therefore in the order of

Fig. 51.
accuracy, is the method of three-lerel sections. The area of the section is $\frac{1}{2}(a+d)\left(w_{r}+w_{\imath}\right)-\frac{a b}{2}$, which may be written $\frac{1}{2}(a+\dot{d}) w-\frac{a b}{2}$, in which $w=w_{r}+w_{l}$. If the volume is computed by averaging end areas, it will equal

$$
\begin{equation*}
\frac{l}{4}\left[\left(a+d^{\prime}\right) w^{\prime}-a b+\left(a+d^{\prime \prime}\right) w^{\prime \prime}-a b\right] . \tag{59}
\end{equation*}
$$

If we divide by 27 to reduce to cubic yards, we have, when $l=100$,
$\mathrm{Vol}_{(}{ }^{\prime} ._{11}=\frac{25}{27}\left(a+d^{\prime}\right) w^{\prime}-\frac{25}{2} \frac{5}{7} a b+\frac{25}{27}\left(a+d^{\prime \prime}\right) w^{\prime \prime}-\frac{25}{2} \frac{5}{7} a b$.
For the next section
$\mathrm{Vol}_{\left(, / ._{(\prime \prime}\right.}=\frac{25}{27}\left(a+d^{\prime \prime}\right) w^{\prime \prime}-\frac{25}{2} \frac{5}{7} a b+\frac{25}{2} \frac{5}{7}\left(a+d^{\prime \prime \prime}\right) w^{\prime \prime \prime}-\frac{2}{2} \frac{5}{7} a b$.

For a partial station length compute as usual and multiply result by $\frac{\text { length in feet }}{100}$. The prismoidal correction may be obtained by applying Eq. (46) to each side in turn. For the left side we have

$$
\begin{aligned}
& \frac{l}{12}\left[\left(a+d^{\prime}\right)-\left(a+d^{\prime \prime}\right)\right]\left(w_{l}^{\prime \prime}-w_{l}^{\prime}\right), \quad \text { which equals } \\
& \frac{l}{12}\left(d^{\prime}-d^{\prime \prime}\right)\left(w_{l}^{\prime \prime}-w_{l}^{\prime}\right)
\end{aligned}
$$

For the right side we have, similarly,

$$
\frac{l}{12}\left(d^{\prime}-d^{\prime \prime}\right)\left(w_{r}^{\prime \prime}-w_{r}^{\prime}\right)
$$

The total correction therefore equals

$$
\begin{aligned}
& \frac{l}{12}\left(d^{\prime}-d^{\prime \prime}\right)\left[\left(w_{l}^{\prime \prime}+w_{r}^{\prime \prime}\right)-\left(w_{l}^{\prime}+w_{r}^{\prime}\right)\right] \\
= & \frac{l}{12}\left(d^{\prime}-d^{\prime \prime}\right)\left(w^{\prime \prime}-w^{\prime}\right) .
\end{aligned}
$$

Reduced to cubic yards, and with $l=100$,

$$
\begin{equation*}
\text { Pris. Corr. }=\frac{25}{81}\left(d^{\prime}-d^{\prime \prime}\right)\left(w^{\prime \prime}-w^{\prime}\right) \tag{60}
\end{equation*}
$$

When this result is compared with that given in Eq. (55) there is an apparent inconsistency. If two-level ground is considered as but a special case of three-level ground, it would seem as if the same laws should apply. If, in Eq. (55), $x_{r}{ }^{\prime}=x_{r}{ }^{\prime \prime}$, and $x_{l}{ }^{\prime \prime}$ is different from x_{l}^{\prime}, the equation reduces to zero; but in this case d^{\prime} would also be different from $d^{\prime \prime}$; and since $x_{l}^{\prime}+$ $x_{r}{ }^{\prime}$ would $=w^{\prime}$, and $x_{l}{ }^{\prime \prime}+x_{r}^{\prime \prime}=w^{\prime \prime}$ in Eq. (60), $w^{\prime \prime}-w^{\prime}$ would not equal zero and the correction would be some finite quantity and not zero. The explanation lies in the difference in the form and volume of the prismoids, according to the method of the
formation of the warped surfaces. If the surface is supposed to be generated by the locus of a line moving parallel to the ends as plane directors and along two straight lines lying in the side-
 $\frac{1}{2}\left(x_{r}{ }^{\prime}+x_{r}{ }^{\prime \prime}\right)$, but the profile of the center line will not be straight and $d^{\text {mid. will }}$ not equal $\frac{1}{2}\left(d^{\prime}+d^{\prime \prime}\right)$. On the other hand, if the surfaces be generated by two lines moving parallel to the ends as plane directors and along a straight center line and straight side lines lying in the slopes, a warped surface will be generated each side of the center line, which will have uniform slopes on each side of the center at the two ends and nowhere else. This shows that when the upper surface of earthwork is warped (as it generally is), two-level gromd should not be considered as a special case of three-level ground. This discussion, however, is only valuable to explain an apparent inconsistency and error. The method of two-level ground should only be used when such refinements as are here discussed are of no importance as affecting the accuracy.

The following example is given to illustrate the method of three-level sections.

In the first column of yards

$$
\begin{aligned}
& 210=\frac{25}{27}(a+d) w=\frac{25}{27} \times 7.3 \times 31.1 ; \\
& 507,734, \quad \text { etc., are found similarly; } \\
& 595=210-61+507-61 ; \\
& 448=\frac{400}{100}(507-61+734-61) ; \\
& 602=\frac{60}{100}(734-61+392-61) ; \\
& 449=392-61+179-61 .
\end{aligned}
$$

For the prismoidal correction,

$$
\begin{aligned}
-20 & =\frac{25}{81}\left(d^{\prime}-d^{\prime \prime}\right)\left(w^{\prime \prime}-w^{\prime}\right)=\frac{25}{81}(2.6-8.1)(42.8-31.1) \\
& =\frac{25}{81}(-5.5)(+11.7) .
\end{aligned}
$$

For the next line, $-3=\frac{40}{100}\left[\frac{25}{81}(-2.8)(+8.7)\right]$, and similarly for the rest. The " F " in the columns of center heights, as well as in the columns of "right" and "left," are inserted to indicate fill for all those pooints. Cut would be indicated by " C."
79. Computation of products. The quantities $\frac{25}{27}(a+d) w$ and $\frac{2 \check{5}}{27} a b$ represent in each case the product of two variable terms and a constant. These products are sometimes obtained from tables which are calculated for all ordinary ranges of the variable terms as arguments. A similar table computed for $\frac{25}{81}\left(d^{\prime}-d^{\prime \prime}\right)\left(w^{\prime \prime}-w^{\prime}\right)$ will assist similarly in computing the prismoidal correction. Prof. Charles L. Crandall, of Cornell University, is believed to be the first to prepare such a set of tables, which were first published in 1886 in "Tables for the Computation of Railway and Other Earthwork." Another
easy method of obtaining these products is by the use of a sliderule. A slide-rule has been designed by the author to accompany this volume. It is designed particularly for this special work, although it may be utilized for many other purposes for which slide-rules are valuable. To illustrate its use, suppose $(a+d)=28.2$, and $w=62.4$; then

$$
\frac{25}{27}(a+d) w=\frac{28.2 \times 62.4}{1.08}
$$

Set 108 (which, being a constant of frequent use, is specially marked) on the sliding scale (B) opposite 282 on the other scale (A), and then opposite 624 on scale B will be found 1629 on scale A, the 162 being read directly and the 9 read by estimation. Although strict rules may be followed for pointing off the final result, it only requires a very simple mental calculation to know that the result must be 1629 rather than 162.9 or 16290. For products less than 1000 cubic yards the result may be read directly from the scale; for products between 1000 and 5000 the result may be read directly to the nearest 10 yards, and the tenths of a division estimated. Between 5000 and 10,000 yards the result may be read directly to the nearest 20 yards, and the fraction estimated; but prisms of such volume will never be found as simple triangular prisms-at least, an assumption that any mass of gromed was as regular as this would probably involve more error than would occur from faulty estimation of fractional parts. Facilities for reading as high as 10,000 cubic yards would not have been put on the scale except for the necessity of finding such products as $\frac{2}{2} \frac{5}{7}(9.1 \times 9.5)$, for example. This product would be read off from the same part of the rule as $\frac{2}{2} \frac{7}{7}(91 \times 95)$. In the first case the product (80.0) conld be read directly to the nearest .2 of a cubic yard, which is unnecessarily accurate. In the other case, the product (8004) could only be obtained by estimating $\frac{4}{20}$ of a division.

The computation for the prismoidal correction may be made
similarly except that the divisor is 3.24 instead of 1.08 . For example, $\frac{25}{81}(5.5 \times 11.7)=\frac{5.5 \times 11.7}{3.24}$. Set the 324 on scale B (also specially marked like 108) opposite 55 on scale A, and proceed as before.
80. Five-level sections. Sometimes the elevations over each edge of the roadbed are observed when cross-sectioning. These are distinctively termed "five level sections." If the center, the slope-stakes, and one intermediate point on each side (not necessarily over the edge of the roadbed) are observed, it is termed an "irregular section." The field-work of cross-sectioning five-level sections is no less than for irregular sections with one intermediate point; the computations, although capable of peculiar treatment on account of the location of the intermediate point, are no easier, and in some respects more laborious; the cross-sections obtained will not in general represent the actual cross-sections as truly as when there is perfect freedom in locating the intermediate point; as it is generally inadvisable or unnecessary to employ five-level sections throughout the length of a road, the change from one method to another adds a possible element of inaccuracy and loses the advantage of uniformity of method, particularly in the notes and form of computations. On these accounts the method will not be further developed, except to note that this case, as well as any other, may be solved by dividing the whole prismoid into triangular prismoids, computing the volume by averaging end areas, and computing the prismoidal correction by adding the computed corrections for each elementary triangular prismoid.
81. Irregular sections. In cross-sectioning irregular sections, the distance from the center and the elevation above "grade" of every " break" in the cross-section must be observed. The area of the irregular section may be obtained by computing the area of the trapezoids (five, in Fig. 44) and subtracting the two external triangles. For Fig. 44 the area would be

$$
\frac{h_{l}+k_{l}}{2}\left(x_{l}-y_{l}\right)+\frac{k_{l}+d}{2} y_{l}+\frac{d+j_{r}}{2} z_{r}+\frac{j_{r}+k_{r}}{2}\left(y_{r}-z_{r}\right)
$$

$$
+\frac{k_{r}+h_{r}}{2}\left(x_{r}-y_{r}\right)-\frac{h_{2}}{2}\left(x_{l}-\frac{b}{2}\right)-\frac{h_{r}}{2}\left(x_{r}-\frac{b}{2}\right) .
$$

Ftg. 44.
Expanding this and collecting terms, of which many will cancel, we obtain

$$
\begin{align*}
\operatorname{AREA}=\frac{1}{2}\left[x_{l} k_{l}\right. & +y_{l}\left(d-h_{l}\right)+x_{r} k_{r}+y_{r}\left(j_{r}-h_{r}\right) \\
& \left.+z_{r}\left(d-k_{r}\right)+\frac{b}{2}\left(h_{l}+h_{r}\right)\right] . \tag{61}
\end{align*}
$$

An examination of this formula will show a perfect regularity in its formation which will enable one to write out a similar formula for any section, no matter how irregular or how many points there are, without any of the preliminary work. The formula may be expressed in words as follows:
$A_{\text {rea }}$ equals one-half the sum of products obtained as follows:
the distance to each slope-stake times the height above grade of the point next inside the slope-stake;
the distance to each intermediate point in turn times the height of the point just inside minus the height of the point just outside;
finally, one-half the width of the roadbed times the sum of the slope-stake leights.

If one of the sides is perfectly regular from center to slopestake, it is easy to show that the rule holds literally good. The "point next inside the slope-stake" in this case is the center; the intermediate terms for that side vanish. The last term must always be used. The rule holds good for three-level sections, in which case there are three terms, which may be reduced to two. Since these two terms are both variable quantities for each cross-section, the special method, given in $\S 78$, in which one term $\left(\frac{a b}{2}\right)$ is a constant for all sections, is preferable. In the general method, each intermediate "break" adds another term.
82. Volume of an irregular prismoid. If there is a break at one cross-section which is not represented at the next, the ridge (or hollow) implied by that break is supposed to "ranish" at the next section. In fact, the volume will not be correctly

Fig. 52.
represented unless a cross-section is taken at the point where the ridge or hollow "vanishes" or "runs out." To obtain the true prismoidal correction it is necessary to observe on the ground the place where a break in an adjacent section, which is not represented in the section being taken, runs out. For example, in Fig. 52, the break on the left of section $A^{\prime \prime}$, at a
distance of $y_{l}{ }^{\prime \prime}$ from the center, is observed to run out in section A^{\prime} at a distance of $y_{\prime^{\prime}}$ from the center. The volume of the prismoid, computed by the prismoidal formula as in $\S 70$, will involve the midsection, to obtain the dimension of which will require a laborious computation. A simpler process is to compute the volume by averaging end areas as in $\S 81$ and apply a prismoidal correction. To do this write out an expression for each end area similar to that given in Eq. 61. The sum of these areas times $\frac{l}{2}$ gives the approximate volume. As before, for partial station lengths, multiply the result by $\frac{\text { length in feet }}{100}$. There will be no constant subtractive term, $\frac{2}{2} \frac{5}{7} a b$, as in $\S 7 S$. The true prismoidal correction may be computed, as in $\S S 3$, or the following approximate method may be used: Consider the irregular section to be three-level ground for the purpose of computing the correction only. This has the advantage of less labor in computation than the use of the true prismoidal correction, and although the error involved may be considerable in individual sections, the error is as likely to be positive as negative, and in the long run the error will not be large and generally will be much less than would result by the neglect of any prismoidal correction.
83. True prismoidal correction for irregular prismoids. As intimated in $\S 82$, each cross-section should be assumed to have the same number of sides as the adjacent cross-section when computing the prismoidal correction. This being done, it permits the division of the whole prismoid into elementary triangular prismoids, the dimensions of the bases of which being given in each case by a vertical distance above grade line and by the horizontal distance between two adjacent breaks. The summation of the prismoidal corrections for each of the elementary triangular prismoids will give the true prismoidal correction. Assuming for an example the cross-section of Fig. 44, with a cross-section of the same number of sides, and with dimensions
similarly indicated, for the other end, the prismoidal correction. becomes (see Eq. 46)

$$
\begin{aligned}
& \frac{l}{12}\left[\left(h_{l}{ }^{\prime}-h_{l}{ }^{\prime \prime}\right)\left[\left(x_{l}^{\prime \prime}-y_{l^{\prime \prime}}\right)-\left(x_{l}{ }^{\prime}-y_{l}{ }^{\prime}\right)\right]+\left(k_{l}{ }^{\prime}-k_{l} l^{\prime \prime}\right)\left[\left(x l^{\prime \prime}-y_{l} l^{\prime \prime}\right)-\left(x l^{\prime}-y_{l} l^{\prime}\right)\right]\right. \\
& +\left(k i^{\prime}-k i^{\prime \prime}\right)\left(y_{l^{\prime \prime}}-y i^{\prime}\right)+\left(d^{\prime}-d^{\prime \prime}\right)\left(y_{l^{\prime \prime}}-y_{l^{\prime}}\right)+\left(d^{\prime}-d^{\prime \prime}\right)\left(z_{r^{\prime \prime}}-z r^{\prime}\right) \\
& +\left(j_{r^{\prime}}-j_{r}^{\prime \prime}\right)\left(z_{r}^{\prime \prime}-z_{r}^{\prime}\right)+\left(j_{r^{\prime}}^{\prime}-j_{r^{\prime \prime}}\right)\left[\left(y_{r^{\prime \prime}}-z_{r^{\prime \prime}}\right)-\left(y_{r^{\prime}}-z_{r}^{\prime}\right)\right] \\
& +\left(k_{r}^{\prime}-k_{r}^{\prime \prime}\right)\left[\left(y_{r}^{\prime \prime}-z_{r}^{\prime \prime}\right)-\left(y_{r}^{\prime}-z_{r}^{\prime}\right)\right] \\
& +\left(k_{r}^{\prime}-k_{r}^{\prime \prime}\right)\left[\left(x_{r}^{\prime \prime}-y_{r}^{\prime \prime}\right)-\left(x_{r}^{\prime}-y_{r}^{\prime}\right)\right]+\left(k_{r}^{\prime}-h_{r}{ }^{\prime \prime}\right)\left[\left(x_{r}^{\prime \prime}-y_{r}^{\prime \prime}\right)-\left(x_{r}^{\prime}-y_{r}^{\prime}\right)\right] \\
& -\left(h l^{\prime}-l l^{\prime \prime}\right)\left[\left(x_{l^{\prime \prime}}-\frac{b}{2}\right)-\left(x_{l^{\prime}}-\frac{b}{2}\right)\right]-\left(h_{r^{\prime}}-h_{r^{\prime}}\right)\left[\left(x_{r^{\prime \prime}}^{\prime \prime}-\frac{b}{2}\right)-\left(x_{r}^{\prime}-\frac{b}{2}\right)\right] \text {. }
\end{aligned}
$$

Expanding this and collecting terms, of which many will cancel, we obtain

Pris. Corr. $=\frac{l}{12}\left[\left(x l^{\prime \prime}-x_{l} l^{\prime}\right)\left(k_{l}^{\prime}-k l^{\prime \prime}\right)+\left(y l^{\prime \prime}-y_{l}\right)\left[\left(d^{\prime}-h_{l}^{\prime}\right)-\left(d^{\prime \prime}-h_{l^{\prime \prime}}\right)\right]\right.$

$$
\begin{align*}
& +\left(x_{r}^{\prime \prime}-x_{r}^{\prime}\right)\left(k_{r^{\prime}}^{\prime}-k_{r^{\prime \prime}}\right)+\left(y_{r^{\prime \prime}}-y_{r}^{\prime}\right)\left[\left(j_{r}^{\prime}-h_{r^{\prime}}\right)-\left(j_{r^{\prime \prime}}-h_{r^{\prime}}^{\prime \prime}\right)\right] \\
& \left.+\left(z_{r^{\prime \prime}}-z_{r}^{\prime}\right)\left[\left(a^{\prime}-k_{r}^{\prime}\right)-\left(d^{\prime \prime}-k_{r}^{\prime \prime}\right)\right]\right] . \text {. . } \tag{62}
\end{align*}
$$

By comparing this equation with Eq. 61 a remarkable coincidence in the law of formation may be seen, which enables this formula to be written by mere inspection and to be applied numerically with a minimum of labor from the computations for end areas, as will be shown ($\$ 84$) by a numerical example. For each term in Eq. 61, as, for example, $y_{r}\left(j_{r}-h_{r}\right)$, there is a correction term in Eq. 62 of the form

$$
\left(y_{r}^{\prime \prime}-y_{r}^{\prime}\right)\left[\left(j_{r}^{\prime}-h_{r}^{\prime}\right)-\left(j_{r}^{\prime \prime}-h_{r}^{\prime \prime}\right)\right] .
$$

Each one of these terms $\left(y_{r}{ }^{\prime \prime}, y_{r}{ }^{\prime},\left(j_{r}{ }^{\prime}-h_{r}{ }^{\prime}\right)\right.$, and $\left.\left(j_{r}{ }^{\prime \prime}-h_{r}{ }^{\prime \prime}\right)\right)$ has been previously used in finding the end areas and has its place in the computation sheet. The summation of the products of these differences times a constant gives the total true prismoidal correction in cubic yards for the whole prismoid considered.

The constant is the same as that computed in $\S 78$, i.e., $\frac{25}{81}$.
84. Numerical example; irregular sections; volume, with true prismoidal correction.

Sta.	Center $\left\{\begin{array}{l}\text { cut } \\ \text { or } \\ \text { fill }\end{array}\right.$	Left.			Right.	
19	$0.6 c$	$\frac{3.6 c}{14.4}$	$\left(\frac{2.3 c}{8.2}\right)$	$\left(\frac{1.8 c}{6.0}\right)$	$\frac{0.1 c}{4.2}$	$\frac{0.4 c}{9.6}$
18	$2.3 c$	$\frac{4.2 c}{15.3}$	$\frac{6.8 c}{8.4}$	$\frac{3.2 c}{5.2}$	$\left(\frac{1.9 c}{3.6}\right)$	$\frac{1.2 c}{108}$
17	$7.6 c$	$\frac{8.2 c}{21.3}$	$\frac{10.2 c}{17.4}$	$\frac{8.0 c}{6.1}$	$\left(\frac{5.8 c}{8.0}\right)$	$\frac{4.2 c}{15.3}$
$+42$	$10.2 c$	$\frac{12.2 c}{27.3}$	$\left(\frac{12.3 c}{20.0}\right)$	$\frac{12.6 c}{8.2}$	$\frac{6.2 c}{7.5}$	$\frac{8.4 c}{21.6}$
16	$6.8 c$	$\frac{8.9 c}{2.4}$		$\frac{7.60}{12.0}$	$\frac{3.2 c}{4.1}$	$\frac{2.6 c}{12.9}$

Roadbed 18 feet wide in cut; slope $1 \frac{1}{2}$ to 1 .
The figures in the bracket $\left(\frac{12.3 c}{22.0}\right)$ mean that it was noted in the field that the break, indicated at Sta. 17 as being 17.4 to the left, ran out at Sta. $16+42$ at 22.0 to the left. By interpolation between 8.2 and 27.3 the height of this point is computed as 12.3. The quantities in the other brackets are obtained similarly. These quantities are only used when the computation of the true prismoidal correction is desired. They are not needed in computing the volume by averaging end areas, nor are they used at all if the prismoidal correction is to be obtained by assuming (for this purpose) the ground to be three-level ground.

In the tabular form on page 98 the figures within the braces (\sim) are vot used in computing the volume, but are only. used to obtain the differences of widths or heights with which to compute the true prismoidal correction. It may be noted, as a check, that the volume, computed from these figures in the braces, is the same as that computed from the other figures.

VOLUME OF IRREGULAR PRISMOID, WITH TRUE PRISMOIDAL CORRECTION.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Sta.} \& \multirow{2}{*}{Width.} \& \multirow{2}{*}{Height.} \& \multicolumn{2}{|c|}{\multirow{2}{*}{Yards.}} \& \multicolumn{3}{|c|}{True pris. corr.} \\
\hline \& \& \& \& \& \(w^{\prime \prime}-w^{\prime}\) \& \(h^{\prime}-h^{\prime \prime}\) \& Yards. \\
\hline 16 \& \[
\begin{gathered}
\mathrm{L}\left[\begin{array}{c}
22.4 \\
12.0 \\
12.9 \\
4.1
\end{array}\right] \mathrm{R} \\
9.0
\end{gathered}
\] \& \[
\begin{array}{r}
7.6 \\
-2.1 \\
3.2 \\
4.2 \\
11.5
\end{array}
\] \& \[
\begin{array}{r}
158 \\
-23 \\
40 \\
16 \\
96
\end{array}
\] \& \& \& \& \\
\hline \(+42\) \& \begin{tabular}{l}
L[ris.3 \(\begin{array}{r}27.0 \\ 8.2\end{array}\) \\
\(\mathrm{L}\left\{\begin{array}{c}27.3 \\ 22.0 \\ 8.2 \\ 21.6 \\ 7.5 \\ 9.0\end{array}\right.\)
\end{tabular} \& \[
\begin{array}{r}
12.6 \\
-2.0 \\
12.3 \\
0.4 \\
-2.1 \\
6.2 \\
1.8 \\
20.6
\end{array}
\] \& \[
\begin{array}{r}
319 \\
-15 \\
\\
124 \\
13 \\
172
\end{array}
\] \& 378 \& +4.9
-3.8

+8.7
+3.4 \& -5.0
-0.1

-3.0

+2.4 \& $$
\begin{array}{r}
-7 \\
0 \\
\\
-8 \\
+3 \\
(-5)
\end{array}
$$

\hline 17 \& $$
\begin{gathered}
\mathrm{L}\left[\begin{array}{c}
21.3 \\
17.4 \\
6.1 \\
15.3 \\
8.0
\end{array}\right\} \mathrm{R} \\
15.3] \mathrm{R} \\
9.0
\end{gathered}
$$ \& \[

$$
\begin{array}{r}
10.2 \\
-0.2 \\
-2.6 \\
5.8 \\
3.4 \\
76 \\
12.4
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
201 \\
-3 \\
-14 \\
\\
107 \\
103
\end{array}
$$
\] \& 584 \& -6.0

-4.6
-2.1
-6.3
+0.5 \& +2.1
+0.6
+0.5
+0.4

-1.6 \& $$
\begin{array}{r}
-4 \\
-1 \\
0 \\
-1 \\
0 \\
(-3)
\end{array}
$$

\hline 18 \& $$
\begin{gathered}
\mathrm{L}\left[\begin{array}{c}
15.3 \\
8.4 \\
5.2 \\
10.8 \\
10.8 \\
3.6
\end{array}\right\} \mathrm{R} \\
9.0
\end{gathered}
$$ \& \[

$$
\begin{array}{r}
6.8 \\
-1.0 \\
-4.5 \\
2.3 \\
1.9 \\
1.1 \\
5.4
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
95 \\
-\quad 7 \\
-\quad 22 \\
23 \\
\\
45
\end{array}
$$
\] \& 528 \& -6.0

-9.0
-0.9
-4.5 \& +3.4
+0.8
+1.9

+5.3 \& $$
\begin{array}{r}
-6 \\
-2 \\
-1 \\
-7 \\
\\
\\
\hline-16)
\end{array}
$$

\hline 19 \& $$
\begin{gathered}
\mathrm{L}[14.4 \\
\mathrm{L}\left\{\begin{array}{c}
14.4 \\
8.2 \\
6.0 \\
9.6 \\
4.2
\end{array}\right] \mathrm{R} \\
9.0
\end{gathered}
$$ \& 0.6

2.3
-1.8
-1.7
0.1
0.2
4.0 \& 1
1
33 \& 177 \& -0.9
-0.2
+0.8
-1.2
+0.6 \& +4.5
+0.8
-2.8
+1.8
+0.9 \& -1
0
-1
-1
0
$-3)$

\hline \& \multicolumn{5}{|r|}{| Approx. vol. $=1667 \quad-27$ |
| :--- |
| True pris. corr. $=-27$ |} \& \& - 27

\hline
\end{tabular}

The figures within each brace (or bracket) constitute a group which must be used in connection with a group which has the same number of points, on the same side of the center, in the next cross-section, previous or succeeding. In the column of
"Yards" under "True pris. corr.," we have, for example, $(-\check{5})=\frac{49}{10 \overline{0}}(-7+0-s+3)$.
85. Volume of irregular prismoid, with approximate prismoidal correction. If the prismoidal correction is obtained approximately, by the method outlined in $\S 82$, the process will be as shown in the tabular form. Not only is the numerical work considerably less than the exact method, but the discrepancy in cubic yards is almost insignificant.

Approx. volume $=166 \pi$
Approx. pris. corr. $=-30$
Corrected volume $=1637$ cubic yards
86. Illustration of value of approximate rules. The accompanying tabulation shows that when the volume of an irregular prismoid is computed by averaging end areas and is corrected by considering the ground as three-level ground (for the pur-
poses of the correction only），the error for the different sections is sometimes positive and sometimes negative，and in this case

Sections．					Error．		Error．
16．．．．． $16+42$	373	378			1	396	
$16+42 \ldots 1 \%$	581	584	－ 3	－ 6	－3	5%	＋ 4
17．．．．．．．． 18	512	$5: 8$	-16	-17	－ 1	463	－ 49
18 ．．．．．． 19	1.4	177	3	－ 1	＋2	147	－
	1640	1667	$-2 i$	-30	-3	1583	－ 57

amounts to only 3 yards in $1640-$ less than $\frac{1}{5}$ of 1% ．If the prismoidal correction had been neglected，the error would have been 27 yards－nearly 2% ．The approximate results are here too large for each section－as is usually the case．If points between the center and slope stakes are omitted and the volume computed as if the ground were three－level ground，the error is quite large in individual sections，but the errors are both posi－ tive and negative and therefore compensating．

87．Cross－sectioning irregular sections．The prismoids con－ sidered have straight lines joining corresponding points in the two cross－sections．The center line must be straight between two cross－sections．If a ridge or valley is found lying diago－ nally across the roadbed，a cross－section must be interpolated at the lowest（or highest）point of the profile．Therefore a＂break＂ at any section cannot be said to run out at the other section on the opposite side of the center．It must run out on the same side of the center or possibly at the center．Very frequently complicated cross－sectioning may be avoided by computing the volume，by some special method，of a mound or hollow when the ground is comparatively regular except for the irregularity referred to．

88．Side－hill work．When the natural slope cuts the roadbed there is a neeessity for both cut and fill at the same cross－section． When this occurs the cross－sections of both cut and fill are often so nearly triangular that they may be considered as such without
great error, and the rolumes may be computed separately as triangular prismoids without adopting the more elaborate form of computation so necessary for complicated irregular sections. When the ground is too irregular for this the best plan is to follow the uniform system. In computing the cut, as in Fig. 53,

Fic. 53.
the left side would be as usual; there would be a small center cut and an ordinate of zero at a short distance to the right of the center. Then, ignoring the fill, and applying Eq. 61 strictly, we have two terms for the left side, one for the right, and the term involving $\frac{1}{2} b$, which will be $\frac{1}{2} b h_{l}$ in this case, since $h_{r}=0$, and the equation becomes

$$
\text { Area }=\frac{1}{2}\left[x_{l} k_{l}+y_{l}\left(d-h_{l}\right)+\dot{x_{r}} d+\frac{1}{2} b h_{l}\right] .
$$

The area for fill may also be computed by a strict application

Fig. 54.
of Eq. 61, but for Fig. 54 all distances for the left side are zero and the elevation for the first point out is zero. d also must be
considered as zero. Following the rule, § 81, literally, the equation becomes

$$
\operatorname{Area}_{(\mathrm{Fill})}=\frac{1}{2}\left[x_{r} k_{r}+y_{r}\left(o-h_{r}\right)+z_{r}\left(o-k_{r}\right)+\frac{1}{2} b\left(o+h_{r}\right)\right],
$$

which reduces to

$$
\frac{1}{2}\left[x_{r} k_{r}-y_{r} k_{r}-z_{r} k_{r}+\frac{1}{2} b h_{r}\right] .
$$

(Note that x_{r}, h_{r}, etc., have different significations and values in this and in the preceding paragraphs.) The "terminal pyramids" illustrated in Fig. 40 are instances of side-hill work for very short distances. Since side-hill work always implies both cut and fill at the same cross-section, whenever either the cut or fill disappears and the earthwork becomes wholly cut or wholly fill, that point marks the end of the "side-hill work," and a cross-section should be taken at this point.
89. Borrow-pits. The cross-sections of borrow-pits will vary not only on account of the undulations of the surface of the

Fic. 50.
ground, but also on the sides, according to whether they are made by widening a convenient cut (as illustrated in Fig. 55) or simply by digging a pit. The sides should always be properly sloped and the cutting made cleanly, so as to avoid unsightly roughness. If the slope ratio on the right-hand side (Fig. 55) is s, the area of the triangle is $\frac{1}{2} s m^{2}$. The area of the section is $\frac{1}{2}\left[u g+(g+h) v+(h+j) x+(j+k) y+(k+m) z-s m^{2}\right]$. If all the horizontal measurements were referred to one side as an origin, a formula similar to Eq. 61 could readily be developed, but little or no advantage would be gained on account of any simplicity of computation. Since the exact volume of the earth borrowed is frequently necessary, the prismoidal correc-
tion should be computed; and since such a section as Fig. 55 does not even approximate to a three-level section, the method suggested in $\S 82$ cannot be employed. It will then be necessary to employ the exact method, $\S 83$, by dividing the volume into triangular prismoids and taking the summation of their corrections, found according to the general method of $\S 71$.
90. Correction for curvature. The volume of a solid, generated by revolving a plane area about an axis lying in the plane but outside of the area, equals the product of the given area times the length of the path of the center of gravity of the area. If the centers of gravity of all cross-sections lie in the center of the road, where the length of the road is measured, there is absolutely no necessary correction for curvature. If all the cross-sections in any given length were exactly the same and therefore had the same eccentricity, the correction for curvature would be very readily computed according to the above principle. But when both the areas and the eccentricities vary from point to point, as is generally the case, a theoretically exact solution is quite complex, both in its derivation and application. Suppose, for simplicity, a curved section of the road, of uniform cross-sections and with the center of gravity of every cross-section at the same distance e from the center line of the road. The length of the path of the center of gravity will be to the length of the center line as $R \pm e: R$. Therefore we have True vol. : nominal vol. :: $R \pm e: R$. \therefore True vol. $=l A \frac{R \pm e}{R}$ for a volume of uniform area and eccentricity. For any other area and eccentricity we have, similarly, True vol. ${ }^{\prime}=l A^{\prime} \frac{R \pm e^{\prime}}{R}$. This shows that the effect of curvature is the same as increasing (or diminishing) the area by a quantity depending on the area and eccentricity, the increased (or diminished) area being found by multiplying the actual area by the ratio $\frac{R \pm e}{R}$. This being independent of the value of l, it is true for infinitesimal lengths. If the eccen-
tricity is assumed to vary uniformly between two sections, the equivalent area of a cross-section located midway between the two end cross-sections would be $A_{m} \frac{\left(R \pm \frac{e^{\prime}+e^{\prime \prime}}{2}\right)}{R}$. Therefore the volume of a solid which, when straight, would be $\frac{l}{6}\left(A^{\prime}+4 A_{m}+A^{\prime \prime}\right)$, would then become
True vol. $=\frac{l}{6 R}\left[A^{\prime}\left(R \pm e^{\prime}\right)+4 A_{m}\left(R \pm \frac{e^{\prime}+e^{\prime \prime}}{2}\right)+A^{\prime \prime}\left(R \pm e^{\prime \prime}\right)\right]$.
Subtracting the nominal volume (the true volume when the prismoid is straight), the

$$
\begin{equation*}
\text { Correction }= \pm \frac{l}{6 R}\left[\left(A^{\prime}+2 A_{m}\right) e^{\prime}+\left(2 A_{m}+A^{\prime \prime}\right) e^{\prime \prime}\right] \tag{63}
\end{equation*}
$$

Another demonstration of the same result is given by Prof. C. L. Crandall in his "Tables for the Computation of Railway and other Earthwork," in which is obtained by calculus methods the summation of elementary volumes having variable areas with variable eccentricities. The exact application of Eq. (63) requires that A_{m} be known, which requires laborious computations, but no error worth considering is involved if the equation is written approximately

$$
\begin{equation*}
\text { Curv. corr. }=\frac{l}{2 R}\left(A^{\prime} e^{\prime}+A^{\prime \prime} e^{\prime \prime}\right), \tag{64}
\end{equation*}
$$

which is the equation generally used. The approximation consists in assuming that the difference between A^{\prime} and A_{m} equals thie difference between A_{m} and $A^{\prime \prime}$ but with opposite sign. The error due to the approximation is always utterly insignificant.
91. Eccentricity of the center of gravity. The determination of the true positions of the centers of gravity of a long series of irregular cross-sections would be a very laborious operation, but fortunately it is generally sufficiently accurate to
consider the cross-sections as three-level ground, or, for side-hill work, to be triangular, for the purpose of this correction. The

Fig. 56.
eccentricity of the cross-section of Fig. 56 (including the grade triangle) may be written
$e=\frac{\frac{(a+d) x_{l} x_{l}}{2} \frac{(a+d) x_{r}}{3}-\frac{x_{r}}{2}}{\frac{(a+d) x_{l}}{2}+\frac{(a+d) x_{r}}{2}}=\frac{1}{3} \frac{x_{l}^{2}-x_{r}^{2}}{x_{l}+x_{r}}=\frac{1}{3}\left(x_{l}-x_{r}\right)$.
The side toward x_{r} being considered positive in the above demonstration, if $x_{r}>x_{l}, e$ would be negative, i.e., the center of gravity would be on the left side. Therefore, for three-level ground, the correction for curvature (see Eq. 6t) may be written

$$
\text { Correction }=\frac{l}{6 R^{2}}\left[A^{\prime}\left(x_{l}^{\prime}-x_{r}{ }^{\prime}\right)+A^{\prime \prime}\left(x_{l}{ }^{\prime \prime}-x_{r}{ }^{\prime \prime}\right)\right]
$$

Since the approximate volume of the prismoid is

$$
\frac{l}{2}\left(A+A^{\prime}\right)=\frac{l}{2} A^{\prime}+\frac{l}{2} A^{\prime \prime}=V^{\prime}+V^{\prime \prime}
$$

in which V^{\prime} and $V^{\prime \prime}$ represent the number of cubic yards corresponding to the area at each station, we may write
Corr. in cub. yds. $=\frac{1}{3 R^{[}}{ }^{\left.V^{\prime}\left(x_{l}{ }^{\prime}-x_{r}{ }^{\prime}\right)+V^{\prime \prime}\left(x_{l}{ }^{\prime \prime}-x_{r^{\prime \prime}}\right)\right] . ~ . ~ . ~ . ~}$

It should be noted that the value of e, derived in Eq. 65, is the eccentricity of the whole area including the triangle under the roadbed. The eccentricity of the true area is greater than this and equals

$$
e \times \frac{\text { true area }+\frac{1}{2} a b}{\text { true area }}=e_{1} .
$$

The required quantity ($A^{\prime} e^{\prime}$ of Eq. 64) equals true area $\times e_{1}$, which equals (true area $+\frac{1}{2} a b$) $\times e$. Since the value of e is very simple, while the value of e_{1} would, in general, be a complex quantity, it is easier to use the simple value of Eq. 65 and add $\frac{1}{2} a b$ to the area. Therefore, in the case of three-level ground the subtractive term $\frac{25}{27} a b(\$ 78)$ should not be subtracted in computing this correction. For irregular ground, when computed by the method given in $\S \S 81$ and 82 , which does not involve the grade triangle, a term $\frac{25}{2} \frac{a b}{7}$ must be added at every station when computing the quantities V^{\prime} and $V^{\prime \prime}$ for Eq. 66.

It should be noted that the factor $1 \div 3 R$, which is constant for the length of the curve, may be computed with all necessary accuracy and without resorting to tables by remembering that

$$
R=\frac{5730}{\text { degree of curve }}
$$

Since it is useless to attempt the computation of railroad earthwork closer than the nearest cubic yard, it will frequently be possible to write out all curvature corrections by a simple mental process upon a mere inspection of the computation sheet. Eq. 66 shows that the correction for each station is of the form $\frac{V\left(x_{l}-x_{r}\right)}{3 R} .3 R$ is generally a large quantity-for a 6° curve it is 2865 . $\left(x_{\iota}-x_{r}\right)$ is generally small. It may frequently be seen by inspection that the product $V\left(x_{l}-x_{r}\right)$ is roughly twice or three times $3 R$, or perhaps less than half of $3 R$, so that the corrective term for that station may be written 2,3 , or 0 cubic yards, the fraction being disregarded. For much larger absolute
amounts the correction must be computed with a correspondingly closer percentage of accuracy.

The algebraic sign of the curvature correction is best determined by noting that the center of gravity of the cross-section is on the right or left side of the center according as $x_{\text {r }}$ is greater or less than x_{l}, and that the correction is positive if the center of gravity is on the outside of the curve, and negative if on the inside.

It is frequently found that x_{l} is uniformly greater (or uniformly less) than x_{r}, throughout the length of the curve. Then the curvature correction for each station is uniformly positive or negative. But in irregular ground the center of gravity is apt to be irregularly on the outside or on the inside of the curve, and the curvature correction will be correspondingly positive or negative. If the curve is to the right, the correction will be positive or negative according as $\left(x_{l}-x_{r}\right)$ is positive or negative ; if the curve is to the left, the correction will be positive or negative according as $\left(x_{r}-x_{l}\right)$ is positive or negative. Therefore when computing curves to the right use the form $\left(x_{l}-x_{r}\right)$ in Eqs. 66 and 68 ; when computing curves to the left use the form $\left(x_{r}-x_{l}\right)$ in these equations; the algebraic sign of the correction will then be strictly in accordance with the results thas obtained.
92. Center of gravity of side-hill sections. In computing the

Fif. 57.
correction for side-hill work the cross section would be treated as triangular unless the error involved would evidently be too
great to be disregarded. The center of gravity of the triangle lies on the line joining the vertex with the middle of the base and at $\frac{1}{3}$ of the length of this line from the base. It is therefore equal to the distance from the center to the foot of this line plus $\frac{1}{3}$ of its horizontal projection. Therefore

$$
\begin{align*}
e & =\left[\frac{b}{2}-\frac{1}{2}\left(\frac{b}{2}+x_{r}\right)\right]+\frac{1}{3}\left[x_{l}-\left(\frac{b}{2}-\frac{1}{2}\left(\frac{b}{2}+x_{r}\right)\right)\right] \\
& =\frac{b}{4}-\frac{x_{r}}{2}+\frac{x_{l}}{3}-\frac{b}{12}+\frac{x_{r}}{6} \\
& =\frac{b}{6}+\frac{x_{l}}{3}-\frac{x_{r}}{3} \\
& =\frac{1}{3}\left[\frac{b}{2}+\left(x_{l}-x_{r}\right)\right] . \quad . \cdot . \cdot . \cdot . \cdot . \cdot \tag{67}
\end{align*}
$$

By the same process as that used in $\S 91$ the correction equation may be written
Corr. in cub. yds. $=\frac{1}{3 R}\left[V^{\prime}\left(\frac{b}{2}+\left(x_{i}^{\prime}-x_{r^{\prime}}\right)\right)+V^{\prime \prime}\left(\frac{b}{2}+\left(x i^{\prime \prime}-x_{r}{ }^{\prime \prime}\right)\right)\right]$.
It should be noted that since the grade triangle is not used in this computation the volume of the grade prism is not involved in computing the quantities V^{\prime} and $V^{\prime \prime}$.

The eccentricities of cross-sections in side-hill work are never zero, and are frequently quite large. The total volume is generally quite small. It follows that the correction for curvature is generally a vastly larger proportion of the total volume than in ordinary three-level or irregular sections.

If the triangle is wholly to one side of the center, Eq. 67 can still be used. For example, to compute the eccentricity of the triangle of fill, Fig. 57, denote the two distances to the slope-stakes by y_{r} and $-y_{l}$ (note the minus sign). Applying Eq. 67 literally (noting that $\frac{b}{2}$ must here be considered as negative in order to make the notation consistent) we obtain

$$
e=\frac{1}{3}\left[-\frac{b}{2}+\left(-y_{l}-y_{r}\right)\right]
$$

which reduces to

$$
\begin{equation*}
e=-\frac{1}{3}\left[\frac{b}{2}+y_{l}+y_{r}\right] . \tag{69}
\end{equation*}
$$

As the algebraic signs tend to create confusion in these formulæ, it is more simple to remember that for a triangle lying on both sides of the center e is always numerically equal to $\frac{1}{3}\left[\frac{b}{2}+\left(x_{l} \sim x_{r}\right)\right]$, and for a triangle entirely on one side, e is numerically equal to $\frac{1}{3}\left[\frac{6}{2}+\right.$ the numerical sum of the two distances out]. The algebraic sign of e is readily determinable as in § 91.
93. Example of curvature correction. Assume that the fill in § 78 occurred on a 6° curve to the right. $\quad \frac{1}{3 R}=\frac{1}{2865}$. The quantities 210,507 , etc., represent the quantities $V^{\prime}, V^{\prime \prime}$, etc., since they include in each case the 61 cubic yards due to the grade prism. Then

$$
\frac{V\left(x_{l} \sim x_{r}\right)}{3 R}=\frac{210(22.9-8.2)}{2865}=\frac{3101.7}{2865}=+1 .
$$

The sign is plus since the center of gravity of the cross-section is on the left side of the center and the road curves to the right, thus making the true volume larger. For Sta. 18 the correction, computed similarly, is +3 , and the correction for the whole section is $1+3=4$. For Sta. $18+40$ the correction is computed as 6 yards. Therefore, for the 40 feet, the correction is $\frac{40}{100}(3+6)=3.6$, which is called 4 . Computing the others similarly we obtain a total correction of +16 cubic yards.
94. Accuracy of earthwork computations. The preceding methods give the precise volume (except where approximations are distinctly admitted) of the prismoids which are supposed to represent the volume of the earthwork. To appreciate the accuracy necessary in cross-sectioning to obtain a given aceuracy
in volume, consider that a fifteen-foot length of the cross-section, which is assumed to be straight, really sags 0.1 foot, so that the cross-section is in error by a triangle 15 feet wide and 0.1 foot high. This sag 0.1 foot high would hardly be detected by the eye, but in a length of 100 feet in each direction it would make an error of volume of 1.4 cubic yards in each of the two prismoids, assuming that the sections at the other ends were perfect. If the cross-sections at both ends of a prismoid were in error by this same amount, the volume of that prismoid wonld be in error by 2.8 cubic yards if the errors of area were both plus or both minus. If one were plus and one minus, the errors would nentralize each other, and it is the compensating character of these errors which permits any confidence in the results as obtained by the usual methods of cross-sectioning. It demonstrates the utter futility of attempting any closer aceuracy than the nearest cubic yard. It will thus be seen that if an error really exists at any cross-section it involves the prismoids on both sides of the section, even though all the other cross-sections are perfect. As a further illustration, suppose that cross-sections were taken by the method of slope angle and center depth ($\delta 73$), and that a cross-section, assumed as miform, sags $0 . t$ foot in a width of 20 feet. Assume an equal error (of same sign) at the other end of a 100 -foot section. The error of volume for that one prismoid is 38 eubic yards.

The computations further assume that the warped surface, passing through the end sections, coincides with the surface of the ground. Suppose that the eross-sectioning had been done with mathematical perfection; and, to assume a simple case, suppose a sag of 0.5 foot between the sections, which causes an error equal to the volume of a pyramid having a base of 20 feet (in each cross-section) times 100 feet (between the cross-sections) and a height of 0.5 foot. The volume of this pyramid is $\frac{1}{3}(20 \times 100) \times 0.5=333 \mathrm{cub}$. ft. $=12 \mathrm{cub}$. yds. And yet this sag or hump of 6 inches would generally be utterly unnoticed, or at least disregarded.

When the ground is very rough and broken it is sometimes
practically impossible, even with frequent cross-sections, to locate warped surfaces which will closely coincide with all the sudden irregularities of the ground. In such eases the computations are necessarily more or less approximate and dependence must be placed on the compensating character of the errors.
95. Approximate computations from profiles. As a means of comparing the relative amoments of earthwork on two or more proposed routes which have been surveyed by preliminary surveys, it will usually be sufficiently accurate to compare the areas of cutting (assmming that the cut and fill are approximately balanced) as shown by the several profiles. The errors involved may be large in individual eases and for certain small sections, but fortunately the errors (in comparing two lines) will be largely compensated. The errors are much larger on side-hill work than when the cross-sections are comparatively level. The errors become large when the depth of cut or till is very great. If the lines compared have the same general character as to the slope of the cross-sections, the proportion of side-hill work, and the average depth of cut or fill, the error involved in considering their relative volumes of cutting to be as the relative areas of cutting on the profiles (obtained perhaps by a planimeter) will probably be small. If the volume in each case is computed by assuming the sections as level, with a depth equal to the center cut, the error involved will depend only on the amount of side-hill work and the degree of the slope. If these features are about the sane on the two lines compared, the error involved is still less.

FORMATION OF EMBANKMENTS.

96. Shrinkage of earthwork. The evidence on this subject as to the amount of shrinkage is very conflicting, a fact which is probably due to the following causes:
97. The various kinds of earthy material act very differently as respects shrinkage. There has been but little uniformity in the classification of earths in the tests and experiments that have been made.
98. Very much depends on the method of forming an embankment (as will be shown later). Different reports have been based on different methods-often without mention of the method.
99. An embankment requires considerable time to shrink to its final volume, and therefore much depends on the time elapsed between construction and the measurement of what is supposed to be the settled volume.
P. J. Flynn quotes some experiments (Eng. News, May 1, 1886) made in India in which pits were dug, having volumes of 400 to 600 cubic feet. The material, when piled into an embankment, measured largely in excess of the original measure-ment-as is the universal experience. The pits were refilled with the same material. As the rains, very heavy in India, settled the material in the pits, more was added to keep the pits full. Even after the rainy season was over, there was in every case material in excess. This would seem to indicate a permanent expansion, although it is possible that the observations were not continued for a sufficient time to determine the final settled volume.

On the contrary, notes made by Mr. Elwood Morris many years ago on the behavior of embankments of several thousand cubic yards, formed in layers by carts and scrapers, one winter intervening between commencement and completion, showed in each case a permanent contraction averaging about 10%.

All authorities agree that rockwork expands permanently when formed into an embankment, but the percentages of expansion given by different authorities differ even more than with earth-varying from 8 to 90%. Of course this very large range in the coefficient is due to differences in the character of the rock. The softer the rock and the closer its similarity to earth, the less will be its expansion. On account of the conflicting statements made, and particularly on account of the influence of methods of work, but little confidence can be felt in any given coefficient, especially when given to a fraction of a per
cent, but the consensus of American practice seems to average about as follows:

> Permanent contraction of earth. about 10% ، 6 expansion of rock. 40 to 60%

These values for rock should be materially reduced, according to judgment, when the rock is soft and liable to disintegrate. The hardest rocks, loosely piled, may occasionally give even higher results. The following is given by several authors as the permanent contraction of several grades of earth:

Gravel or sand	about 8%
Clay.	" 10%
Loam.	'، 12\%
Loose vegetable surface soil.	15

It may be noticed from the above table that the harder and cleaner the material the less is the contraction. Perfectly clean gravel or sand would not probably change volume appreciably. The above coefficients of shrinkage and expansion may be used to form the following convenient table.

Material.	To make 1000 cubic yards of embankment will require	1000 cubic yards measured in excavation will make
Gravel or sand	1087 cubic yards	920 cubic yards
Clay.		
Loam............	${ }_{1126}^{1136}$ "	${ }_{850} 88$
Rock, large pieces.	T14 ".	1400 "
	625	

97. Allowance for shrinkage. On account of the initial expansion and subsequent contraction of earth, it becomes necessary to form embankments higher than their required ultimate form in order to allow for the subsequent shrinkage. As the shrinkage appears to be all vertical (practically), the embankment must be formed as shown in Fig. 58. The effect
of shrinkage should not be confounded with that of slipping of the sides, which is especially apt to occur if the embankment is subjected to heavy rains very soon after being formed, and also when the embankments are originally steep. It is often difficult

Fig. 58.
to form an embankment at a slope of $1: 1$ which will not slip more or less before it hardens.

Very high embankments shrink a greater percentage than lower ones. Various rules giving the relation between shrinkage and height have been suggested, but they vary as badly as the suggested coefficients of contraction, probably for the same causes. As the fact is unquestionable, however, the extra height of the embankment must be varied somewhat as in Fig. 59, which represents a longitudinal section of an embankment.

Fig. 59.
As considerable time generally elapses between the completion of the embankment and the actual running of trains, the grade ad will generally be nearly flattened down to its ultimate form before traffic commences, but such grades are occasionally objectionable if added to what is already a ruling grade. With some kinds of soil the time required for complete settlement may be as much as two or three years, but, even in such cases, it is
probable that one-half of the settlement will take place during the first six months. The engineer should therefore require the contractor to make all fills about 8 to 15% (according to the material) higher than the profiles call for, in order that subsequent shrinkage may not reduce it to less than the required volume.
98. Methods of forming embankments. When the method is not otherwise objectionable, a high embankment can be formed very cheaply (assuming that carts or wheelbarrows are used) by dumping over the. end and building to the full height (or even higher, to allow for shrinkage) as the embankment proceeds. This allows more time for shrinkage, saves nearly all the cost of spreading (see Item $4, \$ 111$), and reduces the cost of roadways (Item 5). Of course this method is especially applicable when the material comes from a place as high as or higher than grade, so that no up-hill hauling is required.

Another method is to spread it in layers two or three feet thick (see Fig. 60), which are made concave upwards to avoid

Fig. 60.
possible sliding on each other. Spreading in layers has the advantage of partially ramming each layer, so that the subsequent shrinkage is very small. Sometimes small trenches are dug along the lines of the toes of the embankment. This will frequently prevent the sliding of a large mass of the embankment, which will then require extensive and costly repairs, to say nothing of possible accidents if the sliding occurs after the road is in operation. Incidentally these trenches will be of value in draining the subsoil. When circumstances require an embankment on a hillside, it is advisable to eut out "steps" to prevent a possible sliding of the whole embankment. Merely
ploughing the side-hill will often be a cheaper and sufficiently effective method.

Fig. 61.
Occasionally the formation of a very high and long embankment may be most easily and cheaply accomplished by building a trestle to grade and opening the road. Earth can then be procured where most convenient, perhaps several miles away, loaded on cars with a steam-shovel, hauled by the trainload, and dumped from the cars with a patent unloader. On such a large scale, the cost per yard would be very much less than by ordinary methods-enough less sometimes to more than pay for the temporary trestle, besides allowing the road to be opened for traffic very much earlier, which is often a matter of prime financial importance. It may also obviate the necessity for extensive borrow-pits in the immediate neighborhood of the heavy fill and also utilize material which would otherwise be wasted.

COMPUTATION OF HAUL.

99. Nature of subject. As will be shown later when analyzing the cost of earthwork, the most variable item of cost is that depending on the distance hauled. As it is manifestly impracticable to calculate the exact distance to which every individual cartload of earth has been moved, it becomes necessary to devise a means which will give at least an equivalent of the haulage of all the earth moved. Evidently the average haul for any mass of earth moved is equal to the distance from the center of gravity of the excavation to the center of gravity of the embank-
mont formed by the excavated material. As a rough approxmotion the center of gravity of a cut (or fill) may sometimes be considered to coincide with the center of gravity of that part of the profile representing it, but the error is frequently very large. The center of gravity may be determined by various methods, but the method of the "mass diagram" accomplishes the same ultimate purpose (the determination of the haul) with all-sufficent accuracy and also furnishes other valuable information.
100. Mass diagram. In Fig. 62 let $A^{\prime} B^{\prime} \ldots G^{\prime}$ represent a profile and grade line drawn to the usual scales. Assume Λ^{\prime}

Fig. 62. -Mass Diagram.
to be a point past which no earthwork will be hauled. Above every station point in the profile draw an ordinate which will represent the algebraic sum of the cubic yards of cut and fill (calling cut + and fill -) from the point A^{\prime} to the point considered. In doing this shrinkage must be allowed for by considering how much embankment would actually be made by so many cubic yards of excavation of such material. For example, it will be found that 1000 cubic yards of sand or gravel, measured in place (see $\$ 97$), will make about 920 cubic yards of embankment; therefore all cuttings in sand or gravel should be discounted in about this proportion. Excavations in rock should be increased in the proper ratio. In short, all excavations should be valued according to the amount of settled embankment that could be made from them. The computations may be made systematically as shown in the tabular form. Place
in the first column a list of the stations; in the second column, the number of cubic yards of cut or fill between each station and the preceding station; in the third and fourth columns, the kind of material and the proper shrinkage factor; in the fifth column, a repetition of the quantities in cubic yards, except that the excavations are diminished (or increased, in the case of rock) to the number of cubic yards of settled embankment which may be made from them. In the sixth column, place the algebraic sum of the quantities in the fifth column (calling cuts + and fills -) from the starting-point to the station considered. These algebraic sums at each station will be the ordinates, drawn to some scale, of the mass curve. The scale to be used will depend somewhat on whether the work is heavy or light, but for ordinary cases a scale of 5000 cubic yards per inch may be used. Drawing these ordinates to scale, a curve $A, B, \ldots G$ may be obtained by joining the extremities of the ordinates.

Sta.	Yards $\left\{\begin{array}{l}\text { cut } \\ \text { fill }\end{array}\right.$	Material.	Shrinkage factor.	Yards, reduced for shrinkage.	Ordinate in mass curve.
$46+70$					0
47	+ 195	Clayey soil	-10 per cent	+170.	+ 175
48	+1792		-10 "	+1613	+1788
+60	+ 614	، ${ }^{\prime}$	-10 ،	+ 553	+2341
49	- 143			- 143	+2198
50	- 906			- 906	+1292
51	-1985			-1985	- 693
52	-1721			-1721	- 2414
+30	- 112			- 112	-2526
23	+ 177	Hard rock	+60 per cent	+283	-2243
+ 70	+ 180		+60 "	+ 289	-1954
54	- 52			- 52	-2006
$55+42$	- 71			- 71	-2077
55 56 5	a $+\quad 276$ +1242	Clayey soil	${ }_{-10}^{-10}$ per cent	+ 249	-1828
57	+1302		-10 ${ }^{-10}$	+1118 +1172	- 710 $+\quad 462$

101. Properties of the mass curve.

1. The curve will be rising while over cuts and falling while over fills.
2. A tangent to the curve will be horizontal (as at B, D, E, F, and G) when passing from cut to fill or from fill to cut.
3. When the ourve is below the "zero line" it shows that material must be drawn backward (to the left); and vice versa, when the curve is above the zero line it shows that material must be drawn forward (to the right).
4. When the curve crosses the zero line (as at A and C) it shows (in this instance) that the cut between A^{\prime} and B^{\prime} will just provide the material required for the fill between B^{\prime} and C^{\prime}, and that no material should be hauled past C^{\prime}, or, in general, past any intersection of the mass curve and the zero line.
5. If any horizontal line be drawn (as $a b$), it indicates that the cut and fill between a^{\prime} and b^{\prime} will just balance.
6. When the center of gravity of a given volume of material is to be moved a given distance, it makes no difference (at least theoretically) how far each individual load may be hauled or how any individual load may be disposed of. The summation of the products of each load times the distance hauled will be a constant, whatever the method, and will equal the total volume times the movement of the center of gravity. The average haul, which is the movement of the center of gravity, will therefore equal the summation of these products divided by the total volume. If we draw two horizontal parallel lines at an infinitesimal distance $d x$ apart, as at $a b$, the small inerement of cut $d x$ at a^{\prime} will fill the corresponding increment of fill at b^{\prime}, and this material must be hauled the distance $a b$. Therefore the product of $a b$ and $d x$, which is the product of distance times volume, is represented by the area of the infinitesimal rectangle at $a b$, and the total area $A B C$ represents the summation of volume times distance for all the earth movement between A^{\prime} and C^{\prime}. This summation of products divided by the total volume gives the average haul.
7. The horizontal line, tangent at E and eutting the curve at e, f, and g, shows that the cut and fill between e^{\prime} and E^{\prime} will just balance, and that a possible method of hauling (whether desirable or not) would be to "borrow" earth for the fill between C^{\prime} and e^{\prime}, use the material between D^{\prime} and E^{\prime} for the
fill between e^{\prime} and D^{\prime}, and similarly balance cut and fill between E^{\prime} and f^{\prime} and also between f^{\prime} and g^{\prime}.
8. Similarly the horizontal line $h k l m$ may be drawn cutting the curve, which will show another possible method of hauling. According to this plan, the fill between C^{\prime} and h^{\prime} would be made by borrowing; the cut and fill between k^{\prime} and k^{\prime} would balance; also that between k^{\prime} and l^{\prime} and between l^{\prime} and m^{\prime}. Since the area ehDkE represents the measure of haul for the earth between e^{\prime} and E^{\prime}, and the other areas measure the corresponding hauls similarly, it is evident that the sum of the areas ehDkE and ElFmf, which is the measure of haul of all the material between e^{\prime} and f^{\prime}, is largely in excess of the sum of the areas $h D k, l E l$, and $l F m$, plus the somewhat uncertain measures of haul due to borrowing material for $e^{\prime} h^{\prime}$ and wasting the material between m^{\prime} and f^{\prime}. Therefore to make the measure of haul a minimum a line should be drawn which will make the sum of the areas between it and the mass curve a minimum. Of course this is not necessarily the cheapest plan, as it implies more or less borrowing and wasting of material, which may cost more than the amount saved in haul. The comparison of the two methods is quite simple, however. Since the amount of fill between e^{\prime} and h^{\prime} is represented by the difference of the ordinates at e and h, and similarly for m^{\prime} and f^{\prime}, it follows that the amount to be borrowed between e^{\prime} and h^{\prime} will exactly equal the amount wasted between m^{\prime} and f^{\prime}. By the first of the above inethods the haul is excessive, but is definitely known from the mass diagram, and all of the material is utilized; by the second method the haul is reduced to about onehalf, but there is a known quantity in cubic yards wasted at one place and the same quantity borrowed at another. The length of haul necessary for the borrowed material would need to be ascertained; also the haul necessary to waste the other material at a place where it would be unobjectionable. Frequently this is best done by widening an embankment beyond its necessary width. The computation of the relative cost of the above methods will be discussed later ($\S 116$).
9. Suppose that it were deemed best, after drawing the mass curve, to introduce a trestle between s^{\prime} and v^{\prime}, thus saving an amount in fill equal to $t v$. If such had been the original design, the mass curve would have been a straight horizontal line between s and t and would continue as a curve which would be at all points a distance to above the curve $v \operatorname{Fin}: f G g$. If the line $E f$ is to be used as a zero line, its intersection with the new curve at x will show that the material between E^{\prime} and z^{\prime} will just balance if the trestle is used, and that the amount of haul will be measured by the area between the line $E x$ and the broken line $E s t x$. The same computed result may be obtained without drawing the auxiliary curve tan . . . by drawing the horizontal line $z y$ at a distance $x z(=t v)$ below $E x$. The amount of the haul can then be obtained by adding the triangular area between $E s$ and the horizontal line $E x$, the rectangle between $s t$ and $E x$, and the irregular area between $v F z$ and $y \ldots z$ (which last is evidently equal to the area between $t x$ and $E \ldots x$). The disposal of the material at the right of z^{\prime} would then be governed by the indications of the profile and mass diagram which wonld be found at the right of g^{\prime}. In fact it is difficult to decide with the best of judgment as to the proper disposal of material without having a mass diagram extending to a considerable distance each side of that part of the road under immediate consideration.
10. Area of the mass curve. The area may be computed most readily by means of a planimeter, which is capable with reasonable care of measuring such areas with as great accuracy as is necessary for this work. If no such instrument is obtainable, the area may be obtained by an application of "Simpson's rule." The ordinates will usually be spaced 100 feet apart. Select an even number of such spaces, leaving, if necessary, one or more triangles or trapezoids at the ends for separate and independent computation. Let $y_{0} \ldots y_{n}$ be the ordinates, i.e., the number of cubic yards at each station of the mass curve, or the figures of "column six" referred to in $\S 100$. Let the uniform distance between ordinates ($=100$ feet) be called 1, i.e.,
one station. Then the units of the resulting area will be cubic yards hauled one station. Then the

Area $=\frac{1}{3}\left[y_{0}+4\left(y_{1}+y_{3}+\ldots y_{(n-1)}\right)+2\left(y_{2}+y_{4}+\ldots y_{(n-2)}\right)+y_{n}\right]$.
When an ordinate occurs at a substation, the best plan is to ignore it at first and calculate the area as above. Then, if the difference involved is too great to be neglected, calculate the area of the triangle having the extremity of the ordinate at the substation as an apex, and the extremities of the ordinates at the adjacent stations as the ends of the base. This may be done by finding the ordinate at the substation that would be a proportional between the ordinates at the adjacent full stations. Subtract this from the real ordinate (or vice versa) and multiply the difference by $\frac{1}{2} \times 1$. An inspection will often show that the correction thus obtained would be too small to be worthy of consideration. If there is more than one substation between two full stations, the corrective area will consist of two triangles and one or more trapezoids which may be similarly computed, if necessary.

When the zero line (Fig. 62) is shifted to $e E$, the drop from $A C$ (produced) to E is known in the same units, cubic yards. This constant may be subtracted from the numbers (" column $4, " \S 100$) representing the ordinates, and will thus give, without any scaling from the diagram, the exact value of the modified ordinates.
103. Value of the mass diagram. The great value of the mass diagram lies in the readiness with which different plans for the disposal of material may be examined and compared. When the mass curve is once drawn, it will generally require only a shifting of the horizontal line to show the disposal of the material by any proposed method. The mass diagram also shows the extreme length of haul that will be required by any proposed method of disposal of material. This brings into consideration the " limit of profitable haul," which will be fully discussed in $\S 116$. For the present it may be said that with each method of carrying material there is some limit beyond which the expense
of hauling will exceed the loss resulting from borrowing and wasting. With wheelbarrows and serapers the limit of profitable haul is comparatively short, with carts and tran-cars it is much longer, while with locomotives and ears it may be several miles. If, in Fig. 62, eE or $E f$ exceeds the limit of profitable hanl, it shows at once that some such line as hilm should be drawn and the material disposed of accordingly.
104. Changing the grade line. The formation of the mass curve and the resulting plans as to the disposal of material are based on the mutual relations of the grade line and the surface profile and the amounts of eut and fill which are thereby implied. If the grade line is altered, every cross-section is altered, the amount of cut and fill is altered, and the mass curve is also changed. At the farther limit of the actual change of the grade line the revised mass curve will have (in general) a different ordinate from the previous ordinate at that point. From that point on, the revised mass curve will be parallel to its former position, and the revised curve may be treated similarly to the case previously mentioned in which a trestle was introduced. Since it involves tedious calculations to determine accurately how much the volume of earthwork is altered by a change in grade line, especially through irregular country, the effect on the mass curve of a change in the grade line cannot therefore be readily determined except in an approximate way. Raising the grade line will evidently increase the fills and diminish the cuts, and vice versa. Therefore if the mass curve indicated, for example, either an excessively long haul or the necessity for borrowing material (implying a fill) and wasting material farther on (implying a cut), it would be possible to diminish the fill (and hence the amount of material to be borrowed) by lowering the grade line near that place, and diminish the cut (and hence the amount of material to be wasted) by raising the grade line at or near the place farther on. Whether the advantage thus gained would compensate for the possibly injurious effect of these changes on the grade line would require patient investigation. But the method outlined shows how the
mass curve might be used to indicate a possible change in grade line which might be demonstrated to be profitable.
105. Limit of free haul. It is sometimes specified in contracts for earthwork that all material shall be entitled to free haul up to some specified limit, say 500 or 1000 feet, and that all material drawn farther than that shall be entitled to an allowance on the excess of distance. It is manifestly impracticable to measure the excess for each load, as much so as to measure the actual haul of each load. The mass diagram also solves this problem very readily. Let Fig. 63 represent a pro-

Fig. 63.
file and mass diagram of about 2000 feet of road, and suppose that 800 feet is taken as the limit of free haul. Find two points, a and b, in the mass curve which are on the same horizontal line and which are 800 feet apart. Project these points down to a^{\prime} and b^{\prime}. Then the cut and fill between a^{\prime} and b^{\prime} will just balance, and the cut between A^{\prime} and a^{\prime} will be needed for the fill between b^{\prime} and C^{\prime}. In the mass curve, the area between the horizontal line $a b$ and the curve $a B b$ represents the haulage of the material between a^{\prime} and b^{\prime}, which is all free. The rectangle $a b m n$ represents the haulage of the material in the cut $A^{\prime} a^{\prime}$ across the 800 feet from a^{\prime} to b^{\prime}. This is also free. The sum of the two areas $A a m$ and $b n C$ represents the haulage entitled to an allowance, since it is the summation of the products of cubic yards times the excess of distance hauled.

If the amount of cut and fill was symmetrical about the point B^{\prime}, the mass curve would be a symmetrical curve about the vertical line through B, and the two limiting lines of free haul would be placed symmetrically about B and $B^{\prime \prime}$. In general there is no such symmetry, and frequently the difference is considerable. The area abbnm will be materially changed according as the two vertical lines $a m$ and $b n$, always 800 feet apart, are shifted to the right or left. It is easy to show that the area aBbnm is a maximum when ab is horizontal. The minimum value would be obtained either when n reached A or n reached C, depending on the exact form of the curve. Since the position for the minimum value is manifestly unfair, the best definite value obtainable is the maximum, which must be obtained as above described. Since ablnm is made maximum, the remainder of the area, which is the allowance for overhanl, becomes a minimum. The areas $A a m$ and $b C n$ may be obtained as in $\S 102$. If the whole area $A a B b C A$ has been previously computed, it may be more convenient to compute the area $a B b n m$ and subtract it from the total area.

Since the intersections of the mass curve and the "zero line" mark limits past which no material is drawn, it follows that there will be no allowance for overhaul except where the distance between consecutive intersections of the zero line and mass curve exceeds the limit of free haul.

Frequently all allowances for overhanl are disregarded; the profiles, estimates of quantities, and the required disposal of material are shown to bidding contractors, and they must then make their own allowances and bid accordingly. This method has the advantage of avoiding possible disputes as to the amount of the overhaul allowance, and is popular with railroad companies on this account. On the other hand the facility with which different plans for the disposal of material may be studied and compared by the mass-curve method facilitates the adoption of the most economical plan, and the elimination of uncertainty will frequently lead to a safe reduction of the bid, and so the method is valuable to both the railroad company and the contractor.

ELEMENTS OF THE COST OF EARTHWORK.

(The following analysis of the cost of earthwork follows the general method given in the well-known papers published by Ellwood Morris, C.E., in the Journal of the Franklin Institute in September and October, 1841. Numerous corroborative data have been obtained from various other. sources, and also figures on methods not then in vogue.)
106. General divisions of the subject. The variations in the cost of earthwork are caused by the greatly varying conditions under which the work is done, chief among which is character of material, method of carriage, and length of haul. Any general system of computation must therefore differentiate the total cost into such elementary items that all differences due to variations in conditions may be allowed for. The variations due to character of material will be allowed for by an estimate on loose light sandy soil, and also an estimate on the heaviest soils, such as stiff clay and hard-pan. These represent the extremes (excluding rock, which will be treated separately), and the cost of intermediate grades must be estimated by interpolating between the extreme values. The general divisions of the subject will be : *

1. Loosening.
2. Loading.
3. Hauling.
4. Spreading.
5. Keeping roadways in order.
6. Repairs, wear, depreciation, and interest on cost of plant.
7. Superintendence and incidentals.
8. Contractor's profit.

By making the estimates on the basis of $\$ 1$ per day for the cost of common labor, it is a simple matter to revise the estimates according to the local price of labor by multiplying the final estimate of cost by the price of labor in dollars per day.
107. Item 1. Loosening. (a) Ploughs. Very light sandy soils can frequently be shovelled without any previous loosening, but it is generally economical, even with very light material, to use a plough. Morris quotes, as the results of experiments, that a three-horse plough would loosen from 250 to 800 cubic yards of earth per day, which at a valuation of 85 per day would make the cost per yard vary from 2 cents to 0.6 cent. Trautwine estimates the cost on the basis of two men liandling a two-horse plough at a total cost of $\$ 3.87$ per day, being $\$ 1$ each for the men, 75 c . for each horse, and an allowance of 37 c. for the plough, harness, etc. From 200 to 600 cubic yards is estimated as a fair day's work, which makes a cost of 1.9 c . to 0.65 c . per yard, which is substantially the same estimate as above. Extremely heavy soils have sometimes been loosened by means of special ploughs operated by traction-engines.
(b) Picks. When picks are used for loosening the earth, as is frequently necessary and as is often done when ploughing would perhaps be really cheaper, an estimate * for a fair day's work is from 14 to 60 cubic yards, the 14 yards being the estimate for stiff clay or cemented gravel, and the 60 yards the estimate for the lightest soil that would require loosening. At $\$ 1$ per day this means about 7 c . to 1.7 c . per cubic yard, which is about three times the cost of ploughing. Five feet of the face is estimated \dagger as the least width along the face of a bank that should be allowed to enable each laborer to work with freedom and hence economically.
(c) Blasting. Although some of the softer shaly rocks may be loosened with a pick for about 15 to 20 c . per yard, yet rock in general, frozen earth, and sometimes even compact clay is most economically loosened by blasting. The subject of blasting will be taken up later, $\$ \$ 117-123$.
(d) Steam-shovels. The items of loosening and loading merge together with this method, which will therefore be treated in the next section.

[^8]\dagger Hurst.
108. Item 2. Loading. (a) Hand-shovelling. Much depends on proper management, so that the shovellers need not wait unduly either for material or carts. With the best of management considerable time is thus lost, and yet the intervals of rest need not be considered as entirely lost, as it enables the men to work, while actually loading, at a rate which it would be physically impossible for them to maintain for ten hours. Seven shovellers are sometimes allowed for each cart; otherwise there should be five, two on each side and one in the rear. Economy requires that the number of loads per cart per day should be made as large as possible, and it is therefore wise to employ as many shovellers as can work without mutual interference and without wasting time in waiting for material or carts. The figures obtainable for the cost of this item are unsatisfactory on account of their large disagreements. The following are quoted as the number of cubic yards that can be loaded into a cart by an average laborer in a working day of ten hours, the lower estimate referring to heavy soils, and the higher to light sandy soils: 10 to 14 cubic yards (Morris), 12 to 17 cubic yards (Haskoll), 18 to 22 cubic yards (Hurst), 17 to 24 cubic yards (Trautwine), 16 to 48 cubic yards (Ancelin). As these estimates are generally claimed to be based on actual experience, the discrepancies are probably due to differences of management. If the average of 15 to 25 cubic yards be accepted, it means, on the basis of $\$ 1$ per day, 6.7 c. to 4 c . per cubic yard. These estimates apply only to earth. Rockwork costs more, not only because it is harder to handle, but because a cubic yard of solid rock, measured in place, occupies about 1.8 cubic yards when broken up, while a cubic yard of earth will occupy about 1.2 cubic yards. Rockwork will therefore require about 50% more loads to haul a given volume, measured in place, than will the same nominal volume of earthwork. The above anthorities give estimates for loading rock varying from 6.9 c . to 10 c . per cubic yard. The above estimates apply only to the loading of carts or cars with shovels or by hand (loading masses of rock). The
cost of loading wheelbarrows and the cost of scraper work will be treated under the item of hauling.
(b) Steam-shovels." Whenever the magnitude of the work will warrant it there is great economy in the use of steam-shovels. These have a "bucket" or "dipper" on the end of a long beam, the bucket haring a capacity varying from $\frac{1}{2}$ to $2 \frac{1}{2}$ cubic yards. Steam-shovels handle all kinds of material from the softest earth to shale rock, earthy material containing large boulders, tree-stumps, etc. The capacity of the larger sizes is about 3000 cubic yards in 10 hours. They perform all the work of loosening and loading. Their economical working requires that the material shall be hauled away as fast as it can be loaded, which usually means that cars on a track, hauled by horses or mules, or still better by a locomotive, shall be used. The expenses for a steam-shovel, costing about $\$ 5000$, will average about $\$ 1000$ per month. Of this the engineer will get $\$ 100$; the fireman $\$ 50$; the cranesman $\$ 90$; repairs perhaps $\$ 250$ to $\$ 300$; coal, from 15 to 25 tons, cost very variable on account of expensive hauling; water, a very uncertain amount, sometimes costing $\$ 100$ per month; about five laborers and a foreman, the laborers getting $\$ 1.25$ per day and the foreman $\$ 2.50$ per day, which will amount to $\$ 227.50$ per month. This gang of laborers is employed in shifting the shovel when necessary, taking up and relaying tracks for the cars, shifting loaded and unloaded cars, etc. In shovelling through a deep cut, the shovel is operated so as to undermine the upper parts of the cut, which then fall down within reach of the shovel, thus increasing the amount of material handled for each new position of the shovel. If the material is too tough to fall down by its own weight, it is sometimes found economical to employ a grang of men to loosen it or even blast it rather than shift the shovel so frequently. Non-condensing engines of 50 horse-power use so much water that the cost of water-supply becomes a serious

[^9]matter if water is not readily obtainable. The lack of water facilities will often justify the construction of a pipe line from some distant source and the installation of a stean-pump. Hence the seemingly large estimate of $\$ 100$ per month for water-supply, although under favorable circumstances the cost may almost vanish. The larger steam-shovels will consume nearly a ton of coal per day of 10 hours. The expense of hauling this coal from the nearest railroad or canal to the location of the cut is often a very serious item of expense and may easily double the cost per ton. Some steam-shovels have been constructed to be operated by electricity obtained from a plant perhaps several miles away. Such a method is especially advantageous when fuel and water are difficult to obtain.
109. Item 3. Hadling. The cost of hauling depends on the number of round trips per day that can be made by each vehicle employed. As the cost of each rehicle is practically the same whether it makes many trips or few, it becomes important that the number of trips should be made a maximum, and to that end there should be as little delay as possible in loading and unloading. Therefore devices for facilitating the passage of the vehicles have a real money value.
(a) Carts. The average speed of a horse hauling a twowheeled cart has been found to be 200 feet per minute, a little slower when hauling the load and a little faster when returning empty. This figure has been repeatedly verified. It means an allowance of one minute for each 100 feet (or "station') of "lead-the lead being the distance the earth is hauled." The time lost in loading, dumping, waiting to load, etc., has been found to average 4 minutes per load. Representing the number of stations (100 feet) of lead by s, the number of loads handled in 10 hours (600 minutes) would be $600 \div(s+4)$. The number of loads per cubic yard, measured in the bank, is differentiated by Morris into three classes, viz. :

3 loads per cubic yard in descending hauling;

$3 \frac{1}{2}$	"	،	"	" level hauling; and
4	،	"	"	"

Attempts have been made to estimate the effect of the grade of the roadway by a theoretical consideration of its rate, and of the comparative strength of a horse on a level and on various grades. While such computations are always practicable on a railway (even on a temporary construction track), the traction on a temporary earth roadway is always very large and so very variable that any refinements are useless. On railroad earthwork the hauling is generally nearly level or it is descendingforming embankments on low ground with material from cuts in high ground. The only common exception occurs when an embankment is formed from borrow-pits on low ground. One method of allowing for ascending grade is to add to the horizontal distance 14 times the difference of elevation for work with carts and 24 times the difference of elevation for work with wheelbarrows, and use that as the lead. For example, using carts, if the lead is 300 feet and there is a difference of elevation of 20 feet, the lead would be considered equivalent to $300+(14 \times 20)=580$ feet on a level.

Trautwine assumes the average load for all classes of work to be $\frac{1}{3}$ cubic yard, which figure is justified by large experience. Using one figure for all classes of work simplifies the calculations and gives the number of cubic yards carried per day of 10 hours equal to $\frac{600}{3(s+4)}$. Dividing the cost of a cart per day by the number of cubic yards carried gives the cost of hauling per yard. In computing the cost of a cart per day, Trautwine refers to the practice of having one driver manage four carts, thus making a charge of 25 c . per day for each cart for the driver. 75 c . is allowed for the horse, which is supposed to be the total cost, including that for Sundays and rainy days. 25 c . more is allowed for the cart, harness, repairs, etc., thus making a total cost of $\$ 1.25$ per day. Some contractors employ a greater number of drivers and expect each to assist in loading. There is found to be no saving in total cost per yard, while the chances of loafing are perhaps greater. Morris instances five actual cases in which the cost of the cart (reduced to the basis of
$\$ 1$ per day for labor) varied from $\$ 1.37$ to $\$ 1.48$. The items of these costs were not given.

Since the time required for loading loose rock is greater than for earthwork, less loads will be hauled per day. The time allowance for loading, etc., is estimated by Trautwine as 6 minutes instead of 4 as for earth. Considering the great expansion of rock when broken up (see $\S 97$), one cubic yard of solid rock, measured in place, would furnish the equivalent of five loads of earthwork of $\frac{1}{3}$ cubic yard. Therefore, on the basis of five loads per cubic yard, the number of cubic yards handled per day per cart would be $\frac{600}{5(s+6)}$.

$$
\begin{equation*}
\text { Cost per yard in cents }=\frac{125 \times 5(s+6)}{600} \tag{71}
\end{equation*}
$$

(b) Wagons. For longer leads (i.e., from $\frac{1}{3}$ to $\frac{2}{3}$ of a mile) wagons drawn by two horses have been found most economical. The wagons have bottoms of loose thick narrow boards and are unloaded very easily and quickly by lifting the individual boards and breaking up the continuity of the bottom, thus depositing the load directly underneath the wagon. The capacity is about one cubic yard. The cost may be estimated on the same principles as that for carts.
(c) Wheelbarrows. According to Trantwine, the speed of moving wheelbarrows may be considered the same as for carts, 200 feet per minute; the time spent in loading and dumping is 1_{4}^{1} minutes, and in addition about $\frac{1}{10}$ of the time is wasted in short rests, adjusting the wheeling plants, etc. On the basis of $\$ 1$ per day for labor, an allowance of 5 c . for the barrow, and 14 loads per cubic yard, the cost of hauling per cubic yard (computed on the same principles as above) will be

$$
\begin{equation*}
\frac{105 \times 14(s+1.25)}{600 \times 0.9} \tag{72}
\end{equation*}
$$

For rockwork the number of loads per cubic yard is estimated as 24 , and the time spent in loading, etc., estimated at 1.6 minutes instead of 1.25 minutes, which makes the estimate

$$
\begin{equation*}
\text { Cost per cubic yard }=\frac{105 \times 24(s+1.6)}{600 \times 0.9} \tag{73}
\end{equation*}
$$

(d) Scrapers. * Scrapers, or scoops, are especially useful in canal work, and also for railroad work when a low embankment is to be formed from borrow-pits at the sides, when the distance does not exceed 100 feet, nor the vertical height 15 feet. The slope should not exceed 1.5 to 1 . Under these conditions scraper work is cheaper than any other method. Scooping may be done all in one direction, in which case two half-turns are made for each load moved; or it may be done in both directions (from both sides on to a bank, or, in canal work, from the center to each bank), in which case one load is hauled to each half-turn. The capacity of the scoops (the "drag" variety) is $\frac{1}{10}$ cubic yard; the time lost in loading, unloading, and all other ways per load (except in turning) will average $\frac{2}{8}$ minute; the time lost in each half-turn (semi-circle) is $\frac{1}{3}$ minute; the speed of the horses may be estimated as 70 feet of lead per minute, the lead being here considered as the sum of the vertical and horizontal distances, and the estimate including the time of going and returning. If a represents the sum of the horizontal and vertical distances, the number of cubic yards handled per day of 10 hours by "side-scooping" will be

$$
0.1\left(\frac{600}{\frac{a}{70}+1 \frac{1}{3}}\right), \text { which equals } \frac{4200}{a+93 \frac{1}{3}}
$$

For "double-scooping" the formula becomes

$$
0.1\left(\frac{600}{\frac{a}{70}+1}\right) \text {, which equals } \frac{4200}{a+70}
$$

[^10]Dividing the cost of a scraper per day (estimated at \$2.75) by the number of yards handled per day gives the average cost per yard.

Except in very loose sandy soil it is best to plough the earth first, which will cost about 1 c. per yard. (See § 107.) Dragscrapers are now made chiefly of steel, and their capacity is more nearly 0.15 cubic yard. Wheeled scrapers, having a capacity of about 0.5 cubic yard, are frequently used with even greater economy and for greater distances, as they are cheaper than carts up to 250 or 300 feet of lead. Both drag- and wheelscrapers are best operated in gangs of perhaps 10 , using extra or "snap" teams to help load, and a few extra men to help in loading and unloading. The average cost of one scraper per day may thus be easily calculated and the average number of cubic yards handled per day computed as abore, from which the cost per yard may be estimated.
(e) Cars and horses. The items of cost by this method are (a) charge for horses employed, (b) charge for men employed strictly in hauling, (c) charge for shifting rails when necessary, (d) repairs, depreciation, and interest on cost of cars and track. Part of this cost should strictly be classified under items $\check{5}$ and 6 , mentioned in $\S 106$, but it is perhaps more convenient to estimate them as follows.

The traction of a car on rails is so very small and constant that grade resistance constitutes a very large part of the total resistance if the grade is 1% or more. For all ordinary grades it is sufficiently accurate to say that the grade resistance is to the gross weight as the rise is to the distance. If the distance is supposed to be measured along the slope, the proportion is strictly true; i.e., on a 1% grade the grade resistance is 1 lb . per 100 of weight or 20 lbs . per ton. If the resistance on a lerel at the usual velocity is $\frac{1}{120}$, a grade of $1: 120(0.83 \%)$ will exactly double it. If the material is hauled down a grade of $1: 120$, the cars will run by gravity after being started. The work of lauling will then consist practically of hauling the empty cars up the grade. The grade resistance depends only
on the rate of grade and the weight, but the tractive resistance will be greater per ton of weight for the unloaded than for the loaded cars. The tractive power of a horse is less on a grade than on a level, not only because the horse raises his own weight in addition to the load, but is anatomically less capable of pulling on a grade than on a level. In general it will be possible to plan the work so that loaded cars need not be hauled up a grade, unless an embankment is to be formed from a low borrow-pit, in which case another method would probably be advisable. These computations are chiefly utilized in designing the method of work-the proportion of horses to cars. An example may be quoted from English practice (Hurst), in which the cars had a capacity of $3 \frac{1}{3}$ cubic yards, weighing 30 ewt. empty. Two horses took five "wagons" $\frac{3}{4}$ of a mile on a level railroad and made 15 journeys per day of 10 hours, i.e., they handled 250 yards per day. In addition to those on the "straight road," another horse was employed to make up the train of loaded wagons. With a short lead the straight-road horses were employed for this purpose. In the above example the number of men required to handle these cars, shift the tracks, etc., is not given, and so the exact cost of the above work cannot be analyzed. It may be noticed that the two horses travelled $22 \frac{1}{2}$ miles per day, drawing in one direction a load, including the weight of the cars, of about $57,300 \mathrm{lbs}$. or 28.65 net tons. Allowing $\frac{1}{120}$ as the necessary tractive force, it would require a pull of 477.5 lbs ., or 239 lbs . for each horse. With a velocity of 220 feet per minute this would amount to $1 \frac{1}{2}$ horse-power per horse, exerted for only a short time, however, and allowing considerable time for rest and for drawing only the empty cars. The cars generally used in this country have a capacity of $1 \frac{1}{2}$ eubic yards and cost about $\$ 65$ apiece. Besides the shovellers and dumping-gang, several men and a foreman will be required to keep the track in order and to make the constant shifts that are necessary. Two trains are generally used, one of which is loaded while the other is run to the dump. Some passing-place is necessary, but this is generally
provided by having a switch at the cut and runing the trains on each track alternately. This insures a train of cars always at the cut to keep the shovellers employed. The cost of hauling per cubic yard can only be computed when the number of laborers, cars, and horses employed are known, and these will depend on the lead, on the character of the excavation, on the grade, if any, etc., and must be so proportioned that the shovellers need not wait for cars to fill, nor the dumping-gang for material to handle, nor the horses and drivers for cars to haul. Much skill is necessary to keep a large force in smooth running order.
(f) Cars and locomotives. $30-\mathrm{lb}$. rails are the lightest that should be used for this work, and 35 - or $40-\mathrm{lb}$. rails are better. One or two narrow-gange locomotives (depending on the length of haul), costing about $\$ 2500$ each, will be necessary to handle two trains of about 15 cars each, the cars having a capacity of about 2 cubic yards and costing about $\$ 100$ each. Some cars can be obtained as low as $\$ 70$. A force of about five men and a foreman will be required to shift the tracks. The trackshifters, except the foreman, may be common laborers. The dumping-gang will require about seven men. Even when the material is all taken down grade the grades may be too steep for the safe hauling of loaded cars down the grade, or for hanling empty cars up the grade. Under such circuinstances temporary trestles are necessary to reduce the grade. When these are used, the uprights and bracing are left in the embankmentonly the stringers being removed. This is largely a necessity, but is partially compensated by the fact that the trestle forms a core to the embankment which prevents lateral shifting during settlement. The average speed of the trains may be taken as 10 miles per hour or 5 miles of lead per hour. The time lost in loading and unloading is estimated (Trautwine) as 9 minutes or .15 of an hour. The number of trips per day of 10 hours will equal $\frac{10}{\frac{1}{5} \text { (miles of lead) }+.15}$ or $\frac{50}{\text { (miles of lead) }+.75}$. Of course this quotient must be a whole number. Knowing the
number of trains and their capacity, the total number of cubic yards handled is known, which, divided into the total daily cost of the trains, will give the cost of hauling per yard. The daily cost of a train will include
(a) Wages of engineer, who frequently fires his own engine;
(b) Fuel, about $\frac{1}{4}$ to 1 ton of bituminous coal, depending on work done;
(c) Water, a very variable item, frequently costing $\$ 3$ to $\$ 5$ per day;
(d) Repairs, variable, frequently at rate of 50 to 60% per year;
(e) Interest on cost and depreciation, 16 to 40%.

To these must be added, to obtain the total cost of the haul,
(f) Wages of the gang employed in shifting track.
110. Choice of method of haul dependent on distance. In light side-hill work in which material need not be moved more than 12 or 15 feet, i.e., moved laterally across the roadbed, the earth may be moved most cheaply by mere shovelling. Beyond 12 feet scrapers are more economical. At about 100 feet drag-scrapers and wheelbarrows are equally economical. Between 100 and 200 feet wheelbarrows are generally cheaper than either carts or drag-scrapers, but wheeled scrapers are always cheaper than wheelbarrows. Beyond 500 feet twowheeled carts become the most economical up to about 1700 feet; then four-wheeled wagons become more economical up to 3500 feet. Beyond this cars on rails, drawn by horses or by locomotives, become cheaper. The economy of cars on rails becomes evident for distances as small as 300 feet provided the volume of the excavation will justify the outlay. Locomotives will always be cheaper than horses and mules providing the work to be done is of sufficient magnitude to justify the purchase of the necessary plant and risk the loss in selling the plant ultimately as second-hand equipment, or keeping the plant on hand and idle for an indefinite period waiting for other work. Horses will not be economical for distances much over a mile. For greater distances locomotives are more economical, but the
question of " limit of profitable haul" (§ 116) must be closely studied, as the circumstances are certainly not common when it is advisable to haul material much over a mile.
111. Item 4. Spreading. The cost of spreading varies with the method employed in dumping the load. When the earth is tipped over the edge of an embankment there is little if any necessary work. Trautwine allows about $\frac{1}{4}$ c. per cubic yard for keeping the dumping-places clear and in order. This would represent the wages of one man at $\$ 1$ per day attending to the unloading of 1200 two-wheeled carts each carrying $\frac{1}{3}$ cubic yard. 1200 carts in 10 hours would mean an average of two per minute, which implies more rapid and efficient work than may be depended on. The allowance is probably too small. When the material is dumped in layers some levelling is required, for which Trautwine allows 50 to 100 cubic yards as a fair day's work, costing from 1 to 2 cents per cubic yard. The cost of spreading will not ordinarily exceed this and is frequently noth-ing-all depending on the method of unloading. It should be noted that Mr. Morris's examples and computations (Jour. Franklin Inst., Sept. 1841) disregard altogether any special charge for this item.
112. Item 5. Keeping Roadways in order. This feature is important as a measure of true economy, whatever the system of transportation, but it is often neglected. A petty saving in such matters will cost many times as much in increased labor in hauling and loss of time. With some methods of haul the cost is best combined with that of other items.
(a) Wheelbarrows. Wheelbarrows should generally be run on planks laid on the ground. The adjusting and shifting of these planks is done by the wheelers, and the time for it is allowed for in the 10% allowance for "short rests, adjusting the wheeling plank, etc." The actual cost of the planks must be added, but it would evidently be a very small addition per cubic yard in a large contract. When the wheelbarrows are run on planks placed on "horses" or on trestles the cost is very appreciable; but the method is frequently used with great economy. The
variations in the requirements render any general estimate of such cost impracticable.
(b) Carts and wagons. The cost of keeping roadways in order for carts and wagons is sometimes estimated merely as so much per cubic yard, but it is evidently a function of the lead. The work consists in draining off puddles, filling up ruts, picking up loose stones that may have fallen off the loads, and in general doing everything that will reduce the traction as much as possible. Temporary inclines, built to avoid excessive grade at some one point, are often measures of true economy. Trantwine suggests $\frac{1}{10}$ c. per cubic yard per 100 feet of lead for earthwork and $\frac{2}{10}$ c. for rockwork, as an estimate for this item when carts are used.
(c) Cars. When cars are used a shifting-gang, consisting of a foreman and several men (say five), are constantly employed in shifting the track so that the material may be loaded and unloaded where it is desired. The average cost of this item may be estimated by dividing the total daily cost of this gang by the number of cubic yards handled in one day.
113. Item 6. Repairs, Wear, Depreciation, and Interest on Cost of Plant. The amount of this item evidently depends upon the character of the soil-the harder the soil the worse the wear and depreciation. The interest on cost depends on the current borrowing value of money. The estimate for this item has already been included in the allowances for horses, carts, ploughs, harness, wheelbarrows, steam-shovels, etc. Trautwine estimates $\frac{1}{4}$ c. per cubic yard for picks and shovels. Depreciation is generally a large percentage of the cost of earth-working tools, the life of all being limited to a few years, and of many tools to a few months.
114. Item 7. Superintendence and Incidentals. The incidentals include water-carriers, trimming cuts to grade, digging the side ditches, trimming up the sides of borrow-pits to prevent their becoming unsightly, etc. These last operations yield but little earth and cost far more than the price paid per cubic yard. Morris allows 1 c. per cubic yard for this item; Trautwine
allows $1 \frac{3}{4}$ to 2 c . for it; while others combine items 6 and 7 and call them 5% of the total cost, which method has the merit of making the cost of items 6 and 7 a function of the character of soil and length of lead.
115. Item 8. Contractor's Profit. This is usually estimated at from 6 to 15%, according to the sharpness of the competition and the possible uncertainty as to true cost owing to unfavorable circumstances. The contractor's real profit may vary considerably from this. He often pays clerks, boards and lodges the laborers in shanties built for the purpose, or keeps a supply-store, and has varions other items both of profit and expense. His profit is largely dependent on skill in so handling the men that all can work effectively without interference or delays in waiting for others. An unusual season of bad weather will often affect the cost very serionsly. It is a common occurrence to find that two contractors may be working on the same kind of material and under precisely similar conditions and at the same price, and yet one may be making money and the other losing it-all on account of difference of management.
116. Limit of profitable haul. As intimated in $\S \S 103$ and 110 , there is with every method of haul a limit of distance beyond which the expense for excessive hauling will exceed the loss resulting from borrowing and wasting. This distance is somewhat dependent on local conditions, thus requiring an independent solution for each particular case, but the general principles involved will be about as follows: Assume that it has been determined, as in Fig. 62, that the cut and fill will exactly balance between two points, as between e and x, assuming that, as indicated in $\S 101$ (9), a trestle has been introduced between s and t, thus altering the mass curve to Estxn . . . Since there is a balance between A^{\prime} and C^{\prime}, the material for the fill between C^{\prime} and ϵ^{\prime} must be obtained either by " borrowing " in the immediate neighborhood or by transportation from the excavation between z^{\prime} and n^{\prime}. If cut and fill have been approximately balanced in the selection of grade line, as is ordinarily done, borrowing material for the fill $C^{\prime} e^{\prime}$ implies a wastage of material
at the cut $z^{\prime} n^{\prime}$. To compare the two methods, we may place against the plan of borrowing and wasting, (a) cost, if any, of extra right of way that may be needed from which to obtain earth for the fill $C^{\prime} e^{\prime}$; (b) cost of loosening, loading, hauling a distance equal to that between the centers of gravity of the borrow-pit and of the fill, and the other expenses incidental to borrowing M cubic yards for the fill $C^{\prime} e^{\prime}$; (c) cost of loosening, loading, hauling a distance equal to that between the centers of gravity of the cut $z^{\prime} n^{\prime}$ and of the spoil-bank, and the other expenses incidental to wasting M cubic yards at the cut $a^{\prime} n^{\prime}$; (d) cost, if any, of land needed for the spoil-bank. The cost of the other plan will be the cost of loosening, loading, hauling (the hanling being represented by the trapezoidal figure Cexn), and the other expenses incidental to making the fill $C^{\prime} e^{\prime}$ with the material from the cut $z^{\prime} n^{\prime}$, the amount of material being M cubic yards, which is represented in the figure by the vertical ordinate from e to the line C_{n}. The difference between these costs will be the cost, if any, of land for borrow-pit and spoil-bank plus the cost of lcosening, loading, etc. (except hauling and roadways) of M cubic yards, minus the difference in cost of the excessive haul from $C e$ to $x n$ and the comparatively short hauls from borrow-pit and to spoil-bank.

As an illustration, taking some of the estimates previously given for operating with average material, the cost of all items, except hauling and roadways, would be about as follows: loosening, with plongh, 1.2 c., loading $5.0 \mathrm{c} .$, spreading 1.5 c ., wear, depreciation, etc., . 25 c., superintendence, etc., 1.5 c.; total 8.95 c. Suppose that the haul for both borrowing and wasting averages 100 feet or 1 station. Then the cost of haul per yard, using carts, would be $(\$ 109$, a) $[125 \times 3(1+4)] \div$ $600=3.125 \mathrm{c}$. The cost of roadways would be about 0.1 c . per yard, making a total of 3.225 c. per cubic yard. Assume $M=10000$ cubic yards and the area Cexn $=180000$ yardsstations or the equivalent of 10000 yards hanled 1800 feet. This haul would cost $[125 \times 3(18+4)] \div 600=13.75$ c. per cubic yard. The cost of roadways will be $18 \times .1$ or 1.8 c.,
making a total of 15.55 c. for hauling and roadways. The difference of cost of hauling and roadways will be $15.5 \check{5}$ $(2 \times 3.225)=9.10$.c. per yard or $\$ 910$ for the 10000 yards. Offsetting this is the cost of loosening, etc., 10000 yards, at 8.95 c., costing $\$ 895$. These figures may be better compared as follows:

These costs are practically balanced, but no allowance has been made for right of way. If any considerable amount had to be paid for that, it would decide this particular case in favor of the long haul. This shows that under these conditions 1800 feet is about the limit of profitable hanl, the land costing nothing extra.

BLASTING.

117. Explosives. The effect of blasting is due to the extremely rapid expansion of a gas which is developed by the decomposition of a very small amount of solid matter. Blasting compounds may be divided into two general classes, (a) slowburning and (b) detonating. Gunpowder is a type of the slowburning compounds. These are generally ignited by heat; the ignition proceeds from grain to grain; the heat and pressure produced are comparatively low. Nitro-glycerine is a type of the detonating compounds. They are exploded by a shock which instantaneously explodes the whole mass. The heat and pressure developed are far in excess of that produced by the explosion of powder. Nitro-glycerine is so easily exploded that it is very dangerous to handle. It was discovered that if the nitro-glycerine was absorbed by a spongy material like infu-
sorial earth, it was much less liable to explode, while its power when actually exploded was practically equal to that of the amount of pure nitro-glycerine contained in the dynamite, which is the name given to the mixture of nitro-glycerine and infusorial earth. Nitro-glycerine is expensive; many other explosive chemical compounds which properly belong to the slow-burning class are comparatively cheap. It has been conclusively demonstrated that a mixture of nitro-glycerine and some of the cheaper chemicals has a greater explosive force than the sum of the strengths of the component parts when exploded separately. Whatever the reason, the fact seems established. The reason is possibly that the explosion of the nitro-glycerine is sufficiently powerful to produce a detonation of the other chemicals, which is impossible to produce by ordinary means, and that this explosion cansed by detonation is more powerful than an ordinary explosion. The majority of the explosive compounds and "powders" on the market are of this character-a mixture of 20 to 60 per cent. of nitro-glycerine with variable proportions of one or more of a great variety of explosive chemicals.

The choice of the explosive depends on the character of the rock. A hard brittle rock is most effectively blasted by a detonating compound. The rapidity with which the full force of the explosive is developed has a shattering effect on a brittle substance. On the contrary, some of the softer tougher rocks and indurated clays are but little affected by dynamite. The result is but little more than an enlargement of the blast-hole. Quarrying must generally be done with blasting-powder, as the quicker explosives are too shattering. Although the results obtained by various experimenters are very variable, it may be said that pure nitro-glycerine is eight times as powerful as black powder, dynamite (75% nitro-glycerine) six times, and gun-cotton four to six times as powerful. For open work where time is not particularly valuable, black powder is by far the cheapest, but in tumnel-headings, whose progress determines the progress of the whole work, dynamite is so much more effective and so expedites the work that its use becomes economical.
118. Drilling. Although many very complicated forms of drill-bars have been devised, the best form (with slight modifications to suit circumstances) is as shown in Fig. 64, (a) and (b).

Fig. 64.
The width should flare at the bottom (a) about 15 to 30%. For hard rock the curve of the edge should be somewhat flatter and for soft rock somewhat more curved than shown, Fig. 64, (a). Sometimes the angle of the two faces is varied from that given, Fig. 64, (b), and occasionally the edge is purposely blunted so as to give a crushing rather than a cutting effect. The drills will require sharpening for each 6 to 18 inches depth of hole, and will require a new edge to be worked every 2 to 4 days. For drilling vertical holes the churn-drill is the most economical. The drill-bar is of iron, about 6 to 8 feet long, $11_{4}^{\prime \prime}$ in diameter, weighs about 25 to 30 lbs ., and is shod with a piece of steel welded on. The bar is lifted a few inches between each blow, turned partially around, and allowed to fall, the impact doing the work. From 5 to 15 feet of holes, depending on the character of the rock, is a fair day's work- 10 hours. In very soft rocks even more than this may be done. This method is inapplicable for inclined holes or even for vertical holes in confined places, such as tunnel-headings. For such places the only practical hand method is to use hammers. This may be done by light drills and light hammers (one-man work), or by heavier drills held by one man and struck by one or two men with heavy hammers. The conclusion of an exhaustive investigation as to the relative economy of light or heavy hammers is that the light-hammer method is more economical for the softer rocks, the heary-hammer method is more economical for the harder
rocks, but that the light-lammer method is always more expeditious and hence to be preferred when time is important.

The subject of machine rock-drills is too vast to be treated here. The method is only practicable when the amount of work to be done is large, and especially when time is valuable. The machines are generally operated by compressed air for tun-nel-work, thus doing the additional service of supplying fresh air to the tumnel-headings where it is most needed. The cost per foot of hole drilled is quite variable, but is usually somewhat less than that of hand-drilling-sometimes but a small fraction of it.
119. Position and direction of drill-holes. As the cost of drilling holes is the largest single item in the total cost of blasting, it is necessary that skill and judgment should be used in so locating the holes that the blasts will be most effective. The greatest effect of a blast will evidently be in the direction of the " line of least resistance." In a strictly homogeneous material this will be the shortest line from the center of the explosive to the surface. The variations in homogeneity on account of laminations and seams require that each case shall be judged according to experience. In open-pit blasting it is generally easy to obtain two and sometimes three exposed faces to the rock, making it a simple matter to drill holes so that a blast will do effective work. When a solid face of rock must be broken into, as in a tunnel-heading, the work is necessarily ineffectual and expensive. A conical or wedgeshaped mass will first be blown out by simultaneous blasts in the holes marked 1, Fig. 65; blasts in the holes marked 2 and 3 will then complete the cross-section of the heading. A great saving in cost may

drill holes in tunnel heading Fig. 65. often be secured by skilfully taking advantage of seams, breaks, and irregularities. When the work is economically done there is but little noise or throwing of rock,
a covering of old timbers and branches of trees generally sufficing. to confine the smaller pieces which would otherwise fly up.
120. Amount of explosive. The amount of explosive required varies as the cube of the line of least resistance. The best results are obtained when the line of least resistance is $\frac{3}{4}$ of the depth of the hole; also when the powder fills about $\frac{1}{3}$ of the hole. For average rock the amount of powder required is as follows:

Line of least resistance. \qquad Weight of powder \qquad	$\begin{aligned} & 2 \mathrm{ft} . \\ & \frac{1}{4} \mathrm{lb} . \end{aligned}$	$\begin{aligned} & 4 \mathrm{ft} . \\ & 2 \mathrm{lbs} . \end{aligned}$	$\begin{gathered} 6 \mathrm{ft} . \\ 6 \frac{3}{4} \mathrm{lbs} . \end{gathered}$	$\begin{gathered} 8 \mathrm{ft} . \\ 16 \mathrm{lbs} . \end{gathered}$

Strict compliance with all of the above conditions would require that the diameter of the hole should vary for every case. While this is impracticable, there should evidently be some variation in the size of the hole, depending on the work to be done. For example, a $1^{\prime \prime}$ hole, drilled $2^{\prime} 8^{\prime \prime}$ deep, with its line of least resistance 2^{\prime}, and loaded with $\frac{1}{4} \mathrm{lb}$. of powder, would be filled to a depth of $9 \frac{1}{2}{ }^{\prime \prime}$, which is nearly $\frac{1}{3}$ of the depth. A $8^{\prime \prime}$ hole, drilled 8^{\prime} deep, with its line of least resistance 6^{\prime}, and loaded with $6 \frac{3}{4}$ lbs. of powder, would be filled to a depth of over $28^{\prime \prime}$, which is also nearly $\frac{1}{3}$ of the depth. One pound of blasting-powder will occupy about 28 cubic inches. Quarrying necessitates the use of numerous and sometimes repeated light charges of powder, as a heavy blast or a powerful explosive like dynamite is apt to shatter the rock. This requires more powder to the cubic yard than blasting for mere excavation, which may usually be done by the use of $\frac{1}{4}$ to $\frac{1}{3} \mathrm{lb}$. of powder per cubic yard of easy open blasting. On account of the great resistance offered by rock when blasted in headings in tunnels, the powder used per cubic yard will run up to 2,4 , and even 6 lbs. per cubic yard. As before stated, nitroglycerine is about eight times (and dynamite about six times) as powerful as the same weight of powder.
121. Tamping. Blasting-powder and the slow-burning explosives require thorough tamping. Clay is probably the best,
but sand and fine powdered rock are also used. Wooden plugs, inverted expansive cones, etc., are periodically reinvented by enthusiastic inventors, only to be discarded for the simpler methods. Owing to the extreme rapidity of the development of the force of a nitro-glycerine or dynamite explosion, tamping is not so essential with these explosives, although it unquestionably adds to their effectiveness. Blasting under water has been effectively accomplished by merely pouring nitro-glycerine into the drilled holes through a tube and then exploding the charge without any tamping except that furnished by the superincumbent water. It has been found that air-spaces about a charge make a material reduction in the effectiveness of the explosion. It is therefore necessary to carefully ram the explosive into a solid mass. Of course the liquid nitro-glycerine needs no ramming, but dynamite should be rammed with a wooden rammer. Iron should be carefully avoided in ramming gunpowder. A copper bar is generally used.
122. Exploding the charge. Black powder is generally exploded by means of a fuse which is essentially a cord in which there is a thin vein of gunpowder, the cord being protected by tar, extra linings of hemp, cotton, or even gutta-percha. The fuse is inserted into the middle of the charge, and the tamping carefully packed around it so that it will not be injured. To produce the detonation required to explode nitro-glycerine and dynamite, there must be an initial explosion of some easily ignited explosive. This is generally accomplished by means of caps containing fulminating-powder which are exploded by electricity. The electricity (in one class of caps) heats a very fine platinum wire to reduess, thereby igniting the sensitive powder, or (in another class) a spark is caused to jump through the nowder between the ends of two wires suitably separated. Dyıamite can also be exploded by using a small cartridge of gumpowder which is itself exploded by an ordinary fuse.
123. Cost. Trantwine estimates the cost of blasting (for mere excavation) as averaging 45 cents per cubic yard, falling as low as 30 cents for easy but brittle rock, and ruming up to

60 cents and even $\$ 1$ when the cutting is shallow, the rock especially tough, and the strata unfavorably placed. Soft tough rock frequently requires more powder than harder brittle rock.
124. Classification of excavated material. The classification of excavated material is a fruitful source of dispute between contractors and railroad companies, owing mainly to the fact that the variation between the softest earth and the hardest rock is so gradual that it is very difficult to describe distinctions between different classifications which are unmistakable and indisputable. The classification frequently used is (a) earth, (b) loose rock, and (c) solid rock. As blasting is frequently used to loosen "loose rock" and even "earth" (if it is frozen), the fact that blasting is employed cannot be used as a criterion, especially as this would (if allowed) lead to unnecessary blasting for the sake of classifying material as rock.

Earth. This includes clay, sand, gravel, loam, decomposed rock and slate, boulders or loose stones not greater than 1 cubic foot (3 cubic feet, P. R. R.), and sometimes even "hard-pan." In general it will signify material which can be loosened by a plough with two horses, or with which one picker can keep one shoveller busy.

Loose rock. This includes boulders and loose stones of more than one cubic foot and less than one cubic yard; stratified rock, not more than six inches thick, separated by a stratum of clay; also all material (not classified as earth) which may be loosened by pick or bar and which "can be quarried without blasting, although blasting may occasionally be resorted to."

Solid rock includes all rock found in masses of orer one cubic yard which cannot be removed except by blasting.

It is generally specified that the engineer of the railroad company shall be the judge of the classification of the material, but frequently an appeal is taken from his decisions to the courts.
125. Specifications for earthwork. The following specifications, issued by the Norfolk and Western R. R., represent the average requirements. It should be remembered that very strict
specifications invariably increase the cost of the work, and frequently add to the cost more than is gained by improved quality of work.

1. The grading will be estimated and paid for by the cubic yard, and will include clearing and grubbing, and all open excavations, chamels, and embankments required for the formation of the roadbed, and for turnouts and sidings; cutting all ditches or drains about or contiguous to the road; digging the foundation-pits of all culverts, bridges, or walls; reconstructing turnpikes or common roads in cases where they are destroyed or interfered with; changing the course or channel of streams; and all other excavations or embankments connected with or incident to the construction of said Railroad.
2. All grading, except where otherwise specified, whether for cuts or fills, will be measured in the excavations and will be classified under the following heads, viz.: Solid Rock, Loose Rock, Hard-pan, and Earth.

Solid Rock shall include all rock occurring in masses which, in the judgment of the said Engineer Maintenance of Way, may be best remored by blasting.

Loose Rock shall include all kinds of shale, soapstone, and other rock which, in the judgment of the said Engineer Maintenance of Way, can be removed by pick and bar, and is soft and loose enough to be removed without blasting, although blasting may be occasionally resorted to; also, detached stone of less than one (1) cubic yard and more than one (1) cubic foot.

Hard-pan shall consist of tough indurated clay or cemented gravel, which requires blasting or other equally expensive means for its removal, or which cannot be ploughed with less than four horses and a railroad plough, or which requires two pickers to a shoveller, the said Engineer Maintenance of Way to be the judge of these conditions.

Eartir shall include all material of an earthy mature, of whatever name or character, not unquestionably loose rock or hard-pan as above defined.

Powder. The use of powder in cuts will not be considered
as a reason for any other classification than earth, unless the material in the cut is clearly other than earth under the above specifications.
3. Earth, gravel, and other materials taken from the excavations, except when otherwise directed by the said Engineer Maintenance of Way or his assistant, shall be deposited in the adjacent embankment; the cost of removing and depositing which, when the distance necessary to be hauled is not more than sixteen hundred (1600) feet, shall be included in the price paid for the excavation.
4. Extra Haul will be estimated and paid for as follows: whenever material from excavations is necessarily hauled a greater distance than sixteen hundred (1600) feet, there shall be paid in addition to the price of excavation the price of extra haul per 100 feet, or part thereof, after the first 1600 feet; the necessary haul to be determined in each case by the said Engineer Maintenance of Way or his assistant, from the profile and cross-sections, and the estimates to be in accordance therewith.
5. All embankments shall be made in layers of such thickness and carried on in such manner as the said Engineer Maintenance of Way or his assistant may prescribe, the stone and heary materials being placed in slopes and top. And in completing the fills to the proper grade such additional heights and fulness of slope shall be given them, to provide for their settlement, as the said Engineer Maintenance of Way, or his assistant, may direct. Embankments about masonry shall be built at such times and in such manner and of such materials as the said Engineer Maintenance of Way or his assistant may direct.
6. In procuring materials for embankments from without the line of the road, and in wasting materials from cuttings, the place and manner of doing it shall in each case be indicated by the Engineer Maintenance of Way or his assistant; and care must be taken to injure or disfigure the land as little as possible. Borrow-pits and spoil-banks must be left by the Contractor in regular and sightly shape.
7. The lands of the said Railroad Company shall be cleared
to the extent required by the said Engineer Maintenance of Way, or his assistant, of all trees, brushes, $\log s$, and other perishable materials, which shall be destroyed by burning or deposited in heaps as the said Engineer Maintenance of Way, or his assistant, may direct. Large trees must be cut not more than two and one-half (212) feet from the ground, and under embankments less than four (4) feet high they shall be cut close to the ground. All small trees and bushes shall be cut close to the ground.
8. Clearing shall be estimated and paid for by the acre or fraction of an acre.
9. All stumps, roots, logs, and other obstructions shall be grubbed out, and removed from all places where embankments occur less than two (2) feet in height; also, from all places where excavations occur and from such other places as the said Engineer Maintenance of Way or his assistant may direct.
10. Grubbing shall be estimated and paid for by the acre or fraction of an acre.
11. Contractors, when directed by the said Engineer Maintenance of Way or his assistant in charge of the work, will deposit on the side of the road, or at such convenient points as may be designated, any stone, rock, or other materials that they may excavate; and all materials excarated and deposited as above, together with all timber removed from the line of the road, will be considered the property of the Railroad Company, and the Contractors upon the respective sections will be responsible for its safe-keeping until removed by said Railroad Company, or until their work is finished.
12. Contractors will be accountable for the maintenance of safe and convenient places wherever public or private roads are in any way interfered with by them during the progress of the work. They will also be responsible for fences thrown down, and for gates and bars left open, and for all damages occasioned thereby.
13. Temporary bridges and trestles, erected to facilitate the progress of the work, in case of delays at masomry structures
from any cause, or for other reasons, will be at the expense of the Contractor.
14. The line of road or the gradients may be changed in any manner, and at any time, if the said Engineer Maintenance of Way or his assistant shall consider such a change necessary or expedient; but no claim for an increase in prices of excavation or embankment on the part of the Contractor will be allowed or considered unless made in writing before the work on that part of the section where the alteration has been made shall have been commenced. The said Engineer Maintenance of Way or his assistant may also, on the conditions last recited, increase or diminish the length of any section for the purpose of more nearly equalizing or balancing the excavations and embankments, or for any other reason.
15. The roadbed will be graded as directed by the said Engineer Maintenance of Way or his assistant, and in conformity with such breadths, depths, and slopes of cutting and filling as he may prescribe from time to time, and no part of the work will be finally accepted until it is properly completed and dressed off at the required grade.

CHAPTER IV.

TRESTLES.

126. Extent of use. Trestles constitute from 1 to 3% of the length of the average railroad. It was estimated in 1859 that there was then about 2400 miles of single-track railway trestle in the United States, divided among 150,000 structures and estimated to cost about $\$ 75,000,000$. The ammal charge for maintenance, estimated at $\frac{1}{8}$ of the cost, therefore amounted to about $\$ 9,500,000$ and necessitated the annual use of perhaps $300,000,000 \mathrm{ft}$. B.M. of timber. The corresponding figures at the present time must be somewhat in excess of this. The magnitude of this use, which is causing the rapid disappearance of forests, has resulted in endeavors to limit the use of timber for this purpose. Trestles may be considered as justifiable under the following conditions:
a. Permanent trestles.
127. Those of extreme height-then called viaducts and frequently constructed of iron or steel, as the Kinzua viaduct, 302 ft. high.
128. Those across waterways-e.g., that across Lake Pontchartrain, near New Orleans, 22 miles long.
129. Those across swamps of soft deep mud, or across a riverbottom, liable to occasional overflow.
b. Temporary trestles.
130. To open the road for traffic as quickly as possible-often a reason of great financial importance.
131. To quickly replace a more elaborate structure, destroyed
by accident, on a road already in operation, so that the interruption to traffic shall be a minimum.
132. To form an earth embankment with earth brought from a distant point by the train-load, when such a measure would cost less than to borrow earth in the immediate neighborhood.
133. To bridge an opening temporarily and thas allow time to learn the regimen of a stream in order to better proportion the size of the waterway and also to facilitate bringing suitable stone for masonry from a distance. In a new country there is always the double danger of either building a culvert too small, requiring expensive reconstruction, perhaps after a disastrous washout, or else wasting money by constructing the culvert unnecessarily large. Much masonry has been built of a very poor quality of stone because it could be conveniently obtained and because good stone was mobtainable except at a prohibitive cost for transportation. Opening the road for traffic by the use of temporary trestles obviates both of these difficulties.
134. Trestles vs. embankments. Low embankments are very much cheaper than low trestles both in first cost and maintenance. Very high embankments are very expensive to construct, but cost comparatively little to maintain. A trestle of equal height may cost much less to construct, but will be expensive to maintain-perhaps $\frac{1}{8}$ of its cost per year. To determine the height beyond which it will be cheaper to maintain a trestle rather than build an embankment, it wall be necessary to allow for the cost of maintenance. The height will also depend on the relative cost of timber, labor, and earthwork. At the present average values, it will be found that for less heights than 25 feet the first cost of an embankment will generally be less than that of a trestle; this implies that a permanent trestle should never be constructed with a height less than 25 feet except for the reasons given in $\S 126$. The height at which a permanent trestle is certainly cheaper than earthwork is more uncertain. A high grade line joining two hills will invariably imply at least a culvert if an embankment is used. If the culvert is built of masonry, the cost of the embankment will be
so increased that the height at which a trestle becomes economical will be materially reduced. The cost of an embankment increases much more rapidly than the height-with very ligh embankments more nearly as the square of the height-while the cost of trestles does not increase as rapidly as the height. Although local circumstances may modify the application of any set rules, it is probably seldom that it will be cheaper to build an embankment 40 or 50 feet high than to permanently maintain a wooden trestle of that height. A steel viaduct would probably be the best. solution of such a case. These are frequently used for permanent structures, especially when very high. The cost of maintenance is much less than that of wood, which makes the use of iron or steel preferable for permanent trestles unless wood is abnormally cheap. Neither the cost nor the construction of iron or steel trestles will be considered in this chapter.
135. Two principal types. There are two principal types of wooden trestles-pile trestles and framed trestles. The great objection to pile trestles is the rapid rotting of the portion of the pile which is underground, and the difficulty of renewal. The maximum height of pile trestles is about 30 feet, and even this height is seldom reached. Framed trestles have been constructed to a height of considerably over 100 feet. They are frequently built in such a manner that any injured piece may be readily taken out and renewed without interfering with traffic. Trestles consist of two parts-the supports called "bents," and the stringers and floor system. As the stringers and floor system. are the same for both pile and framed trestles, the " bents" are all that need be considered separately.

PILE TRESTLES.

129. Pile bents. A pile bent consists generally of four piles driven into the ground deep enough to afford not only sufficient vertical resistance but also lateral resistance. On top of these piles is placed a borizontal "cap." The caps are fastened to the tops of the piles by methods illustrated in Fig. 66. The
method of fastening shown in each case should not be considered as applicable only to the particular type of pile bent used to illustrate it. Fig. 66 (a and d) illustrates a mortise-joint with a hard-

Fig. 66.
wood pin about $1 \frac{1_{4}^{\prime \prime}}{}$ in diameter. The hole for the pin should be bored separately through the cap and the mortise, and the hole through the cap should be at a slightly higher level than that through the mortise, so that the cap will be drawn down tight when the pin is driven. Occasionally an iron dowel (an iron pin about $1 \frac{1}{2}^{\prime \prime}$ in diameter and about $6^{\prime \prime}$ long) is inserted partly in the cap and partly in the pile. The use of drift-bolts, shown in Fig. 66 (b), is cheaper in first cost, but renders repairs and renewals very troublesome and expensive. "Split caps," shown in Fig. 66 (c), are formed by bolting two half-size strips on each side of a tenon on top of the pile. Repairs are very easily and cheaply made without interference with the traffic and without injuring other pieces of the bent. The smaller pieces are more easily obtainable in a sound condition; the decay of one does not affect the other, and the first cost is but little if any greater than the method of using a single piece. For further discussion, see $\S 136$.

For very light traffic and for a height of about 5 feet three vertical piles will suffice, as shown in Fig. 66 (a). Up to a height of 8 or 10 feet four piles may be used without sway-bracing, as in Fig. 66 (b), if the piles have a good bearing. For heights greater than 10 feet sway-bracing is generally necessary. The outside piles are frequently driven with a batter varying from $1: 12$ to $1: 4$.

Piles are made, if possible, from timber obtained in the vicinity of the work. Durability is the great requisite rather than strength, for almost any timber is strong enough (except as noted below) and will be suitable if it will resist rapid decay. The following list is quoted as being in the order of preference on account of durability:

1. Red cedar	5. White pine	9. White oak	12. Mlack oak
2. Red cypress	6. Redwood	10. Post-oak	13. Hemlock
3. Pitch-pine	7. Elm	11. Red oak	14. Tamarac
4. Yellow pine	8. Spruce		

Red-cedar piles are said to have an average life of 27 years with a possible maximum of 50 years, but the timber is rather weak, and if exposed in a river to flowing ice or driftwood is apt to be injured. Under these circumstances oak is preferable, although its life may be only 13 to 18 years.
130. Methods of driving piles. The following are the principal methods of driving piles:
a. A hammer weighing 2000 to 3000 lbs. or more, sliding in guides, is drawn up by horse-power or a portable engine, and allowed to fall freely.
b. The same as above except that the hammer does not fall freely, but drags the rope and revolving drum as it falls and is thus quite materially retarded. The mechanism is a little more simple, but is less effective, and is sometimes made deliberately deceptive by a contractor by retarding the blow, in order to apparently indicate the requisite resistance on the part of the pile.

The above methods have the advantage that the mechanism is cheap and can be transported into a new country with comparative ease, but the work done is somewhat ineffective and costly compared with some of the more elaborate methods given below.
c. Gunpowder pile-drivers, which automatically explode a cartridge every time the hammer falls. The explosion not only forces the pile down, but throws up the hammer for the next blow. For a given height of fall the effect is therefore doubled. It has been shown by experience, however, that when it is at-
tempted to use such a pile-driver rapidly the mechanism becomes so heated that the cartridges explode prematurely, and the method has therefore been abandoned.
d. Steam pile-drivers, in which the hammer is operated directly by steam: The hammer falls freely a height of about 40 inches and is raised again by steam. The effectiveness is largely due to the rapidity of the blows, which does not allow time between the blows for the ground to settle around the pile and increase the resistance, which does happen when the blows are infrequent. "The hammer-cylinder weighs 5500 lbs., and with 60 to 75 lbs. of steam gives 75 to 80 blows per minute. With 41 blows a large unpointed pile was driven 35 feet into a hard clay bottom in half a minute." Such a driver would cost about $\$ 800$.

The above four methods are those usual for dry earth. In very soft wet or sandy soils, where an unlimited supply of water is available, the water-jet is sometimes employed. A pipe is fastened along the side of the pile and extends to the pilepoint. If water is forced through the pipe, it loosens the sand around the point and, rising along the sides, decreases the side resistance so that the pile sinks by its own weight, aided perhaps by extra weights loaded on. This loading may be accomplished by connecting the top of the pile and the pile-driver by a block and tackle so that a portion of the weight of the pile-driver is continually thrown on the pile.

Excessive driving frequently fractures the pile below the surface and thereby greatly weakens its bearing power. To

Fig. 67. prevent excessive "brooming" of the top of the pile, owing to the action of the hammer, the top should be protected by an iron ring fitted to the top of the pile. The "brooming" not only renders the driving ineffective and hence uneconomical, but vitiates the value of any test of the bearing power of the pile by noting the sinking due to a given weight falling a given distance. If the pile is so soft that brooming is unavoidable, the top should be adzed off
frequently, and especially should it be done just before the final blows which are to test its bearing-power.

In a new country judgment and experience will be required to decide intelligently whether to employ a simple drop-hammer machine, operated by horse-power and easily transported but uneconomical in operation, or a more complicated machine working cheaply and effectively after being transported at greater expense.
131. Pile-driving formulæ. If $R=$ the resistance of a pile, and s the set of the pile during the last blow, w the weight of the pile-hammer, and h the fall during the last blow, then we may state the approximate relation that $R s=w h$, or $R=\frac{w h}{s}$. This is the basic principle of all rational formule, but the maximum weight which a pile will sustain after it has been driven some time is by no means equal to the resistance of the pile during the last blow. There are also many other modifying elements which have been variously allowed for in the many proposed formulæ. The formulæ range from the extreme of empirical simplicity to very complicated attempts to allow properly for all modifying causes. As the simplest rule, specifications sometimes require that the piles shall be driven until the pile will not sink more than 5 inches under five consecutive blows of a 2000 lb ., hammer falling 25 feet. The "Engincering News formula"* gives the safe load as $\frac{2 w h}{s+1}$, in which $w=$ weight of hammer, $h=$ fall in feet, $s=$ set of pile in inches under the last blow. This formula is derived from the above basic formula by calling the safe load $\frac{1}{6}$ of the final resistance, and by adding (arbitrarily) 1 to the final set (s) as a compensation for the extra resistance cansed by the settling of earth around the pile between each blow. This formula is used only for ordinary hammer-driving. When the piles are driven by a steam pile-driver the formula becomes

[^11]safe load $=\frac{2 w h}{s+0.1}$. For the "gunpowder pile-driver," since the explosion of the cartridge drives the pile in with the same force with which it throws the hammer upward, the effect is twice that of the fall of the hammer, and the formula becomes safe load $=\frac{4 w h}{s+0.1}$. In these last two formulæ the constant in the denominator is changed from $s+1$ to $s+0.1$. The constant (1.0 or 0.1) is supposed to allow, as before stated, for the effect of the extra resistance caused by the earth settling around the pile between each blow. The more rapid the blows the less the opportunity to settle and the less the proper value of the constant.

The above formulæ have been given on account of their simplicity and their practical agreement with experience. Many other formulæ have been proposed, the majority of which are more complicated and attempt to take into account the weight of the pile, resistance of the guides, etc. While these elements, as well as many others, have their influence, their effect is so overshadowed by the indeterminable effect of other elements-as, for example, the effect of the settlement of earth around the pile between blows-that it is useless to attempt to employ anything but a purely empirical formula.
132. Pile-points and pile-shoes. Piles are generally sharpened to a blunt point. If the pile is liable to strike boulders, sunken \log, or other obstructions which are liable to turn the point, it is necessary to protect the point by some form of shoe. Several forms in cast iron have been used, also a wrought-iron shoe, having four "straps" radiating from the apex, the straps being nailed on to the pile, as shown in Fig. 68 (b). The cast-iron form shown in Fig. 68 (a) has a base cast around a drift-bolt. The recess on the top of the base receives the bottom of the pile and prevents a tendency to split the bottom of the pile or to force the shoe off laterally.
133. Details of design. No theoretical calculations of the strength of pile bents need be attempted on account of the extreme complication of the theoretical strains, the uncertainty as to the real strength of the timber used, the variability of that strength with time, and the insignificance of the economy that would be possible even if exact sizes could be computed. The piles are generally required to be not less than $10^{\prime \prime}$ or $12^{\prime \prime}$ in diameter at the large end. The P. R. R. requires that they shall be " not less than 14 and τ inches in diameter at butt and small end respectively, exclusive of bark, which must be removed." The removal of the bark is generally required in good work. Soft durable woods, such as are mentioned in $\S 129$, are best for the piles, but the caps are generally made of oak or yellow pine. The eaps are generally 14 feet long (for single track) with a cross-section $12^{\prime \prime} \times 12^{\prime \prime}$ or $12^{\prime \prime} \times 14^{\prime \prime}$. "Split caps" would consist of two pieces $6^{\prime \prime} \times 12^{\prime \prime}$. The sway-braces, never used for less heights than 6^{\prime}, are made of $3^{\prime \prime} \times 12^{\prime \prime}$ timber, and are spiked on with $\frac{3^{\prime \prime}}{8}$ spikes $S^{\prime \prime}$ long. The floor system will be the same as that described later for framed trestles.
134. Cost of pile trestles. The cost, per linear foot, of piling depends on the method of driving, the scarcity of suitable timber, the price of labor, the length of the piles, and the amount of shifting of the pile-driver required. The cost of soft-wood piles varies from 8 to 15 c . per lineal foot, and the cost of oak piles varies from 10 to 30 c. per foot according to the lengtl, the longer piles costing more per foot. The cost of driving will average about $\$ 2.50$ per pile, or 7.5 to 10 c. per lineal foot. Since the cost of shifting the pile-driver is quite an item in the total cost, the cost of driving a long pile would be less per foot than for a short pile, but on the other hand the cost of the pile. is greater per foot, which tends to make the total cost per foot constant. Specifications generally say that the piling will be paid for per lineal foot of piling left in the work. The wastage of the tops of piles sawed off is always something, and is frequently very large. Sometimes a small amount per foot of piling sawed off is allowed the contractor as compensation for
his loss. This reduces the contractor's risk and possibly reduces his bid by an equal or greater amount than the extra amount actually paid him.

FRAMED TRESTLES.
135. Typical Design. A typical design for a framed trestle bent is given in Fig. 69. This represents, with slight variations of detail, the plan according to which a large part of the framed

Fig. 69.
trestle bents of the country have been built-i.e., of those less than 20 or 30 feet in height, not requiring multiple-story construction.
136. Joints. (a) The mortise-and-tenon joint is illustrated in Fig. 69 and also in Fig. 66 (a). The tenon should be about $3^{\prime \prime}$ thick, $8^{\prime \prime}$ wide, and $5 \frac{1^{\prime \prime}}{}$ long. The mortise should be cut a little deeper than the tenon. "Drip-holes" from the mortise

Fig. 70. to the outside will assist in draining off water that may accumulate in the joint and thus prevent the rapid decay that would otherwise ensue. These joints are very troublesome if a single post decays and requires renewal. It is generally required that the mortise and tenon should be thoroughly daubed with paint before putting them together. This will tend to
make the joint water-tight and prevent decay from the accumulation and retention of water in the joint.
(b) The plaster joint. This joint is made by bolting and spiking a $3^{\prime \prime} \times 12^{\prime \prime}$ plank on both sides of the joint. The cap and sill should be notched to receive the posts. Repairs are greatly facilitated by the use of these joints. This method has been used by the Delaware and Hud-

Fig. 71. son Canal Co. [R. R.].
(c) Iron plates. An iron plate of the form shown in Fig. 72 (b) is bent and used as shown in Fig. 72 (a). Bolts passing through
 the bolt-holes shown secure the plates to the timbers and make a strong joint which may be readily loosened for repairs. By slight modifications in the design the method may be used for inelined posts and complicated joints.
(d) Split caps and sills. These Fig. 7. are described in $\$ 129$. Their advantages apply with even greater force to framed trestles.
(e) Dowels and drift-bolts. These joints facilitate cheap and rapid construction, but renewals and repairs are very difficult, it being almost impossible to extract a drift-bolt which has been driven its full length without splitting open the pieces containing it. Notwithstanding this objection they are extensively used, especially for temporary work which is not expected to be used long enough to need repairs.
137. Multiple-story construction. Single-story framed trestle bents are used for heights up to 18 or 20 feet and exceptionally up to 30 feet. For greater heights some such construction as is illustrated in a skeleton design in Fig. 73 is used. By using split sills between each story and separate vertical and batter posts in each story, any piece may readily be remored and
renewed if necessary. The height of these stories varies, in

Fig. 73. different designs, from 15 to 25 and even 30 feet. In some designs the structure of each story is independent of the stories above and below. This greatly facilitates both the original construction and subsequent repairs. In other designs the verticals and batterposts are made continuous through two consecutive stories. The structure is somewhat stiffer, but is much more dificult to repair.

Since the bents of any trestle are usually of variable height and those heights are not always an even multiple of the uniform height desired for the stories, it becomes necessary to make the upper stories of uniform height and let

Fig. 74.
the odd amount go to the lowest story, as shown in Figs. 73 and 74 .
138. Span. The shorter the span the greater the number of trestle bents; the longer the span the greater the required strength of the stringers supporting the floor. Economy demands the adoption of a span that shall make the sum of these requirements a minimum. The higher the trestle the greater the cost of each bent, and the greater the span that would be justifiable. Nearly all trestles have bents of variable height, but the advantage of employing uniform standard sizes is so great that many roads use the same span and sizes of timber not only for the panels of any given trestle, but also for all trestles
regardless of height. The spans generally used vary from 10 to 16 feet. The Norfolk and Western R. R. uses a span of $12^{\prime} 6^{\prime \prime}$ for all single-story trestles, and a span of $25^{\prime \prime}$ for all multiple-story trestles. The stringers are the same in both cases, but when the span is 25 feet, knee-braces are run

Fig. 75.
from the sill of the first story below to near the middle of each set of stringers. These knee-braces are connected at the top by a "straining-beam" on which the stringers rest, thus supporting the stringer in the center and virtually reducing the span about one-half.
139. Foundations. (a) Piles. Piles are frequently used as a foundation, as in Fig. 76, particularly in soft ground, and also for temporary structures. These foundations are cheap, quickly constructed, and are particularly valuable when it is financially necessary to open the road for traffic as soon as possible and with the least expenditure of money; but there is the disadvantage

Fig. 76. of inevitable decay within a few years unless the piles are chemically treated, as will be discussed later. Chemical treatment, however, increases the cost so that such a foundation would often cost more than a foundation of stone. A pile should be driven under each post as shown in Fig. 76.
(b) Mud-sills. Fig. 77 illustrates the use of mud-sills as
 built by the Louisville and Nashville R. R. Eight blocks $12^{\prime \prime} \times 12^{\prime \prime}$ $\times 6^{\prime}$ are used under each bent. When the ground is very soft, two
 additional timbers $\left(12^{\prime \prime} \times 12^{\prime \prime} \times\right.$ length of bent-sill), as shown by the dotted lines, are placed underneath. The number required evidently depends on the nature of the ground.
(c) Stone foundations. Stone foundations are the best and the most expensive. For very high trestles the Norfolk and Western R.R. employs foundations as shown in Fig. 78, the

Fig. 78.
walls being 4 feet thick. When the height of the trestle is 72 feet or less (the plans requiring for 72 ' in height a foundationwall $39^{\prime} 6^{\prime}$ long) the foundation is made continuous. The sill of the trestle should rest on several short lengths of $3^{\prime \prime} \times 12^{\prime \prime}$ plank, laid transverse to the sill on top of the wall.
140. Longitudinal bracing. This is required to give the structure longitudinal stiffness and also to reduce the columnar length of the posts. This bracing generally consists of horizontal "waling-strips" and diagonal braces. Sometimes the braces are placed wholly on the outside posts unless the trestle is very high. For single-story trestles the P. R. R. employs the " laced" system, i.e., a line of posts joining the cap of one bent with the sill of the next, and the sill of that bent with the cap of the next. Some plans employ braces forming an X-in alternate panels. Connecting these braces in the center more than doubles their columnar strength. Diagonal braces, when bolted to posts, should be fastened to them as near the ends of
the posts as possible. The sizes employed vary largely, depending on the clear length and on whether they are expected to act by tension or compression. $3^{\prime \prime} \times 12^{\prime \prime}$ planks are often used when the design would require tensile strength only, and $8^{\prime \prime} \times 8^{\prime \prime}$ posts are often used when compression may be expected.
141. Lateral bracing. Several of the more recent designs of trestles employ diagonal lateral bracing between the caps of adjacent bents. It adds greatly to the stiffness of the trestle and better maintains its alignment. $6^{\prime \prime} \times 6^{\prime \prime}$ posts, forming an X and connected at the center, will answer the purpose.
142. Abutments. When suitable stone for masonry is at hand and a suitable subsoil for a foundation is obtainable without too much excavation, a masoury abutment will be the best. Such an abutment would probably be used when masonry footings for trestle bents were employed ($\S 139, c$).

Another method is to construct a "crib" of 10 " $\times 12$ " timber, laid horizontally, drift-bolted together, securely braced and embedded into the ground. Except for temporary construction such a method is generally objectionable on account of rapid decay.

Another method, used most commonly for pile trestles, and for framed trestles having pile foundations ($\$ 139, a$), is to use a pile bent at such a place that the natural surface on the up-hill side is not far below the cap, and the thrust of the material, filled in to bring the surface to grade, is insignificant. $3^{\prime \prime} \times 12^{\prime \prime}$ planks are placed

Fig. 79. behind the piles, cap, and stringers to retain the filled material.

FLOOR SYSTEMS.

143. Stringers. The general practice is to use two, three, and even four stringers under each rail. Sometimes a stringer
is placed under each guard-rail. Generally the stringers are made of two panel lengths and laid so that the joints alternate. A few roads use stringers of only one panel length, but this practice is strongly condemned by many engineers. The stringers should be separated to allow a circulation of air around them and prevent the decay which would occur if they were placed close together. This is sometimes done by means of $2^{\prime \prime}$ planks, 6^{\prime} to 8^{\prime} long, which are placed over each trestle bent. Several bolts, passing through all the stringers forming a group and through the separators, bind them all into one solid construction. Cast-iron "spools" or washers, varying from 4 " to $\frac{3^{\prime \prime}}{4}$ in length (or thickness), are sometimes strung on each bolt so as to separate the stringers. Sometimes washers are used between the separating planks and the stringers, the object of the separating planks then being to bind the stringers, especially abutting stringers, and increase their stiffness.

The most common size for stringers is $8^{\prime \prime} \times 16^{\prime \prime}$. The Pennsylvania Railroad varies the width, depth, and number of stringers under each rail according to the clear span. It may be noticed that, assuming a uniform load per running foot, both

Clear span.	No. of pieces under each rail.	Width.	Depth.
10 feet	2	8 inches	15 inches
12 "	,	8 "	16 "
14 16	2 3	$\begin{aligned} & 10 \text { " } \\ & 8\end{aligned}$	17

the pressure per square inch at the ends of the stringers (the caps having a width of $12^{\prime \prime}$) and also the stress due to transverse strain are kept approximately constant for the variable gross load on these varying spans.
144. Corbels. A corbel (in trestle-work) is a stick of timber (perhaps two placed side by side), about 3^{\prime} to 6^{\prime} long, placed underneath and along the stringers and resting on the cap. There are strong prejudices for and against their use, and a
corresponding diversity in practice. They are bolted to the stringers and thus stiffen the joint. They certainly reduce the objectionable crushing of the fibers at each end of the stringer, but if the corbel is no wider than the stringers, as is generally the case, the area of pressure between the corbels and the cap is

Fig. 80.
no greater and the pressure per square inch on the cap is no less than the pressure on the cap if no corbels were used. If the corbels and cap are made of hard wood, as is recommended by some, the danger of crushing is lessened, but the extra cost and the frequent scarcity of hard wood, and also the extra cost and labor of using, corbels, may often neutralize the advantages obtained by their use.
145. Guard-rails. These are frequently made of $5^{\prime \prime} \times 8^{\prime \prime}$ stuff, notched $1^{\prime \prime}$ for each tie. The sizes vary up to $8^{\prime \prime} \times 8^{\prime \prime}$, and the depth of notch from $\frac{3}{4}$ " to $1 \frac{1}{2}^{\prime \prime}$. They are generally bolted to every third or fourth tie. It is frequently specified that they shall be made of oak, white pine, or yellow pine. The joints are made over a tie, by halving each piece, as illustrated in Fig. 81. The joints on opposite sides of the trestle should be

-Fig. 81.
"staggered." Some roads fasten every tie to the guard-rail, using a bolt, a spike, or a lag-screw.

Guard-rails were originally used with the idea of preventing the wheels of a derailed truck from rumning off the ends of the ties. But it has been found that an outer guard-rail alone (without an inner guard-rail) becomes an actual element of danger, since it has frequently happened that a derailed wheel has caught
on the outer guard-rail, thus causing the truck to slew around and so produce a dangerous accident. The true function of the outside guard-rail is thus changed to that of a tie-spacer, which keeps the ties from spreading when a derailment occurs. The inside guard-rail generally consists of an ordinary steel rail spiked about 10 inches inside of the rumning rail. These inner guard-rails should be bent inward to a point in the center of the track about 50 feet from the end of the bridge or trestle. If the inner guard-rails are placed with a clear space of 10 inches inside the running rail, the outer guard-rails should be at least $6^{\prime} 10^{\prime \prime}$ apart. They are generally much farther apart than this.
146. Ties on trestles. If a car is derailed on a bridge or trestle, the heavily loaded wheels are apt to force their way between the ties by displacing them unless the ties are closely spaced and fastened. The clear space between ties is generally equal to or less than their width. Occasionally it is a little more than their width. $6^{\prime \prime} \times 8^{\prime \prime}$ ties, spaced $14^{\prime \prime}$ to $16^{\prime \prime}$ from center to center, are most frequently used. The length varies from 9^{\prime} to 12^{\prime} for single track. They are generally notched $\frac{1^{\prime \prime}}{2}$ deep on the under side where they rest on the stringers. Oak ties are generally required even when cheaper ties are used on the other sections of the road. Usually every third or fourth tie is bolted to the stringers. When stringers are placed underneath the guard-rails, bolts are run from the top of the guard-rail to the under side of the stringer. The guard-rails thus hold down the whole system of ties, and no direct fastening of the ties to the stringers is needed.
147. Superelevation of the outer rail on curves. The location of curves on trestles should be avoided if possible, especially when the trestle is high. Serious additional strains are introduced especially when the curvature is sharp or the speed high. Since such curves are sometimes practically unavoidable, it is necessary to design the trestle accordingly. If a train is stopped on a curved trestle, the action of the train on the trestle is evidently vertical. If the train is moving with a considerable velocity, the resultant of the weight and the cen-
trifugal action is a force somewhat inclined from the vertical. Both of these conditions may be expected to exist at times. If the axis of the system of posts is vertical (as illustrated in methods a, b, c, d, and e), any lateral force, such as would be produced by a moving train, will tend to rack the trestle bent. If the stringers are set vertically, a centrifugal force likewise tends to tip them sidewise. If the axis of the system of posts (or of the stringers) is inclined so as to coincide with the pressure of the train on the trestle when the train is moving at its normal velocity, there is no tendency to rack the trestle when the train is moving at that velocity, but there will be a tendency to rack the trestle or twist the stringers when the train is stationary. Since a moving train is usually the normal condition of affairs, as well as the condition which produces the maximum stress, an inclined axis is evidently preferable from a theoretical standpoint; but whatever design is adopted, the trestle should evidently be sufficiently cross-braced for either a moving or a stationary load, and any proposed design must be studied as to the effect of both of these conditions. Some of the various methods of securing the requisite superelevation may be described as follows:
(a) Framing the outer posts longer than the inner posts, so that the cap is inclined at the proper angle; axis of posts vertical. (Fig. 82.) The method requires more work in framing the trestle, but simplifies subsequent track-laying and maintenance, unless it should be found that the superelevation adopted is unsuitable, in which case it could be corrected by one of the other methods given below. The stringers tend to twist when the train is stationary.

Fig. 8?
(b) Notching the cap so that the stringers are at a different elevation. (Fig. 83.) This weakens the cap and requires that all ties shall be notched to a bevelled surface to fit the stringers,
which also weakens the ties. A centrifugal force will tend to

Fig 83. twist the stringers and rack the trestle.
(c) Placing wedges underneath the ties at each stringer. These wedges are fastened with two bolts. Two or more wedges will be required for each tie. The additional number of pieces required for a long curve will be immense, and the work of inspection and keeping the nuts tight will greatly increase the cost of maintenance.
(d) Placing a wedge under the outer rail at each tie. This requires but one extra piece per tie. There is no need of a wedge under the inner tie in order to make the rail normal to the tread. The resulting inward inclination is substantially that produced by some forms of rail-chairs or tie-plates. The spikes (a little longer than usual) are driven through the wedge into the tie. Sometimes "lag-screws" are used instead of spikes. If experience proves that the superelevation is too much or too little, it may be changed by this method with less work than by any other.
(e) Corbels of different heights. When corbels are used (see §144) the required inclination of the floor system may be obtained by varying the depth of the corbels.
(f) Tipping the whole trestle. This is done by placing the trestle on an inclined foundation. If very much inclined, the trestle bent must be secured against the possibility of slipping sidewise, for the slope would be considerable with a sharp curve, and the vibration of a moving train would reduce

Fig. 84. the coefficient of friction to a comparatively small quantity.
(g) Framing the outer posts longer. This case is identical
with case (a) except that the axis of the system of posts is inclined, as in case (f), but the sill is horizontal.

The above-deseribed plans will suggest a great variety of methods which are possible and which differ from the above only in minor details.
148. Protection from fire. Trestles are peculiarly subject to fire, from passing locomotives, which may not only destroy the trestle, but perhaps cause a terrible disaster. This danger is sometimes reduced by placing a strip of galvanized iron along the top of each. set of stringers and also along the tops of the caps. Still greater protection was given on a long trestle on the Louisville and Nashville R. R. by making a solid flooring of timber, covered with a layer of ballast on which the ties and rails were laid as usual.

Barrels of water should be provided and kept near all trestles, and on very long trestles barrels of water should be placed every two or three hundred feet along its lengtl. A place for the barrels may be provided by using a few ties which have an extra length of about four feet, thus forming a small platform, which should be surrounded by a railing. The track-walkers should be held accountable for the maintenance of a supply of water in these barrels, renewals being frequently necessary on account of evaporation. Such platforms should also be provided as refugebays for track-walkers and trackmen working on the trestle. On very long trestles such a platform is sometimes provided with sufficient capacity for a hand-car.
149. Timber. Any strong durable timber may be used when the choice is limited, but oak, pine, or cypress are preferred when obtainable. When all of these are readily obtainable, the various parts of the trestle will be constructed of different kinds of wood-the stringers of long-leaf pine, the posts and braces of pine or red cypress, and the caps, sills, and corbels (if used) of white oak. The use of oak (or a similar hard wood) for caps, sills, and corbels is desirable because of its greater strength in resisting erushing across the grain, which is the critical test for these parts. There is no physiological basis to
the objection, sometimes made, that different species of timber, in contact with each other, will rot quicker than if only one kind of timber is used. When a very extensive trestle is to be built at a place where suitable growing timber is at hand but. there is no convenient sawmill, it will pay to transport a portable sawmill and engine and cut up the timber as desired.
150. Cost of framed timber trestles. The cost varies widely on account of the great variation in the cost of timber. When a railroad is first penetrating a new and undeveloped region, the cost of timber is frequently small, and when it is obtainable from the company's right-of-way the only expense is felling and sawing. The work per M., B. M., is small, considering that a single stick $12^{\prime \prime} \times 12^{\prime \prime} \times 25^{\prime}$ contains 300 feet, B. M., and that sometimes a few hours' work, worth less than $\$ 1$, will finish all the work required on it. Smaller pieces will of course require more work per foot, B. M. Long-leaf pine can be purchased from the mills at from $\$ 8$ to $\$ 12$ per M. feet, B. M., according to the dimensions. To this must be added the freight and labor of erection. The cartage from the nearest railroad to the trestle may often be a considerable item. Wrought iron will cost about 3 c. per pound and cast iron 2 c., although the prices are often lower than these. The amount of iron used depends on the detailed design, but, as an average, will amount to $\$ 1.50$ to $\$ 2$ per 1000 feet, B. M., of timber. A large part of the trestling of the country has been built at a contract price of about $\$ 30$ per 1000 feet, B. M., erected. While the cost will frequently rise to $\$ 40$ and even $\$ 50$ when timber is scarce, it will drop to $\$ 13$ (cost quoted) when timber is cheap.

DESIGN OF WOODEN TRESTLES.

151. Common practice. A great deal of trestling has been constructed without any rational design except that custom and experience have shown that certain sizes and designs are probably safe. This method has resulted occasionally in failures but more frequently in a very large waste of timber. Many railroads

- I MUVId
employ a uniform size for all posts, caps, and sills, and a uniform size for stringers, all regardless of the height or span of the trestle. For repair work there are practical reasons favoring this. "To attempt to run a large lot of sizes would be more wasteful in the end than to maintain a few stock sizes only. Lumber can be bought more cheaply by giving a general order for 'the run of the mill for the season,' or 'a cargo lot,' specifying approximate percentages of standard stringer size, of 12×12-inch stuff, 10×10-inch stuff, etc., and a liberal proportion of 3 - or 4 -inch plank, all lengths thrown in. The 12×12 inch stuff, etc., is ordered all lengths, from a certain specified length up. In case of a wreck, washout, burn-out, or sudden call for a trestle to be completed in a stated time, it is much more economical and practical to order a certain number of carloads of ' trestle stuff' to the ground and there to select piece after piece as fast as needed, dependent only upon the length of stick required. When there is time to make the necessary surveys of the ground and calculations of strength, and to wait for a special bill of timber to be cut and delivered, the use of different sizes for posts in a structure would be warranted to a certain extent." * For new construction, when there is generally sufficient time to design and order the proper sizes, such wastefulness is less excusable, and under any conditions it is both safer and more economical to prepare standard designs which can be made applicable to varying conditions and which will at the same time utilize as much of the strength of the timber as can be depended on. In the following sections will be given the elements of the preparation of such standard designs, which will utilize uniform sizes with as little waste of timber as possible. It is not to be understood that special designs should be made for each individual trestle.

152. Required elements of strength. The stringers of trestles are subject to transverse strains, to crushing across the grain at the ends, and to shearing along the neutral axis. The

[^12]strength of the timber must therefore be computed for all these kinds of stress. Caps and sills will fail, if at all, by crushing across the grain; although subject to other forms of stress, these could hardly cause failure in the sizes usually employed. There is an apparent exception to this: if piles are improperly driven and an uneven settlement subsequently occurs, it may have the effect of transferring practically all of the weight to two or three piles, while the cap is subjected to a severe transverse strain which may cause its failure. Since such action is caused generally by avoidable errors of construction it may be considered as abnormal, and since such a failure will generally occur by a gradual settlement, all danger may be avoided by reasonable care in inspection. Posts must be tested for their columnar strength. These parts form the bulk of the trestle and are the parts which can be definitely designed from known stresses. The stresses in the bracing are more indefinite, depending on indeterminate forces, since the inclined posts take up an unknown proportion of the lateral stresses, and the design of the bracing may be left to what experience has shown to be safe, without involving any large waste of timber.
153. Strength of timber. Until recently tests of the strength of timber have generally been made by testing small, selected, well-seasoned sticks of "clear stuff," free from knots or imperfections. Such tests would give results so much higher than the raguely known strength of large unseasoned "commercial" timber that very large factors of safety were recommendedfactors so large as to detract from any confidence in the whole theoretical design. Recently the U. S. Government has been making a thoroughly scientific test of the strength of full-size timber under various conditions as to seasoning, etc. The work has been so extensive and thorough as to render possible the economical designing of timber structures.

One important result of the investigation is the determination of the great influence of the moisture in the timber and the law of its effect on the strength. It has been also shown that timber soaked with water has substantially the same
strength as green timber, even thongh the timber had once been thoroughly seasoned. Since trestles are exposed to the weather they should be designed on the basis of using green timber. It has been shown that the strength of green timber is very regularly about 55 to 60% of the strength of timber in which the moisture is 12% of the dry weight, 12% being the proportion of moisture usually found in timber that is protected from the weather but not heated, as, e.g., the timber in a barn. Since the moduli of rupture have all been reduced to this standard of moisture (12%), if we take one-eighth of the rupture values, it still allows a factor of safety of about five, even on green timber.

Moduli of rupture for various timbers. [12\% moisture.]
(Condensed from U. S. Forestry Circular, No. 15.)

No.	Species.	Weight per foot. ,	Cross-bending.		Crushing end wise	$\underset{\text { Crush }}{\text { ing }}$ across grailu.	$\begin{aligned} & \text { Shear- } \\ & \text { ing } \\ & \text { aloory } \\ & \text { grain. } \end{aligned}$
			Ultimate Strength.	Modulus of Elasticity.			
1	Long-leaf pine.	38	12600	2070000	8000	1180	r00
2	Cuban	39	13600	2370000	8700	1220	700
3	Short-leaf	32	10100	1680000	6500	960	T00
4	Loblolly	33	11300	2050000	7400	1150	700
5	White	24	7900	1390000	5400	700	400
6	Red	31	9100	1620000	6700	1000	500
7	Spruce	39	10000	1640000	7300	1200	800
8	Bald cypress	29	7900	1290000	6000	800	500
9	White cedar.	23	6300	910000	5200	700	400
10	Douglas spruce	32	\% 900	1680000	5700	800	500
11	White oak.	50	13100	2090000	S500	2200	1000
12	Overcup "	46	11300	1620000	7300	1990	1000
13	Post	50	12300	2030000	7100	3000	1110
14	Cow	46	11500	1610000	7400	1900	900
15	Red	45	11400	1970000	Tav0	2300	1100
16	Texan	46	13100	1860000	8100	2000	900
19	Willow	45	10400	1750000	T200	1600	900
20	Spanish "	46	12000	1930000	\% 700	1800	900
21	Shagbark hickory.	51	16000	2390000	9500	2.00	1100
27	Pignut "	56	18700	2730000	10900	3200	1200
28	White elm	34	10300	1540000	6500	1200	S00
29	Cedar.	46	13500	1700000	8000	2100	1300
30	White ash	39	10800	1640000	T200	1900	1100

AVERAGE SAFE ALLOWABLE WORKING UNIT STRESSES, IN POUNDS, PER SQUARE INCH. RECOMMENDED BY THE COMMITTEE ON "STRENGTH OF BRIDGE AND TRESTLE TION, NEW ORLEANS, OCTOBER, 1895.)

On page 177 there are quoted the values taken from the U. S. Government reports on the strength of timber, the tests probably being the most thorough and reliable that were ever made.

On page 178 are given the "average safe allowable working unit stresses in pounds per square inch," as recommended by the committee on "Strength of Bridge and Trestle Timbers," the work being done under the auspices of the Λ ssociation of Railway Superintendents of Bridges and Buildings. The report was presented at their fifth annual convention, held in New Orleans, in October, 1895.
154. Loading. As shown in § 138, the span of trestles is always small, is generally 14 feet, and is never greater than $1 \mathrm{~s}^{\prime}$ except when supported by knee-braces. The greatest load that will ever come on any one span will be the coneentrated loading of the drivers of a consolidation locomotive. With spans of 14 feet or less it is impossible for even the four pairs of drivers to be on the same span at once. The weight of the rails, ties, and guard-rails should be added to obtain the total load on the stringers, and the weight of these, plus the weight of the stringers, should be added to obtain the pressure on the eaps or corbels. This dead load is almost insignificant compared with the live load and may be included with it. The weight of rails, ties, etc., may be estimated at 200 pounds per foot. To obtain the weight on the caps the weight of the stringers must be added, which depends on the design and on the weight per cubic foot of the wood employed. But as the weight of the stringers is comparatively small, a considerable percentage of variation in weight will have but an insignificant effect on the result. Disregarding all refinements as to actual dimensions, the ordinary maximum loading for standard gange railroads may be taken as that due to four pairs of driving-axles, spaced $5^{\prime} 0^{\prime \prime}$ apart and giving a pressure of 25,000 pounds per axle. This should be increased to 40,000 pounds per axle (same spacing) for the heaviest traffic. On the basis of 25,000 pounds per axle the following results have been computed:

STRESSES ON VARIOUS SPANS DUE TO MOVING LOADS OF 25,000 POUNDS, SPACED $5^{\prime} 0^{\prime \prime}$ APART.

Span in feet.	$\underset{\substack{\text { Max. mom. } \\ \text { ft. } \mathrm{lbs} .}}{\text { a }}$	Max. shear.	Max load on one cap.
10	65000	38500	52100
12	103600	45000	62700
14	14 C 400	49600	74200
16	181400	54725	85700
18	220600	60100	97900

Although the dead load does not vary in proportion to the live load, yet, considering the very small influence of the dead load, there will be no appreciable error in assuming the corresponding values, for a load of $40,000 \mathrm{lbs}$. per axle, to be $\frac{40}{25}$ of those given in the above tabulation.
155. Factors of safety.-The most valuable result of the government tests is the knowledge that under given moisture conditions the strength of various species of sound timber is not the variable uncertain quantity it was once supposed to be, but that its strength can be relied on to a comparatively close percentage. This confidence in values permits the employment of lower factors of safety than have heretofore been permissible. Stresses, which when excessive would result in immediate destruction, such as cross-breaking and columnar stresses, should be allowed a higher factor of safety-say 6 or 8 for green timber. Other stresses, such as crushing across the grain and shearing along the neutral axis, which will be apparent to inspection before it is dangerous, may be allowed lower factors-say 3 to 5 .
156. Design of stringers.-The strength of rectangular beams of equal width varies as the square of the depth; therefore deep beams are the strongest. On the other hand, when any crosssectional dimension of timber much exceeds $12^{\prime \prime}$ the cost is much higher per M., B.M., and it is correspondingly difficult to obtain thoroughly sound sticks, free from wind-shakes, etc. Wind-shakes especially affect the shearing strength. Also, if the required transverse strength is obtained by using high narrow stringers, the area of pressure between the stringers and the
cap may become so small as to induce crushing across the grain. This is a very common defect in trestle design. As already indicated in $\S 13 S$, the span should vary roughly with the average height of the trestle, the longer spans being employed when the trestle bents are very ligh, although it is usual to employ the same span throughout any one trestle.

To illustrate, if we select a span of 14 feet, the load on one cap will be $74,200 \mathrm{lbs}$. If the stringers and cap are made of long-leaf yellow pine, which require the closely determined value of 1180 lbs . per square inch to produce a crushing amounting to 3% of the height on timber with 12% moisture, we may use 200 lbs . per square inch as a safe pressure even for green timber; this will require 371 square inches of surface. If the cap is $12^{\prime \prime}$ wide, this will require a width of 31 inches, or say 2 stringers under each rail, each 8 inches wide. For rectangular beams

$$
\text { Moment }=\frac{1}{6} R^{\prime} b h^{2} .
$$

Using for l^{\prime} the safe value 1575 lbs . per square inch, we have

$$
142400 \times 12=\frac{1}{6} \times 1575 \times 32 \times h^{2},
$$

from which $h=15^{\prime \prime} .9$. If desired, the width may be increased to $9^{\prime \prime}$ and the depth correspondingly reduced, which will give similarly $h=14^{\prime \prime} .8$, or say $15^{\prime \prime}$. Thise shows that two beams, $9^{\prime \prime} \times 15^{\prime \prime}$, under each rail will stand the transverse bending and have more than enough area for crushing.

The shear per square inch will equal

$$
\frac{3}{2} \frac{\text { total shear }}{\text { cross section }}=\frac{3}{2} \frac{49600}{4 \times 9 \times 15}=138 \mathrm{lbs} . \text { per sq. inch, }
$$

which is a safe value, although it should preferably be less. Hence the above combination of dimensions will answer.

The deflection should be computed to see if it exceeds the
somewhat arbitrary standard of $\frac{1}{200}$ of the span. The deflection for uniform loading is

$$
\Delta=\frac{5 W l^{5}}{32 b h^{3} E^{\prime}},
$$

in which $\quad l=$ length in inches;
$W=$ total load, assumed as uniform;
$E=$ modulus of elasticity, given as $2,070,000 \mathrm{lbs}$.
per sq. in. for long-leaf pine, 12% dry, and assumed to be $1,200,000$ for green timber. Then

$$
\begin{gathered}
\Delta=\frac{5 \times 72800 \times 168^{3}}{32 \times 36 \times 15^{3} \times 1200000}=0^{\prime \prime} .37 \\
\frac{1}{200} \times 168^{\prime \prime}=0^{\prime \prime} .84,
\end{gathered}
$$

so that the calculated deflection is well within the limit. Of course the loading is not strictly uniform, but even with a liberal allowance the deflection is still safe.

For the heaviest practice (40000 lbs . per axle) these stringer dimensions must be correspondingly increased.
157. Design of posts. Four posts are generally used for single-track work. The inner posts are usually braced by the cross-braces, so that their columnar strength is largely increased; but as they are apt to get more than their share of work, the advantage is compensated and they should be treated as unsupported columns for the total distance between cap and sill in simple bents, or for the height of stories in multiple-story construction. The caps and sills are assumed to have a width of $12^{\prime \prime}$. It facilitates the application of bracing to have the columns of the same width and vary the other dimension as required.

Unfortunately the experimental work of the U. S. Government on timber testing has not yet progressed far enough to establish unquestionably a general relation between the strength of long columns and the crushing strength of short blocks. The
following formula has been suggested, but it cannot be considered as established:

$$
f=F \times \frac{700+15 c}{700+15 c+c^{2}}, \quad \text { in which }
$$

$f=$ allowable working stress per sq. in. for long columns;
$F=$ ، " " ، " ، " " short blocks;
$c=\frac{l}{d} ;$
$l=$ length of column in inches;
$d=$ least cross-sectional dimension in inches.
Enough work has been done to give great reliability to the two following formulæ for white pine and yellow pine, quoted from Johnson's " Materials of Construction," p. 684:

Working load per sq. in. $=p=1000-\frac{1}{4}\left(\frac{l}{l}\right)^{2}$, long-leaf pine;

$$
\because \quad \text { " } \quad \text { ، }=p=600-\frac{1}{8}\left(\frac{l}{h}\right)^{2} \text {, white pine; }
$$

in which $l=$ length of column in inches, and
$h=$ least cross-sectional dimension in inches.
The frequent practice is to use $12^{\prime \prime} \times 12^{\prime \prime}$ posts for all trestles. If we substitute in the above formula $l=20^{\prime}=240^{\prime \prime}$ and $h=12^{\prime \prime}$, we have $p=1000-\frac{1}{4}\left(\frac{240}{12}\right)^{2}=900 \mathrm{lbs}$.
$900 \times 144=129600 \mathrm{lbs}$., the working load for each post. This is more than the total load on one trestle bent and illustrates the usual great waste of timber. Making the post $8^{\prime \prime} \times 12^{\prime \prime}$ and calculating similarly, we have $p=775$, and the working load per column is $775 \times 96=74400 \mathrm{lbs}$. As considerable must be allowed for "weathering," which destroys the strength of the outer layers of the wood, and also for the dynamic effect of the live load, $8^{\prime \prime} \times 12^{\prime \prime}$ may not be too great,
but it is certainly a safe dimension. $12^{\prime \prime} \times 6^{\prime \prime}$ would possibly prove amply safe in practice. One method of allowing for weathering is to disregard the outer half-inch on all sides of the post, i.e., to calculate the strength of a post one inch smaller in each dimension than the post actually employed. On this basis an $8^{\prime \prime} \times 12^{\prime \prime} \times 20^{\prime}$ post, computed as a $7^{\prime \prime} \times 11^{\prime}$ post, would have a safe columnar strength of 706 lbs . per square inch. With an area of 77 square inches, this gives a working load of 54362 lbs. for each post, or 217448 lbs. for the four posts. Considering that 74200 lbs . is the maximum load on one cap (14 feet span), the great excess of strength is apparent.
158. Design of caps and sills. The stresses in caps and sills are very indefinite, except as to crushing across the grain. As the stringers are placed almost directly over the inner posts, and as the sills are supported just under the posts, the transverse stresses are almost insignificant. In the above case four posts. have an area of $4 \times 12^{\prime \prime} \times 8^{\prime \prime}=384$ sq. in. The total load, 74200 lbs ., will then give a pressure of 193 pounds per square inch, which is within the allowable limit. This one feature might require the use of $8^{\prime \prime} \times 12^{\prime \prime}$ posts rather than $6^{\prime \prime} \times 12^{\prime \prime}$ posts, for the smaller posts, although probably strong enough as posts, would produce an objectionably high pressure.
159. Bracing. Although some idea of the stresses in the bracing could be found from certain assumptions as to windpressure, etc., yet it would probably not be found wise to decrease, for the sake of economy, the dimensions which practice has shown to be sufficient for the work. The economy that would be possible would be too insignificant to justify any risk. Therefore the usual dimensions, given in $\S \S 139$ and 140 , should be employed.

CHAPTER V.

TUNNELS.

SURVEYING.

160. Surface surveys. As tumels are always dug from each end and frequently from one or more intermediate shafts, it is necessary that an accurate surface survey should be made between the two ends. As the natural surface in a locality where a tunnel is necessary is almost invariably very steep and rough, it requires the employment of unusually refined methods of work to avoid inaccuracies. It is usual to run a line on the surface that will be at every point vertically over the center line of the tunnel. Tunnels are generally made straight unless curves are absolutely necessary, as curves add greatly to the cost. Fig. 85 represents roughly a longitudinal section of the

Fig. 85.-Sketcif of Section of the Hoosac Tunnel.
Hoosac Tunnel. Permanent stations were located at A, B, C, D, E, and F, and stone houses were built at A, B, C, and D. These were located with ordinary field transits at first, and then all the points were placed as nearly as possible in one vertical plane by repeated trials and minute corrections, using a very large specially constructed transit. The stations D and F were necessary because E and A were invisible from C and B.

The alignment at A and E having been determined with great accuracy, the true alignment was easily carried into the tunnel.

The relative elevations of A and E were determined with great accuracy. Steep slopes render necessary many settings of the level per unit of horizontal distance and require that the work be unusually accurate to obtain even fair accuracy per unit of distance. The levels are usually re-run many times until the probable error is a very small quantity.

The exact horizontal distance between the two ends of the tunnel must also be known, especially if the tunnel is on a grade. The usual steep slopes and rough topography likzwise render accurate horizontal measurements very difficult. Frequently when the slope is steep the measurement is best obtained by measuring along the slope and allowing for grade. This may be very accurately done by employing two tripods (level or transit tripods serve the purpose very well), setting them up slightly less than one tape-length apart and measuring between horizontal needles set in wooden blocks inserted in the top of each tripod. The elevation of each needle is also observed. The true horizontal distance between two successive positions of the needles then equals the square root of the difference of the squares of the inclined distance and the difference of elevation. Such measurements will probably be more accurate than those made by attempting to hold the tape horizontal and plumbing down with plumb-bobs, because (1) it is practically difficult to hold both ends of the tape truly horizontal; (2) on steep slopes it is impossible to hold the downhill end of a 100 -foot tape (or even a 25 -foot length) on a level with the other end, and the great increase in the number of applications of the unit of measurement very greatly increases the probable error of the whole measurement; (3) the vibrations of a plumb-bob introduce a large probability of error in transferring the measurement from the elevated end of the tape to the ground, and the increased number of such applications of the unit of measurement still further increases the probable error.
161. Surveying down a shaft. If a shaft is sunk, as at S, Fig. S5, and it is desired to dig out the tmmel in both directions from the foot of the shaft so as to meet the headings from the outside, it is necessary to know, when at the bottom of the shaft, the elevation, aligmment, and horizontal distance from each end of the tumnel.

The elevation is generally carried down a shaft by means of a steel tape. This method involves the least number of applications of the unit of measurement and greatly increases the accuracy of the final result.

The horizontal distance from each end may be easily transferred down the shaft by means of a plumb-bob, using some of the precantions described in the next paragraph.

To transfer the alignment from the surface to the botton of a shaft requires the highest skill becanse the shaft is always small, and to produce a line perhaps several thousand feet long in a direction given by two points 6 or 8 feet apart requires that the two points must be determined with extreme accuracy. The eminently successful method adopted in the Hoosac Tumel will be briefly described: Two beams were securely fastened across the top of the shaft (1030 feet deep), the beams being placed transversely to the direction of the tumel and as far apart as possible and yet allow plumb-lines, hung from the intersection of each beam with the tumel center line, to swing freely at the bottom of the shaft. These intersections of the beams with the center line were determined by averaging the results of a large number of careful observations for alignment. Two fine parallel wires, spaced about $\frac{1}{16}{ }^{\prime \prime}$ apart, were then stretched between the beams so that the center line of the tunnel bisected at all points the space between the wires. Plumb-bobs, weighing 15 pounds, were suspended by fine wires beside each cross-beam, the wires passing between the two parallel alignment wires and bisecting the space. The plumbbobs were allowed to swing in pails of water at the bottom. Drafts of air up the shaft required the construction of boxes surrounding the wires. Even these precautions did not suffice
to absolutely prevent vibration of the wire at the bottom through a very small arc. The mean point of these vibrations in each case was then located on a rigid cross-beam suitably placed at the bottom of the shaft and at about the level of the roof of the tunnel. Short plumb-lines were then suspended from these points whenever desired; a transit was set (by trial) so that its line of collimation passed through both plumb lines and the line at the bottom could thus be prolonged.
162. Underground surveys. Survey marks are frequently placed on the timbering, but they are apt to prove unreliable on account of the shifting of the timbering due to settlement of the surrounding material. They should never be placed at the bottom of the tunnel on account of the danger of being disturbed or covered up. Frequently holes are drilled in the roof and filled with wooden plugs in which a hook is screwed exactly on line. Although this is probably the safest method, even these plugs are not always undisturbed, as the material, unless very hard, will often settle slightly as the excavation proceeds. When a tunnel is perfectly straight and not too long, alignment-points may be given as frequently as desired from permanent stations located outside the tunnel where they are not liable to disturbance. This has been accomplished by running the alignment through

FIG. 86. the upper part of the cross-section, at one side of the center, where it is out of the way of the piles of masonry material, débris, etc., which are so apt to choke up the lower part of the cross-section. The position of this line relative to the橓 cross-section being fixed, the alignment of any required point of the cross-section is readily found by means of a light frame or template with a fixed target located where this line would intersect the frame when properly placed. A level-bubble on the frame will assist in setting the frame in its proper position. In all tunnel surveying the cross-wires must be illuminated
by a lantern, and the object sighted at must also be illuminated. A powerful dark-lantern with the opening covered with ground glass has been found useful. This may be used to illuminate a plumb-bob string or a very fine rod, or to place behind a brass plate having a narrow slit in it, the axis of the slit and plate being coincident with the plumb-bob string by which it is hung.

On account of the interference to the surveying caused by the work of construction and also by the smoke and dust in the air resulting from the blasting, it is generally necessary to make the surveys at times when construction is temporarily suspended.
163. Accuracy of tunnel surveying. Apart from the very natural desire to do surveying which shall check well, there is an important financial side to accurate tumel surveying. If the survey lines do not meet as desired when the headings come together, it may be found necessary, if the error is of appreciable size, to introduce a slight curve, perhaps even a reversed curve, into the aligmment, and it is even conceivable that the tumel section would need to be enlarged somewhat to allow for these curves. The cost of these changes and the perpetual amoyance due to an enforced and undesirable alteration of the original design will justify a considerable increase in the expenses of the survey. Considering that the cost of surveys is usually but a small fraction of the total cost of the work, an increase of 10 or even 20% in the cost of the surveys will mean an insignificant addition to the total cost and frequently, if not generally, it will result in a saving of many times the increased cost. The accuracy actually attained in two noted American tunnels is given as follows : The Musconetcong tumnel is about 5000 feet long, bored through a mountain 400 feet high. The error of alignment at the meeting of the headings was $0^{\prime} .04$, error of levels $0^{\prime} .015$, error of distance $0^{\prime} .52$. The Hoosac tumnel is over 25,000 feet long. The heading from the east end met the heading from the central shaft at a point 11274 feet from the east end and 1563 feet from the shaft. The error in alignment was $\frac{5}{16}$ of an inch, that of levels "a few hundredths,"
error of distance "trifling." The alignment, corrected at the shaft, was carried on through and met the heading from the west end at a point 10138 feet from the west end and 2056 feet from the shaft. Here the error of alignment was $\frac{9}{16}{ }^{\prime \prime}$ and that of levels 0.134 ft .

DESIGN.

164. Cross-sections. Nearly all tunnels have cross-sections peculiar to themselves-all varying at least in the details. The general form of a great many tunnels is that of a rectangle surmounted by a semi-circle or semi-ellipse. In very soft material an inverted arch is necessary along the bottom. In such cases the sides will generally be arched instead of vertical. The sides are frequently battered. With very long tunnels, several forms of cross-section will often be used in the same tunnel, owing to differences in the material encountered. In solid rock, which will not disintegrate upon exposure, no lining is required, and the cross-section will be the irregular section left by the blasting, the only requirement being that no rock shall be left within the required cross-sectional figure. Farther on, in the same tumnel, when passing through some very soft treacherous material, it may be necessary to put in a full arch lining-top, sides, and bot-tom-which will be nearly circular in cross-section. For an illustration of this see Figs. 87 and 88.

The width of tunnels varies as greatly as the designs. Singletrack tunnels generally have a width of 15 to 16 feet. Occasionally they have been built 14 feet wide, and even less, and also up to 18 feet, especially when on curves. 24 to 26 feet is the most common width for double track. Many double-track tunnels are only 22 feet wide, and some are 28 feet wide. The heights are generally 19 feet for single track and 20 to 22 feet for double track. The variations from these figures are considerable. The lower limits depend on the cross-section of the rolling stock, with an indefinite allowance for clearance and ventilation. Cross-sections which coincide too closely with what is

Fig. 87.-Huosac 'Iunnel. Section through Solid Rock.

Fig. 88. - Hoosac Tunner Section through Soft Ground.
absolutely required for clearance are objectionable, because any slight settlement of the lining which would otherwise be harmless would then become troublesome and even dangerous. Figs. 87,88 , and 89 * show some typical cross-sections.

Fig. 89.-St. Cloud Tunnel.
165. Grade. A grade of at least 0.2% is needed for drainage. If the tunnel is at the summit of two grades, the tunnel grade should be practically level, with an allowance for drainage, the actual summit being perhaps in the center so as to drain both ways. When the tunnel forms part of a long ascending grade, it is advisable to reduce the grade through the tunnel unless the tunnel is very short. The additional atmospheric resistance and the decreased adhesion of the driver wheels on the damp rails in a tunnel will cause an engine to work very hard and still more rapidly vitiate the atmosphere until the accumulation of poisonous gases becomes a source of actual danger to the engineer and fireman of the locomotive and of extreme discomfort to the passengers. If the nominal ruling grade of the road were maintained through a tunnel, the maximum resistance would be

[^13]
'Sunvel-timbering-Evglish System ($($) .

Tunnel-timbering-English System (b). (To face page $19 \stackrel{\circ}{ }$.)

IUnnel-timbering-ENglisif System (c).

Tunnel-thmbering-Englisif System (d).
(To face page 192.)
found in the tunnel. This would probably cause trains to stall there, which would be objectionable and perhaps dangerous.
166. Lining. It is a characteristic of many kinds of rock and of all earthy material that, although they may be self-sustaining when first exposed to the atmosphere, they rapidly disintegrate and require that the top and perhaps the sides and even the bottom shall be lined to prevent caving in. In this country, when timber is cheap, it is occasionally framed as an arch and used as the permanent lining, but masonry is always to be preferred. Frequently the cross-section is made extra large so that a masonry lining may subsequently be placed inside the wooden lining and thus postpone a large expense until the road is better able to pay for the work. In very soft unstable material, like quicksand, an arch of cut stone voussoirs may be necessary to withstand the pressure. A good quality of briek is occasionally used for lining, as they are easily handled and make good masonry if the pressure is not excessive. Only the best of cement mortar should be used, economy in this feature being the worst of folly. Of course the excavation must include the outside line of the lining. Any excavation which is made outside of this line (by the fall of earth or loose rock or by excessive blasting) must be refilled with stone well packed in. Occasionally it is necessary to fill these spaces with concrete. Of course it is not necessary that the lining be uniform throughout the tunnel.
167. Shafts. Shafts are variously made with square, rectangular, elliptical, and circular cross-sections. The rectangular cross-section, with the longer axis parallel with the tumel, is most usually employed. Generally the shaft is directly over the center of the tunnel, but that always implies a complicated connection between the linings of the tumel and shaft, provided such linings are necessary. It is easier to sink a shaft near to one side of the tumnel and make an opening through the nearly vertical side of the tunnel. Such a method was employed in the Church Hill Tunnel, illustrated in Fig. 90.* Fig. $91+$ shows

[^14]a cross-section for a large main shaft. Many shafts have been built with the idea of being left open permanently for ventilation and have therefore been elaborately lined with masonry.

Fig. 90.-Connection with Shafr, Church Hill Tinnel.

Fig. 91.-Cross-section. Large Main Shaft.
The general consensus of opinion now appears to be that shafts are worse than useless for ventilation; that the quick passage of a train through the tunnel is the most effective ventilator; and that shafts only tend to produce cross-currents and are ineffective to clear the air. In consequence, many of these elaborately lined shafts have been permanently closed, and the more recent

Tunnel-Thibering-Frencif System (a).

Tunnel-timbering - French Sistem (b).
(To face page 194.)

Tunnel thmbering-Belgian System (a).

Tunnel-timbering - Belgian System (b). (To face page 194.)
practice is to close up a shaft as soon as the tunnel is completed. Shafts always form drainage-wells for the material they pass through, and sometimes to such an extent that it is a serious matter to dispose of the water that collects at the bottom, requiring the construction of large and expensive drains.
168. Drains. A tunnel will almost invariably strike veins of water which will promptly begin to drain into the tumel and not only cause considerable tronble and expense during construction, but necessitate the provision of permanent drains for its perpetual disposal. These drains must frequently be so large as to appreciably increase the required cross-section of the tumel. Generally a small open gutter on each side will suffice for this purpose, but in double-track tumnels a large covered drain is often built between the tracks. It is sometimes necessary to thoroughly grout the outside of the lining so that water will not force its way through the masonry and perhaps injure it, but may freely drain down the sides and pass through openings in the side walls near their base into the gutters.

CONSTRUCTION.

169. Headings. The methods of all tunnel excavation depend on the general principle that all earthy material, except the softest of liquid mud and quicksand, will be self-sustaining over a greater or less area and for a greater or less time after excavation is made, and the work consists in excavating some material and immediately propping up the exposed surface by timbering and poling-boards. The excavation of the cross-section begins with cutting out a "heading," which is a small horizontal drift whose breast is constantly kept 15 feet or more in advance of the full cross-sectional excavation. In solid self-sustaining rock, which will not decompose upon exposure to air, it becomes simply a matter of excavating the rock with the least possible expenditure of time and energy. In soft ground the heading must be heavily timbered, and as the heading is gradually enlarged the timbering must be gradually extended
and perhaps replaced, according to some regular system, so that when the full cross-section has been excavated it is supported by such timbering as is intended for it. The heading is sometimes made on the center line near the top; with other plans,

Fig. 92. on the center line near the bottom; and sometimes two simultaneous headings are run in the two lower corners. Headings near the bottom serve the purpose of draining the material above it and facilitating the excavation. The simplest case of heading timbering is that shown in Fig. 92, in which crosstimbers are placed at intervals just under the roof, set in notches cut in the side walls and supporting poling-boards which sustain whatever pressure may come on them. Cross-timbers near the bottom support a flooring on which vehicles for transporting material may be run and under which the drainage may freely escape. As the necessity for timbering becomes greater, side timbers and even bottom timbers must be added, these timbers supporting poling-boards, and even the breast of the heading must be protected by boards suitably braced, as shown in Fig. 93. The

Fig 93 -Timbering for Tunnel Heading.
supporting timbers are framed into collars in such a manner that added pressure only increases their rigidity.
170. Enlargement. Enlargement is accomplished by removing the poling-boards, one at a time, excavating a greater or less

Tunnel thimeming-German System (a).

Tunnel-timbering-German System (b).
(To face page 196.)

PLaTE VII.

'I'unnel-timbering-German System (c).

Tunnel-Timbering-Germin System (d)
(To face page 196.)
amount of material, and immediately supporting the exposed material with poling-boards suitably braced. (See Figs. 93 and 94.) This work being systematically done, space is thereby

Fig. 94.
obtained in which the framing for the full cross-section may be gradually introduced. The framing is constructed with a crosssection so large that the masonry lining may be constructed within it.
171. Distinctive features of various methods of construction. There are six general systems, known as the English, German, Belgian, French, Austrian, and American. They are so named from the origin of the methods, although their use is not confined to the countries named. Fig. 95 shows by numbers (1 to 5) the order of the excavation within the cross-sections. The English, Austrian, and American systems are alike in excavating the entire cross-section before beginning the construction of the masonry lining. The German method leaves a solid core (5) until practically the whole of the lining is complete. This has the disadvantage of extremely cramped quarters for work, poor ventilation, etc. The Belgian and French methods agree in excavating the upper part of the section, building the arch at once, and supporting it temporarily until the side walls are built. The Belgian method then takes out the core (3), removes very short sections of the sides (4), immediately underpinning the arch with short sections of the side walls and thus gradually constructing the whole side wall. The French method digs out the sides (3), supporting the areh temporarily with timbers and
then replacing the timbers with masonry; the core (4) is taken out last. The French method has the same disadvantage as the German-working in a cramped space. The Belgian and French systems have the disadvantage that the arch, supported temporarily on timber, is very apt to be strained and cracked by the slight settlement that so frequently occurs in soft material. The English, Austrian, and American methods differ mainly in the

Fig. 95.-Order of Working by the Various Systems.
design of the timbering. The English support the roof by lines of very heavy longitudinal timbers which are supported at comparatively wide intervals by a heavy framework occupying the whole cross-section. The Austrian system uses such frequent cross-frames of timber-work that poling-boards will suffice to support the material between the frames. The American system agrees with the Austrian in using frequent cross-frames supporting poling-boards, but differs from it in that the " crossframes " consist simply of arches of 3 to 15 wooden voussoirs, the voussoirs being blocks of $12^{\prime \prime} \times 12^{\prime \prime}$ timber about 2 to 8 feet long and cut with joints normal to the arch. These arches are put together on a centering which is removed as soon as the arch

Tunnel-timbering-Acstrian Systen (q) 。

Tunnel-timbering-Austrian Sistem (b).

Tunnel-timbering-Austrian System (c). (To face page 198.)

PLATE IN.

Tunnel-timbering-Austrian System (d).

Tunnel-timbering-Austrian Sistem (e).
(To face page 198.)

PLATE X.

Tunnel-thmbering-Austrian System (f).

Tunnel.timbering-Austrian System (g) .
(To face page 198)
is keyed up and thus immediately opens up the full cross-section, so that the center core (4) may be immediately dug out and the masonry constructed in a large open space. The American system has been used successfully in very soft ground, but its advantages are greater in loose rock, when it is much cheaper than the other methods which employ more timber. Fig. 90 illustrates the use of the American system. The figure shows the wooden arch in place. The masonry arch may be placed when convenient, since it is possible to lay the track and commence traftic as soon as the wooden arch is in place. Plates II to XIV illustrate the methods of excavating and timbering by these rarious systems.
172. Ventilation during construction. Tunnels of any great length must be artificially ventilated during construction. If the excavated material is rock so that blasting is necessary, the need for ventilation becomes still more imperative. The invention of compressed-air drills simultaneously solved two difficulties. It introduced a motive power which is unobjectionable in its application (as gas would be), and it also furnished at the same time a supply of just what is needed-pure air. If no blasting is done (and sometimes even when there is blasting), air must be supplied by direct pumping. The cooling effect of the sudden expansion of compressed air only reduces the otherwise objectionably high temperature sometimes found in tunnels. Since pure air is being continually pumped in, the foul air is thereby forced out.
173. Excavation for the portals. Under normal conditions there is always a greater or less amount of open cut preceding and following a tunnel. Since all tunnel methods depend (to some slight degree at least) on the capacity of the exposed material to act as an areh, there is implied a considerable thickness of material above the tunnel. This thickness is reduced to nearly zero over the tumnel portals and therefore requires special treatment, particularly when the material is very soft. Fig. 96 *

[^15]illustrates one method of breaking into the ground at a portal. The loose stones are piled on the framing to give stability to the framing by their weight and also to retain the earth on the slope above. A nother method is to sink a temporary shaft to the tumnel near the portal; immediately enlarge to the full size and build the masoury lining; then work back to the portal.

Fig. 96.-Timbering for Tunnel Portal.
This method is more costly, but is preferable in very treacherous ground, it being less liable to cause landslides of the surface material.
174. Tunnels vs. open cuts. In cases in which an open cut rather than a tunnel is a possibility the ultimate consideration is generally that of first cost combined with other financial considerations and annual maintenance charges directly or indirectly connected with it. Even when an open cut may be constructed at the same cost as a tunnel (or perhaps a little cheaper) the tunnel may be preferable under the following conditions:

1. When the soil indicates that the open cut would be liable to landslides.
2. When the open cut would be subject to excessive snowdrifts or avalanches.
3. When land is especially costly or it is desired to run under existing costly or valuable buildings or monuments. When running through cities, tunnels are sometimes constructed as open cuts and then arched over.

PLATE XI.

Phenixville Tunnel. P. S. V. R.R.
(To face page 200.)

PLATE XII.

Pheenixvilile Tunnel. P. S. V. R.R.
(To face page 200 .)

PLATE XIII.

Phenixville Tunnel. P. S. V. R.R.

PLATE XIV.

Longitudinal Section of Poital.
Pigeninville Tunnel. P. S. V. R.R.
(To face page 200.)

These cases apply to tumnels $v s$. open cuts when the alignment is fixed by other considerations than the mere topography. The broader question of excavating tunnels to avoid excessive grades or to save distance or curvature, and similar problems, are hardly susceptible of general analysis except as questions of railway economics and must be treated individually.
175. Cost of tunneling. The cost of any construction which involves such uncertainties as tunneling is very variable. It depends on the material encountered, the amount and kind of timbering required, on the size of the cross-section, on the price of labor, and especially on the reconstruction that may be necessary on account of mishaps.

Headings generally cost $\$ 4$ to $\$ 5$ per cubic yard for excavation, while the remainder of the cross-section in the same tunnel may cost about half as much. The average cost of a large number of tunnels in this country may be seen from the following table: *

Material.	Cost per cubic yard.				Cost per lineal foot.	
	Excavation.		Masonry.		Single.	Double.
	Single.	Double.	Single.	Double.		
Hard rock.	\$5.89	\$5.45	\$12.00	\$ 8.25	\$ 69.76	\$142.82
Loose rock. .	3.12	3.48	9.07	10.41	80.61	119.26
Soft ground.	3.62	4.64	15.00	10.50	135.31	174.42

A considerable variation from these figures may be found in individual cases, due sometimes to unusual skill (or the lack of it) in proseeuting the work, but the figures will generally be sufficiently accurate for preliminary estimates or for the comparison of two proposed routes.

[^16]
CHAPTER VI.

CULVERTS AND MINOR BRIDGES.

176. Definition and object. Although a variable percentage of the rain falling on any section of country soaks into the ground and does not immediately reappear, yet a very large percentage flows over the surface, always seeking and following the lowest channels. The roadbed of a railroad is constantly intersecting these channels, which frequently are normally dry. In order to prevent injury to railroad embankments by the impounding of such rainfall, it is necessary to construct waterways through the embankment through which such rainflow may freely pass. Such waterways, called culverts, are also applicable for the bridging of very small although perennial streams, and therefore in this work the term culvert will be applied to all water-channels passing through a railroad embankment which are not of sufficient magnitude to require a special structural design, such as is necessary for a large masonry arch or a truss bridge.
177. Elements of the design. A well-designed culvert must afford such free passage to the water that it will not "back up" over the adjoining land nor cause any injury to the embankment or culvert. The ability of the culvert to discharge freely all the water that comes to it evidently depends chiefly on the area of the waterway, but also on the form, length, slope, and materials of construction of the culvert and the nature of the approach and outfall. When the embankment is very low and the amount of water to be discharged very great, it sometimes becomes necessary to allow the water to discharge " under a head," i.e.,
with the surface of the water above the top of the culvert. Safety then requires a much stronger construction than would otherwise be necessary to avoid injury to the culvert or embankment by washing. The necessity for such construction should be avoided if possible.

AREA OF THE WATERWAY.

178. Elements involved. The determination of the required area of the waterway involves such a multiplicity of indeterminate elements that any close determination of its value from purely theoretical considerations is a practical impossibility. The principal elements involved are:
a. Rainfall. The real test of the culvert is its capacity to discharge without injury the flow resulting from the extraordinary rainfalls and "cloud bursts" that may occur once in many years. Therefore, while a knowledge of the average anmual rainfall is of very little value, a record of the maximum rainfall during heavy storms for a long term of years may give a relative idea of the maximum demand on the eulvert.
b. Area of watershed. This signifies the total area of country draining into the channel considered. When the drainage area is very small it is sometimes included within the area surveyed by the preliminary survey. When larger it is frequently possible to obtain its area from other maps with a percentage of accuracy sufficient for the purpose. Sometimes a special survey for the purpose is considered justifiable.
c. Character of soil and vegetation. This has a large influence on the rapidity with which the rainflow from a given area will reach the culvert. If the soil is hard and impermeable and the vegetation seant, a heary rain will run off suddenly, taxing the capacity of the culvert for a short time, while a spongy soil and dense regetation will retard the flow, making it more nearly uniform and the maximum flow at any one time much less.
d. Shape and slope of watershed. If the watershed is very long and narrow (other things being equal), the water from the
remoter parts will require so much longer time to reach the culvert that the flow will be comparatively uniform, especially when the slope of the whole watershed is very low. When the slope of the remoter portions is quite steep it may result in the nearly simultaneous arrival of a storm-flow from all parts of the watershed, thus taxing the capacity of the culvert.
e. Effect of design of culvert. The principles of hydraulics show that the slope of the culvert, its length, the form of the cross-section, the nature of the surface, and the form of the approach and discharge all have a considerable influence on the area of cross-section required to discharge a given volume of water in a given time, but unfortunately the combined hydraulic effect of these rarious details is still a very uncertain quantity.
179. Methods of computation of area. There are three possible methods of computation.
(a) Theoretical. As shown above it is a practical impossibility to estimate correctly the combined effect of the great multiplicity of elements which influence the final result. The nearest approach to it is to estimate by the use of empirical formulæ the amount of water which will be presented at the upper end of the culvert in a given time and then to compute, from the principles of hydraulics, the rate of flow through a culvert of given construction, but (as shown in $\S 178, e$) such methods are still very unreliable, owing to lack of experimental knowledge. This method has apparently greater scientific accuracy than other methods, but a little study will show that the elements of uncertainty are as great and the final result no more reliable. The method is most reliable for streams of uniform flow, but it is under these conditions that method (c) is most useful. The theoretical method will not therefore be considered further.
(b) Empirical. As illustrated in § 180, some formulæ make the area of waterway a function of the drainage area, the formula being affected by a coefficient the value of which is estimated between limits according to the judgment. Assuming that the formulæ are sound, their use only narrows the limits of
error, the final determination depending on experience and judgment.
(c) From observation. This method, considered by far the best for permanent work, consists in observing the high-water marks on contracted channel-openings which are on the same stream and as near as possible to the proposed culvert. If the country is new and there are no such openings, the wisest plan is to bridge the opening by a temporary structure in wood which has an ample waterway (see $\S 126, b, 4$) and carefully observe all high-water marks on that opening during the 6 to 10 years which is ordinarily the minimum life of such a structure. As shown later, such observations may be utilized for a close computation of the required waterway. Method (b) may be utilized for an approximate calculation for the required area for the temporary structure, using a value which is intentionally excessive, so that a permanent structure of sufficient capacity may subsequently be constructed within the temporary structure.
180. Empirical formulæ. Two of the best known empirical formulæ for area of the waterway are the following:
(a) Myer's formula:

Area of waterway in square feet $=C \times \sqrt{\text { drainage area in acres }}$, where C is a coefficient varying from 1 for flat country to 4 for mountainous country and rocky ground. As an illustration, if the drainage area is 100 acres, the waterway area should be from 10 to 40 square feet, according to the value of the coefficient chosen. It should be noted that this formula does not regard the great variations in rainfall in various parts of the world nor the design of the culvert, and also that the final result depends largely on the choice of the coefficient.
(b) Talbot's formula:

Area of waterway in square feet $=C \times \sqrt[4]{(\text { drainage area in aeres })^{3}}$. " For steep and rocky ground C varies from $\frac{2}{3}$ to 1 . For rolling agricultural country subject to floods at times of melting snow, and with the length of the valley three or four times its width, C is about $\frac{1}{3}$; and if the stream is longer in proportion to the area, decrease C. In districts not affected by accumulated snow, and
where the length of the valley is several times the width, $\frac{1}{5}$ or $\frac{1}{6}$, or even less, may be used. C should be increased for steep side slopes, especially if the upper part of the valley has a much greater fall than the channel at the culvert. $" *$ As an illustration, if the drainage area is 100 acres the area of waterway should be $C \times 31.6$. The area should then vary from 5 to 31 square feet, according to the character of the country. Like the previous estimate, the result depends on the choice of a coefficient and disregards local variations in rainfall, except as they may be arbitrarily allowed for in choosing the coefficient.
181. Value of empirical formulæ. The fact that these formulæ, as well as many others of similar nature that have been suggested, depend so largely upon the choice of the coefficient shows that they are valuable "more as a guide to the judgment than as a working rule," as Prof. Talbot explicitly declares in commenting on his own formula. In short, they are chiefly valuable in indicating a probable maximum and minimum between which the true result probably lies.
182. Results based on Observation. As already indicated in $\S 179$, observation of the stream in question gives the most reliable results. If the country is new and no records of the flow of the stream during heavy storms has been taken, even the life of a temporary wooden structure may not be long enough to include one of the unusually severe storms which must be allowed for, but there will usually be some high-water mark which will indicate how much opening will be required. The following quotation illustrates this: "A tidal estuary may generally be safely narrowed considerably from the extreme water lines if stone revetments are used to protect the bank from wash. Above the true estuary, where the stream cuts through the marsh, we generally find nearly vertical banks, and we are safe if the faces of abutments are placed even with the banks. In level sections of the country, where the current is sluggish, it is usually safe to encroach somewhat on the

[^17]general width of the stream, but in rapid streams among the hills the width that the stream has cut for itself through the soil should not be lessened, and in ravines carrying mountain torrents the openings must be left very much larger than the ordinary appearance of the banks of the stream would seem to make necessary." *

As an illustration of an observation of a storm-flow through a temporary trestle, the following is quoted: "Having the flood height and velocity, it is an easy matter to determine the volume of water to be taken care of. I have one ten-bent pile trestle 135 feet long and 24 feet high over a spring branch that ordinarily ruus about six cubic inches per second. Last summer during one of our heavy rainstorms (four inches in less than three hours) I visited this place and found by float observations the surface velocity at the highest stage to be 1.9 feet per second. I made a high-water mark, and after the flood-water receded found the width of stream to be 12 feet and an average depth of $2 \frac{3}{4}$ feet. This, with a surface velocity of 1.9 feet per second, would give approximately a discharge of 50 cubic feet, or 375 gallons, per second. Having this information it is easy to determine size of opening required." \dagger
183. Degree of accuracy required. The advantages resulting from the use of standard designs for culverts (as well as other structures) have led to the adoption of a comparatively small number of designs. The practical use made of a computation of required waterway area is to determine which one of several standard designs will most nearly fultill the requirements. For example, if a 24 -inch iron pipe, having an area of 3.14 square feet, is considered to be a little small, the next size (30 -inch) would be adopted; but a 30 -inch pipe has an area of 4.92 square feet, which is 56% larger. A similar result, except that the percentage of difference might not be quite so marked,

[^18]will be found by comparing the areas of consecutive standard designs for stone box culverts.

The advisability of designing a culvert to withstand any storm-flow that may ever occur is considered doubtful. Several years ago a record-breaking storm in New England carried away a very large number of bridges, etc., hitherto supposed to be safe. It was not afterward considered that the design of those bridges was faulty, because the extra cost of constructing bridges capable of withstanding such a flood, added to interest for a long period of years, would be enormonsly greater than the cost of repairing the damages of such a storm once or twice in a century. Of course the element of danger has some weight, but not enough to justify a great additional expenditure, for common prudence would prompt unusual precautions during or immediately after such an extraordinary storm.

PIPE CULVERTS.

184. Advantages. Pipe culverts, made of cast iron or earthenware, are very durable, readily constructed, moderately cheap, will pass a larger volume of water in proportion to the area than many other designs on account of the smoothness of the surface, and (when using iron pipe) may be used very close to the track when a low opening of large capacity is required. Another advantage lies in the ease with which they may be inserted through a somewhat larger opening that has been temporarily lined with wood, without disturbing the roadbed or track.
185. Construction. Permanency requires that the foundation shall be firm and secure against being washed out. To accomplish this, the soil of the trench should be hollowed out to fit the lower half of the pipe, making suitable recesses for the bells. In very soft treacherous soil a foundation-block of concrete is sometimes placed under each joint, or even throughout the whole length. When pipes are laid through a slightly larger timber culvert great care should be taken that the pipes are properly supported, so that there will be no settling nor
development of unusual strains when the timber finally decays and gives way. To prevent the washing away of material around the pipe the ends should be protected by a bulkhead. This is best constructed of masomry (see Fig. 97), although wood is sometimes used for cheap and minor constructions. The joints should be calked, especially when the culvert is liable to run full or when the outflow is impeded and the culvert is liable to be partly or wholly filled during freezing weather. The cost of a calking of clay or even hydraulic cement is insignificant compared with the value of the additional safety afforded. When the grade of the pipe is perfectly uniform, a very low rate of grade will suffice to drain a pipe culvert, but since some unevenness of grade is inevitable through uneven settlement or imperfect construction, a grade of 1 in 20 should preferably be required, although much less is often used. The length of a pipe culvert is approximately determined as follows:

$$
\text { Length }=2 s(\text { deptl of embankment to top of pipe })+(\text { width of roadbed }) \text {, }
$$

in which s is the slope ratio (horizontal to vertical) of the banks. In practice an even number of lengths will be used which will most nearly agree with this formula.
186. Iron-pipe culverts. Simple cast-iron pipes are used in sizes from $12^{\prime \prime}$ to $48^{\prime \prime}$ diameter. These are usually made in lengths of 12 feet with a few lengths of 6 feet, so that any required length may be more nearly obtained. The lightest pipes made are sufficiently strong for the purpose, and even those which would be rejected because of incapacity to withstand pressure may be utilized for this work. In Fig. 97 are shown the standard plans used on the C. C. C. \& St. L. Ry., which may be considered as typical plans.

Pipes formed of east-iron segments have been used up to 12 feet diameter. The shell is then made comparatively thin, but is stiffened by ribs and flanges on the outside. The segments break joints and are bolted together through the flanges. The joints are made tight by the use of a tarred rope, together with neat cement.

187. Tile-pipe culverts. The pipes used for this purpose vary from $12^{\prime \prime}$ to $24^{\prime \prime}$ in diameter. When a larger capacity is required two or more pipes may be laid side by side, but in such a case another design might be preferable. It is frequently specified that "double-strength" or "extra-heavy" pipe shall be used, evidently with the idea that the stresses on a culvertpipe are greater than on a sewer-pipe. But it has been conclusively demonstrated that, no matter how deep the embankment, the pressure cannot exceed a somewhat uncertain maximum, also that the greatest danger consists in placing the pipe so near the ties that shocks may be directly transferred to the pipe without the cushioning effect of the earth and ballast. When the pipes are well bedded in clear earth and there is a sufficient depth of earth over them to avoid direct impact (at least three feet) the ordinary sewer-pipe will be sufficiently strong. "Double-strength" pipe is frequently less perfectly burned, and

Fig. 98.—Standard Vitrified-pipe Culvert. Plant Systen. (1891.)
the supposed extra strength is not therefore obtained. In Fig. 98 are shown the standard plans for vitrified-pipe culverts as used on the "Plant system." Tile pipe is much cheaper than iron pipe, but is made in much shorter lengths and requires much more work in laying and especially to obtain a uniform grade.

BOX CULVERTS.

188. Wooden box culverts. This form serves the purpose of a cheap temporary construction which allows the use of a ballasted roadbed. As in all temporary constructions, the area should be made considerably larger than the calculated area ($\$ 8$ 179-182), not only for safety but also in order that, if the smaller area is demonstrated to be sufficiently large, the permanent construction (probably pipe) may be placed inside without disturbing the embankment. All designs agree in using. heavy timbers ($12^{\prime \prime} \times 12^{\prime \prime}, 10^{\prime \prime} \times 12^{\prime \prime}$, or $8^{\prime \prime} \times 12^{\prime \prime}$) for the side walls, cross-timbers for the roof, every fifth or sixth timber ${ }^{-}$ being notched down so as to take up the thrust of the side walls, and planks for the flooring. Fig. 99 shows some of the standard designs as used by the C., M. \& St. P. Ry.

Fig. 99.-Standard Timber Box Culvert. C., M. \& St. P. Ry. (Feb. 1889.)
189. Stone box culverts. In localities where a good quality of stone is cheap, stone box culverts are the cheapest form of permanent construction for culverts of medium capacity, but their use is decreasing owing to the frequent difficulty in obtaining really suitable stone within a reasonable distance of the culvert. The clear span of the cover-stones varies from 2 to 4 feet. The required thickness of the cover-stones is sometimes. calculated by the theory of transverse strains on the basis of certain assumptions of loading-as a function of the height of the embankment and the unit strength of the stone used. Such a method is simply another illustration of a class of calculations.
which look very precise and beautiful, but which are worse than useless (because misleading) on account of the hopeless uncertainty as to the true value of certain quantities which must be used in the computations. In the first place the true value of the unit tensile strength of stone is such an uncertain and variable quantity that calculations based on any assumed value for it are of small reliability. In the second place the weight of the prism of earth lying directly above the stone, plus an allowance for live load, is by no means a measure of the load on the stone nor of the forces that.tend to fracture it. All earthwork will tend to form an arch above any cavity and thus relieve an uncertain and probably variable proportion of the pressure that might otherwise exist. The higher the embankment the less the proportionate loading, until at some uncertain height an increase in height will not increase the load on the corer-stones. The effect of frost is likewise large, but uncertain and not computable. The usual practice is therefore to make the thickness such as experience has shown to be safe with a good quality of stone, i.e., about 10 or 12 inches for 2 feet span and up to 16 or 18 inches for 4 feet span. The side walls should be carried down deep enough to prevent their being undermined by scour or heaved by frost. The use of cement mortar is also an important feature of first-class work, especially when there is a rapid scouring current or a liability that the culvert will run under a head. In Fig. 100 are shown standard plans for single and double stone box culverts as used on the Norfolk and Western R.R.
190. Old-rail culverts. It sometimes happens (although very rarely) that it is necessary to bring the grade line within 3 or t feet of the bottom of a stream and yet allow an area of 10 or 12 square fect. A single large pipe of sufficient area could not be used in this case. The use of several smaller pipes side by side would be both expensive and inefficient. For similar reasons neither wooden nor stone box culverts could be used. In such cases, as well as in many others where the head-room is not so limited, the plan illustrated in Fig. 101 is a very satisfactory solution of the problem. The old rails, having a length of 8 or

9 feet, are laid close together across a 6 -foot opening. Sometimes the rails are held together by long bolts passing through the webs of the rails. In the plan shown the rails are confined

Fig. 101.-Standard Olddrail Culvert. N. \& W. R.R. (1895.)
by low end walls on each abutment. This plan requires only 15 inches between the base of the rail and the top of the culvert channel. It also gives a continuous ballasted roadbed.

ARCH CULVERTS.

191. Influence of design on flow. The variations in the design of arch culverts have a very marked influence on the cost and efficiency. To combine the least cost with the greatest efficiency, due weight should be given to the following elements: (a) the amount of masonry, (b) the simplicity of the constructive work, (c) the design of the wing walls, (d) the design of the junction of the wing walls with the barrel

Fig. 102.-Types of Culverts.
and faces of the arch, and (e) the safety and permanency of the construction. These elements are more or less antagonistic to each other, and the defects of most designs are due to a lack of proper proportion in the design of these opposing interests. The simplest construction (satisfying elements b and e) is the straight
barrel arch between two parallel vertical head walls, as sketched in Fig. 102, a. From a hydraulic standpoint the design is poor, as the water eddies around the corners, causing a great resistance which decreases the flow. Fig. 102, b, shows a much better design in many respects, but much depends on the details of the design as indicated in elements (b) and (d). As a general thing a good hydraulic design requires complicated and expensive masonry construction, i.e., elements (b) and (d) are opposed. Design 102, c, is sometimes inapplicable because the water is liable to work in behind the masonry during floods and perhaps cause scour. This design uses less masonry than (a) or (b).
192. Example of arch culvert design. In Plate XV is shown the design for an 8 -foot arch culvert according to the standard of the Norfolk and Western R.R. Note that the plan uses the flaring wing walls (Fig. 102, b) on the up-stream side (thus protecting the abutments from scour) and straight wing walls (similar to Fig. 102, c) on the down-stream end. This economizes masonry and also simplifies the constructive work. Note also the simplicity of the junction of the wing walls with the barrel of the arch, there being no re-entrant angles below the springing line of the arch. The design here shown is but one of a set of designs for arches varying in span from 6^{\prime} to 30^{\prime}.

MINOR OPENINGS.

193. Cattle-guards. (a) Pit guards. Cattle-guards will be considered under the head of minor openings, since the oldfashioned plan of pit guards, which are even now defended and preferred by some railroad men, requires a break in the continuity of the roadbed. A pit about three feet deep, five feet long, and as wide as the width of the roadbed, is walled up with stone (sometimes with wood), and the rails are supported on heary timbers laid longitudinally with the rails. The break in the continuity of the roadbed produces a disturbance in the elastic ware rumning through the rails, the effect of which is noticeable at high velocities. The greatest objection, however, lies in the

dangerons consequences of a derailment or a failure of the timbers owing to unobserved decay or destruction by fire-caused perhaps by sparks and cinders from passing locomotives. The very insignificance of the structure often leads to careless in-

Fig. 103.-Pit Cattle-guards. P. R.R.
spection. But if a single pair of wheels gets oft the rails and drops into the pit, a costly wreck is inevitable. The (once) standard design for such a structure on the Pemnsylvania R.R. is shown in Fig. 103.
(b) Surface cattle-guards. These are fastened on top of the ties; the continuity of the roadbed is absolutely unbroken and thus is avoided much of the danger of a bad wreck owing to a possible derailment. The device consists essentially of overlaying the ties (both inside and outside the rails) with a surface on which cattle will not walk. The multitudinous designs for such a surface are varionsly effective in this respect. An objection, which is often urged indiscriminately against all such designs, is the liability that a brake-chain which may happen to be dragging may eatch in the rough bars which are used. The bars are sometimes "home-made," of wood, as shown in Fig. 104. Iron or steel bars are made as shown in Fig. 105. The general construction is the same as for the wooden bars. The
metal bars have far greater durability, and it is claimed that they are more effective in discouraging cattle from attempting to cross.

Fig. 104.-Cattle-guard with Wooden Slats.

Fig. 105.-Merrill-Stevens Steel Cattle-guard.
194. Cattle-passes. Frequently when a railroad crosses a farm on an embankment, cutting the farm into two parts, the railroad company is obliged to agree to make a passageway through the embankment sufficient for the passage of cattle and perhaps even farm-wagons. If the embankment is high enough so that a stone arch is practicable, the initial cost is the only great objection to such a construction; but if an open wooden structure is necessary, all the objections against the old-fashioned cattle-guards apply with equal force here. The avoidance of a grade crossing which would otherwise be necessary is one of the

PLATE XVI.

TYPES OF PLATE GIRDER BRIDGES.

C. M. \& St.P. RY.
(Dec. 1895.)

(To face page 219.)
great compensations for the expense of the construction and maintenance of these structures. The construction is sometimes made by placing two pile trestle bents about 6 to S feet apart, supporting the rails by stringers in the usual way, the special feature of this construction being that the embankments are filled in behind the trestle bents, and the thrust of the embankments is mutually taken up through the stringers, which are notched at the ends or otherwise constructed so that they may take up such a thrust. The designs for old-rail culverts and arch culverts are also utilized for cattle-passes when suitable and convenient, as well as the designs illustrated in the following section.
195. Standard stringer and \mathbf{I}-beam bridges. The advantages of standard designs apply even to the covering of short spans with wooden stringers or with I beams-especially since the methods do not require much vertical space between the rails and the upper side of the clear opening, a feature which is often of prime importance. These designs are chiefly used for culverts or cattle-passes and for crossing over highways-providing such a narrow opening would be tolerated. The plans all imply stone abutments, or at least abutments of sufficient stability to withstand all thrust of the embankments. Some of the designs are illustrated in Plate XVI. The preparation of these standard designs should be attacked by the same general methods as already illustrated in $\S 156$. When computing the required transverse strength, due allowance should be made for lateral bracing, which should be amply provided for. Note particularly the methods of bracing illustrated in Plate XVI. The designs calling for iron (or steel) stringers may be classed as permanent constructions, which are cheap, sate, easily inspected and maintained and therefore a desirable method of construction.

CHAPTER VII.

BALLAST.

196. Purpose and requirements. "The object of the ballast is to transfer the applied load over a large surface; to hold the timber work in place horizontally; to carry off the rain-water from the superstructure and to prevent freezing up in winter; to afford means of keeping the ties truly up to the grade line; and to give elasticity to the roadbed." This extremely condensed statement is a description of an ideally perfect ballast. The value of any given kind of ballast is proportional to the extent to which it fulfills these requirements. The ideally perfect ballast is not necessarily the most economical ballast for all roads. Light traffic generally justifies something cheaper, but a very common error is to use a very cheap ballast when a small additional expenditure would procure a much better ballast which would be much more economical in the long run.
197. Materials. The materials most commonly employed are gravel and broken stone. Burnt clay, cinders, shells, and small coal are occasionally used as ballast when they are especially cheap and convenient or when better kinds are especially expensive. Although it is hardly correct to speak of the natural soil as ballast, yet many miles of cheap railways are "ballasted" with the natural soil, which is then called "mud ballast."

Mud ballast. When the natural soil is gravelly so that rain will drain through it quickly, it will make a fair roadbed for light traffic, but for heavy traffic, and for the greater part of the length of most roads, the natural soil is a very poor material for ballast; for, no matter how suitable the soil might be along
limited sections of the road, it would practically never happen that the soil would be uniformly good throughout the whole length of the road. Considering that a heary rain will in one day spoil the results of weeks of patient "surfacing" with mud ballast, it is seldom economical to use "mud" if there is a gravel-bed or other source of ballast anywhere on the line of the road.

Cinders. The advantages consist in the excellent facilities for drainage, ease of handling, and cheapness-after the road is in operation. One disadvantage is excessive dust in dry weather. Cinders are considered preferable to gravel in yards.

Slag. When slag is readily obtainable it furnishes an excellent ballast, free from dust and perfect in drainage qualities. Some kinds of slag are objectionable on account of their deleterious chemical effect on the ties and spikes-especially on metallic ties.

Shells, small coal, etc. These comparatively inferior kinds of ballast are used for light traffic when they are especially cheap and convenient. They are extremely dusty in dry weather, break up into very fine dust, and are but little better than mud.

Gravel. This is the most common form of ballast which may be called good ballast. In 1885, the Roadmasters Association of America voted in favor of gravel ballast as against rock ballast. Although not so stated, this action was perhaps due to a conviction of its real economy for the average railroad of this country, which may be called a "light traffic" road. Gravel should preferably be screened over a screen having a $\frac{1_{2}^{\prime \prime}}{2}$ mesh, so as to sereen out all dirt and the finest stones. Generally a railroad will be able to find at some point along its line a "gravel-pit" affording a suitable supply. This may be dug out with a steam-shovel, screened if necessary, and sent out over the line by the train-load at a comparatively small cost.

Rock or broken stone. Rock ballast is generally specified to be such as will pass through a $1 \frac{1_{2}^{\prime \prime}}{}$ (or $2^{\prime \prime}$) ring. Although preferably broken by hand, machine-broken stone is much cheaper. It is most easily handled with forks. This also has the effeet of
screening out the dirt and fine chips which would interfere with effectual drainage. Rock ballast is more expensive in first cost, and also more troublesome to handle, than any other kind, but under heavy traffic will keep in surface better and will require less work for maintenance after the ties have become thoroughly bedded. For roads with very light traffic, running few trains, at comparatively low velocities, the advantages of rock ballast over other kinds are not so pronounced. For such roads rock ballast is an expensive luxury. The amount of traffic which will justify the use of rock ballast will depend on the cost of obtaining ballast of the various kinds.
198. Cross-sections. A depth of $12^{\prime \prime}$ under the tie is generally required on the best roads, but for light traffic this is sometimes reduced to $6^{\prime \prime}$ and even less. The width is generally 1 to 2 feet less than the width of the roadbed proper-excluding ditches. If the ballast has an average width of 10 feet (12 feet at bottom and 8 feet at top) and an average depth of 15 inches (including that placed between the ties), it will require 2444 cubic yards per mile of track. The P. R.R. estimates 2500 cubic yards of gravel and 2800 cubic yards of stone ballast per mile of single track. On account of the requirements of drainage the best form of cross-section depends on the kind of ballast used.

Mud ballast. Since the great objection to mud ballast lies in its liability to become soft by soaking up the rain that falls, it becomes necessary that it should be drained as quickly and readily as its nature will permit. Fig. 106 shows a typical

Fig. . 0f.-" Mud" Ballast.
cross-section for mud ballast. It should be crowned $2^{\prime \prime}$ above the top of the tie at the center, thence sloped so as to leave a slight clearance under the rail between the ties, thence sloping: down to the bottom of the tie at each end and continuing to
slope down to the ditch (in cut), which should be $18^{\prime \prime}$ or $20^{\prime \prime}$ below the bottom of the tie.

Gravel, cinders, slag, etc. The subgrade is crowned $6^{\prime \prime}$ or $8^{\prime \prime}$ in the center, as shown in Fig. 107. The ballast is crowned

Fig. 107.-Gravel Ballast.
to the top of the tie in the center, but is sloped down to the bottom of the tie at each end. This is necessary (and more especially so with mud ballast) to prevent a possible accumulation and settlement of water at the ends of the tie, which would readily soak into the end fibers and produce decay.

Broken stone. Stone ballast is shouldered out beyond the ends of the ties so as to afford greater lateral binding. The space between the ties is filled up level with the tops. The

Fig. 108.-Broken Stone Ballast.
perfect drainage of stone ballast permits this to be done without any danger of causing decay of the ties by the accumulation and retention of water.
199. Methods of laying ballast. The cheapest method of laying ballast on new roads is to lay ties and rails directly on the prepared subgrade and run a construction train over the track to distribute the ballast. Then the track is lifted up until sufficient ballast is worked under the ties and the track is properly surfaced. This method, although cheap, is apt to injure the rails by causing bends and kinks, due to the passage of loaded construction trains when the ties are very unevenly and roughly supported, and the method is therefore condemned and prohibited in some specifications. The best method is to draw
in carts. (or on a contractor's temporary track) the ballast that is required under the level of the bottom of the ties. Spread this ballast carefully to the required surface. Then lay the ties and rails, which will then have a very fair surface and uniform support. A construction train can then be run on the rails and distribute sufficient additional ballast to pack around and between the ties and make the required cross-section.

The necessity for constructing some lines at an absolute minimum of cost and of opening them for traffic as soon as possible has often led to the policy of starting traffic when there is little or no ballast-perhaps nothing more than a mere tamping of the natural soil under the ties. When this is done ballast may subsequently be drawn where required by the train-load on flat cars and unloaded at a minimum of cost by means of a "plough." The plough has the same width as the cars and is guided either by a ridge along the center of each car or by short posts set up at the sides of the cars. It is drawn from one end of the train to the other by means of a cable. The cable is sometimes operated by means of a small hoisting-engine carried on a car at one end of the train. Sometimes the locomotive is detached temporarily from the train and is run ahead with the cable attached to it.
200. Cost. The cost of ballast in the track is quite a variable item for different roads, since it depends (a) on the first cost of the material as it comes to the road, (b) on the distance from the source of supply to the place where it is used, and (c) on the method of handling. The first cost of cinder or slag is frequently insignificant. A gravel-pit may cost nothing except the price of a little additional land beyond the usual limits of the right of way. Broken stone will usually cost $\$ 1$ or more per cubic yard. If suitable stone is obtainable on the company's land, the cost of blasting and breaking should be somewhat less than this. The cost of loading the ballast on to trains will be small (per cubic yard) if it is handled with steam-shovels-as in the case of gravel taken from a gravel-pit. Hand-shovelling will cost more. The cost of hauling will depend on the distance
hauled, and also, to a considerable extent, on the limitations on the operation of the train due to the necessity of keeping out of the way of regular trains. There is often a needless waste in this way. The " mud train" is considered a pariah and entitled to no rights whatever, regardless of the large daily cost of such a train and of the necessary gang of men. The cost of broken stone ballast in the track is estimated at $\$ 1.25$ per cubic yard. The cost of gravel ballast is estimated at 60 c . per cubic yard in the track. The cost of placing and tamping gravel ballast is estimated at 20 c . to 24 c . per cubic yard, for cinders 12 c . to 15 c . per cubic yard. The cost of loading gravel on cars, using a steam-shovel, is estimated at 6 c. to 10 c. per cubic yard.*

CHAPTER VIII.

TIES,

AND OTHER FORMS OF RAIL SUPPORT.
201. Various methods of supporting rails. It is necessary that the rails shall be sufficiently supported and braced, so that the gauge shall be kept constant and that the rails shall not be subjected to excessive transverse stress. It is also preferable that the rail support shall be neither rigid (as if on solid rock) nor too yielding, but shall have a uniform elasticity throughout. These requirements are more or less fulfilled by the following methods.
(a) Longitudinals. Supporting the rails thronghout their entire length. This method is very seldom used in this comutry except occasionally on bridges and in terminals when the longitudinals are supported on cross-ties. In $\S 224$ will be described a system of rails, used to some extent in Europe, having such broad bases that they are self-supporting on the ballast and are only connected by tie-rods to maintain the gange.
(b) Cast-iron "bowls" or "pots." These are castings resembling large inverted bowls or pots, having suitable chairs on top for holding and supporting the rails, and tied together with tie-rods. They will be described more fully later (§ 223).
(b) Cross-ties of metal or wood. These will be discussed in the following sections.
202. Economics of ties. The true cost of ties depends on the relative total cost of maintenance for long periods of time. The first cost of the ties delivered to the road is but one item in the
economics of the question. Cheap ties require frequent renewals, which cost for the labor of each renewal practically the same whether the tie is of oak or hemlock. Cheap ties make a poor roadbed which will require more track labor to keep even in tolerable condition. The roadbed will require to be disturbed so frequently on account of renewals that the ties never get an opportunity to get settled and to form a smooth roadbed for any length of time. Irregularity in width, thickness, or length of ties is especially detrimental in causing the ballast to act and wear unevenly. The life of ties has thus a more or less direct influence on the life of the rails, on the wear of rolling stock, and on the speed of trains. These last items are not so readily reducible to dollars and cents, but when it can be shown that the total cost, for a long period of time, of several renewals of cheap ties, with all the extra track labor involved, is as great as or greater than that of a few renewals of durable ties, then there is no question as to the real economy. In the following discussions of the merits of untreated ties (either cheap or costly), chemically treated ties, or metal ties, the true question is therefore of the ultimate cost of maintaining any particular kind of ties for an indefinite period, the cost including the first cost of the ties, the labor of placing them and maintaining them to surface, and the somewhat uncertain (but not therefore nonexistent) effect of frequent renewals on repairs of rolling stock, on possible speed, etc.

WOODEN TIES.

203. Choice of wood. This naturally depends, for any particular section of country, on the supply of wood which is most readily available. The woods most commonly used, especially in this country, are oak and pine, oak being the most durable and generally the most expensive. Redwood is used very extensively in California and proves to be extremely durable, so far as decay is concerned, but it is very soft and is much injured by "rail-cutting." This defect is being partly remedied by the
use of tie-plates, as will be explained later. [Cedar, chestnut, hemlock, and tamarack are frequently used in this country,... In tropical countries very durable ties are frequently obtained from the hard woods peculiar to those countries. According to a recent bulletin of the U. S. Department of Agriculture the proportions of the various kinds used in the United States are about as follows:

Oak	60\%	Chestnut............ . 5\%	Cypress............. 2\%
Pine.	20	Hemlock and Tama-	Various............ 1
Cedar	6	rack................ ${ }_{3}^{3}$	Total......... 100%

204. Durability. The durability of ties depends on the climate; the drainage of the ballast; the volume, weight, and speed of the traffic; the curvature, if any; the use of tie-plates; the time of year of cutting the timber; the age of the timber and the degree of its seasoning before placing in the track; the nature of the soil in which the timber was grown; and, chiefly, on the species of wood employed. The variability in these items will account for the discrepancies in the reports on the life of various woods used for ties.

White oak is credited with a life of 5 to 12 years, depending principally on the traffic. Is is both hard and durable, the hardness enabling it to withstand the cutting tendency of the rail-flanges, and the durability enabling it to resist decay. Pine and redwood resist decay very well, but are so soft that they are badly cut by the rail-flanges and do not hold the spikes very well, necessitating frequent respiking. Since the spikes must be driven within certain very limited areas on the face of each tie, it does not require many spike-holes to "spike-kill" the tie. On sharp curves, especially with heary traffic, the wheelflange pressure produces a side pressure on the rail tending to overturn it, which tendency is resisted by the spike, aided sometimes by rail-braces. Whenever the pressure becomes too great the spike will yield somewhat and will be slightly withdrawn. The resistance is then somewhat less and the spike is soon so loose that it must be redriven in a new hole. If this occurs very
often, the tie may need to be replaced long before any decay has set in. When the traffic is very light, the wood very durable, and the climate favorable ties have been known to last 25 years.
205. Dimensions. The usual dimensions for the best roads (standard gange) are 8^{\prime} to $8^{\prime} 6^{\prime \prime}$ long, $6^{\prime \prime}$ to $7^{\prime \prime}$ thick, and $8^{\prime \prime}$ to $10^{\prime \prime}$ wide on top and bottom (if they are hewed) or $8^{\prime \prime}$ to $9^{\prime \prime}$ wide if they are sawed. For cheap roads and light traffic the length is shortened sometimes to 7^{\prime} and the cross-section also reduced. On the other hand a very few roads use ties 9^{\prime} long.

Two objections are urged against sawed ties: first, that the grain is torn by the saw, leaving a woolly surface which induces decay; and secondly, that, since timber is not perfectly straightgrained, some of the fibers are cut obliquely, exposing their ends, which are thus liable to decay. The use of a "planer-saw " obviates the first difficulty. Chemical treatment of ties obviates both of these difficulties. Sawed ties are more convenient to handle, are a necessity on bridges and trestles, and it is even claimed, although against commonly received opinion, that actual trial has demonstrated that they are more durable than hewed ties.
206. Spacing. The spacing is usually 14 to 16 ties to a $30-$ foot rail. This number is sometimes reduced to 12 and even 10 , and on the other hand occasionally increased to 18 or 20 by employing narrower ties. There is no economy in reducing the number of ties very much, since for any required stiffness of track it is more economical to increase the number of supports than to increase the weight of the rail. The decreasing cost of rails and the increasing cost of ties have materially changed the relation between number of ties and weight of rail to produce a given stiffness at minimum cost, but many roads have found it economical to employ a large number of ties rather than increase the weight of the rail. On the other hand there is a practical limit to the number that may be employed, on account of the necessary space between the ties that is required for proper tamping. This width is ordinarily about twice the width of the tie. At this rate, with light ties $6^{\prime \prime}$ wide and with $12^{\prime \prime}$ clear
space, there would be 20 ties per 30 -foot rail, or 3520 per mile. The smaller ties can generally be bought much cheaper (proportionately) than the larger sizes, and hence the economy.

Track instructions to foremen generally require that the spacing of ties shall not be uniform along the length of any rail. Since the joint is generally the weakest part of the rail structure, the joint requires more support than the center of the rail. Therefore the ties are placed with but $8^{\prime \prime}$ or $10^{\prime \prime}$ clear space between them at the joints, this applying to 3 or 4 ties at each joint; the remaining ties, required for each rail length, are equally spaced along the remaining distance.
207. Specifications. The specifications for ties are apt to include the items of size, kind of wood, and method of construction, besides other minor directions about time of cutting, seasoning, delivery, quality of timber, etc.
(a) Size. The particular size or sizes required will be somewhat as indicated in $\S 205$.
(b) Kind of wood. When the kind or kinds of wood are specified, the most suitable kinds that are available in that section of country are usually required.
(c) Method of construction. It is generally specified that the ties shall be hewed on two sides; that the two faces thus made shall be parallel planes and that the bark shall be removed. It is sometimes required that the ends shall be sawed off square; that the timber shall be cut in the winter (when the sap is down); and that the ties shall be seasoned for six months. These last specifications are not required or lived up to as much as their importance deserves. It is sometimes required that the ties shall be delivered on the right of way, neatly piled in rows, the alternate rows at right angles, piled if possible on ground not lower than the rails and at least seven feet away from them, the lower row of ties resting on two ties which are themselves supported so as to be clear of the ground.
(d) Quality of timber. The usual specifications for sound timber are required, except that they are not so rigid as for a better class of timber work. The ties must be sound, reason-
ably straight-grained, and not very crooked-one test being that a line joining the center of one end with the center of the middle shall not pass outside of the other end. Splits or shakes, especially if severe, should cause rejection.

Specifications sometimes require that the ties shall be cut from single trees, making what is known as "pole ties" and definitely condemning those which are cut or split from larger trunks, giving two "slab ties" or four

POLE TIE.

SLAB TIE.

QUARTER TIE "quarter ties". for each cross-Fig. 109.-Methods of cutting section, as is illustrated in Fig. Ties.
109. Even if pole ties are better, their exclusive use means the rapid destruction of forests of young trees.
208. Regulations for laying and renewing ties. The regulations issued by railroad companies to their track foremen will generally include the following, in addition to directions regarding dimensions, spacing, and specifications given in $\S \delta 204-207$. When hewn ties of somewhat variable size are used, as is frequently the ease, the largest and best are to be selected for use as joint ties. If the upper surface of a tie is found to be warped (contrary to the usual specifications) so that one or both rails do not get a full bearing across the whole width of the tie, it must be adzed to a true surface along its whole length and not merely notched for a rail-seat. When respiking is necessary and spikes have been pulled out, the holes should be immediately plugged with " wooden spikes," which are supplied to the foremen for that express purpose, so as to fill up the holes and prevent the decay which would otherwise take place when the hole beeomes filled with rain-water. Ties should always be laid at right angles to the rails and never obliquely. Minute regnlations to prevent premature rejection and renewal of ties are frequently made. It is generally required that the requisitions for renewals shall be made by the actual comnt of the individual ties to be renewed instead of by any wholesale estimates. It is muwise to have ties of widely variable size, hardness, or durability adjacent to each
other in the track, for the uniform elasticity, so necessary for smooth riding, will be unobtainable under those circumstances.
209. Cost of ties. When railroads can obtain ties cut by farmers from woodlands in the immediate neighborhood, the price will frequently be as low as 20 c. for the smaller sizes, rumning up to $\check{50} \mathrm{c}$. for the larger sizes and better qualities, especially when the timber is not very plentiful. Sometimes if a railroad cannot procure suitable ties from its immediate neighborhood, it will find that adjacent railroads control all adjacent sources of supply for their own use and that ties can only be procured from a considerable distance, with a considerable added cost for transportation. First-class oak ties cost about 75 to 80 c . and frequently much more. Hemlock ties can generally be obtained for 35 c. or less.

PRESERVATIVE PROCESSES FOR WOODEN TIES.

210. General principle. Wood has a fibrous cellular structure, the cells being filled with sap or air. The woody fiber is but little subject to decay unless the sap undergoes fermentation. Preservative processes generally aim at removing as much of the water and sap as possible and filling up the pores of the wood with an antiseptic compound. The most common methods (except one) all agree in this general process and only differ in the method employed to get rid of the sap and in the antiseptic chemical with which the fibers are filled. One valuable feature of these processes lies in the fact that the softer cheaper woods (such as hemlock and pine) are more readily treated than are the harder woods and yet will produce practically as good a tie as a treated hard-wood tie and a very much better tie than an untreated hard-wood tie. The various processes will be briefly described, taking up first the process which is fundamentally different from the others, viz., vulcanizing.
211. Vulcanizing. The process consists in heating the timber to a temperature of 300° to $500^{\circ} \mathrm{F}$. in a cylinder, the air being under a pressure of 100 to 175 lbs . per square inch. By this process the albumen in the sap is coagulated, the water evap-
orated, and the pores are partially closed by the coagulation of the albumen. It is claimed that the heat sterilizes the wood and produces chemical changes in the wood which give it an antiseptic character. It has been very extensively used on the elevated lines of New York City, and it is claimed to give perfect satisfaction. The treatment has cost that road 25 c. per tie.
212. Creosoting. This process consists in impregnating the wood with wood-creosote or with dead oil of coal-tar. Woodcreosote is one of the products of the destructive distillation of wood-usually loug-leaf pine. Dead oil of coal-tar is a prodnet of the distillation of eoal-tar at a temperature between 480° and $760^{\circ} \mathrm{F}$. It would require about 35 to 50 pounds of creosote to completely fill the pores of a cubic foot of wood. But it would be impossible to force such an amount into the wood, nor is it necessary or desirable. About 10 pounds per cubic foot, or about 35 pounds per tie, is all that is necessary. For piling placed in salt water about 18 to 20 pounds per cubic foot is used, and the timber is then perfectly protected against the ravages of the teredo navalis. To do the work, long cylinders, which may be opened at the ends, are necessary. Usually the timbers are run in and out on iron carriages ruming on rails fastened to braces on the inside of the cylinder. When the load has been run in, the ends of the cylinder are fastened on. The water and air in the pores of the wood are first drawn out by subjecting the wood alternately to steam-pressure and to the action of a vacuum-pump. This is continued for several hours. Then, after one of the vacuum periods, the cylinder is filled with creosote oil at a temperature of about $170^{\circ} \mathrm{F}$. The pumps are kept at work until the pressure is about 80 to 100 pounds per square inch, and is maintained at this pressure from one to two hours according to the size of the timber. The oil is then withdrawn, the cylinders opened, the train pulled out and another load made up in 40 to 60 minutes. The average time required for treating a load is about 18 or 20 hours, the absorption about 10 or 11 pounds of oil per cubic foot, and the cost (1894) from $\$ 12.50$ to $\$ 14.50$ per thousand feet B. M.
213. Burnettizing (chloride-of-zinc process). This process is very similar to the creosoting process except that the chemical is chloride of zinc, and that the chemical is not heated before use. The preliminary treatment of the wood to alternate vacuum and pressure is not continued for quite so long a period as in the creosoting process. Care must be taken, in using this process, that the ties are of as uniform quality as possible, for seasoned ties will absorb much more zinc chloride than unseasoned (in the same time), and the product will lack uniformity unless the seasoning is uniform. The A., T. \& S. Fé R.R. has works of its own at which ties are treated by this process at a cost of about 25 c. per tie. The Southern Pacific R.R. also has works for burnettizing ties at a cost of 9.5 to 12 c . per tie. The zincchloride solution used in these works contains only 1.7% of zinc chloride instead of over 3% as used in the Santa Fé works, which perhaps accomnts partially for the great difference in cost per tie. One great objection to burnettized ties is the fact that the chemical is somewhat easily washed out, when the wood again becomes subject to decay. Another objection, which is more forcible with respect to timber subject to great stresses, as in trestles, than to ties, is the fact that when the solution of zinc chloride is made strong (over 3%) the timber is made very brittle and its strength is reduced. The reduction in strength has been shown by tests to amount to $\frac{1}{4}$ to $\frac{1}{10}$ of the ultimate strength, and that the elastic limit has been reduced by about $\frac{1}{7}$.
214. Kyanizing (bichloride-of-mercury or corrosive-sublimate process). This is a process of "steeping." It requires a much longer time than the previously described processes, but does not require such an expensive plant. Wooden tanks of sufficient size for the timber are all that is necessary. The corrosive sublimate is first made into a concentrated solution of one part of chemical to six parts of hot water. When used in the tanks this solution is weakened to 1 part in 100 or 150 . The wood will absorb about 5 to 6.5 pounds of the bichloride per 100 cubic feet, or about one pound for each 4 to 6 ties. The timber is allowed to soak in the tanks for several days, the general rule
being about one day for each inch of least thickness and one day over-which means seven days for six-inch ties, or thirteen (to fifteen) days for $12^{\prime \prime}$ timber (least dimension). The process is somewhat objectionable on account of the chemical being such a virulent poison, workmen sometimes being sickened by the fumes arising from the tanks. On the Baden railway (Germany) kyanized ties last 20 to 30 years. On this railway the wood is always air-dried for two weeks after impregnation and before being used, which is thought to have an important effect on its durability. The solubility of the chemical and the liability of the chemical washing out and leaving the wood muprotected is an element of weakness in the method.
215. Wellhouse (or zinc-tannin) process. The last two methods described (as well as some others employing similar chemicals) are open to the objection that since the wood is impregnated with an aqueous solution, it is liable to be washed out very rapidly if the wood is placed under water, and will even disappear, although more slowly, under the action of moisture and rain. Several processes have been proposed or patented to prevent this. Many of them belong to one class, of which the Wellhouse process is a sample. By these processes the timber is successively subjected to the action of two chemicals, each individually soluble in water, and hence readily impregnating the timber, but the ehemicals when brought in contact form insoluble compounds which cannot be washed out of the woodcells. By the Wellhouse process, the wood is first impregnated with a solution of chloride of zinc and glue, and is then subjected to a bath of tamin under pressure. The glue and tamin combine to form an insoluble leathery compound in the cells, which will prevent the zinc chloride from being washed out. It is being used by the A., T. \& S. Fé R.R., their works being located at Las Vegas, New Mexico, and also by the Union Pacific R.R. at their works at Laramie, Wyo. In 1897 Mr. J. M. Meade, a resident engineer on the A., T. \& S. Fé, exhibited to the Roadmasters Association of America a piece of a tie treated by this process which had been taken from the tracks after
nearly 13 years' service. The tie was selected at random, was taken out for the sole purpose of having a specimen, and was still in sound condition and capable of serving many years longer. The cost of the treatment was then quoted as 13 c. per tie. It was claimed that the treatment trebled the life of the tie besides adding to its spike-holding power.
216. Cost of treating. The cost of treating ties by the various methods has been estimated as follows *-assuming that the plant was of sufficient gapacity to do the work economically: creosoting, 25 c. per tie; vulcanizing, 25 c. per tie; burnettizing (chloride of zinc), 8.25 c. per tie; kyanizing (steeping in corrosive sublimate), 14.6 c. per tie; Wellhouse process (chloride of zinc and tannin), 11.25 c. per tie. These estimates are only for the net cost at the works and do not include the cost of hauling the ties to and from the works, which may mean 5 to 10 c. per tie. Some of these processes have been installed on cars which are transported over the road and operated where most convenient.
217. Economics of treated ties. The fact that treated ties are not universally adopted is due to the argument that the added life of the tie is not worth the extra cost. If ties can be bought for 25 c., and cost 25 c. for treatment, and the treatment only doubles their life, there is apparently but little gained except the work of placing the extra tie in the track, which is more or less offset by the interest on 25 c . for the life of the untreated tie, and the larger initial outlay makes a stronger impression on the mind than the computed ultimate economy.' But when tics cost 75 c . and treatment costs only 25 c ., or perhaps less, then the economy is more apparent and unquestionable. But this analysis may be made more closely. As shown in $\S 202$, the disturbance of the roadbed on account of frequent renewals of untreated ties is a disadvantage which would justify an appreciable expenditure to avoid, although it is

[^19]very difficult to closely estimate its true value. The amual cost of a system of ties may be considered as the sum of (a) the interest on the first cost, (b) the ammal sinking fund that would buy a new tie at the end of its life, and (c) the arerage ammal cost of maintenance for the life of the tie, which includes the cost of laying and the considerable amount of subsequent tamping that must be done until the tie is fairly settled in the roadbed, beside the regular trackwork on the tie, which is practically constant. This last item is difficult to compute, but it is easy to see that, since the cost of laying the tie and the sulbequent tamping to obtain proper settlement is the same for all ties (of similar form), the average annual charge on the longer-lived tie would be much less. In the following comparison item (c) is disregarded, simply remembering that the advantage is with the longer-lived tie.

O	Untreated tie 40 cents	
Life (assumed at).	7 years	14 years
Item (a)-interest on first cost © 4\%	1.6 cents	2.6 cent
(b)-sinking fund @ 4\%	5.1	3.6
(c)-(considered here as offsette		
Average annual cost (except item (c))	6.7	

On this basis treated ties will cost 0.5 cent less per annum besides the advantage of item (c) and the still more indefinite advantages resulting from smoother ruming of trains, less wear and tear on rolling stock, etc., due to less disturbance of the roadbed.

In Europe, where wood is expensive, untreated ties are seldom used, as the treatment is always considered to be worth more than it costs. The rapid destruction of the forests of timber in this country is having the effect of increasing the price, so that it will not be long before treated ties (or metal ties) will be economical for a large majority of the railroads of the country.

METAL TIES.

218. Extent of use. In 1894^{*} there were nearly 35000 miles of " metal track" in various parts of the world. Of this total, there were 3645 miles of " longitudinals" (see $\S 224$), found exclusively in Europe, nearly all of it being in Germany. There were over 12000 miles of "bowls and plates" (see $\S 223$), found almost entirely in British India and in the Argentine Republic. The remainder, over 18000 miles, was laid with metal cross-ties of various designs. There were over 8000 miles of metal crossties in Germany alone, about 1500 miles in the rest of Europe, over 6000 miles in British India, nearly 1000 miles in the rest of Asia, and about 1500 miles more in various other parts of the world. Several railroads in this country have tried various designs of these ties, but their use has never passed the experimental stage. These 35000 miles represent about 9% of the total railroad mileage of the world-nearly 400000 miles. They represent about 17.6% of the total railroad mileage, exclusive of the United States and Canada, where they are not used at all, except experimentally. In the four years from 1890 to 1894 the use of metal track increased from less than 25000 miles to nearly 35000 miles. This increase was practically equal to the total increase in railroad mileage during that time, exclusive of the increase in the United States and Canada. This indicates a large growth in the percentage of metal track to total mileage, and therefore an increased appreciation of the advantages to be derived from their use.
219. Durability. The durability of metal track is still far from being a settled question, due largely to the fact that the best form for such track is not yet determined, and that a large part of the apparent failures in metal track have been evidently due to defective design. Those in favor of them estimate the life as from 30 to 50 years. The opponents place it as not more than 20 years, or perhaps as long as the best of wooden ties.
[^20]Unlike the wooden tie, however, which deteriorates as much with time as with usage, the life of a metal tie is more largely a function of the traffic. The life of a well-designed metal tie has been estimated at 150000 to 200000 trains; for 20 trains per day, or say 6000 per year, this would mean from 25 to 33 years. 20 trains per day on a single track is a much larger number than will be found on the majority of railroads. Metal ties are found to be subject to rust, especially when in damp localities, such as tunnels; but on the other hand it is in such confined localities, where renewals are troublesome, that it is especially desirable to employ the best and longest-lived ties. Paint, tar, etc., have been tried as a protection against rust, but the efficacy of such protection is as yet uncertain, the conditions preventing any renewal of the protection-such as may be done by repainting a bridge, for example. Failures in metal cross-ties have been largely due to cracks which begin at a corner of one of the square holes which are generaily punched through the tie, the holes being.made for the bolts by which the rails are fastened to the tie. The holes are generally punched because it is cheaper. Reaming the holes after punching is thought to be a safeguard against this frequent canse of failure. Another method is to round the corners of the square punch with a radius of about $\frac{1^{\prime \prime}}{8}$. If a crack has already started, the spread of the crack may be prevented by drilling a small hole at the end of it.
220. Form and dimensions of metal cross-ties. Since stability in the ballast is an essential quality for a tie, this must be accomplished either by turning down the end of the tie or by having some form of lug extending downward from one or more points of the tie. The ties are sometimes depressed in the center (see Plate XVII, N. Y. C. \& H. R. R.R. tie) to allow for a thick covering of ballast on top in order to increase its stability in the ballast. This form requires that the ties should be sufficiently well tamped to prevent a tendency to bend out straight, thus widening the gange. Many designs of tics are objectionable because they cannot be placed in the track without disturbing adjacent ties. The failure of many metal cross-
ties, otherwise of good design, may be ascribed to too light weight. Those weighing much less than 100 pounds have proved too light. From 100 to 130 pounds weight is being used satisfactorily on German railroads. The general outside dimensions are about the same as for wooden ties, except as to thickness. The metal is generally from $\frac{1^{\prime \prime}}{4}$ to $\frac{3{ }^{\prime \prime}}{8}$ thick. They are, of course, only made of wrought iron or steel, cast iron being used only for "bowls" or "plates" (see § 213). The details of construction of some of the most commonly used ties may be seen by a study of Plate XVII.
221. Fastenings. The devices for fastening the rails to the ties should be such that the gange may be widened if desired on curves, also that the gauge can be made true regardless of slight inaccuracies in the manufacture of the ties, and also that shims may be placed under the rail if necessary during cold weather when the tie is frozen into the ballast and cannot be easily disturbed. Some methods of fastening require that the base of the rail be placed against a lug which is riveted to the tie or which forms a part of it. This has the advantage of reducing the number of pieces, but is apt to have one or more of the disadvantages named above. Metal keys or wooden wedges are sometimes used, but the majority of designs employ some form of bolted clamp. The form adopted for the experimental ties used by the N. Y. C. \& H. R. R.R. (see Plate XVII) is especially ingenious in the method used to vary the gange or allow for inaccuracies of manufacture. Plate XVII shows some of the methods of fastening adopted on the principal types of ties.
222. Cost. The cost of metal cross-ties in Germany averages about 1.6 c. per pound or about $\$ 1.60$ for a $100-\mathrm{lb}$. tie. The ties manufactured for the N. Y. C. \& H. R. R.R. in 1892 weighed about 100 lbs . and cost $\$ 2.50$ per tie, but if they had been made in larger quantities and with the present price of steel the cost would possibly have been much lower. The item of freight from the place of manufacture to the place where used is no inconsiderable item of cost with some roads. Metal cross-ties have been used by some street railroads in this country.

(To face page 240)

Those used on the Terre Haute Street Railway weigh 60 pounds and cost about 66 c . for the tie, or $7 t \mathrm{c}$. per tie with the fastenings.
223. Bowls or plates. As mentioned before, over 12000 miles of railway, chiefly in British India and in the Argentine Republic, are laid with this form of track. It consists essentially of large cast-iron inverted "bowls" laid at intervals under each rail and opposite each other, the opposite bowls being tied together with tie-rods. A suitable chair is riveted or bolted on to the top of each bowl so as to properly hold the rail. Being made of cast iron, they are not so subject to corrosion as steel or wrought iron. They have the advantage that when old and worn out their serap value is from 60 to 80% of their initial cost, while the scrap value of a steel or wrought-iron tie is practically nothing. Failure generally occurs from breakage, the failures from this cause in India being about 0.4 per cent per annum. They weigh about 250 lbs . apiece and are therefore quite expensive in first cost and transportation charges. There are miles of them in India which have already lasted 25 years and are still in a serviceable condition. Some illustrations of this form of tie are shown in Plate XVII.
224. Longitudinals.* This form, the use of which is conined almost exclusively to Germany, is being gradually replaced on many lines by metal cross-ties. The system generally consists of a compound rail of several parts, the upper bearing rail ieing very light and supported throughout its length by other rails, which are suitably tied together with tie-rods so as to maintain the proper gauge, and which have a sufficiently broad

[^21]base to be properly supported in the ballast. One great objection to this method of construction is the difficulty of obtaining proper drainage especially on grades, the drainage having a

Fig. 110. tendency to follow along the lines of the rails. The construction is much more complicated on sharp curves and at frogs and switches. Another fundamentally different form of longitudinal is the Haarman compound "self-bearing" rail, having a base $12^{\prime \prime}$ wide and a height of $8^{\prime \prime}$, the alternate sections breaking joints so as to form a practically continuous rail.

Some of the other forms of longitudinals are illustrated in Plate XVII.

For a very complete discussion of the subject of metal ties, see the "Report on the Substitution of Metal for Wood in Railroad Ties" by E. E. Russell Tratman, it being Bulletin No. 4, Forestry Division of the U. S. Dept. of Agriculture.

CHAPTER IX.

RAILS.

225. Early forms. The first rails ever laid were wooden stringers which were used on very short tram-roads around coalmines. As the necessity for a more durable rail increased, owing chiefly to the invention of the locomotive as a motive power, there were invented successively the cast-iron "fishbelly" rail and various forms of wrought-iron strap rails which finally developed into the T rail used in this country and the double-headed rail, supported by chairs, used so extensively in England. The cast-iron rails were cast in lengths of about 3 feet and were supported in iron chairs which were sometimes set upon stone piers. A great deal of the first railroad track of this country was laid with longitudinal stringers of wood placed upon cross-ties, the inner edge of the stringers being

Fig. 111.-Early Forms of Rails.
protected by wrought-iron straps. The "bridge" rails were first rolled in this country in 1844 . The "pear" section was
an approach to the present form, but was very defective on account of the difficulty of designing a good form of joint. The: "Stevens" section was designed in 1830 by Col. Robert L. Stevens, Chief Engineer of the Camden and Amboy Railroad; although quite defective in its proportions, according to the present knowledge of the requirements, it is essentially the present form. In 1836, Charles Vignoles invented essentially the same form in England; this form is therefore known throughout England and Europe as the Vignoles rail.
226. Present standard forms. The larger part of modern railroad track is laid with rails which are either " T " rails or the double-headed or " bull-headed" rails which are carried in chairs. The double-headed rail was designed with a symmetrical form with the idea that after one head had been worn out. by traffic the rail could be reversed, and that its life would be practically doubled. Experience has shown that the wear of the rail in the chairs is very great; so much so that when one head has been worn out by traffic the whole rail is generally useless. If the rail is turned over, the worn places, caused by the chairs, make a rough track and the rail appears to be more brittle and subject to fracture, possibly due to the crystallization that may have occurred during the previous usage and to the reversal of stresses in the fibers. Whatever the explanation, experience has demonstrated the fact. The "bull-headed" rail has the lower
 head only large enough to properly hold the wooden keys with which the rail is secured to the chairs (see Fig. 112) and furnish the necessary strength. The use Fig.112.-Bull-headed of these rails requires the use of two castRail and Chair. iron chairs for each tie. It is claimed that such track is better for heavy and fast traffic, but it is more expensive to build and maintain. It is the standard form of track in England and some parts of Europe.

Until a few years ago there was a very great multiplicity in the designs of " T " rails as used in this country, nearly every prominent railroad having its own special design, which
perhaps differed from that of some other road by only a very minute and insignificant detail, but which nevertheless would require a complete new set of rolls for rolling. This certainly must have had a very appreciable effect on the cost of rails. In 1893, the American Society of Civil Engineers, after a very exhanstive investigation of the subject, extending over several years, having obtained the opinions of the best experts of the country, adopted a series of sections which have been very extensively adopted by the railroads of this comntry. Instead of having the rail sections for various weights to be geometrically similar figures, certain dimensions are made constant, regardless of the weight. It was decided that the metal should be distributed through the section in the proportions of -head 42%, web 21%, and flange 37%. The top of the head should have a radius of $12^{\prime \prime}$; the top corner radius of head should be $\frac{5}{16}{ }^{\prime \prime}$; the

Fig. 113.-Am. Soc. C. E. Standard Rail Section.
lower corner radius of head should be $\frac{1}{16}{ }^{\prime \prime}$; the corners of the flanges, $\frac{1^{\prime \prime}}{16}$ radius; side radius of web, $12^{\prime \prime}$; top and bottom radii of web corners, $\frac{1^{\prime \prime}}{4}$; and angles with the horizontal of the under side of the head and the top of the flange, 13°. The sides of the head are vertical.

The height of the rail (D) and the width of the base (C) are always made equal to each other.

	Weight per Yard.												
	40	45	50	55	60	65	\%0	\% 5	80	85	90	95	100
A	$1{ }^{\frac{7}{8}}{ }^{\prime \prime}$	$2^{\prime \prime}$	${ }^{218}{ }^{\prime \prime}$	$2{ }^{1}{ }^{\prime \prime}$	$223^{\prime \prime}$	$213^{\prime \prime}{ }^{\prime \prime}$	$27^{\prime \prime}{ }^{\prime \prime}$	$22^{15} 5^{\prime \prime}$	$2 \frac{1}{2}^{\prime \prime}$	2911	$2{ }^{2}{ }^{\prime \prime}$	$2{ }^{11_{1} 1^{\prime \prime}}$	$23^{\prime \prime}$
B	25	27	$\frac{7}{16}$	$\frac{1}{3}{ }^{\frac{5}{2}}$	$\frac{31}{64}$	$\frac{1}{2}$	${ }^{3} 8$	$\frac{17}{3 \frac{7}{2}}$	${ }_{6} 35$	$\frac{9}{16}$	${ }^{16}$	${ }^{9} 16$	${ }_{16} 9$
$C \& D$	$3 \frac{1}{2}$	$3 \frac{1}{16}$	$3{ }^{\frac{7}{8}}$	$4 \frac{1}{16}$	$4 \frac{1}{4}$	$4{ }_{16}^{7}$	45	$4 \frac{1}{12}$	5	$5 \frac{3}{16}$	$5 \frac{3}{8}$	$5{ }_{16} 9$	$5{ }^{3}$
E	$\frac{5}{8}$	$\frac{21}{32}$	$\frac{11}{16}$	$\frac{23}{32}$	49	${ }^{2} 5$	$\frac{13}{16}$	$\frac{27}{3}$	$\frac{8}{8}$	$\frac{57}{64}$	59	15	$\frac{31}{32}$
F	155	$1 \frac{31}{32}$	$2 \frac{1}{16}$	211	${ }^{217}$	${ }^{2}{ }^{3}$	${ }^{21} \frac{1}{3} \frac{5}{2}$	235	25	23	254	$2{ }_{66}^{64}$	$3{ }^{56}$
G	$1_{64}^{1 / 4}$	$1_{16} \frac{1}{6}$	$1 \frac{1}{8}$	$1 \frac{11}{64}$	$1 \frac{7}{32}$	$1{ }_{3}{ }^{9}$	$1 \frac{11}{3} \frac{1}{2}$	167	112	$1 \frac{125}{64}$	$1 \frac{19}{32}$	$16 \frac{4}{6}$	164

The chief features of disagreement among railroad men relate to the radius of the upper corner of the head and the slope of the side of the head. The radius ($\frac{5}{16}{ }^{\prime \prime}$) adopted for the upper corner (constant for all weights) is a little more than is advocated by those in faror of "sharp corners" who often use a radius of $\frac{1^{\prime \prime}}{4}$. On the other hand it is much less than is advocated by those who consider that it should be nearly equal to (or even greater than) the larger radius universally adopted for the corner of

Fig. 114. - Relation of Rail to Wheel-tread. the wheel-flange. The discussion turns on the relative rapidity of rail wear and the wear of the wheel-flanges as affected by the relation of the form of the wheel-tread to that of the rail. It is argued that sharp rail corners wear the wheel-flanges so as to produce sharp flanges, which are liable to cause derailment at switches and also to require that the tires of engine-drivers must be more frequently turned down to their true form. On the other hand it is generally believed that rail wear is much less rapid while the area of contact between the rail and wheel-flange is small, and that when the rail has worn down, as it invariably does, to nearly the same form as the wheel-flange, the rail wears away very quickly.
227. Weight for various kinds of traffic. The heaviest rails in regular use weigh 100 lbs. per yard, and even these are only used on some of the heaviest traffic sections of such roads as the N. Y. Central, the Pemselvania, the N. Y., N. H. \& H., and
a few others. Probably the larger part of the mileage of the country is laid with 60 - to 75 - lb . rails-considering the fact that "the larger part of the mileage" consists of comparatively light-tratfic roads and may exclude all the heary trunk lines. Very light-trattic roads are sometimes laid with $56-\mathrm{lb}$. rails. Roads with fairly heavy traftic generally use 75 - to $85-113$. rails, especially when grades are heavy and there is much and sharp curvature. The tendency on all roads is toward an increase in the weight, rendered necessary on account of the increase in the weight and capacity of rolling stock, and due also to the fact that the price of rails has been so reduced that it is both better and cheaper to obtain a more solid and durable track by inereasing the weight of the rail rather than by attempting to support a weak rail by an excessive number of ties or by excessive track labor in tamping. It should be remembered that in buying rails the mere weight is, in one sense, of no importance. The important thing to consider is the strengiti and the stifeness. If we assume that all weights of rails have similar cross-sections (which is nearly although not exactly true), then, since for beams of similar cross-sections the strength varies as the cube of the homologons dimensions and the stifiness as the fourth power, while the area (and therefore the weight per unit of length) only varies as the square, it follows that the stiffness varies as the square of the weight, and the strength as the $\frac{3}{2}$ power of the weight. Since for ordinary variations of weight the price per ton is the same, adding (say) 10% to the weight (and cost) adds 21% to the stiffness and over 15% to the strength. As another illustration, using an $80-\mathrm{lb}$. rail instead of a $\mathrm{i} 5-\mathrm{lb}$. rail adds only $6 \frac{2}{3} \%$ to the cost, but adds about 14% to the stiffness and nearly 11% to the strength. This shows why hearier rails are more economical and are being adopted even when they are not absolutely needed on account of heavier rolling stock. The stiffness, strength, and consequent durability are increased in a much greater ratio than the cost.
228. Effect of stiffness on traction. A very important but generally unconsidered feature of a stiff rail is its effect on trac-
tive force. An extreme illustration of this principle is seen when a vehicle is drawn over a soft sandy road. The constant compression of the sand in front of the wheel has virtually the same effect on traction as drawing the wheel up a grade whose steepness depends on the radius of the wheel and the depth of the rut. On the other hand, if a wheel, made of perfectly elastic material, is rolled over a surface which, while supported with absolute rigidity, is also perfectly elastic, there would be a forward component, caused by the expanding of the compressed metal just behind the center of contact, which would just balance the backward component. If the rail was supported throughout its length by an absolutely rigid support, the high elasticity of the wheel-tires and rails would reduce this form of resistance to an insignificant quantity, but the ballast and even the ties are comparatively inelastic. When a weak rail yields, the ballast is more or less compressed or displaced, and even though the elasticity of the rail brings it back to nearly its. former place, the work done in compressing an inelastic material is wholly lost. The effect of this on the fuel account is certainly very considerable and yet is frequently entirely overlooked. It is practically impossible to compute the saving in tractive power, and therefore in cost of fuel, resulting from a given increase in the weight and stiffness of the rail, since the yielding of the rail is so dependent on the spacing of the ties, the tamping, etc. But it is not difficult to perceive in a general way that such an economy is possible and that it should not be neglected in considering the value of stiffness in rails.
229. Length of rails. The standard length of rails with most railroads is 30 feet. In recent years many roads have been trying 45 -foot and even 60 -foot rails. The argument in favor of longer rails is chiefly that of the reduction in track-joints, which are costly to construct and to maintain and are a fruitful source of accidents. Mr. Morrison of the Lehigh Valley R.R.* declares that, as a result of extensive experience with 45 -foot rails
on that road, he finds that they are much less expensive to handle, and that, being so long, they can be laid around sharp curves without being curved in a machine, as is necessary with the shorter rails. The great objection to longer rails lies in the difficulty in allowing for the expansion, which will require, in the coldest weather, an opening at the joint of nearly $\frac{3^{\prime \prime}}{4}$ for a 60 -foot rail. The Pennsylvania R.R. and the Norfolk and Western R.R. each have a considerable mileage laid with 60 -foot rails.
230. Expansion of rails. Steel expands at the rate of .0000065 of its length per degree Fahrenheit. The extreme range of temperature to which any rail will be subjected will be about 160°, or say from $-20^{\circ} \mathrm{F}$. to $+140^{\circ} \mathrm{F}$. With the above coefficient and a rail length of 60 feet the expansion would be $0.062+$ foot, or about $\frac{3}{4}$ inch. But it is doubtful whether there would ever be such a range of motion even if there were such a range of temperature. Mr. A. Torrey, chief engineer of the Mich. Cent. R.R., experimented with a section over 500 feet long, which, although not a single rail, was made " continuous" by rigid splicing, and he found that there was no appreciable additional contraction of the rail at any temperature below +20 F . The reason is not clear, but the fact is undeniable.

The heavy girder rails, used by the street railroads of the country, are bonded together with perfectly tight rigid joints which do not permit expansion. If the rails are laid at a temperature of $60^{\circ} \mathrm{F}$. and the temperature sinks to 0°, the rails have a tendency to contract .00039 of their length. If this tendency is resisted by the friction of the pavement in which the rails are buried, it only results in a tension amounting to .00039 of the modulus of elasticity, or say 10920 pounds per square inch, assuming 28000000 as the modulus of elasticity. This stress is not dangerous and may be permitted. If the temperature rises to $120^{\circ} \mathrm{F}$., a tendency to expansion and buckling will take place, which will be resisted as before by the pavement, and a compression of 10920 pounds per square inch will be induced, which will likewise be harmless. The range of tempera-
ture of rails which are buried in pavement is much less than when they are entirely above the ground and will probably never reach the above extremes. Rails supported on ties which are only held in place by ballast must be allowed to expand and contract almost freely, as the ballast cannot be depended on to resist the distortion induced by any considerable range of temperature, especially on curves.
231. Rules for allowing for temperature. Track regulations generally require that the track foremen shall use iron (not wooden) shims for placing between the ends of the rails while splicing them. The thickness of these shims should vary with the temperature. Some roads use such approximate rules as the following: "The proper thickness for coldest weather is $\frac{5}{16}$ of an inch; during spring and fall use $\frac{1}{8}$ of an inch, and in the very hottest weather $\frac{1}{16}$ of an inch should be allowed." This is on the basis of a 30 -foot rail. When a more accurate adjustment than this is desired, it may be done by assuming some very high temperature (120° to $150^{\circ} \mathrm{F}$.) as a maximum, when the joints should be tight; then compute in tabular form the spacing for each temperature, varying by 20°, allowing $0^{\prime \prime} .0468$ (almost exactly $\frac{3^{3}}{64}{ }^{\prime \prime}$) for each 20° change. Such a tabular form would be about as follows (rail length 30 feet) :

Temperature.	150°	${ }^{13} 0^{\circ}$	110°	90°	70°	50°	30°	10°	- 10°	30°
Rail opening.	0	$3^{\frac{3}{4 \prime}}$	$\frac{3}{32^{\prime \prime}}$	${ }^{64}{ }^{\prime \prime}$	${ }^{\frac{3}{16}}$	䃄䍌	$\frac{9}{33^{\prime \prime}}$	${ }^{217}{ }^{1 / 1}$	${ }^{\frac{3}{8 \prime}}$	${ }^{\frac{27}{4} 7}$

One practical difficulty in the way of great refinement in this work is the determination of the real temperature of the rail when it is laid. A rail lying in the hot sun has a very much higher temperature than the air. The temperature of the rail cannot be obtained even by exposing a thermometer directly to the sun, although such a result might be the best that is easily obtainable. On a cloudy or rainy day the rail has practically the same temperature as the air; therefore on such days there need be no such trouble.
232. Chemical composition. About 98 to 99.5% of the composition of steel rails is iron, but the value of the rail, as a rail, is almost wholly dependent upon the large number of other chemical elements which are, or may be, present in very small amounts. The manager of a steel-rail mill once declared that their aim was to produce rails having in them-
Carbon. 0.32 to 0.04 to 0.40%
Silicon. 0.09 to 0.105%
Phosphorus. 1.00 to 1.50%
Manganese.

The analysis of 32 specimens of rails on the Chic., Mil. \& St. Paul R.R. showed rariations as follows:
Carbon. 0.211 to 0.013 to 0.55%
Silicon. 0.05%
Phosphorus. 0.351%
Manganese. 1.63%

These quantities have the same general relative proportions as the rail-mill standard given above, the differences lying mainly in the broadening of the limits. Inereasing the percentage of carbon by even a few hundredths of one per cent makes. the rail harder, but likewise more brittle. If a track is well ballasted and not subject to heaving by frost, a harder and more: brittle rail may be used without excessive danger of breakage, and such a rail will wear much longer than a softer tongher rail, although the softer tougher rail may be the better rail for a road having a less perfect roadbed.

A small but objectionable percentage of sulphur is sometimes found in rails, and very delicate analysis will often show the presence, in very minute quantities, of several other chemical elements. The use of a very small quantity of nickel or aluminum has often been suggested as a means of producing a more durable rail. The added cost and the uncertainty of
the amount of advantage to be gained has hitherto prevented the practical use or manufacture of such rails.
233. Testing. Chemical and mechanical testing are both necessary for a thorough determination of the value of a rail. The chemical testing has for its main object the determination of those minute quantities of chemical elements which have such a marked influence on the rail for good or bad. The mechanical testing consists of the usual tests for elastic limit, ultimate strength, and elongation at rupture, determined from pieces cut out of the rail, besides a " drop test." The drop test consists in dropping a weight of 2000 lbs . from a height of 16 to 20 feet on to the center of a rail which is supported on abutments placed three or four feet apart. The number of blows required to produce rupture or to produce a permanent set of specified magnitude gives a measure of the strength and toughness of the rail.
234. Rail wear on tangents. When the wheel loads on a rail are abnormally heary, and particularly when the rail has but little carbon and is unusually soft, the concentrated pressure on

Fig. 115. the rail is frequently greater than the elastic limit, and the metal "flows" so that the head, although greatly abraded, will spread somewhat outside of its original lines, as shown in Fig. 115. The rail wear that occurs on tangents is almost exclusively on top. Statistics show that the rate of rail wear on tangents decreases as the rails are more worn. Tests of a large number of rails on tangents have shown a rail wear averaging nearly one pound per yard per 10000000 tons of traffic. There is about 33 pounds of metal in one yard of the head of an $80-\mathrm{lb}$. rail. As an extreme value this may be worn down one-half, thus giving a tonnage of 165000000 tons for the life of the rail. Other estimates bring the tonnage down to 125000000 tons. Since the locomotive is considered to be responsible for one half (and possibly more) of the damage done to the rail, it is found that the rate of wear on roads with shorter trains is more rapid in proportion to the tonnage, and it
is therefore thought that the life of a rail should be expressed in terms of the number of trains. This has been estimated at 300000 to 500000 trains.
235. Rail wear on curves. On curves the maximum rail wear occurs on the inner side of the head of the outer rail, giving a worn form somewhat as shown in Fig. 116. The dotted line shows the nature and progress of the rail wear on the inner rail of a curve. Since the pressure on the outer rail is somewhat lateral rather than vertical, the "flow" does not take place to the same extent, if at all, on the outside, and whatever flow would take place on the inside is

Fig. 116. immediately worn off by the wheel-flange. Unlike the wear on tangents, the wear on curves is at a greater rate as the rail becomes more worn.

The inside rail on curves wears chiefly on top, the same as on a tangent, except that the wear is much greater owing to the longitudinal slipping of the wheels on the rail, and the lateral slipping that must occur when a rigid four wheeled truck is guided around a curve. The outside rail is subjected to a greater or less proportion of the longitudinal slipping, likewise to the lateral slipping, and, worst of all, to the grinding action of the flange of the wheel, which grinds off the side of the head.

The results of some very elaborate tests, made by Mr . A. M. Wellington, on the Atlantic and Great Western R.R., on the wear of rails, seem to show that the rail wear on curves may be expressed by the formula: "Total wear of rails on a d degree curve in pounds per yard per 10000000 tons duty $=1+0.03 d^{2}$." "It is not pretended that this formula is strictly correct even in theory, but several theoretical considerations indicate that it may be nearly so." According to this formula the average rail wear on a 6° curve will be about twice the rail wear on a tangent. While this is approximately true, the various causes modifying the rate of rail wear (length of trains, age and quality of rails, etc.) will result in numerous and
large variations from the above formula, which should only be taken as indicating an approximate law.
236. Cost of rails. In 1873 the cost of steel rails was about $\$ 120$ per ton, and the cost of iron rails about $\$ 70$ per ton. Although the steel rails were at once recognized as superior to iron rails on account of more uniform wear, they were an expensive luxury. The manufacture of steel rails by the Bessemer process created a revolution in prices, and they have steadily dropped in price until, during the last few years, steel rails have been manufactured and sold for $\$ 22$ per ton. At such prices there is no longer any demand for iron rails, since the cost of manufacturing them is substantially the same as that of steel rails, while their durability is unquestionably inferior to that of steel rails.

CHAPTER X.

RAIL-FASTENINGS.

RAIL-JOLNTS.

237. Theoretical requirements for a perfect joint. A perfect rail-joint is one that has the same strength and stiffness-no more and no less-as the rails which it joins, and which will not interfere with the regular and uniform spacing of ties. It should also be reasonably cheap both in first cost and in cost of maintenance. Since the action of heavy loads on an elastic rail is to canse a wave of translation in front of each wheel, any change in the stiffiness or elasticity of the rail structure will cause more or less of a shock, which must be taken up and resisted by the joint. The greater the change in stiffuess the greater the shock, and the greater the destructive action of the shock. The perfect rail-joint must keep both rail ends truly in line both laterally and vertically, so that the flange or tread of the wheel need not jump or change its direction of motion suddenly in passing from one rail to the other. A consideration of all the above requirements will show that only a perfect welding of rail-ends would produce a joint of uniform strength and stiffness which would give a uniform elastic wave ahead of each wheel. As welding is impracticable for ordinary railroad work (see $\S 230$), some other contrivance is necessary which will approach this ideal as closely as may be.
238. Efficiency of the ordinary angle-bar. Throughout the middle portion of a rail the rail acts as a continuous girder. If we consider for simplicity that the ties are unyielding, the deflection of such a continuous girder between the ties will be but
one-fourth of the deflection that would be found if the rail were cut half-way between the ties and an equal concentrated load were divided equally between the two unconnected ends. The maximum stress for the continuous girder would be but one-half of that in the cantilevers. Joining these ends with rail-joints will give the ordinary "suspended" joint. In order to main tain uniform strength and stiffness the angle-bars must supply the deficiency. These theoretical relations are modified to an unknown extent by the unknown and rariable sielding of the ties. From some experiments made by the Association of Engineers of Maintenance of Way of the P. R.R." the following deductions were made:
239. The capacity of a "suspended" joint is greater than that of a "supported" joint-whether supported on one or three ties. (See $\S 240$.)
240. That (with the particular patterns tested) the angle-bars alone can carry only 53 to 56% of a concentrated load placed on a joint.
241. That the capacity of the whole joint (angle-bars and rail) is only 52.4% of the strength of the unbroken rail.
242. That the ineffectireness of the angle-bar is due chiefly to a deficiency in compressive resistance.

Although it has been universally recognized that the anglebar is not a perfect form of joint, its simplicity, cheapness, and reliability have caused its almost universal adoption. Within a rery few years other forms (to be described later) have been adopted on trial sections and have been more and more extended, until their present use is very large. The present time (1900) is evidently a transition period, and it is quite probable that within a very few years the now common angle-plate will be as unknown in standard practice as the old-fashioned "fish-plate" is at the present time.
239. Effect of rail gap at joints. It has been found that the jar at a joint is due almost entirely to the deflection of the joint

[^22]and scarcely at all to the small gap required for expansion. This gap causes a drop equal to the versed sine of the arc haveing a chord equal to the gap and a radius equal to the radius of the wheel. Taking the extreme case (for a 30 -foot rail) of a $\frac{g^{\prime \prime}}{3}$ gap and a $33^{\prime \prime}$ freight-car wheel, the drop is about $\frac{{ }^{1} \sigma^{\prime \prime} \text {. In }}{1000}$ order to test how much the jarring at a joint is due to a gap between the rails, the experiment was tried of cutting shallow notches in the top of an otherwise solid rail and running a locomotive and an inspection car over them. The resulting jarring was practically imperceptible and not comparable to the jar produced at joints. Notwithstanding this fact, many plans have been tried for avoiding this gap. The most of these plans consist essentially of some form of compound rail, the sections breaking joints. (Of course the design of the compound rail has also several other objects in view.) In Fig. 117 are shown a

Fig. 117.-Conrpound Rail Sections.
few of the very many designs which have been proposed. These designs have invariably been abandoned after trial. Another plan, which has been extensively tried on the Lehigh Valley R.R., is the use of mitered joints. The advantages gained by their use are as yet doubtful, while the added expense is unquestionable. The "Roadmasters Association of America" in 1895 adopted a resolution recommending mitered joints for double track, but their use does not seem to be growing.
240. "Supported," "suspended," and "bridge" joints. In a supported joint the ends of the rails are on a tie. If the angleplates are short, the joint is entirely supported on one tie; if very long, it may be possible to place three ties under one anglebar and thus the joint is virtually supported on three ties rather than one. In a suspended joint the ends of the rails are midway between two ties and the joint is supported by the two. There
have always been advocates of both methods, but suspended joints are more generally used than supported joints. The opponents of three-tie joints claim that either the middle tie will be too strongly tamped, thus making it a supported joint, or that, if the middle tie is weakest, the joint becomes a very long (and therefore weak) suspended joint between the outer joint-ties, or that possibly one of the outer joint-ties gives way, thus breaking the angle-plate at the joint. Another objection which is urged is that unless the bars are very long (say 44 inches, as used on the Mich. Cent. R.R.) the ties are too close for proper tamping. The best answer to these objections is the successful use of these joints on several heary-traffic roads.
"Bridge "-joints are similar to suspended joints in that the joint is supported on two ties, but there is the important difference that the bridge-joint supports the rail from underneath and there is no transverse stress in the rail, whereas the supported joint requires the combined transverse strength of both anglebars and rail. A serious objection to bridge-joints lies in the fact of their considerable thickness between the rail base and the tie. When joints are placed "staggered" rather than " opposite" (as is now the invariable standard practice), the ties supporting a bridge-joint must either be notched down, thus weakening the tie and promoting decay at the cut, or else the tie must be laid on a slope and the joint and the opposite rail do not get a fair bearing.
241. Failures of rail-joints. It has been observed on doubletrack roads that the maximum rail wear occurs a few inches beyond the rail gap at the joint in the direction of the traffic. On single-track roads the maximum rail wear is found a few inches each side of the joint rather than at the extreme ends of the rail, thus showing that the rail end deflects down under the wheel until (with fast trains especially) the wheel actually jumps the space and strikes the rail a few inches beyond the joint, the impact producing excessive wear. This action, which is called the "drop," is apt to cause the first tie beyond the joint to become depressed, and unless this tie is carefully watched and main-
tained at its proper level, the stresses in the angle-bar may actually become reversed and the bar may break at the top. The angle-bars of a suspended joint are normally in compression at the top. The mere reversal of the stresses wonld cause the bars

Fig. 118.-Effect of" Wheel، Drop" (Exaggerated).
to give way with a less stress than if the stress were always the same in kind. A supported joint, and especially a three-tie joint (see § 240), is apt to be broken in the same mamer.
242. Standard angle-bars.-An angle-bar must be so made as to closely fit the rails. The great multiplicity in the designs of rails (referred to in Chapter IX) results in nearly as great variety in the detailed dimensions of the angle-bars. The sections here illustrated must be considered only as types of the variable forms necessary for each different shape of rail. The absolutely essential features required for a fit are (1) the angles

Fig. 119.-Standard Angle-bar-80-lb. Rail. M. C. R.R.
of the upper and lower surfaces of the bar where they fit against the rail, and (2) the height of the bar. The bolt-holes in the
bar and rail must also correspond. The holes in the angle-plates are elongated or made oval, so that the track-bolts, which are made of corresponding shape immediately under the head, will not be turned by jarring or vibration. The holes in the rails are made of larger diameter (by about $\frac{1}{4}^{\prime \prime}$) than the bolts, so as to allow the rail to expand with temperature.
243. Later designs of rail-joints. In Plate XVIII are shown various designs which are competing for adoption. The most prominent of these (judging from the discussion in the convention of the Roadmasters Association of America in 1897) are the "Continnous" and the "Weber." Each of them has been very extensively adopted, and where used are universally preferred to angle-plates. Nearly all the later designs embody more or less directly the principle of the bridge-joint, i.e., support the rail from underneath. An experience of several years will be required to demonstrate which form of joint best satisfies the somewhat opposed requirements of minimum cost (both initial and for maintenance) and minimum wear of rails and rolling stock.

TIE-PLATES.

244. Advantages. (a) As already indicated in § 204, the life of a soft-wood tie is very much reduced by "rail-cutting" and "spike-killing," such ties frequently requiring renewal long before any serious decay has set in. It has been practically demonstrated that the "rail-cutting" is not due to the mere pressure of the rail on the tie, even with a maximum load on the rail, but is due to the impact resulting from vibration and to the longitudinal working of the rail. It has been proved that this rail-cutting is practically prevented by the use of tie-plates. (b) On curves there is a tendency to overturn the outer rail due to the lateral pressure on the side of the head. This produces a concentrated pressure of the outer edge of the base on the tie which produces rail-cutting and also draws the inner spikes. Formerly the only method of guarding

WEBER RAIL JOINT.

WEIR BOLTED STIFF FROG.

WEIR SPRING-RAIL FROG.

SECTION THROUGH PLATE AT POINT.

SECTION THROUGH SPRING-HOUSING.

Rail Joints and Frogs.
(To face page 260. .)
against this was by the use of "rail-braces," one pattern of which is shown in Fig. 120. But it has been found that tie-

Fig. 120.
plates serve the purpose even better, and rail-braces have been abandoned where tie-plates are used. (c) Driving spikes through holes in the plate enables the spikes on each side of the rail to mutually support each other, no matter in which (lateral) direction the rail may tend to move, and this probably accounts in large measure for the added stability obtained by the use of tieplates. (d) The wear in spikes, called "necking," caused by the vertical vibration of the rail against them, is very greatly reduced. (e) The cost is very small compared with the value of the added life of the tie, the large reduction in the work of track maintenance, and the smoother rumning on the better track which is obtained. It has been estimated that by the use of tie-plates the life of hard-wood ties is increased from one to three years, and the life of soft-wood ties is increased from three to six years. From the very nature of the case, the value of tie-plates is greater when they are used to protect soft ties.
245. Elements of the design. The carliest forms of tie-plates were flat on the bottom, but it was soon found that they would work loose, allow sand and dirt to get between the rail and the plate and also between the plate and the tie, which would canse excessive wear. Such plates are also apt to produce an objectionable rattle. Another fault of the earlier designs was the use of plates so thin that they would buckle. The latest designs have flanges or "teeth" formed on the lower surface which penetrate the tie about $\frac{3}{4} "$ to $1 \frac{8}{8} "$. Opinion is still divided on the question of whether these teeth should run with the grain
or across the grain. If the flanges run with the grain, they generally extend the whole length of the tie-plate-as in the Wolhaupter design. If the grain is to be cut crosswise, several teeth abont $1^{\prime \prime}$ wide will be used-as in the Goldie design.

Fig. 121.-Tie-plates.
It is a very important feature that the spike-holes shonid be so punched that the spikes will fit closely to the base of the rail. Otherwise a lateral motion of the rail will be permitted which will defeat one of the main objects of the use of the plate.

Another unsettled detail is the use of "shoulders" on the upper surface. On the one hand it is claimed that the use of shoulders relieves the spikes of side pressure from the rail and prevents "necking." On the other hand it is claimed that if the plain plate is once properly set with new spikes (at least with spikes not already necked) the spikes will not neck appreciably, and that, as the shouldered plates cost more, the additional expenditure is unnecessary.

The above designs should be studied with reference to the manner in which they fulfill the requirements which have been already stated. As in the case of rail-joints, the best forms of tie-plates are of comparatively recent design, and experience with them is still insufficient to determine beyond all question which designs are the best.
246. Methods of setting. A very important detail in the process of setting the tie-plates on the ties is that the flanges or teeth should penetrate the tie as far as desired when the plates are first put in position. It requires considerable force to press the teeth into a tie. In a few cases trackmen have depended on the easy process of waiting for passing trains to force the teeth
down. Until the teeth are down the spikes camot be driven home, and this apparently cheap and easy process results in loose spikes and rails. If the trackmen neglect even temporarily to tighten these spikes, it will become impossible to make them tight ultimately. The plates are generally pounded into place with a 10 - to 16 -pound sledge-hammer. A very good method was adopted once during the construction of a bridge when a pile-driver was at hand. The bridge-ties were placed under the pile-hammer. The plates, accurately set to gange, were then forced in by a blow from the $3000-\mathrm{lb}$. hammer falling 2 or 3 feet.

SPIKES.

247. Requirements. The rails must be held to the ties by a fastening which will not only give sufficient resistance, but which will retain its capacity for resistance. It must also be cheap and easily applied. The ordinary track-spike fulfills the last requirements, but has comparatively small resisting power, compared with screws or bolts. Worse than all, the tendency to vertical vibration in the rail produces a series of upward pulls on the spike that soon loosens it. When motion has once begun the capacity for resistance is greatly reduced, and but little more vibration is required to pull the spike out so much that redriving is necessary. Driving the spike to place again in the same hole is of small ralue except as a very temporary expedient, as its holding power is then very small. Redriving the spikes in new holes very soon "spike-kills" the tie. Many plans have been derised to increase the holding power of spikes, such as making them jagged, twisting the spike, swelling the spike at about the center of its length, etc. But it has been easily demonstrated that the fibers of the wood are gen-

Fig. 122. erally so crushed and torn by driving such spikes that their holding power is less than that of the plain spike.

The ordinary spike (see Fig. 122) is made with a square
 cross-section which is uniform through the middle of its length, the lower $1_{4}^{\frac{3}{4}}$ tapering down to a chisel edge, the upper part swelling out to the head. The Goldie spike (see Fig. 123) aims to improve this form by reducing to a minimum the destruction of the fibers. To this end, the sides are made smooth, the edges are clean-cut, and the point, instead of being chisel-shaped, is ground down to a pyramidal form. Such fiber-cutting as occurs is thus accomplished without much crushing, and the fibers are thus pressed away from the spike and slightly downward. Any tendency to draw the spike will therefore cause Fig. 123. the fibers to press still harder on the spike and thus increase the resistance.
248. Driving. The holding power of a spike depends largely on how it is driven. If the blows are eccentric and irregular in direction, the hole will be somewhat enlarged and the holding power largely decreased. The spikes on each side of the rail in any one tie should not be directly opposite, but should be staggered. Placing them directly opposite will tend to split the tie, or at least decrease the holding power of the spikes. The direction of staggering should be reversed in
 the two pairs of spikes in any one tie Fig. 124. Spike-driving. (see Fig. 124). This will tend to prevent any twisting of the tie in the ballast, which would otherwise loosen the rail from the tie.
249. Screws and bolts. The use of these abroad is very extensive, but their use in this country has not passed the experimental stage. The screws are " wood" -screws (see Fig. 125), having large square heads, which are screwed down with a track-wrench. Holes, having the same diameter as the base of the screw-threads, should first be bored into the tie, at exactly the right position and at the proper angle with the vertical.

A light wooden frame is sometimes nsed to guide the anger at the proper angle. Sometimes the large head of the screw bears directly against the base of the rail, as with the ordinary spike. Other designs employ a plate, made to fit the rail on one side, bearing on the tie on the other side, and through which the screw passes. These screws cost much more than spikes and require more work to put in place, but their holding power is much greater and the work of track maintenance is very much less. Screw-bolts, passing entirely through the tie,
 laving the head at the bottom of the tie and the nut on Fie. 125. the upper side, are also used abroad. These are quite difficult to replace, requiring that the ballast be dug out beneath the tie, but on the other hand the occasions for replacing such a bolt are comparatively rare, as their durability is very great. The

Fig. 126.
use of screws or bolts increases the life of the tie by the avoidance of "spike-killing." It is capable of demonstration that the reduced cost of maintenance and the resulting improvement in track would much more than repay the added cost of serews and bolts, but it seems impossible to induce railroad directors to authorize a large and immediate additional expenditure to make an annual saving whose value, although unquestionably considerable, cannot be exactly computed.
250. "Wooden spikes." Among the regulations for tracklaying given in $\S 208$, mention was made of wooden "spikes," or plugs, which are used to fill up the holes when spikes are withdrawn. The value of the policy of filling up these holes is unquestionable, since the expense is insignificant compared with the loss due to the quick and certain decay of the tie if these holes are allowed to fill with water and remain so. But the method of making these plugs is variable. On some roads they are "hand-made" by the trackmen out of otherwise useless scraps of lumber, the work being done at odd

Fig. 127. moments. This policy, while apparently cheap, is not necessarily so, for the hand-made plugs are irregular in size and therefore more or less inefficient. It is also quite probable that if a track gang is required to make their own plugs, they may spend time on these very cheap articles which could be more profitably employed otherwise. Since the holes made by the spikes are larger at the top than they are near the bottom, the plugs should not be of uniform cross section but should be slightly wedge-shaped. The "Goldie tie-plug" (see Fig. 127) has been designed to fill these requirements. Being machinemade, they are uniform in size; they are of a shape which will best fit the hole; they can be furnished of any desired wood, and at a cost which makes it a wasteful economy to attempt to cut them by hand.

TRACK-BOLTS AND NUT-LOCKS.

251. Essential requirements. The track-bolts must have sufficient strength and must be screwed up tight enough to hold the angle-plates against the rail with sufficient force to develop the full transverse strength of the angle-bars. On the other hand the bolts should not be screwed so tight that slipping may not take place when the rail expands or contracts with temperature. It would be impossible to screw the bolts tight enough to prevent
slipping during the contraction due to a considerable fall of temperature on a straight track, but when the track is curved, or when expansion takes place, it is conceivable that the resistance of the ties in the ballast to lateral motion may be less than the resistance at the joint. A test to determine this resistance was made by Mr. A. Torrey, chief engineer of the Mich. Cent. R.R., using S0-lb. rails and ordinary angle-bars, the bolts being screwed up as usual. It required a force of about 31000 to 35000 lbs . to start the joint, which would be equivalent to the stress induced by a change of temperature of about 22°. But if the central angle of any given curve is small, a comparatively small lateral component will be sufficient to resist a compression of even 35000 lbs . in the rails. Therefore there will ordinarily be no trouble about having the joints screwed too tight. The vibration caused by the passage of a train reduces the resistance to slipping. This vibration also facilitates an objectionable feature, viz., loosening of the nuts of the track-bolts. The bolt is readily prevented from turning by giving it a form which is not circular immediately under the head and making corresponding holes in the angle-plate. Square holes would answer the purpose, except that the square corners in the holes in the angle-plates would increase the danger of fracture of the plates. Therefore the holes (and also the bolts, under the head) are made of an oval form, or perhaps a square form with rounded corners, avoiding angles in the outline.

The nut-locks should be simple and cheap, should have a life at least as long as the bolt, should be effective, and should not lose their effectiveness with age. Many of the designs that have been tried have been failures in one or more of these particulars, as will be described in detail below.
252. Design of track-bolts. In Fig. 128 is shown a common design of track-bolt. In its general form this represents che bolt used on nearly all roads, being used not only with the common angle-plates, but also with many of the inproved designs of rail-joints. The variations are chiefly a general increase in size to correspond with the increased
weight of rails, besides variations in detail dimensions which are frequently unimportant. The diameter is usually $\frac{3^{\prime \prime}}{4}$ to $\frac{7^{\prime \prime}}{8} ; 1^{\prime \prime}$ bolts are sometimes used for the heaviest sections of rails. As to length, the bolts should not extend more than $\frac{1^{\prime \prime}}{2}$ outside of the nut when it is screwed up. If it extends farther than this, it is liable to be broken off by a possible derailment at that point. The lengths used vary from $3 \frac{1}{4}{ }^{\prime \prime}$, which may be used with 60 lbs. rails, to $5^{\prime \prime}$, which is required with $100-\mathrm{lb}$. rails. The length required depends somewhat on the type of nut-lock used.
253. Design of nut-locks. The designs for nut-locks may be divided into three classes: (a) those depending entirely on an elastic washer which absorbs the vibration which might otherwise induce turning; (b) those which jam the threads of the bolt and nut so that, when screwed up, the frictional resistance is too great to be overcome by vibration; (c) the "positive" nut-locks-those which mechanically hold the nut from turning. Some of the designs combine these principles to some extent. The "rulcanized fiber" nut-lock is an example of the first class. It consists essentially of a rubber washer which is protected by an iron ring. When first placed this lock is effective, but the rubber soon hardens and loses its elasticity and it is then ineffective and worthless. Another illustration of class (a) is the use of wooden blocks, generally of $1^{\prime \prime}$ to $2^{\prime \prime}$ oak, which extend the entire length of the angle-bar, a single piece forming the washer for the four or six bolts of a joint. This form is cheap, but the wood soon shrinks, loses its elasticity, or decays so that it soon becomes worthless, and it requires constant adjustment to keep it in even tolerable condition. The "Verona" nut-lock is another illustration of class (a) which also combines some of the positive elements of class (c). It is made of
tempered steel and, as shown in Fig. 129, is warped and has sharp edges or points. The warped form furnishes the element of elastic pressure when the nut is screwed up. The steel being harder than the iron of the angle-bar or of the nut, it bites into them, owing to the great pressure that must exist

Fig. 129.-Types of Nut-loces.
when the washer is squeezed nearly flat, and thus prevents any backward movement, although forward movement (or tightening the bolt) is not interfered with. The "National" nut-lock is a type of the second class (b), in which, like the "Harvey" nut-lock, the nut and lock are combined in one piece. With six-bolt angle-bars and 30 -foot rails, this means a saving of 2112 pieces on each mile of single track. The "National" nuts are open on one side. The hole is drilled and the thread is cut slightly smaller than the bolt, so that when the nut is screwed
up it is forced slightly open and therefore presses on the threads of the bolt with such force that vibration cannot jar it loose. Unlike the "National" nut, the "Harvey" nut is solid, but the form of the thread is progressively varied so that the thread pinches the thread of the bolt and the frictional resistance to turning is too great to be affected by vibration.

The "Jones" nut-lock, belonging to class (c), is a type of a nut-lock that does not depend on elasticity or jamming of screw-threads. It is made of a thin flexible plate, the square part of which is so large that it will not turn after being placed on the bolt. After the nut is screwed up, the thin plate is bent over so that the re-entrant angle of the plate engages the corner of the nut and thus mechanically prevents any turning. The metal is supposed to be sufficiently tough to endure without fracture as many bendings of the plate as will ever be desired. Nut-locks of class (c) are not in common use.

CHAPTER XI.

SWITCHES AND CROSSINGS.

SWITCH CONSTRUCTION.

254. Essential elements of a switch. Flanges of some sort are a necessity to prevent car-wheels from rumning off from the rails on which they may be moving. But the flanges, although a necessity, are also a source of complication in that they require some special mechanism which will, when desired, guide the wheels out from the controlling influence of the main-line rails. This must either be done by raising the wheels high enough so that the flanges may pass over the rails, or by breaking the continuity of the rails in such a way that channels or "flange spaces" are formed through the iails. An ordinary stub switch breaks the continuity of the main-line rails in three places, two of them at the switch-block and one at the frog. The Wharton switch avoids two of these breaks by so placing inclined planes that the wheels, rolling on their flanges, will surmount these inclines until they are a little ligher than the rails. Then the wheels on the side toward which the switeh runs are guided over and across the main rail on that side. This rise being accomplished in a short distance, it becomes impracticable to operate these switches except at slow speeds, as any sudden change in the path of the center of gravity of a car causes very destructive jars both to the switch and to the rolling stock. The other general method makes a break in one main rail (or both) at the switch-block. In both methods the wheels are led to one side by means of the "lead rails," and finally one line of wheels passes through the main rail on that side by means of a "frog." There are some designs by which even this break in the main rail is avoided, the wheels being led over the main rail by means
of a short movable rail which is on occasion placed across the main rail, but such designs have not come into general use.
255. Frogs. Frogs are provided with two channel-ways or "flange spaces" throngh which the flanges of the wheels move. Each channel cuts out a parallelogram from the tread area. Since the wheel-tread is always wider than the rail, the wing rails will support the wheel not only across the space cut out by

Fig. 130.-Diagrammatic Design of Frog.
the channel, but also until the tread has passed the point of the frog and can obtain a broad area of contact on the tongue of the frog. This is the theoretical idea, but it is very imperfectly realized. The wing rails are sometimes subjected to excessive wear owing to "hollow treads" on the wheels-owing also to the frog being so flexible that the point "ducks" when the wheel approaches it. On the other hand the sharp point of the frog will sometimes cause destructive wear on the tread of the wheel. Therefore the tongue of the frog is not carried out to the sharp theoretical point, but is purposely somewhat blunted. But the break which these channels make in the continuity of the tread area becomes extremely objestionable at high speeds, being mutually destructive to the rolling stock and to the frog. The jarring has been materially reduced by the device of "spring frogs" -to be described later. Frogs were originally made of cast iron-then of cast iron with wearing parts of cast steel, which were fitted into suitable notches in the cast iron. This form proved extremely heavy and devoid of that elasticity of track which is necessary for the safety of rolling stock and track at high speeds. The present universal practice is to build the frog up of pieces of rails which are cut or bent as required. These pieces of rails (at least four) are sometimes
assembled by riveting them to a flat plate, but this method is now but little used, except for very light work. The usual practice is now chiefly divided between " bolted " and "keyed" frogs. In each case the space between the rails, except a sufficient flange-way, is filled with a cast-iron filler and the whole assemblage of parts is suitably bolted or clamped together, as is illustrated in Plate XVIII. The operation of a spring-rail frog is evident from the figure. Since a siding is usmally operated at slow speed, while the main track may be operated at fast speed, a spring-rail frog will be so set that the tread is continuons for the main track and broken for the siding. This also means that the spring rail will only be moved by trains moving at a (presumably) slow speed on to the siding. For the fast trains on the main line such a frog is substantially a "fixed" frog and has a tread which is practically continnons.
256. To find the frog number. The frog number (n) equals the ratio of the distance of any point on the tongue of the frog from the theoretical point of the frog divided by the width of the tongue at that point, i.e. $=h c \div a b$ (Fig. 130). This value may be directly measured by applying any convenient mit of measure (even a knife, a short pencil, etc.) to some point of the tongue where the width just equals the unit of measure, and then noting how many times the unit of measure is contained in the distance from that place to the theoretical point. But since c, the theoretical point, is not so readily determinable with exactitude, it being the imaginary intersection of the gange lines, it may be more accurate to measure $d e, a b$, and $h s$; then n, the frog number, $=h s \div(a b+d e)$. If the frog angle be called F, then

$$
n=h c \div a b=h s \div(a b+d e)=\frac{1}{2} \cot \frac{1}{2} F^{\prime} ;
$$

i.e..

$$
\cot \frac{1}{2} F=2 n .
$$

257. Stub switches. The use of these, although once nearly universal, has been practically abandoned as turnouts from main track except for the poorest and cheapest roads. In some States, their use on main track is prolibited by law. They
have the sole merit of cheapness with adaptability to the circumstances of very light traffic operated at slow speed when a considerable element of danger may be tolerated for the sake of economy. The rails from A to B (see Fig. 131*) are not fastened

Fig. 131.-Stub Switch.
to the ties; they are fastened to each other by tie-rods which keep them at the proper gauge; at and back of B they are securely spiked to the ties, and at A they are kept in place by the comnecting bar (C) fastened to the switch-stand. One great objection to the switch is that, in its usual form, when operated as a trailing switch, a derailment is inevitable if the switch is misplaced. The very least damage resulting from such a derailment must include the bending or breaking of the tie-rods of the switch-rail. Several devices have been invented to obviate this objection, some of which succeed very well mechanically, although their added cost precludes any economy in the total cost of the switch. Another objection to the switch is the looseness of construction which makes the switches objectionable at high speeds. The gap of the rails at the head-block is always considerable, and is sometimes as much as two inches. A

[^23]driving-wheel with a load of 12000 to 20000 pounds, jumping this gap with any considerable velocity, will do immense damage to the farther rail end, besides producing such a stress in the construction that a breakage is rendered quite likely, and such a breakage might have very serious consequences.
258. Point switches. The essential principle of a point switch is illustrated in Fig. 132. As is shown, one main rail and also one of the switch-rails is unbroken and immovable.

Fig. 132.-Point Switcif.
The other main rail (from A to F) and the corresponding portion of the other lead rail are substantially the same as in a stub switch. A portion of the main rail $(A B)$ and an equal length of the opposite lead rail (usually 15 to 24 feet long) are fastened together by tie-rods. The end at A is jointed as usual and the other end is pointed, both sides being trimmed down so that the feather edge at B includes the web of the rail. In order to retain in it as much strength as possible, the point-rail is raised so that it rests on the base of the stock-rail, one side of the base of the point-rail being entirely cutaway. As may be seen in Fig. 133, although the influence of the point of the rail in moving the wheel-flange away from the stock-rail is really zero at that point, yet the rail has all the strength of the web and about one-half that of the base-a very fair angle-iron.

Fig. 133. The planing runs back in straight lines, until at about six or seven feet back from the point the full width of the head is
obtained. The full width of the base will only be obtained at about 13 feet from the point. An $80-\mathrm{lb}$. rail is 5 inches

Fig. 134.-Ground Lever for Throwing a Switch.
wide at the base. Allowing $\frac{3}{4}{ }^{\prime \prime}$ more for a spike between the rails, this gives $5 \frac{3}{4} \frac{3}{\prime \prime}^{\prime \prime}$ as the minimum width between rail

Fig. 135. centers at the joint. The minimum angle of the switch-point (using a $1 \overline{5}$-foot point rail) is therefore the angle whose tangent is $\frac{5.75}{15 \times 12}=.03914$, which is the tangent of $1^{\circ} 50^{\prime}$. Switch-rails are sometimes used with a length of 24 feet, which reduces the angle of the switch point to $1^{\circ} 09^{\prime}$.
259. Switch-stands. The simplest and cheapest form is the "ground lever," which has no target. The radius of the circle described by the connecting-rod pin is precisely one-half the throw. From the nature of the motion the device is practically self-locking in either position, padlocks being only used to prevent malicions tampering. The numerons designs of upright stands are always combined with targets, one design of which is illustrated in Fig. 135. When the road is equipped with interlocking signals, the switch-throw mechanism forms a part of the design.
260. Tie-rods. These are fastened to the webs of the rails by means of lugs which are bolted on, there
being usually a hinge-joint between the rod and the lug. Four such tie-rods are generally necessary. The first rod is sometimes made without hinges, which gives additional stiffness to the comparatively weak rail-points. The old fashioned tie-rod, having jaws fitting the base of the rail, was almost universally used in the days of stub switches. One great inconvenience in their use lies in the fact that they must be slipped on, one by one, over the free ends of the switch-rails. Sometimes the lugs are fastened to the rail-webs by rivets instead of bolts.

Fig. 136.--Fuins of Tie-rods.
261. Guard-rails. As shown in Figs. 131 and 132, guardrails are used on both the main and switch tracks opposite the frog-point. Their function is not only to prevent the possibility of the wheel-flanges passing on the wrong side of the frogpoint, but also to sare the side of the frog-tongue from excessive wear. The necessity for their use may be realized by noting the very apparent wear usually found on the side of the head of the guard-rail. The flange-way space between the heads of the guard-rail and wheel-rail therefore becomes a definite quantity and should equal about two inches. Since this is less than the space between the heads of ordinary (say so-pound) rails when placed base to base, to say nothing of the $\frac{3^{\prime \prime}}{4}$ necessary for spikes, it becomes necessary to cut the flange of the guard-rail. The length of the rail is made from 10 to 15 feet, the ends being bent as shown in Fig. 132, so as to
prevent the possibility of the end of the rail being struck by a wheel-flange.

MATHEMATICAL DESIGN OF SWITCHES.

In all of the following demonstrations regarding switches, turnouts, and crossovers, the lines are assumed to represent the gauge-lines-i.e., the lines of the inside of the head of the rails.
262. Design with circular lead-rails. The simplest method

Fig. 137. is to consider that the lead-rails curve out from the main track-rails by arcs of circles which are tangent to the main rails and which extend to the frog-point F. The simple curve from D to F is of such radius that $\left(r+\frac{1}{2} g\right)$ vers $F=g$, in which $F=$ the frog angle, $g=$ gauge, $L=$ the "lead" $(B F)$, and $r=$ the radius of the center of the switch-rails,

$$
\begin{equation*}
\therefore \quad r+\frac{1}{2} g=\frac{g}{\operatorname{vers} H} . \tag{74}
\end{equation*}
$$

Also

$$
B F \div B D=\cot \frac{1}{2} F ; \quad B D=g ; \quad B F=L
$$

$$
\begin{equation*}
\therefore \quad L=g \cot \frac{1}{2} F . \tag{75}
\end{equation*}
$$

Also

$$
\begin{equation*}
L=\left(r+\frac{1}{2} g\right) \sin F ; \tag{76}
\end{equation*}
$$

$$
\begin{equation*}
Q T=2 r \sin \frac{1}{2} F \tag{77}
\end{equation*}
$$

These formulæ involve the angle F. As shown in Table III, the angles (F) are always odd quantities, and their trigonometric functions are somewhat troublesome to obtain closely with ordinary tables. The formulæ may be simplified by substituting the frog-number n, from the relation that $n=\frac{1}{2} \cot \frac{1}{2} F$. Since

$$
r-\frac{1}{2} g=L \cot F \text { and } r+\frac{1}{2} g=L \operatorname{cosec} F
$$

then

$$
\begin{align*}
r & =\frac{1}{2} L(\cot F+\operatorname{cosec} F) \\
& =\frac{1}{2} g \cot \frac{1}{2} F(\cot F+\operatorname{cosec} F) \\
& =\frac{1}{2} g \cot ^{2} \frac{1}{2} F, \text { since }(\cot \alpha+\operatorname{cosec} \alpha)=\cot \frac{1}{2} \alpha \\
& =2 g n^{2} . \quad \text { (Ts) } \tag{7S}
\end{align*}
$$

Also
$L=2 g n$,
from which $\quad r=n \times L$.
These extremely simple relations may obviate altogether the necessity for tables, since they involve only the frog-number and the gange. On accomnt of the great simplicity of these rules, they are frequently used as they are, regardless of the fact that the curve is never a uniform simple curve from switch-block to frog. In the first place there is a considerable length of the gauge-line within the frog, which is straight unless it is purposely curved to the proper curve while being manufactured, which is seldom if ever done-except for the very large-angled frogs used for street-railway work, etc. It is also doubtful whether the switch-rails (BA, Fig. 131) are bent to the computed curve when the rails are set for the switch. The switchrails of point switches are straight, thus introducing a stretch of straight track which is about one-fifth of the total length of the lead-rails. The effect of these modifications on the length and radius of the lead-rails will be developed and discussed in the next four sections.

The throw (t) of a stub switch depends on the weight of the rail, or rather on the width of its base. The throw must be at least $\frac{3^{\prime \prime}}{4}$ more than that width. The head-block should therefore be placed at such a distance from the heel of the switch (B) that the versed sine of the are equals the throw. These points must be opposite on the two rails, but the points on the two rails where these relations are exactly true will not be opposite. Therefore, instead of conside:ing either of the two radii $\left(r+\frac{1}{2} g\right)$ and ($r-\frac{1}{2} g$), the mean radius r is used. Then (see Fig. 137)

$$
\text { vers } K O Q=t \div r
$$

and the length of the switch-rails is

$$
\begin{equation*}
Q K=r \sin K O Q \tag{81}
\end{equation*}
$$

These relations develop another disadvantage in the use of a stub switch. The required value of $B G$, using a No. 10 frog and 80 -pound rail, is 30.1 feet-slightly more than a full rail length. It would be unsafe to leave so much of the track unspiked from the ties. Whether this is obviated by spiking down a portion of the switch-rails (virtually shortening the lead) or by moving the switch-block nearer the heel of the switch (shortening the switch-rails), but still maintaining the required throw, the theoretical accuracy of the curve is hopelessly lost.
263. Effect of straight frog-rails. A portion of the ends of the rails of a frog are free and may be bent to conform to the switch-rail curve, but there is a con-

Fig. 138. siderable portion which is fitted to the cast-iron filler, and this portion is always straight. Call the length of this straight portion back from the frog-point f ($=F H$, Fig. 138). Then we have

$$
r+\frac{1}{2} g=(g-f \sin F) \div \operatorname{vers} F
$$

$$
=\frac{g}{\operatorname{vers} F}-f \cot \frac{1}{2} F
$$

$$
\begin{equation*}
=\frac{g}{\operatorname{vers} F}-2 f n \tag{82}
\end{equation*}
$$

$$
\begin{align*}
B F=L & =(g-f \sin F) \cot \frac{1}{2} F+f \cos F \\
& =2 g n-f \sin F \cot \frac{1}{2} F+f \cos F \\
& =2 g n-f(1+\cos F)+f \cos F \\
& =2 g n-f \tag{83}
\end{align*}
$$

Since $r-\frac{1}{2} g=(L-f \sec F) \cot F$, and

$$
r+\frac{1}{2} g=(L-f \cos F) \operatorname{cosec} F
$$

$$
\begin{align*}
& r=\frac{1}{2} L(\cot F+\operatorname{cosec} F)-\frac{1}{2} f \sec F \cot F-\frac{1}{2} f \cos F \operatorname{cosec} F \\
& =L n-\frac{1}{2} f\left(\frac{1+\cos F}{\sin F}\right) \text {. } \\
& r=L n-\frac{1}{2} f \cot \frac{1}{2} F \\
& =L n-f i n \text {. Then from (83) } \\
& r=2 g n^{2}-2 f n \text {. } \tag{84}
\end{align*}
$$

264. Effect of straight point-rails. The "point switches," now so generally used, have straight switch-rails. This requires an angle in the alignment rather than turning off by a tangential curve. The angle is, however, very small (between 1° and 2°), and the disadvantages of this angle are small compared with the very great advantages of the device.

Fig. 139.

$$
\begin{align*}
F M & =\frac{g-k}{\sin \frac{1}{2}(F+\alpha)} ; \\
r+\frac{1}{2} g & =\overline{2 \sin \frac{1}{2}(F \overline{-\alpha})} \\
& =\frac{g-k}{2 \sin \frac{1}{2}(F+\alpha) \sin \frac{1}{2}(F-\alpha)} \\
& =\frac{g-k}{\cos \alpha-\cos F} . \quad . \quad . \quad . \tag{85}
\end{align*}
$$

$$
\begin{align*}
B F=L & =F M \cos \frac{1}{2}(F+\alpha)+D N \\
& =(g-k) \cot \frac{1}{2}(F+\alpha)+D N . \tag{86}
\end{align*}
$$

265. Combined effect of straight frog-rails and straight pointrails. It becomes necessary in this case to find a curve which shall be tangent to both the point-rail and the frog-rail. The curve therefore begins at M, its tangent making an angle of α (usually $1^{\circ} 50^{\prime}$) with the main rail, and runs to H. The central

Fig. 140.
angle of the curve is therefore $(F-\alpha)$. The angle of the chord $H M$ with the main rails is therefore

$$
\begin{align*}
& \frac{1}{2}(F-\alpha)+\alpha=\frac{1}{2}(F+\alpha) ; \\
& H M=\frac{g-f \sin F-k}{\sin \frac{1}{2}(F+\alpha)} ; \\
& r+\frac{1}{2} g=\frac{H M}{2 \sin \frac{1}{2}(F-\alpha)} \\
&=\frac{g-f \sin F-k}{2 \sin \frac{1}{2}(F+\alpha) \sin \frac{1}{2}(F-\alpha)} \\
&=\frac{g-f \sin F-k}{\cos \alpha-\cos F} ; . \tag{87}\\
& S T=2 r \sin \frac{1}{2}(F-\alpha) . \tag{88}
\end{align*}
$$

$$
\begin{aligned}
B F & =L=H M \cos \frac{1}{2}(F+\alpha)+f \cos F+D N \\
& =(g-f \sin F-k) \cot \frac{1}{2}(F+\alpha)+f \cos F+D N .
\end{aligned}
$$

It may be more simple, if $\left(r+\frac{1}{2} g\right)$ has already been computed, to write

$$
\begin{align*}
L & =2\left(r+\frac{1}{2} g\right) \sin \frac{1}{2}(F-\alpha) \cos \frac{1}{2}(F+\alpha)+f \cos F+D N \\
& =\left(r+\frac{1}{2} g\right)(\sin F-\sin \alpha)+f \cos F+D N . \tag{90}
\end{align*}
$$

266. Comparison of the above methods. Computing values for r and L by the various methods, on the uniform basis of a No. 9 frog, standard gauge $4^{\prime} 8 \frac{1_{2}^{\prime \prime}}{}{ }^{\prime \prime}, f=3^{\prime} .37, k=5 \frac{3}{4}{ }^{\prime \prime}=0^{\prime} .479$, $D N=15^{\prime} 0^{\prime \prime}$, and $\alpha=1^{\circ} 50^{\prime}$, we may tabulate the comparative results:

	Simple circle Curved frog r. Curved switch-r	§ 263. Straight frog-r. Curved switch-r.	$\begin{gathered} \S \frac{264 .}{} \\ \text { Curved frog-r. } \\ \text { Straight switth-r. } \end{gathered}$	§ 965. Straight frog-r Straight switch r
r	762.75	702.00	747.48	681.16
Deg. of curve	$7{ }^{\circ} 31^{\prime}$	$8^{\circ} 10^{\prime}$	$7{ }^{\circ} 40^{\prime}$	$8^{\circ} 25^{\prime}$
L	84.75	81.37	74.00	72.13

This shows that the effect of using straight frog-rails and straight switch-rails is to sharpen the curve and shorten the lead in each case separately, and that the combined effect is still greater. The effect of the straight switch-rails is especially marked in reducing the length of lead, and therefore Eq. 78 to so, although liaving the advantage of extreme simplicity, cannot be used for point-switches without material error. The effect of the straight frog-rail is less, and since it can be materially reduced by bending the free end of the frog-rails, the influence of this feature is frequently ignored, the frog-rails are assumed to be curved and Eq. 85 and 86 are used. (See $\S 276$ for a further discussion of this point.)
267. Dimensions for a turnout from the oUTER side of a curved track. In this demonstration the switch-rails will be considered as uniformly circular from the switch-points to the frog-point.

Fig. 141.
In the triangle $F C D$ (Fig. 141) we have
$(F C+C D):(F C-C D):: \tan \frac{1}{2}(F D C+D F C): \tan \frac{1}{2}(F D C-D F C)$;
but

$$
\frac{1}{2}(F D C+D F C)=90^{\circ}-\frac{1}{2} \theta
$$

and

$$
\frac{1}{2}(F D C-D F C)=\frac{1}{2} F
$$

Also $\quad F C+C D=2 R$ and $F C-C D=g ;$

$$
\begin{aligned}
\therefore 2 R: g: & : \cot \frac{1}{2} \theta: \tan \frac{1}{2} F \\
& :: \cot \frac{1}{2} F: \tan \frac{1}{2} \theta ;
\end{aligned}
$$

$$
\begin{equation*}
\therefore \tan \frac{1}{2} \theta=\frac{g n}{\bar{R}} . \tag{91}
\end{equation*}
$$

Also $O F: F C:: \sin \theta: \sin \phi ; \quad$ but $\phi=(F-\theta)$;
then

$$
\begin{align*}
& r+\frac{1}{2} g=\left(R+\frac{1}{2} g\right) \frac{\sin \theta}{\sin (F-\theta)} . \tag{92}\\
& B F=L=2\left(R+\frac{1}{2} g\right) \sin \frac{1}{2} \theta . \tag{93}
\end{align*} .
$$

If the curvature of the main track is very sharp or the frog angle unusually small, F may be less than θ; in which case the center O will be on the same side of the main track as C. Eq. 92 will become (by calling $r=-r$ and changing the signs)

$$
\begin{equation*}
\left(r-\frac{1}{2} g\right)=\left(R+\frac{1}{2} g\right) \frac{\sin \theta}{\sin (\theta-F)} \tag{94}
\end{equation*}
$$

If we call d the degree of curve corresponding to the radius r, and D the degree of curve corresponding to the radius R, also d^{\prime} the degree of curve of a turnout from a straight track (the frog angle F being the same), it may be shown that $d=d^{\prime}-D$ (very nearly). To illustrate we will take three cases, a number 6 frog (very blunt), a number 9 frog (very commonly used), and a number 12 frog (unusually sharp). Suppose $D=4^{\circ} 0^{\prime}$; also $D=10^{\circ} 0^{\prime} ; g=4^{\prime} 8 \frac{1}{2}^{\prime \prime}=4^{\prime} .708$.

$\begin{aligned} & \text { Frog } \\ & \text { number. } \end{aligned}$	$D=4^{\circ}$.				" L " for straight track.
	${ }^{\text {d }}$	$d^{\prime}-D$	Error.	L	
6	$12^{\circ} 54^{\prime} 20^{\prime \prime}$	$12^{\circ} 57^{\prime \prime} 52^{\prime \prime}$	$0^{\circ} 03^{\prime} 32^{\prime \prime}$	56.57	56.50
9	$\begin{array}{llll}3 & 30 & 27\end{array}$	$\begin{array}{llll}3 & 31 & 04\end{array}$	$\begin{array}{llll}0 & 0 & 37\end{array}$	84.85	84.75
12	$\begin{array}{llll}0 & 13 & 33\end{array}$	$\begin{array}{llll}0 & 13 & 36\end{array}$	$0 \quad 0 \quad 03$	112.72	113.00

$\begin{aligned} & \text { Frog } \\ & \text { number. } \end{aligned}$	$D=10^{\circ}$				" L " for straight track.
	d	$d^{\prime}-D$	Error.	L	
6	$6^{\circ} 53^{\prime} 24^{\prime \prime}$	$6^{\circ} 57^{\prime} 52^{\prime \prime}$	$0^{\circ} 04^{\prime} 28^{\prime \prime}$	56.66	56.50
9	$\begin{array}{lll}2 & 27 & 54\end{array}$	$\begin{array}{llll}2 & 28 & 56\end{array}$	$\begin{array}{lll}0 & 01 & 02\end{array}$	84.86	84.75
12	$\begin{array}{llll}5 & 44 & 26\end{array}$	$\begin{array}{llll}5 & 46 & 24\end{array}$	$\begin{array}{llll}0 & 01 & 58\end{array}$	112.91	113.00

A brief study of the above tabular form will show that the error involved in the use of the approximate rule for ordinary curves (t° or less) and for the usual frogs (about No. 9) is really insignificant, and that, eren for sharper curves (10° or more), or for very blunt frogs, the error would never cause damage, considering the lower probable speed. In the most unfarorable case noted abore the change in radius is about 1%. On account of the closeness of the approximation the method is frequently used. The remarkable agreement of the computed values of L with the corresponding values for a straight main track (the lead
rails circular throughout) shows that the error is insignificant in using the more easily computed values.
268. Dimensions for a turnout from the InNER side of a curved

Fig. 142.
track. (Lead rails circular throughout.) From Fig. 142 we have
$D C+F C: D C-F C:: \tan \frac{1}{2}(D F C+F D C): \tan \frac{1}{2}(D F C-F D C) ;$
but

$$
\frac{1}{2}(D F C+F D C)=90^{\circ}-\frac{1}{2} \theta
$$

and

$$
\begin{gather*}
\frac{1}{2}(D F C-F D C)=\frac{1}{2} F \\
\therefore 2 R: g:: \cot \frac{1}{2} \theta: \tan \frac{1}{2} F \\
:: \cot \frac{1}{2} F: \tan \frac{1}{2} \theta \\
\therefore \tan \frac{1}{2} \theta=\frac{g n}{R} . \cdot . \quad . \tag{95}\\
O F: F C:: \sin \theta: \sin (F+\theta) \\
\left(r+\frac{1}{2} g\right)=\left(R-\frac{1}{2} g\right) \frac{\sin \theta}{\sin (F+\theta)} \tag{96}\\
L=B F=2\left(R-\frac{1}{2} g\right) \sin \frac{1}{2} \theta . \tag{97}
\end{gather*}
$$

As in $\S 267$, it may be readily shown that the degree of the turnout (d) is nearly the sum of the degree of the main track (D) and the degree (d^{\prime}) of a turnout from a straight track when the frog angle is the same. The discrepancy in this case is
somewhat greater than in the other, especially when the curvature of the main track is sharp. If the frog angle is also large, the curvature of the turnont is excessively sharp. If the frog angle is very small, the liability to derailment is great. Turnouts to the inside of a curved track should therefore be avoided, unless the curvature of the main track is small.
269. Double turnout from a straight track. In Fig. 143 the frogs F_{l} and F_{r} are generally made equal. Then, if there are

Fig. 143.
uniform curves from B^{\prime} to F_{l} and from B to F_{r}, the required value of F_{m} is obtained from

$$
\begin{equation*}
\text { vers } \frac{1}{2} F_{m}=\frac{g}{2\left(r+\frac{1}{2} g\right)}, \quad . \quad . \quad . \tag{98}
\end{equation*}
$$

r being found from Eq. 78, in which n is the frog number of F_{l} or F_{r}.

$$
M F_{m}=r \tan \frac{1}{2} F_{m}
$$

but since $n_{m}=\frac{1}{2} \cot \frac{1}{2} F_{m}$,

$$
\begin{equation*}
M F_{m}=\frac{r}{2 n_{m}} \tag{99}
\end{equation*}
$$

Since vers $F_{l}=\frac{g}{\left(r+\frac{1}{2} g\right)}$,

$$
\begin{equation*}
\text { vers } \frac{1}{2} F_{m}=\frac{1}{2} \text { vers } F_{l}, \tag{100}
\end{equation*}
$$

Also, since $\left(C_{1} F_{m}\right)^{2}=\left(M \Gamma F_{m}\right)^{2}+\left(C_{1} M\right)^{2}$, we have

$$
\begin{aligned}
\left(r+\frac{1}{2} g\right)^{2} & =\left(\frac{r}{2 n_{m}}\right)^{2}+r^{2} \\
r^{2}+r g+\frac{1}{4} g^{2} & =\frac{r^{2}}{4 n_{m}{ }^{2}}+r^{2} .
\end{aligned}
$$

Simplifying and substituting $r=2 g n^{2}$, we have

$$
\begin{aligned}
2 g^{2} n^{2}+\frac{1}{4} g^{2} & =\frac{4 g^{2} n^{4}}{4 n_{m}^{2}} \\
n_{m}^{2} & =\frac{n^{4}}{2 n^{2}+\frac{1}{4}}
\end{aligned}
$$

Dropping the $\frac{1}{4}$, which is always insignificant in comparison with $2 n^{2}$, we have

$$
\begin{equation*}
n_{m}=\frac{n}{\sqrt{2}}=n \times .707 \text { (approx.) } \tag{101}
\end{equation*}
$$

Frogs are usually made with angles corresponding to integral values of n, or sometimes in "half" sizes, e.g. $6,6 \frac{1}{2}, 7,7 \frac{1}{2}$, etc. If No. $8 \frac{1}{2}$ frogs are used for F_{l} and F_{r}, the exact frog number for F_{m} is 6.01 . This is so nearly 6 that a No. 6 frog may be used without sensible inaccuracy. Numbers 7 and 10 are a less perfect combination. If sharp frogs must be used, $8 \frac{1}{2}$ and 12 form a very good combination.

If it becomes necessary to use other frogs because the right combination is unobtainable, it may be done by compounding the curve at the middle frog. F_{l} and F_{r} should be greater than $\frac{1}{2} F_{m}$. If equal to $\frac{1}{2} F_{m}$, the rails would be straight from the middle frog to the outer frogs. In Fig. 144, $\theta_{2}=F_{l}-\frac{1}{2} F_{m}$. Drawing the chord $\overline{F_{l} F_{m}}$,

$$
\overline{K F_{l} F_{m}}=F_{l}-\frac{1}{2} \theta_{1}=F_{l}-\frac{1}{2} F_{l}+\frac{1}{4} F_{m}=\frac{1}{2}\left(F_{l}+\frac{1}{2} F_{m}\right)
$$

$$
\begin{align*}
\overline{F_{l} F_{m}} & =\frac{\overline{K F_{m}^{\prime}}}{\sin \overline{K F_{l}^{\prime} F_{m}}}=\frac{g}{2 \sin \frac{1}{2}\left(F_{l}^{\prime}+\frac{1}{2} F_{m}^{\prime}\right)} ; \tag{102}\\
\overline{K F_{l}} & =\overline{K F_{m}} \cot \overline{K F_{l} F_{m}}=\frac{1}{2} g \cot \frac{1}{2}\left(F_{l}+\frac{1}{2} F_{m}\right) \tag{103}
\end{align*}
$$

$\left(r_{1}+\frac{1}{2} g\right)=\frac{\overline{F_{l}} \bar{F}_{m}}{2 \sin \frac{1}{2} \theta}=\frac{g}{4 \sin \frac{1}{2}\left(F_{l}+\frac{1}{2} F_{m}\right) \sin \frac{1}{2}\left(F_{l}-\frac{1}{2} F_{m}\right)}$

$$
\begin{equation*}
=\frac{\frac{1}{2} g}{\cos \frac{1}{2} F_{m}-\cos F_{l}^{\prime}} . \tag{104}
\end{equation*}
$$

Fig. 144.
If three frogs, all different, must be used, the largest may be selected as F_{m}; the radius of the lead rails may be found by an inversion of Eq. 98; F_{m} may be located in the center of the tracks by Eq. 99 ; then each of the smaller frogs may be located by separate applications of Eq .102 or 103, the radius being determined by Eq. 104.
270. Two turnouts on the same side. In Fig. 145, let O_{1} bisect $O_{2} D$. Then $\left(r_{1}+\frac{1}{2} g\right)=\frac{1}{2}\left(r_{2}+\frac{1}{2} g\right)$; also, $O_{1} O_{2}=O_{1} F_{l}$ and $F_{r}=F_{l}$.

$$
\begin{align*}
\text { vers } F_{m} & =\frac{g}{r_{1}+\frac{1}{2} g}=\frac{2 g}{r_{2}+\frac{1}{2} g} \tag{105}\\
B F_{m} & =\left(r_{1}+\frac{1}{2} g\right) \sin F_{m} . \tag{106}
\end{align*}
$$

It may readily be shown that the relative values of F_{r}, F_{l}, and F_{m} are almost identical with those given in $\S 269$; as may
be apparent when it is considered that the middle switch may be regarded simply as a curved main track, and that, as

Fig. 145.
developed in $\S 267$, the dimensions of turnouts are nearly the. same whether the main track is straight or slightly curved.
271. Connecting curve from a straight track. The "connecting curve" is the track lying

Fig. 146. between the frog and the side track where it becomes parallel to the main track ($F S$ in Fig. 146 or 147). Call d the distance between track centers. The angle $F O_{1} R=F$ (see Fig. 146). Call r^{\prime} the radius of the connecting curve. Then

$$
\begin{align*}
\left(r^{\prime}-\frac{1}{2} g\right) & =\frac{d-g}{\operatorname{vers} F} ; . \tag{107}\\
F R & =\left(r^{\prime}-\frac{1}{2} g\right) \sin F \tag{108}
\end{align*}
$$

If it is considered that the distance $F R$ consumes too much track room, it may be shortened by the method indicated in Fig. 151.
272. Connecting curve from a curved track to the outside. When the main track is curved, the required quantities are the radius r of the connecting curve from F to S, Fig. 147, and its length or central angle. In the triangle $C S F$
$C S+C F: C S-C F:: \tan \frac{1}{2}(C F S+C S F): \tan \frac{1}{2}(C F S-C S F) ;$
but $\frac{1}{2}(C F S+C S F)=90-\frac{1}{2} \psi ;$ and, since the triangle $O_{1} S F$ is isosceles, $\frac{1}{2}(C F S-C S F)=\frac{1}{2} F$;

$$
\begin{aligned}
\therefore 2 R+d: d-g & :: \cot \frac{1}{2} \psi: \tan \frac{1}{2} F \\
& :: \cot \frac{1}{2} F: \tan \frac{1}{2} \psi ;
\end{aligned}
$$

$$
\begin{equation*}
\therefore \tan \frac{1}{2} \psi=\frac{2 n(d-g)}{2 R+d} \tag{109}
\end{equation*}
$$

Fig. 147.
From the triangle $C O_{1} F$ we may derive

$$
\begin{align*}
& r-\frac{1}{2} g: R+\frac{1}{2} g:: \sin \psi: \sin (F+\psi) \\
& r-\frac{1}{2} g=\left(R+\frac{1}{2} g\right) \frac{\sin \psi}{\sin (F+\psi)} \quad . \quad . \tag{110}
\end{align*}
$$

Also

$$
\begin{equation*}
F S=2\left(r-\frac{1}{2} g\right) \sin \frac{1}{2}(F+\psi) \tag{111}
\end{equation*}
$$

273. Connecting curve from a curved track to the inside. As above, it may readily be deduced from the triangle CFS (see Fig. 148) that

$$
(2 R-d):(d-g):: \cot \frac{1}{2} \psi: \tan \frac{1}{2} F,
$$

and finally that

$$
\begin{equation*}
\tan \frac{1}{2} \psi=\frac{2 n(d-g)}{2 R-d} \tag{112}
\end{equation*}
$$

Similarly we may derive (as in Eq. 110)

$$
\begin{equation*}
\left(r-\frac{1}{2} g\right)=\left(R-\frac{1}{2} g\right) \frac{\sin \psi}{\sin (F-\psi)} \tag{113}
\end{equation*}
$$

Also

$$
\begin{equation*}
F S=2\left(r-\frac{1}{2} g\right) \sin \frac{1}{2}(F-\psi) \tag{114}
\end{equation*}
$$

Fig. 148.
Two other cases are possible. (a) r may increase until it becomes infinite (see Fig. 149), then

Fig. 149. $F=\psi$. In such a case we may write, by substituting in Eq. 112, $2 R-d=4 n^{2}(d-g)$. .

This equation shows the value of R, which renders this case possible with the given values of n, d, and g. (b) ψ may be greater than F. As before (see Fig. 150)
$2 R-d: d-g:: \cot \frac{1}{2} \psi: \tan \frac{1}{2} F ;$

$$
\tan \frac{1}{2} \psi=\frac{2 n(d-g)}{2 R-d}
$$

the same as Eq. 112, but

$$
\begin{equation*}
r+\frac{1}{2} g=\left(R-\frac{1}{2} g\right) \frac{\sin \psi}{\sin (\psi-F)} \tag{116}
\end{equation*}
$$

Fig. 150.
274. Crossover between two parallel straight tracks. (See Fig. 151.) The turnouts are as usual. The crossover track may be straight, as shown by the full lines, or it may be a reversed curve, as shown by the dotted lines. The reversed curve shortens the total length of track required, but is somewhat objectionable. The first method requires that both frogs must be equal. The second method permits unequal frogs, although equal frogs are preferable. The length of

Fig. 151. straight crossover track is $F_{1} T$.

$$
\begin{align*}
& F_{1} T \sin F_{1}+g \cos F_{1}=d-g \\
& F_{1} T=\frac{d-g}{\sin F_{1}}-g \cot F_{2} . \tag{117}
\end{align*}
$$

The total distance along the track may be derived as follows:

$$
\begin{align*}
& D V \\
& X Y=2 D F_{1}+F_{2} Y=2 D F_{1}+X Y-X F_{2} ; \\
& \therefore \quad D V=2 D F_{1}+(d-g) \cot F_{1} ; \quad X F_{2}=g \div \sin F_{2} ; \tag{118}\\
& \sin F_{2}
\end{align*} . \quad . \quad .
$$

If a reversed curve with equal frogs is used, we have
also

$$
\begin{align*}
\text { vers } \theta & =\frac{d}{2 r} \tag{119}\\
D Q & =2 r \sin \theta \tag{120}
\end{align*}
$$

Fig. 152.
If the frogs are unequal, we will have (see Fig. 152)

$$
\begin{align*}
& r_{2} \text { vers } \theta+r_{1} \text { vers } \theta=d \\
& \quad \therefore \quad \text { vers } \theta=\frac{d}{r_{1}+r_{2}} ; \tag{121}
\end{align*}
$$

also the distance along the track

$$
\begin{equation*}
B_{2} N=\left(r_{1}+r_{2}\right) \sin \theta \tag{122}
\end{equation*}
$$

275. Crossover between two parallel curved tracks. (a) Using a straight connecting curve. This solution has limitations. If one frog $\left(F_{1}\right)$ is chosen, F_{2} becomes determined, being a function of F_{1}. If F_{1} is less than some limit, depending on the width

Fig. 153.
(d) between the parallel tracks, this solution becomes impossible. In Fig. 153 assume F_{1} as known. Then $F_{1} H=g$ sec F_{1}. In the triangle $H O F_{2}$ we have

$$
\begin{aligned}
& \sin H F_{2} O: \sin F_{2} H O:: H O: F_{2}^{\prime} O \\
& \sin F_{2} H O=\cos F_{1} ; \quad H F_{2} O=90^{\circ}+F_{2} ; \\
\therefore \quad & \sin H F_{2} O=\cos F_{2} .
\end{aligned}
$$

$$
\Pi O=R+\frac{1}{2} d-\frac{1}{2} g-g \sec F_{1} ; \quad F_{2} O=R-\frac{1}{2} d+\frac{1}{2} g ;
$$

$$
\begin{equation*}
\therefore \cos F_{2}=\cos F_{1} \frac{R+\frac{1}{2} d-\frac{1}{2} g-g \sec F_{1}}{R-\frac{1}{2} d+\frac{1}{2} g} . \tag{123}
\end{equation*}
$$

Knowing F_{2}, θ_{2} is determinable from Eq. 91. Fig. 153 shows the case where θ_{2} is greater than F_{2}. Fig. 154 shows the case where it is less. The demonstration of Eq. 123 is applicable to

Fig. 154.
both figures. The relative position of the frogs F_{1} and F_{2} may be determined as follows, the solution being applicable to both Figs. 153 and 154:

$$
H O F_{2}=180^{\circ}-\left(90^{\circ}-F_{1}\right)-\left(90^{\circ}+F_{2}\right)=F_{1}-F_{2} .
$$

Then

$$
\begin{equation*}
G F_{1}=2\left(R+\frac{1}{2} d-\frac{1}{2} g\right) \sin \frac{1}{2}\left(F_{1}-F_{2}\right) . \tag{124}
\end{equation*}
$$

Since F_{2} comes out any angle, its value will not be in general that of an even frog number, and it will therefore need to be made to order.
(b) Continuing the switch-rail curves until they meet as a reversed curve. In this case F_{1} and F_{2} may be chosen at pleasure (within limitations), and they will of course be of regular sizes and equal or unequal as desired. F_{1} and F_{2} being known, θ_{1} and θ_{2} are computed by Eq. 95 and 91. In the triangle $O O_{1} O_{2}$ (see Fig. 155)

$$
\text { vers } \psi=\frac{2\left(S-O O_{2}\right)\left(S-O O_{1}\right)}{O O_{2}-O O_{1}}
$$

in which

$$
S=\frac{1}{2}\left(O O_{1}+O O_{2}+O_{1} O_{2}\right)
$$

but

$$
\begin{aligned}
& O O_{1}=R+\frac{1}{2} d-r_{1} \\
& O O_{2}=R-\frac{1}{2} d+r_{2} \\
& O_{1} O_{2}=r_{1}+r_{2}
\end{aligned}
$$

$$
\therefore S=\frac{1}{2}\left(2 R+2 r_{2}\right)=R+r_{2}
$$

$$
S-O O_{2}=R+r_{2}-R+\frac{1}{2} d-r_{2}=\frac{1}{2} d ;
$$

$$
S-O O_{1}=R+r_{2}-R-\frac{1}{2} d+\dot{r}_{1}=r_{1}+r_{2}-\frac{1}{2} d
$$

Fig. 155.

$$
\begin{equation*}
\operatorname{vers} \psi=\frac{d\left(r_{1}+r_{2}-\frac{1}{2} d\right)}{\left(R-\frac{1}{2} d+r_{2}\right)\left(R+\frac{1}{2} d-r_{1}\right)} ; . \quad . \tag{125}
\end{equation*}
$$

$\sin O O_{2} O_{1}=\sin \psi \frac{O O_{1}}{O_{1} O_{2}}=\sin \psi \frac{R+\frac{1}{2} d-r_{1}}{r_{1}+r_{2}} ; . \quad$.

$$
\begin{align*}
O_{2} O_{1} D & =\psi+O_{1} O_{2} O ; \cdot \tag{127}\\
N F_{2} & =2\left(R-\frac{1}{2} d+\frac{1}{2} g\right) \sin \frac{1}{2}\left(\psi-\theta_{1}-\theta_{2}\right) .
\end{align*}
$$

Although the above method introduces a reversed curve, yet it uses up less track than the first method and permits the use of ordinary frogs rather than those having some special angle which must be made to order.
276. Practical rules for switch-laying. A consideration of the previous sections will show that the formule are comparatively simple when the lead rails are assumed as circular ; that they become complicated, even for turnouts from a straight main track, when the effect of straight frog and point rails is allowed for, and that they become hopelessly complicated when allowing for this effect on turnouts from a curved main track. It is also shown ($\$ 267$) that the length of the lead is practically

Fig. 140.
the same whether the main track is straight or is curved with such curves as are commonly used, and that the degree of curve of the lead rails from a curved main track may be found with close approximation by mere addition or subtraction. From this it may be assumed that, if the length of lead (L) and the radius of the lead rails (r) are computed from Eq. 87 and 90 for rarious frog angles, the same leads may be used for curved main track; also, that the degree of curve of the lead rails may be found by addition or subtraction, as indicated in $\S 267$, and that the approximations involved will not be of practical detriment.

In accordance with this plan Table III has been computed from Eq. 87, s8, and 90 . The leads there given may be used for all main tracks straight or curved. The table gives the degree of curve of the lead rails for straight main track; for a turnout to the inside, add the degree of curve of the main track; for a turnout to the outside, subtract it.

If the position of the switch-block is definitely determined, then the rails must be cut accordingly ; but when some freedom is allowable (which never need exceed 15 feet and may require but a few inches), one rail-cutting may be avoided. Mark on the rails at B, F, and D; measure off the length of the switchrails $D N$; offset $\frac{1}{2} g+k$ from N for the point S. The point H may be located (temporarily) by measuring along the rail a distance $F H(=f)$ and then swinging out a distance of $f \div n$ (n being the frog number). $H T=\frac{1}{2} g$ and is measured at right angles to FH. Points for track centers between S and T may be laid off by a transit or by the use of a string and tape. Substituting in Eq. 31 the value of R and of chord $(=S T)$, we may compute $x(=$ $d b)$. Locate the middle point d and the quarter points $a^{\prime \prime}$ and $c^{\prime \prime}$. Then $a^{\prime \prime} a$ and $c^{\prime \prime} c$ each equal

Fig. 156. three-fourths of $d b$. Theoretically this gives a parabola rather than a circle, but the difference for all practical cases is too small for measurement.

Example. Given a main track on a 4° curve; a turnout to the outside, using a number 9 frog; gange $4^{\prime} 8 \frac{1_{2}^{\prime \prime}}{}{ }^{\prime \prime} ; f=3^{\prime} .37$; $k=5^{\frac{3}{4}}{ }^{\prime \prime} ; D N=15^{\prime} 0^{\prime \prime}$ and $\alpha=1^{\circ} 50^{\prime}$. Then for a straight track r would equal $681.16\left[d=s^{\circ} 25^{\prime}\right]$. For this curved track d will be nearly $\left(8^{\circ} 25^{\prime}-4^{\circ}\right)=4^{\circ} 25^{\prime}$, or r will be 1297.6. L for the straight track would be 72.20 ; but sirce the lead is slightly increased (see $\& 267$) when the turnout is on the outside of a curve, L may here be called 72.5. $F H=f$ $=3^{\prime} .37 ; f \div \dot{n}=3.37 \div 9=0^{\prime} .375=4^{\prime \prime} .5$. $I T, T$, and S may be located as described above. ST may be measured on the ground, or it may be computed from Eq. 88 , giving the value
of 53.80 feet for straight track. Since it is slightly more for a turnout to the outside of a curve, it may be called 54.0 . Then $x=d b=\frac{(54.0)^{2}}{5 \times 1297.6}=0.251$ feet, and $a a^{\prime \prime}$ and $c c^{\prime \prime}=0.21$ foot.

CROSSINGS.

277. Two straight tracks. When two straight tracks cross each other, four frogs are necessary, the angles of two of them being supplementary to the angles of the other. Since such crossings are sometimes operated at high speeds, they should be

Fig. 157.-Crossing.
very strongly constructed, and the angles should preferably be 90° or as near that as possible. The frogs will not in general be "stock" frogs of an even number, especially if the angles are large, but must be made to order with the required angles as measured. In Fig. 157 are shown the details of such a crossing. Note the fillers, bolts, and guard-rails.
278. One straight and one curved track. Structurally the crossing is about the same as above, but the frog angles are all unequal. In Fig. 15s, R is known, and the angle M, made by the center lines of the tracks at their point of intersection, is also known.

$$
M=N C M . \quad N C=R \cos M
$$

$\left(R-\frac{1}{2} g\right) \cos F_{1}=N C+\frac{1}{2} g ;$
$\therefore \cos F_{\mathrm{r}}=\frac{R \cos M+\frac{1}{2} g}{R-\frac{1}{2} g}$.
Similarly $\cos F_{2}=\frac{R \cos M+\frac{1}{2} g}{R+\frac{1}{2} g}$,

$$
\begin{equation*}
\cos F_{3}=\frac{R \cos M-\frac{1}{2} g}{R+\frac{1}{2} g} \tag{129}
\end{equation*}
$$

$$
\cos F_{4}=\frac{R \cos M-\frac{1}{2} g}{R-\frac{1}{2} g}
$$

Fig. 158.
279. Two curved tracks. The four frogs are unequal, and the angle of each must be computed. The radii R_{1} and R_{2} are

Fig. 159.
known; also the angle $M_{.} r_{1}, r_{2}, r_{3}$, and r_{+}are therefore known by adding or subtracting $\frac{1}{2} g$, but the lines are so indi-
cated for brevity. Call the angle $M C_{1} C_{2}=C_{1}$, the angle $M C_{2} C_{1}=C_{2}$, and the line $C_{1} C_{2}=c$. Then

$$
\frac{1}{2}\left(C_{1}+C_{2}^{\prime}\right)=90^{\circ}-\frac{1}{2} M
$$

and

$$
\tan \frac{1}{2}\left(C_{1}-C_{2}\right)=\cot \frac{1}{2} M \frac{R_{2}-R_{1}}{R_{2}+R_{1}}
$$

C_{1} and C_{2} then become known and

$$
c=C_{1} C_{2}=R_{2} \frac{\sin M}{\sin C_{1}^{-}} .
$$

In the triangle $F_{1} C_{1} C_{2}$, call $\frac{1}{2}\left(c+r_{1}+r_{4}\right)=s_{1}$; then

Similarly

$$
\left.\begin{array}{l}
\operatorname{vers} F_{1}=\frac{2\left(s_{1}-r_{1}\right)\left(s_{1}-r_{4}\right)}{r_{1} r_{4}} \\
\operatorname{vers} F_{2}=\frac{2\left(s_{2}-r_{2}\right)\left(s_{2}-r_{4}\right)}{r_{2} r_{4}}, \\
\operatorname{vers} F_{3}=\frac{2\left(s_{3}-r_{1}\right)\left(s_{3}-r_{3}\right)}{r_{1} r_{3}} \tag{130}\\
\text { vers } F_{4}=\frac{2\left(s_{4}-r_{2}\right)\left(s_{4}-r_{3}\right)}{r_{2} r_{3}}
\end{array}\right\}
$$

In the above equations

$$
\begin{aligned}
& s_{2}=\frac{1}{2}\left(c+r_{2}+r_{4}\right), \\
& s_{3}=\frac{1}{2}\left(c+r_{1}+r_{3}\right), \\
& s_{4}=\frac{1}{2}\left(c+r_{2}+r_{3}\right) .
\end{aligned}
$$

APPENDIX.

THE ADJUSTMENTS OF INSTRUMENTS.

The accuracy of instrumental work may be vitiated by any one of a large number of inaccuracies in the geometrical relations of the parts of the instruments. Some of these relations are so apt to be altered by ordinary usage of the instrument that the makers have provided adjusting-screws so that the inaccuracies may be readily corrected. There are other possible defects, which, however, will seldom be found to exist, provided the instrument was properly made and has never been subjected to treatment sufficiently rough to distort it. Such defects, when found, can only be corrected by a competent instrument maker or repairer.

A warning is necessary to those who would test the accuracy of instruments, and especially to those whose experience in such work is small. Lack of skill in handling an instrument will often indicate an apparent crror of adjustment when the real error is very different or perhaps non-existent. It is always a safe plan when testing an adjustment to note the amount of the apparent error; then, begimning anew, make another independent determination of the amount of the error. When two or more perfectly independent determinations of such an error are made it will generally be found that they differ by an appreciable amount. The differences may be due in rariable measure to careless inaccurate manipulation and to instrumental defects which are wholly independent of the particular test being made. Such careful determinations of the amounts of the errors are generally advisable in view of the next paragraph.

Do not disturb the adjusting-screws any more than necessary. Although metals are apparently rigid, they are really elastic and yielding. If some parts of a complicated mechanism, which is held together largely by friction, are subjected to greater internal stresses than other parts of the mechanism, the jarring resulting from handling will frequently cause a slight readjustment in the parts which will tend to more nearly equalize the internal stresses. Such action frequently occurs with the adjusting mechanism of instruments. One screw may be strained more than others. The friction of parts may prevent the opposing screw from immediately taking up an equal stress. Perhaps the adjustment appears perfect under these conditions. Jarring diminishes the friction between the parts, and the unequal stresses tend to equalize. A motion takes place which, although microscopically minute, is sufficient to indicate an error of adjustment. A readjustment, made by unskillful hands, may not make the final adjustment any more perfect. The frequent shifting of adjusting-screws wears them badly, and when the screws are worn it is still more difficult to keep them from moving enough to vitiate the adjustments. It is therefore preferable in many cases to refrain from disturbing the adjusting-screws, especially as the accuracy of the work done is not necessarily affected by errors of adjustment, as may be illustrated:
(a) Certain operations are absolutely unaffected by certain errors of adjustment.
(b) Certain operations are so slightly affected by certain small errors of adjustment that their effect may properly be neglected.
(c) Certain errors of adjustment may be readily allowed for and neutralized so that no error results from the use of the unadjusted instrument. Illustrations of all these cases will be given under their proper heads.

ADJUSTMENTS OF THE TRANSIT.

1. To have the plate-bubbles in the center of the tubes when the axis is vertical. Clamp the upper plate and, with the lower
clamp loose, swing the instrument so that the plate-bubbles are parallel to the lines of opposite leveling-screws. Level up until both bubbles are central. Swing the instrument 180°. If the bubbles again settle at the center, the adjustment is perfect. If either bubble does not settle in the center, move the levelingscrews until the bubble is half-way back to the center. Then, before touching the adjusting-screws, note carefully the position of the bubbles and observe whether the bubbles always settle at the same place in the tube, no matter to what position the instrument may be rotated. When the instrument is so leveled, the axis is truly vertical and the discrepancies between this constant position of the bubbles and the centers of the tubes measure the errors of adjustment. By means of the adjusting-screws bring each bubble to the center of the tube. If this is done so skillfully that the true level of the instrument is not disturbed, the bubbles should settle in the center for all positions of the instrument. Under unskillful hands, two or more such trials may be necessary.

When the plates are not horizontal, the measured angle is greater than the true horizontal angle by the difference between the measured angle and its projection on a horizontal plane. When this angle of inclination is small, the difference is insignificant. Therefore when the plate-bubbles are very nearly in adjustment, the error of measurement of horizontal angles may be far within the lowest unit of measurement used. A small error of adjustment of the plate-bubble perpendicuilar to the telescope will affect the horizontal angles by only a small proportion of the error, which will be perhaps imperceptible. Vertical angles will be affected by the same insignificant amount. A small error of adjustment of the platebubble parallel to the telescope will affect horizontal angles very slightly, but will affect vertical angles by the full amount of the error.

All error due to unadjusted plate-bubbles may be avoided by noting in what positions in the tubes the bubbles will remain fixed for all positions of azimuth and then keeping the bubbles adjusted to these positions, for the axis is then truly vertical. It will often save time to work in this way temporarily rather than to stop to make the adjustments. This should especially be done when accurate vertical angles are required.

When the bubbles are truly adjusted, they should remain stationary, regardless of whether the telescope is revolved with the upper plate loose and the lower plate clamped or whether the whole instrument is revolved, the plates being clamped together. If there is any appreciable difference,
it shows that the two vertical axes or "centers" of the plates are not concentric. This may be due to cheap and faulty construction or to the excessive wear that may be sometimes observed in an old instrument originally well made. In either case it can only be corrected by a maker.
2. To make the revolving axis of the telescope perpendicular to the vertical axis of the instrument. This is best tested by using a long plumb-line, so placed that the telescope must be pointed upward at an angle of about 45° to sight at the top of the plumb-line and downward about the same amount, if possible, to sight at the lower end. The vertical axis of the transit must be made truly vertical. Sight at the upper part of the line, clamping the horizontal plates. Swing the telescope down and see if the cross-wire again bisects the cord. If so, the adjustment is probably perfect (a conceivable exception will be noted later) ; if not, raise or lower one end of the axis by means of the adjusting-screws, placed at the top of one of the standards, until the cross-wire will bisect the cord both at top and bottom. The plumb-bob may be steadied, if necessary, by hanging it in a pail of water. As many telescopes cannot be focused on an object nearer than 6 or 8 feet from the telescope, this method requires a long plumb-line swung from a high point, which may be inconvenient.

Another method is to set up the instrument about 10 feet from a high wall. After leveling, sight at some convenient mark high up on the wall. Swing the telescope down and make a mark (when working alone some convenient natural mark may generally be found) low down on the wall. Plunge the telescope and revolve the instrument about its vertical axis and again sight at the upper mark. Swing down to the lower mark. If the wire again bisects it, the adjustment is perfect. If not, fix a point half-way between the two positions of the lower mark. The plane of this point, the upper point, and the center of the instrument is truly vertical. Adjust the axis to these upper and lower points as when using the plumb-line.
3. To make the line of collimation perpendicular to the revolving axis of the telescope. With the instrument level and
the telescope nearly horizontal point at some well-defined point at a distance of 200 feet or more. Plunge the telescope and establish a point in the opposite direction. Turn the whole instrument about the rertical axis until it again points at the first mark. Again plunge to "direct position" (i.e., with the level-tube under the telescope). If the vertical cross-wire again points at the second mark, the adjustment is perfect. If not, the error is one-fourth of the distance between the two positions of the second mark. Loosen the capstan-screw on one side of the telescope and tighten it on the other side until the rertical wire is set at the one-fourth mark. Turn the whole instrument by means of the tangent screw until the vertical wire is midway between the two positions of the second mark. Plunge the telescope. If the adjusting has been skillfully done, the crosswire should come exactly to the first mark. As an "erecting eyepicce" reinverts an image already inverted, the ring carrying the cross-wires must be moved in the same direction as the apparent error in order to correct that error.

The necessity for the third adjustment lies principally in the practice of producing a line by plunging the telescope, but when this is required to be done with great accuracy it is always better to obtain the formard point by reversion (as described abore for making the test) and take the mean of the two forward points. Horizontal and vertical angles are practically unaffected by small errors of this adjustment, unless, in the case of horizontal angles, the vertical angles to the points observed are very different.

Unnecessary motion of the adjusting-screws may sometimes be aroided by carefully establishing the forward point on line by repeated reversions of the instrument, and thus determining by repeated trials the exact amount of the error. Differences in the amount of error determined would be evidence of inaccuracy in manipulating the instrument, and would show that an adjustment based on the first trial would probably prove unsatisfactory.

The 2 d and 3 d adjustments are mutually dependent. If either adjustment is badly out, the other adjustment cannot be made except as follows :
(a) The second adjustment can be made regardless of the third when the lines to the high point and the low point make equal angles with the horizontal.
(b) The third adjustment can be made regardless of the second when the front and rear points are on a level with the instrument.

When both of these requirements are nearly fulfilled, and especially when the error of either adjustment is small, no trouble will be found in perfecting either adjustment on account of a small error in the other adjustment.

If the test for the second adjustment is made by means of the plumbline and the vertical cross-wire intersects the line at all points as the telescope is raised or lowered, it not only demonstrates at once the accuracy of that adjustment, but also shows that the third adjusstment is either perfect or has so small an error that it does not affect the second.
4. To have the bubble of the telescope-level in the center of the tube when the line of collimation is horizontal. The line of collimation should coincide with the optical axis of the telescope. If the object-glass and eyepiece have been properly centered, the previous adjustment will have brought the vertical crosswire to the center of the field of view. The horizontal crosswire should also be brought to the center of the field of view, and the bubble should be adjusted to it.
a. Peg method. Set up the transit at one end of a nearly level stretch of about 300 feet. Clamp the telescope with its bubble in the center. Drive a stake vertically under the eyepiece of the transit, and another about 300 feet away. Observe the height of the center of the eyepiece (the telescope being level) above the stake (calling it a); observe the reading of the rod when held on the other stake (calling it b); take the instrument to the other stake and set it up so that the eyepiece is vertically over the stake, observing the height, c; take a reading on the first stake, calling it d. If this adjustment is perfect, then

$$
\begin{gathered}
c-d=b-c \\
\text { or } \\
\text { Call } \quad(a-d)-(b-c)=0 \\
(a-d)-(b-c)=2 m
\end{gathered}
$$

When m is positive, the line points downward; " m " negative, " " " upward.

To adjust: if the line points $u p$, sight the horizontal crosswire (by moving the vertical tangent screw) at a point which is m lower, then adjust the bubble so that it is in the center.

By taking several independent values for a, b, c, and d, a mean value for m is obtained, which is more reliable and which may save much unnecessary working of the adjusting-screws.
b. Using an auxiliary level. When a carefully adjusted level is at hand, this adjustment may sometimes be more easily made by setting up the transit and level, so that their lines of collimation are as nearly as possible at the same height. If a point may be found which is half a mile or more away and which is on the horizontal cross-wire of the level, the horizontal cross-wire of the transit may be pointed directly at it, and the 'bubble adjusted accordingly. Any slight difference in the heights of the lines of collimation of the transit and level (say $\frac{1}{4}^{\prime \prime}$) may almost be disregarded at a distance of $\frac{1}{2}$ mile or more, or, if the difference of level would have an appreciable effect, even this may be practically eliminated by making an estimated allowance when sighting at the distant point. Or, if a distant point is not available, a level-rod with target may be used at a distance of (say) 300 feet, making allowance for the carefully determined difference of elevation of the two lines of collimation.
5. Zero of vertical circle. When the line of collimation is truly horizontal and the vertical axis is truly vertical, the reading of the vertical circle should be 0°. If the arc is adjustable, it should be brought to 0°. If it is not adjustable, the index error should be observed, so that it may be applied to all readings of vertical angles.

ADJUSTMEN'TS OF THE WYE LEVEL.

1. To make the line of collimation coincide with the center of the rings. Point the intersection of the cross-wires at some well-defined point which is at a considerable distance. The instrument need not be level, which allows much greater liberty in choosing a convenient point. The rertical axis should be
clamped, and the clips over the wyes should be loosened and raised. Rotate the telescope in the wyes. The intersection of the crosswires should be continually on the point. If it is not, it requires adjustment. Rotate the telescope 180° and adjust one-half of the error by means of the capstan-headed screws that move the cross-wire ring. It should be remembered that, with an erecting telescope, on account of the inversion of the image, the ring should be moved in the direction of the apparent error. Adjust the other half of; the error with the leveling-screws. Then rotate the telescope 90° from its usual position, sight accurately at the point, and then rotate 180° from that position and adjust any error as before. It may require several trials, but it is necessary to adjust the ring until the intersection of the crosswires will remain on the point for any position of rotation.

If such a test is made on a very distant point and again on a point only 10 or 15 feet from the instrument, the adjustment may be found correct for one point and incorrect for the other. This indicates that the objectslide is improperly centered. Usually this defect can only be corrected by an instrument-maker. If the difference is very small it may be ignored, but the adjustment should then be made on a point which is at about the mean distance for usual practice-say 150 feet.

If the whole image appears to shift as the telescope is rotated, it indicates that the eyepiece is improperly adjusted. This defect is likewise usually corrected only by the maker. It does not interfere with instrumental accuracy, but it usually causes the intersection of the cross-wires to be eccentric with the field of view.
2. To make the axis of the level tube parallel to the line of collimation. Raise the clips as far as possible. Swing the level so that it is parallel to a pair of opposite leveling-screws and clamp it. Bring the bubble to the middle of the tube by means of the leveling-screws. Take the telescope out of the wyes and replace it end for end, using extreme care that the wyes are not jarred by the action. If the bubble does not come to the center, correct one-half of the error by the vertical adjusting-screws at one end of the bubble. Correct the other half by the levelingscrews. Test the work by again changing the tel-scope end for end in the wyes.

Care should be taken while making this adjustment to see that the level-tube is vertically under the telescope. With the bubble in the center of the tube, rotate the telescope in the wyes for a considerable angle each side of the vertical. If the first half of the adjustment has been made and the bubble moves, it shows that the axis of the wyes and the axis of the level-tube are not in the same vertical plane although both have been made horizontal. By moving one end of the level-tube sidewise by means of the horizontal screws at one end of the tube, the two axes may be brought into the same plane. As this adjustment is liable to disturb the other, both should be alternately tested until both requirements are complied with.

By these methods the axis of the bubble is made parallel to the axis of the wyes; and as this has been made parallel to the lines of collimation by means of the previous adjustment, the axis of the bubble is therefore parallel to the line of collimation.
3. To make the line of collimation perpendicular to the ver tical axis. Level up so that the instrument is approximately level over both sets of leveling-screws. Then, after leveling carefully over one pair of screws, revolve the telescope 180°. If it is not level, adjust half of the error by means of the capstan-headed screw under one of the wyes, and the other half by the levelingscrews. Reverse again as a test.

When the first two adjustments have been accurately made, good leveling may always be done by bringing the bubble to the center by means of the leveling-screws, at every sight if necessary, even if the third adjustment is not made. Of course this third adjustment should be made as a matter of convenience, so that the line of collimation may be always level no matter in what direction it may be pointed, but it is not necessary to stop work to make this adjustment every time it is found to be defective.

ADJUSTMENTS OF THE DUMPY LEVEL.

1. To make the axis of the level-tube perpendicular to the vertical axis. Level up so that the instrument is approximately level over both sets of leveling-screws. Then, after leveling carefully over one pair of screws, revolve the telescope 180°. If
it is not level, adjust one-half of the error by means of the adjusting-screws at one end of the bubble, and the other half by means of the leveling-screws. Reverse again as a test.
2. To make the line of collimation perpendicular to the vertical axis. The method of adjustment is identical with that for the transit (No. 4, p. 308) except that the cross-wire must be adjusted to agree with the level-bubble rather than vice versa, as is the case with the corresponding adjustment of the transit; i.e., with the level-bubble in the center, raise or lower the horizontal cross-wire until it points at thie mark known to be on a level with the center of the instrument.

If the instrument has been well made and has not been distorted by rough usage, the cross-wires will intersect at the center of the field of view when adjusted as described. If they do not, it indicates an error which ordinarily can only be corrected by an instrument-maker. The error may be due to any one of several causes, which are
(a) faulty centering of object-slide;
(b) faulty centering of eyepiece;
(c) distortion of instrument so that the geometric axis of the telescope is not perpendicular to the rertical axis. If the error is only just perceptible, it will not probably cause any error in the work.

EXPLANATORY NOTE ON THE USE OF THE TABLES.

The logarithms here given are "five-place," but the last figure sometimes has a special mark over it (e.g., $\hat{6}$) which indicates that one-half a unit in the last place should be added. For example:

the value	includes all values between	
.69586	$.6958575000+$ and	
$.6958624999 \ldots$		
.69586	$.6958625000+$ and	
$.6958674999 \ldots$		

The maximum error in any one value therefore does not exceed one-quarter of a fifth-place unit.

When adding or subtracting such logarithms allow a half-unit for such a sign. For example:

. 69586	. 69586	.69586
. 10841	.1084î	. 1084 i
. 12947	.12947.	. 12947
. 93374	. 93375	. 93375

All other logarithmic operations are performed as usual and are supposed to be understood by the student.

TABLE I.-RADII OF CURVES.

Deg.	0°		$1{ }^{\circ}$		$2{ }^{\circ}$		3°		Deg.
Min.	Radius.	$\log R$	Radius.	Log \boldsymbol{R}	Radius.	Log \boldsymbol{R}	Radius.	L.02 \boldsymbol{R}	Min.
o	∞	∞	5729.6	3.75813	2864.9	3.45711 Î	1910. I	3.28105	o
1	343775	5.53627	5635.7	. 75095	2841.3	. 45351	1899.5	. 2786	I
2	171887	5.23524	5544.8	. 74389	2818.0	. 44993 h	1889.1	27625	2
3	114592	5.05915	5456.8	. 73694	2795.1	. 44639	1878.8	. 27385	3
$+$	85944	$4.93+2$ Î	5371.6	. 73010	2772.5	. 4428 ¢	1868.6	. 27151	4
5	68755	4.83730	5288.9	. 72336	2750,4	. 43939	1858.5	26915	5
6	57296	4.75812	5208.8	$3.71673 \hat{}$	2728.5	3.43593	1848.5	3.2668î	6
7	49111	. 69117	5131.0	. 71020 ¢	2707.0	. $432+\hat{9}$	1838.6	. 26448 8	7
8	+2972	. 6331 s	5055.6	. 70377	2685.9	. 42909	I828.8	. 26217	8
9	38197	. 58203	4982.3	. $697+3$	2665 . I	. 42571	1819.1	. 25986	9
10	34377	. 53627	4911.2	. 69118	$26+4.6$. 42235	1809.6	. 25759	10
11	31252	4.49488	4842.0	3.6850 2̂	2624.4	3.41903	1800.1	3.25529	11
12	23648	. 45709 ¢	4774.7	. 67895	2604 . 5	. 41572	1790.7	. 25303	12
13	$26+4+$. 42233	4709.3	. 67296	2584.9	. 41245	1781.5	. 25077	13
14	24555	-39014	4645.7	. 66705	2565.6	. 409190	1772.3	. 24853	14
15	22918	. $3601 \hat{8}$	4583.8	. 66122	$25+6.6$	40597	1763.2	. 24629 ¢	15
16	21486	4.33219	4523.4	$3.655+7$	2527.9	3.40276	1754.2	3.24407	16
17	20222	. 3058 23	4464.7	. 64979	2509.5	. 39958	1745.3	. 2418 6̂	17
18	19099	. 28100	4407.5	. 64419	2491.3	- 39642	1736.5	. 23967	18
19	18093	. 25752	4351.7	. 63865	2473.4	. 39329	1727.8	. 23748	19
20	17189	. 2352 ¢	4297.3	. 63319	2455.7	. 39017	1719.1	. 23530 ¢	20
21	16370	4.21405	4244.2	3.62780	2438.3	$3.3870 \hat{8}$	1710.6	3.23314	21
22	15626	. 19385	4192.5	. 62247	2421 . 1	. $3^{8}+0$ Î	1702.1	. 23098 ¢	22
23	14947	. 17454	4142.0	. 61720	2404.2	. 38097	1693.7	. 22884	23
24	14324	.1560 亿̂	4092.7	. 612000	2387.5	. 37794	1685.4	. 22670 ¢	24
25	13751	. 1383 3	4044.5	. 60686	2371.0	. 37494	1677.2	. 22458	25
26	13222	4.12130	3997.5	3.60178	2354.8	3.37195	1669.1	3.22247	26
27	12732	. 10491	3951.5	. 5967 6̂	2338.8	. 36899	1661.0	. 22037	27
28	12278	.0891I	3906.6	. 59180 O	2323.0	. 36604	1653.0	. 21827	28
29	11854	. 07387	3862.7	. 58689 ¢	2307.4	. 36312	1645.1	. 21619 ¢	29
30	11459	. 05915	3819.8	. 5820 ¢	2292.0	. 3602 İ	1637.3	.21412	30
3I	11090	4.0449 Î	3777.9	3.5772	2276.8	3.35733	1629.5	3.21206	31
32	10743	. 03112	3736.8	. 57250	2261.9	. 35446 ¢	1621.8	. 210000	32
33	10417	. 01776	3696.6	. 56780	2247 . I	. 35162	1614.2	. 20796	33
34	IOIII	4.00479	3657.3	. 56316	2232.5	- 34879	1606.7	. 20593	34
35	9822.2	3.99221	3618.8	. 55856	2218.1	34598	1599.2	. 20390	35
36	9549.3	$3.9799 \hat{7}$	$35^{81.1}$	3.55401 î	2203.9	3.34318	1591.8	3.20189	36
37	9291.3	. 96809	3544.2	. 5495 Î	2189.8	. 34041	1584.5	. 1998 ¢̂	37
3^{8}	9046.7	. 95649	3508.0	. 54506	2176.0	. 33765	1577.2	. 19789	3^{8}
39	8814.8	. $9+521$	3472.6	. 54065	2162.3	. 3349 Î́	1570.0	. 19590̂	39
40	859+.4	. $93+2$ 1̂	3437.9	. 53629	2148.8	. 33219	1562.9	. 19392 2	40
4	8384.8	3.92349	$3+03.8$	3.53197	2135.4	3.32949	1555.8	3.19195	41
42	8185.2	. 91302	3370.5	. 52769	2122.3	. 32680	I 548.8	. $18999 \hat{}$	42
43	799+. 8	. 90281	3337.7	. 52345	2109.2	. 32412	1541.9	. 18804	43
44	7813.1	. 89282	3305.7	. 51925	2096.4	. 32147	1535.0	. 18610 ̂	44
45	7639.5	. 88306	3274.2	. 51510	2083.7	31883	1528.2	18417	45
46	7473.4	3.87352	$32+3 \cdot 3$	3.51098	2071. I	3.31621	1521.4	3.18224	46
47	7314.4	. 86418	3213.0	. 50691	2058.7	. 31360	1514.7	.18032	47
48	7162.0	. 85503	3183.2	. 50287	2046.5	. 31101	1508.1	. 17842	48
49	7015.9	. $8+608$	3154.0	. 49886	2034.4	. 30843	1501.5	. 17652	49
50	6875.6	. 83731	3125.4	. 49490	2022.4	. 30587	1495.0	. 17462	50
51	6740.7	3.82871	3097.2	3.49097	2010.6	3.30332̂	1488.5	$3.1727 \hat{4}$	51
52	6611.1	. 82027	3069.6	. 48707	1998.9	. 30079	1482.1	. 17087	52
53	6486.4	. 81200	3042.4	. 4832 î	1987.3	. 29827	1475.7	. 16900	53
$5+$	6366.3	. 803888	3015.7	. 47939	1975.9	. 29577	1469.4	. 16714	54
55	6250.5	.795911	2989.5	. 47559	1964.6	. 2932 ¢̂	$1+63.2$.16529	55
56	6138.9	3.78809	2963.7	3.47183	1953.5	3.29081	1457.0	3.16344	56
57	6031.2	$.780+0$ O	2938.4	. 46811	1942.4	. 28835	1450.8	. 16161	57
58	5927.2	. 77285	2913.5	. 46444 Î	1931.5	. 28590	1444.7	. 15978 ¢	58
59	5826.8	$.7654{ }^{2}$	2889.0	. 46075	1920.7	. 28347	1438.7	. 15796	59
60	5729.6	.75813	2864.9	. 45711	1910.1	28105	1432.7	. 15615	60

TABLE I.-RADII OF CURVES.

Deg.	4°		0°		6°		$\%^{\circ}$		Deg.
Min.	Radius.	$\log \boldsymbol{R}$	Radius.	Loz \boldsymbol{R}	Radius.	lagk If	Raulins.	102 $1 /$	Min.
0	1432.7	3.15615	1146.3	3.05929	955.37	2.98017	819.02	2.91329	O
1	1426.7	. 1543 ¢	1142.5	. 05784	952.72	.97896	817.08	.91226	1
2	1420.8	. 15255	1138.7	. 05640 -	950.09	. 9777 6̂	S15.14	.91123	2
3	1415.0	. 15076	I 134.9	. 05497	947.48	.97657	813.22	.91021	3
4	1409.2	. 14897	1131.2	. 05354	944.88	. 97537	811.30	. 90918	4
5	1403.5	. 14720	1127.5	.0521î	942.29	$.97+18$	S09.40	.90816	5
6	I 397.8	3.14543	1123.8	3.05069	939.72	2.97300	807.50	2.90714	6
7	1392.1	.14367	1120.2	. 04928	937.16	. 971818	805.61	.90612	7
8	1386.5	.1419î	1116.5	. 04787	$93+.62$.97063	803.73	.90511	8
9	1380.9	. I4017	1112.9	. 04646	932.09	$.969+5$	801.86	. 90410	9
10	1375.4	$.13^{8}+3$	1109.3	. $0+506$	929.57	.96828	Sco.00	. 90309	10
11	1369.9	3.13669	1105.8	$3.0+360$	927.07	2.96711	798.14	2.90208	11
12	1364.5	. 13497	1102. 2	. 04227	924.58	.9659 .4	796.30	.90107	12
13	1359. 1	.13325	1098.7	. oto88	922.10	. 96478	794.46	. 90007	13
14	1353.8	. 13154	1095.2	. 03949 ¢	919.64	.96361	792.63	. 89907	14
15	1348.4	. 12983	1091.7	.0381I	917.19	. 96246	790.81	. 89807	15
16	$13+3.2$	3.12813	1088.3	3.03674	914.75	2.96130	789.00	2.89708	16
17	1338.0	. $1264+4$	1084.8	. 03537	912.33	. 96015	787.20	. 8960 S	17
18	1332.8	. 12475	1081. 4	.03400	909.92	. 95900	785.41	. 89509	18
19	1327.6	. 12307	1078. 1	.03264	907. 52	.95785	783.62	. 894100	19
20	1322.5	.12140	1074.7	. 03128	905.13	. 95671	781.84	. 89312	20
21	1317.5	3.11974	1071.3	3.02992	902.76	2.95557	780.07	2.89213	21
22	I 312.4	. 11808	1068.0	. 02857	900.40	. $9544 \hat{3}$	778.31	. 89115	22
23	1307.4	. 11642	1064.7	. 02723	898.05	. 95330	776.55	. 89017	23
24	1302.5	. I 1477	1061.4	. 02589	895.71	.95217	774.81	. 88919	24
25	J 297.6	.11313	1058.2	. $02+55$	$893 \cdot 39$. 95104	773.07	. 8882 I Î	25
26	I292.7	3.11150	1054.9	3.02322	891.08	2.9499 Î	771.34	2.88724	26
27	1287.9	. 10987	1051.7	. 02189	888.78	. 94879	769.61	. 88627	27
28	1283.1	. 10825	IO48. 5	. 02056	S86.49	. 94767	767.90	.88530̂	28
29	1278.3	. 10663	1045.3	. OI92 4	884.2 I	. 94655	766.19	. 88433	29
30	1273.6	. 10502	1042.1	. 01792	881.95	. 94544	764.49	. 88337	30
31	1268.9	3.10341	1039.0	$3.0166 \hat{1}$	879.69	2.94433	762.80	2.88241	31
32	1264.2	. IOI 82	1035.9	. 01530 ¢	877.45	. 94322	761.11	.88145	32
33	1259.6	. $1002 \hat{2}$	IO32.8	. 01400	875.22	. 94212	759.43	. 88049	33
34	1255.0	. 09864	1029.7	. 01270	873.00	. 9410 I	757.76	. 87953	34
35	1250.4	. 09703	1026.6	.01140	870.80	. 93991	756.10	. 87858	35
36	1245.9	3.09548	1023.5	3.01010	868.60	2.93882	754.44	2.87762	30
37	1241.4	. 09391	1020.5	. 00882	866.41	. 93772	752.80	. 87668	37
38	1236.9	.09234	1017.5	. 00753	864.2t	. 93663	751.16	. 87573	38
39	1232. 5	. 09079	1014.5	.00625	862.07	. 93554	749.52	. 87478	39
40	1228. 1	.08923	1011.5	. 00497	859.92	. 93446	747.89	. 87384	40
41	1223.7	3.08769	1008.6	3.00370	857.78	2.93337	746.27	2.87290	41
42	1219.4	.08614	1005.6	.00242	855.65	. 93229	744.66	. 87196	42
43	1215.1	. 08461	1002.7	3.00116	853.53	. 93122	743.06	. 87102	43
44	1210.8	. 08308	999.76	2.99989	851.42	. 93014	741.46	. 87008	44
45	1206.6	.08155	996.87	. 99863	$8+9.32$. 92907	739.86	. 86915	45
46	1202.4	3.0800 ${ }^{\text {a }}$	993.99	$2.9973{ }^{\circ}$	847.23	2.92800	738.28	2.86822	46
47	1198.2	. 07852	991.13	. 99613	845.15	. 92693	736.70	. 86729	47
48	1194.0	. 07701	988.28	. 99488	843.08	. 92587	735.13	. 66636	48
49	1189.9	.07550	985.45	. 99363	84 I .02	. 92480	733.56	. 86544	49
50	1185.8	. 07400	982.64	. 992.39	838.97	.9237	732.01	. 86451 1̂	50
51	I181.7	3.07251	979.84	2.99113	836.93	2.92269	730.45	2.86359	51
52	1177.7	. 07102	977.06	. 98992	834.90	. 92163	728.91	. 86267	52
53	1173.6	. 06954	974.29	. 98869	832.89	. 92058	727.37	. 86175	53
54	1169.7	. 06806	971.54	. 98746	S30.8S	. 91953	725.84	. 86084	54
55	1165.7	. 06658	968.81	. 98624	828.88	$.918+9$	724.31	. 85992	55
56	1:61.8	3.0651 I	966.09	2.98501	826.89	$2.9174 \hat{4}$	722.79	2.35901	56
57	1157.9	. 06365	963.39	.98380	824.91	. 91640	721.28	. 858100	5%
58	I 154.0	. 06219	960.70	. 98258	S22.93	. 91536	719.77	. 85719	58
59	I150. I	. 06074	958.03	.98137	820.97	. 91433	718.27	. 85629	59
60	$11+6.3$. 05929	955.37	.98017	S19.02	. 91.329	716.78	. 855.38	60

TABLE I.-RADII OF CURVES.

Deg.	5°		$9{ }^{\circ}$		10°		11°		eg
Min.	Radius.	Log \boldsymbol{R}	Radius.	Log \boldsymbol{R}	Radius.	Log R	lianius.	Lu- 14	H111
\bigcirc	716.78	$2.8553 \hat{8}$	637.27	$2.8043 \hat{2}$	573.69	2.75867	521.67	2.71739	0
1	715.29	. 85448 ¢	636.10	. $8035{ }^{2}$	572.73	. 75795	520.88	. 71674	I
2	713.81	. 85358	634.93	. 80272	571.78	. 75723	520.10	. 71608	2
3	712.34	. 85268	633.76	. 80192	570.84	. 7565 Î	519.32	$.7154 \hat{3}$	3
4	710.87	. $85178 \hat{8}$	632.60	. 80113	569.90	. 75579	518.54	. 71478	4
5	709.40	. 85089	631.44	. 80033	568.96	. 75508	517.76	. 71413	5
6	707.95	2.85000	630.29	2.79954	568.02	2.75436	516.99	2.71348	6
7	706.49	. 8491 I	629.14	. 79874	567.09	. 75365	516.21	. 71283	
8	705.05	.84822	627.99	. 79795	566.16	$.7529 \hat{3}$	515.44	. 71218	8
9	703.61	. 84733	626.85	. 79716	565.23	. 75222 2	514.68	. 71153	9
10	702.17	. $8+6+\hat{4}$	625.71	. 79637	564.3 I	. 7515 I	513.91	. 7108 8	10
1 I	700.75	$2.8+556$	624.58	2.79558	$563 \cdot 38$	2.75080	5 I 3.15	2.71024	I I
12	699.33	. $84+68$	623.45	. 79480	562.47	. $75009 \hat{}$	512.38	. 70959	12
13	697.91	. $8+380$	622.32	. 7940 î	561.55	.74939	511.63	. 70895	13
14	696.50	. $8+292$	621.20	. $7932 \hat{3}$	560.64	.74868	510.87	. 7083 I	14
15	695.09	. 8+20 7	620.09	. 79245	559.73	. 74798	510.11	. 70767	15
16	693.70	$2.8+117$	618.97	2.79169	558.82	2.74727	509.36	2.70702	16
17	692.30	. 84029	617.87	. 79089	557.92	.74657	508.61	. 7063 ¢	17
18	690.91	$.839+\frac{2}{2}$	616.76	. 7901 Î	557.02	. 74587	507.86	. 70575	18
19	689.53	. 83855	615.66	. 78934	556.12	. 74517	507.12	. 70511	19
20	688.16	. 8376 ¢	$61+.56$. 78856	555.23	. $74+47$	506.38	. 70.441	20
21	686.78	2.83682	613.47	2.78779	554.34	$2.7437 \hat{7}$	505.64	$2.7038 \hat{3}$	21
22	685.42	. 83595	612.38	. 78702	553.45	. $7430 \hat{7}$	504.90	. 70320	22
23	684.06	. 835090	611.30	. 78625	552.56	.74238	504.16	. 7025 ?	23
24	682.70	. 83423	610.21	. 78548	551.68	.74168	503.42	. 70193	24
25	681.35	. 83337	609. I4	. 78.77 I	550.80	.74099	502.69	.70130	25
26	680.01	2.8325 I	608.06	2.78395	549.92	2.74030	501.96	2.70067	26
27	678.67	. 83 I 66	606.99	. 7831 S	549.05	. 73961	501.23	. 70004	27
28	677.34	. 83080 ¢	605.93	. 78242	548.17	. 73892	500.51	. $699+1$	28
29	676.01	. 82995	60+. 86	. 78165	547.30	. 73823	499.78	. 69878	29
30	$67+69$.82910	603.80	. 78089 ¢	546.44	. 73754	499.06	. 69815	30
31	$673 \cdot 37$	2.82825	602.75	2.78015	545.57	2.73685	498.34	2.69752 2̂	31
32	672.06	. 8274 ô	601.70	. 77938	544.71	. 73617	497.62	. 69690	32
33	670.75	. 82656	600.65	. 77862	543.86	.73548	496.91	. 69627	33
34	669.45	. 82571 î	599.61	. 77786	$5+3.00$. 73480	496.19	. 69565	34
35	668.15	. 82487	598.57	. 77711	542.15	. 73412	495.48	. 69503	35
36	666.86	2.82403	597.53	2.770636	54 I .30	$2.7334 \hat{3}$	494.77	2.6944 Ô	36
37	665.57	.82319	596.50	. 77561	540.45	. 73275	494.07	. 6937 S	37
38	$66+.29$. 82235	595.47	. 77486	539.61	. 73207	493.36	. 693 I 6	38
39	663.01	.82152	594.44	. 77411	538.76	. 73140	492.66	. 69254	39
40	661.74	. $8206 \frac{9}{8}$	593.42	. 77336	537.92	.73072	491.96	. 69192	40
41	660.47	2.81985	592.40	2.77261	537.09	2.73004	491.26	2.69131	41
42	659.21	. 81902	591.38	. 77187	536.25	. 72937	490.56	.69069	42
43	657.95	. Si8i9	590.37	. 77112	$5.35 \cdot 42$. 72869	489.86	. 69007	43
$4+$	656.69	. 81736	$589 \cdot 36$. 77038	534.59	. 7280 2̂	489.17	. 68946	44
45	655.45	.81653	588.36	. 76964	533.77	. 72735	488.48	.6888 ${ }^{\text {a }}$	45
46	654.20	2.8157 I	587.36	2.76890	532.94	2.72668	487.79	2.68823	46
47	652.96	. 81489	586.36	. 76816	532.12	. 72601	487.10	.68762	47
48	651.73	. 81406	585.36	.76742 2	531.30	. 72534	486.42	.68701	48
49	650.50	. 8132 4	584.37	. 76669	530.49	.72 .467	485.73	. 68640	49
50	649.27	. $812+3$	583.38	. 76595	529.67	.72401	485.05	. 68579	50
51	648.05	2.81161	582.40	2.76522	528.86	$2.7233+$	484.37	2.68518	51
52	$6+6.84$. 8io79	581.42	. 76449	528.05	. 72267	483.69	. $68+57$	52
53	$6+5.63$. 80998	580.44	. 76376	527.25	. 722011	483.02	. 68396	53
54	$6+4.42$. So917	579.47	. 76303	526.44	.72135	482.34	. 68335	54
55	$6+3.22$. 80836	578.49	. 76230	525.64	. 72069	481.67	. 68275	55
56	642.02	2.80755	577.53	2.76157	524.8t	2.72003	481.00	2.68214	56
57	640.83	. 80674	576.56	. 76084	$52+.05$. 71937	480.33	. 68154	57
58	639.64	. 80593	575.60	. 76012	523.25	. 71871	479.67	.68094	58
59	638.45	. 80513	574.64	. 75939	522.46	. 71805	479.00	. 68033	59
60	637.27	. 8043 年	573.69	. 75869	521.67	$.71739 ิ$	478.34	.67973	60

TABLE I.-RADII OF CURVES.

eg.	Radius.	$\log \boldsymbol{N}$	leg.	liadius.	$\log R$	Deg.	liadius.	log 16	Deg.	Radius.	L.0g If
	478.34	2.67973	14°	41	2.61307	$1 i^{\circ}$	359.26	2	21	274.37	
2	477.02	. 67853	2	409.31	. 61205	J	357.42	55317	10	272. 23	3494
4	475.71	. 67734	4	408.34	6110	10	355.59	$5509 \hat{4}$	20	270.13	57
6	47+.40	. 6761 f	6	407.38	61000	15	353.77	54872	30	268.06	42823
δ	473.10	. $6749 \hat{5}$	S	+06.42	60898	20	351.98	$5+652$	40	266.02	. 42492
10	471.81	2.673	10	405.47	2.607	25	350.21	$5+432$	50	2	42163
12	470.53	. 67258	12	+0.4. 53	. 6069 f	30	$3+8 .+5$	2.5+21+	$\because{ }^{\circ}$	+	2.41837
14	469.25	. 671 + 0 亿	14	403. 58	. 60593	35	$3+6.71$	53997	10	260.10	41513
16	467.98	. 6702 2	16	+02.65	. 60	40	$3+4.99$	53780	20	258.18	41192
15	$\begin{array}{r}+66.72 \\ \hline\end{array}$. 66905	18	401.71	60391	45	$3+3.29$	53565	30	256.29	
20	465.46	2.6678	20	400.78	2.60291 60100	50	341.60 339.93	53351 53138	40 50	254.43 252.60	57 43
22	464.21	. 6667 î	22	399.86	. 60190	$\frac{55}{17}$	$\frac{339.93}{338.27}$	$\frac{.33158}{2.52027}$	$\underline{\square} 3^{\circ}$		
24	462.97	. 66555	2.4	398.94	. 60090́	17°	338.27 336.64	2.52927 .52716	${ }^{23} 3^{\circ}$	250.79 $2+9.01$	$\begin{array}{r} 2 \cdot 3493 \hat{\imath} \\ \cdot 39622 \end{array}$
26	$+61.73$. $66+39$	26	398.02	. 59990	5 10	336.64 335.01	.52716 .52506	10	$2+9.01$ 247.26	15
28	460.50	. 66323	28	397	2 59791	10	335.01 333.41	7	30	$2+7.26$ $2+5.53$	- 39010
30	$+59.28$	2.66207	30	396.20 395.30	2.59791 .59602	15	333.4 331.82	32090 52090	40	-+5.53 $2+3.82$	- 38707
32	+58.05	$.6609 ?$.65977	32	395.30 $39+40$. 59692	25	330.24	$\mathrm{j}_{5} \mathrm{SSS}_{3}$	50	$2+3.14$ 240.49	. 38407
34 36	+56. 5	. 65977	34	39+.40	. 59593		328.68		$\because 4^{\circ}$	2.40 .49	2.38109
36 38	+55.65	.65863 $.657+8$	36	$393 \cdot 50$ 392.61	$.59+94$.59396	35	32.18	$-{ }_{-} \cdot 51472$	10	238.85	. 37813
$\frac{38}{40}$	$\underline{+5+.45}$	$2.6563+1$	38	3921		40	325.60	51269	20	237.24	37519
40 42	+53.26 +52.07	2.65634 .65521	40 42		59199	45	324.09	51066	30	235.65	- 37227
42	+52.07 +50.89	.65521 .65407	42 4 4	390.84 389.96	5919	50	322.59	5086 it	40	$23+.08$	
	+50 +49	. 6529	76 46	389.08	. $5900 \frac{1}{4}$	55	321.10	50663	50	232.54	9
48	++ ++	. 65	48	388.21	. 58907	15°	31	2.5046	25	23	
50		2.65	50	387	2.5	5	318.16	50265	0°	226.55	
52	+46.24	. 64957	52	386.48	. 58713	0	316.71	50067			
5t	+45.09	. $6+485$	54	385.6	-58616	20	313.86	$\hat{3}$	-		
56	+43.95	. $6+733$	56	384.77		25	313.86 312.45	. $49+7 \mathrm{~S}$	${ }^{-1} 30$		
58	$\underline{+42 . S I}$. $6+622$	58	383.91		$\frac{-5}{30}$	311.06	2.49284	${ }^{\circ}$	206.68	
13°	$4+1.68^{\prime}$	2.64511	15°	383.06	$\begin{array}{r} 2 \cdot 58327 \\ .5823 i \end{array}$	35	311.06 309.67	.49000	30	20	. 30770
1	+40. 5	. $6+4000$	4	3 S2. 22 $3 S 1.38$	$\begin{aligned} & 5 \delta 231 \\ & .58135 \end{aligned}$	35 40	308.30	. 48898	$\underline{-1}{ }^{\circ}$		7
4	+39.44 +38.33	. 64	4	$3 S 1.38$ 380.54	$\begin{aligned} & .58135 \\ & .5 \mathrm{So}+0 \end{aligned}$	45	306.95	. 48706	30	196.38	
8	+38.33 +37.22	. 640	S	379.71	. 57945	50	305.60	+8515	30°	193.19	28597
10	$\frac{+36.12}{43}$	2.63	IO	378.85	2.57850	55	304.27	. 48325	30	190.09	2780
12	435.02		12	378.05	. $5775 \overline{ }$	11°	302.94	2.4830	$: 1^{\circ}$	187.10	
1.	+33.93	. 63742	14	377.23	. 57661	-	301.63		39	181.40	. 25863
16	+32.8.t	. 63633	16	376.41	. 57566	O	300.33	47700	: $: 3$	176.05	24563
18	$\begin{array}{r}+31.76 \\ \hline+30.69\end{array}$. $6332 \hat{4}$	18	375.60	. $57+72$	15	$299.0+$		$\because 4$	171.02	3303
20	$+30.69$	2.634	20	37+.79	2.57	25	297.77		O,		
22	+29.62	. 6330 Ŝ	22	373.98		30		2.47018	疗	101.80 157.58	
24	+28.56	. 63201	24	373.17 372.37	57191 57097	35	-93.00 294.00	2.4018 .4683		157.58 153.58	$\begin{aligned} & .19 \\ & .18 \end{aligned}$
26	+27.50 +26.4	.63093 .62986	28	372.37	57097	30	294.00	. 4665	38	153.58 149.79	. 1754
28	$+22$	$\frac{.629}{2.628}$	2	370.75	$2 \cdot 56911$		291.55	. 46471	40	1+6.19	. 16
32	423.40 424.35	- 627	32	369.99	-. 56819	50	290.33		11		
34	+23.32	. 6266	3.	369.20	- 5	5			4%	139.52	. $1+4$
36	+22.28	. 62560	3	368.42	$\because 5663+$		287.94	$2 .+5930$	18	I 36.43	
3 S	+21.26	$.62+5 \hat{4}$	38	367.64		5	286.76	+5751	$4 \pm$	133.47	. 125
40	420.23	$2.623+9$	40	366.86	2.56t				4.	130.00	
42	419.22	. $622+3$	12	366.09	. 563				41	127.97	2.10
44	$+18.20$. $6213 \hat{8}$	$+4$	365.31	- 5		2S2.12	+	47	125.39	. 098
46	+17.19	.62034	46	364.55				2.	15	122.93	
48	+16.19	.61929	48	363.78	- 560				(!)	120.57	. O812
50	+15.19	2.61525	50	363.02	2.559		278.	$+{ }^{+5} 21$		115.31	. 07
52	$+14.20$. 61721	52	362.26	- 559		277.64	- +434i		$11+.06$	
4	+13.21	. 61617	54	361.51	$1 \cdot 558$		276.54	- +417		110.15	
56	412.23	. 61514	56	360.76	6.557	55	$275 \cdot 45$. 44004		10. 50	-oz3
- 8	+11.25	-61+10	58	360.01	. 55	$\bigcirc 1^{\circ}$	27+.37	2.4383	(i)		2.0000
4	410.28	2.613	16°	1359.	2.555	-	-74. 37	$-.4583$		100.00	-.

Δ	$\begin{gathered} \text { Tangent } \\ T . \end{gathered}$	$\begin{aligned} & \text { Ext.Dist. } \\ & \text { E. } \end{aligned}$	$\begin{gathered} \text { Longer'd'd } \\ \text { LCD. } \end{gathered}$	Δ	$\begin{gathered} \text { Tangent } \\ T . \end{gathered}$	$\underset{\boldsymbol{E} .}{\text { Ext. Dist }}$	$\text { ongCh }{ }^{\prime}$ LC.	Δ	$\begin{aligned} & \text { Tangent } \\ & T_{0} \end{aligned}$	Ext.Dist.	LongCh'd LC.
1°	50.00	8	100.00	11			1098.3	21°	1061.9		2088.3
10^{\prime}		O. 2	I 16.67	10	560	27.313	1114.9	10	070.6	99.15	2104.7
20		0.388	133.33	20	568.53	28.137	18.	20		100.75	212I.I
30	75.01	\bigcirc	150.00	30	576.95	28.974	I148. 1	30	1087.8	102. 35	2137.4
4		0.606		40	585.36	29.824	6+.7	40	1096.4	103.97	
50	91.6	0.733	183.33	50	593.79		118	50	I		
${ }^{\circ}$	IOO	0.873		10	602.21			20°			5
10	10	1.024	216.66	10	6 I	32.447		10	II 122.4	108.90	2202.9
20	116.6	1.188	$233 \cdot 32$	20	619.07	33	-	20	1131.0	110.57	2
30	125.02	1.3	249.98	30	627.50	$3+.259$	$2+7 \cdot 5$	30	1139.7	112.25	
4	I 33.3	1.5	266.65	40		35.183	1264.1	40	II 48.4	I I 3.95	225 I. 9
5	141.70	1	$283 \cdot 3 \mathrm{I}$	50			1280.7	50	1157.0	115.66	2268. 3
${ }^{\circ}$				${ }^{\circ}$		37.069		-		8	. 6
10		2.1	63	10				10			2301.0
20	166.	2.425	333.29	20		39.006	3	20	118	120.87	2317.3
30	175.	2.674	349.95	30		39.993	$13+6.9$	30	119	122.63	2333.6
40	I 83.	2.9		40	686	40.992	1363.4	40	1200.5	124.41	2349.9
50	I9I.	3.207	383.27	50	695.06	42.004	1380.0	50	1209.2	12	
4°	200	3.492		1				4°		128.00	
10	208	3.7		10	7 I	44.066	1413.1	10	1226.6	,	
20	216	4.0	$433 \cdot 24$	20	720.44	45.116	1.429	20	1235.3	13	24, I
3	225.12	4.42 I	+49. 8	30	72	46.178	$14+6.2$	30	1244.0	133.50	2431.4
4	233.47	$+.75$	466.54	40		47.253	146	40	125	135	2447.7
50	$\underline{241.81}$	5.100	483.20	50	74	4 51	1479.2	50	12	13	2464.0
5°		5	99.85	15		49.441		20°		139.1 I	
10		5.82		10		50.5		-		41.01	
20	266	6.211	533. 15	20	771	51.67	1528.8	20	287.7	142.93	
3	275	6.60	$5+9.80$	30	779.77	52.818		30	1206.5	5	2529.0
4	283	7.01	566.44	40	788.26	53	1561.8	40	I 305.3	146.79	$2545 \cdot 3$
50	291	7.432	583.09	50	796.75	55.132	1578.3	50	1314.0	18.	2561.5
6°	300	7.8		16°			S	26°	8	150.71	
10	308.6		616.38	10	813.75	57.498		10	I 331.6	2.69	
20	316.9	S. 7	633.02	20	822.25	58.699	1627.8	20	34	154.69	2610.3
3		9.2	$6+9.6$	30	830.76	59.914		30	1349.2	156.70	
40	333.7	9.7		40	839.27	6I.141	1660.8	40	1358.0	158.72	
50	342.0	10.202	682.94	50	847.78	62.381	1677.3	50	1366.8	160.76	2658.9
7		II		17				9°		162.81	
10		11.224	716.21	10	S64.82	64.900		10	38	64.87	2691.3
20	367.1	11.753	732.84	20		66.178	17	20	39	66.95	5
30		12.294		30	S8I		1743.2	30	402.	169.04	2723.7
40		I2. 847	766. 10	40		68.774		40		,	
50	392.2	13.413	782.73	50	898.95	70.091	776.2	50	1419.7	173	2756.1
8°	400			15°				-5 ${ }^{\circ}$	$1+28.6$		
10	409	14.582		10	916.03	72.764	8	10		,	
20	417.41	15.184	832.61	20	$92+.58$	74.119	1825.5	20	,	79.72	2804.6
3	425.7	15.799	$8+9.23$	30	933. I3	75.488	$18+2.0$	30	455	SI. 89	2820.7
40	434. 1	16.426	865.85	40	$9+1.69$	76.869	I 558.4	40	+61.	IS4.08	
50	442.5	17.0	882. 47	50	950.25	78.264	$187+.9$	50	72.9	186.29	2853.0
9°		17.71		19°				$\cdots 0^{\circ}$		S8. 51	
10	459.32	I 8.381			967.38	81.092				190.74	2885.3
20	467.71	19.058	932.31	20	975.96	82.525	,	20	I +99.6	5.	
30	476	19.746	$9+8.92$	30	$98+53$	83.972	. 6	30	508.5	5.25	2917.6
40	484.49	20.447	965.53	40	993. 12	S5.43I	1957.1	40	1517.4		$2933 \cdot 7$
50	492.85	21.161	982 I 4	50	1001.70	86.904	1973.5	50	526.3	199.82	29+9.8
10°	501	21.8	998.74	20°	1018.			30°	I 535.3		
10	509	22.624	1015.35	10	IOI8.8	89.888	2006.3	10	154		
20	518.0	23.375	103I.95	20	1027.49	91. 399	2022.7	20	1553.	206.77	2998. I
	52	$2+.138$	10+8. 54	30	1036.09	92.924	2039. I	30	1562.	209.12	3014.2
40	534.89	24.913	1065.14	40	1044.70	$9+.462$	$2055 \cdot 5$	40	157 I .0	211.48	3030.2
50	543.29	25.700	1081.73	50	1053.31	96.013	2071.9	50	1580.0	213.86	30+6.3
11°	55	26.500	-	1°	1061.	97.577	2088.3	1°	1589.0	216.25	3062.4

Δ	Tange	Ext.p		Δ				Δ	品•"nt		
10^{\prime}				10				10			
									27	+	
	1615			30	217				276	631.69	
	162			40	21				277		
50	1633			30	218	$10+$					
32°	164	230.90		42		40					
10	165	233	317	10		+11.0		10	2 SO	649	
20		235.90		20		+1.	4137.7		2815	$65+.25$	
30		238.43		30	2228.1	417.9	415	30	2825.6	658.83	
40		240.96		40	2237			40	2835.9	$663 .+2$	
50		52		50	2247.3	$42+$		-	$28+6.3$	668.03	
33°		246.08	3254.6	43°	2257.0	428. 50		\%3 ${ }^{\circ}$	S56.7	672.6	
10		2		10	220	432.0		10	2867.1		
20	17	251.26		20	2276	+35	+230.8	20	2877. 5		
30	17	253.87	330	30	2285	+39	+246.3		288		
40	17	256.50	3318	40	2295	$4+2$		40	2S98.+	691.40	
50		259.1		50			+277.3	50	2908.9		
4°		261 . 80		4		+49.98		, 4°			
10	17	26		Io	23	45	2	10	2929.9	\%	
	177				233	+57.27	432		$9+$		
30	177	269		30	23	$+60.95$	4339	30	2951.0		
40				40		46	43	40	291.		
50	179			50				50	2972	97	
35°	180	278		45°	2373.3	472.08		$5 .{ }^{\circ}$	2982.7		
10	181	-80.8		10	238	475.82	$4+00$	10	2993.3		
20	1824.	283.60	347	20	2392	479.	4+16		9	739.68	
30	1834	286.39	3493	30	2402	483.37	+ +31	30	301	$74+62$	
40	$18+3$	289.20	350	40	2412	+87.16	+4+6	40	3025.2	74	
50	1852	292.02	3525	50	242	490.98		50	303	754	
6°				46°				\% 6°			
10				10				10	30		
20	1880										
30	188			30				30			
40					247	510					
50				50				50			
37°		312.22		15°		518		7°			
10	19			10	250	522.	+58+.7	10			
20	19	318	3667	20	251	526.	4599.9	20	3132.6	800	
30	194	321	3683	30	2521	530.	+615.2	30	+	So 5.62	
40			3699	40	2531.1		4630.4	10	315	810.85	
50	196		3715.0	50	$25+1.0$		$+6+5.7$	50	16		
35°				45°				is			
10		333		10				10		,	
20		336		-							
30		339		jo				30	32		
40		342		40				40	3210		
,	201	$3+5$	J	50	2601.1			50			
9°	2020			49°				55°			
	203			10	2621.2				3252.7		
20	$20+7.8$			0	263				-	864.34	
30	2057	358.1:		30	$26+1.4$				3274		
+0	2066.6	361.29				583		40	328		
50	2076.0	$36+$		50				50	-	S80.84	
				.) 0°	2671.8			100°		do.	-9.
	209	370.95	393	10	268	596	+8	10	3319	891.95	
	210	374. 20		20	2692	600. 9			3330.3	S97. $5+$	
30	211			30	270	6		30	$33+1.4$	903.15	
40	212		3981.9	40	2712.5	609.6		40	3352	908.79	
50	213	3 S		50	2722.7	$61+$	$+918.3$	-		1+ 4	-1
$1{ }^{\circ}$	142	387.38				18.3					

TABLE II.-TANGENTS, EXTERNAL DISTANCES, AND LONG CHORDS FOR A
1° CURVE.

Δ	$\begin{aligned} & \text { Tangent } \\ & \mathbf{T} . \end{aligned}$	$\underset{E}{E} .$	LongCh $L C$.	Δ	$\begin{gathered} \text { Tangent } \\ T . \end{gathered}$	$\underset{E}{\text { Ext.Dis }}$	ong C	Δ	$\begin{gathered} \text { Tangent } \\ \underset{T}{ } . \end{gathered}$	Ext.I	ongCh'd LC.
61°			581	71	4086.9	I 308.2		81°	4893.6	3	2
-	3386			10	4099.5	I 315.5	6668.0	10	4908.0		
20	3397.5	931.58		20	4112.I		668ı. 6	20	4922.5	1824.1	
30	$3+08.8$	937.34		30	4124.	1330.3		30	4937.0	1833.6	7480.2
40	342	$9+3.12$		40	4137.4	1337.7	6708.6	40	495 I. 5		7492.8
50	343 I. 4	948.92	58	50	4150.1	1 $3+5$. I	6722.1	50		1852.6	4
62°	34			$7{ }^{\circ}$	416	I 3		82 ${ }^{\circ}$	4980.7	1862.2	. 0
10	345			10		I 360.1	6749.1		4995.4	I871.8	7530.5
20	3465.4	966.48	593	20	418	1367.6		20	5010.0	IS8I. 5	7543 . 1
30	3476.8	972.39	594	30	42	1375	6776.0	30	5024.8	I891.2	
40	3488. 2	978.31	595	40	421	I 382.8	6789.4	40	503	9	7568.2
50	3499.7	984.27	597	50	42	1390.4	6802. 8	50	$505+3$	1910.7	7580.7
63°	351		598	${ }^{\circ}$			6816.3	83°	5059.2	5	
10	3522.6	90.	600	10		1405.7	6829.6		5084.0	1930.4	
20	3534. 1	$1002 \cdot 3$	601	20	4265.6	1413.5		20	5099.0		7618.1
30	$35+5.6$	1008.3		30	4278.5	1421.2		30	5113.9		
4	3557. 2	14.4		40	4291.5	1429.0	6869.7	40	5128.9	1960.2	
50	3568.7	1020.5		50	430	1436.8		50	$5 \mathrm{I}+3 \cdot 9$	1970.3	
64°	3580.3	1026.6		74°	4	14		54°	5		76667.8
10	3591.9	1032.8	60	10	$+330$	1452.5	. 7	10	$517+1$	19	7680.1
20	360	1039.0	6100.7	20	+3+3.8	1460.4	6923.0	20	518		
30		$10+5$		30	4356.9	I 468.4	6936.2	30	520		
40		IO5I. 4		40	4370. I	1476.4	$69+9.5$	40	5219.7	20	7717.2
50		1057.7		50	4383.3	18	6962.8	50	5234.9	2031.4	7729.5
65°		1063.9		73°	4396.5			5°			
10 20	366	1070.2	617	10	4409.8	1500	6989.2	IO		2052 . 1	
20		1076.6	6I85.2	20	4423.1	1508.6	7002.4	20	5281.0	2062 . 5	
30	3685.4	1082.9	6199.2	30	$4+36.4$	1516.7		30	5296.4	2073.0	
40	3697.2		6227.2	40	$4+49.7$	1524.9	7028.8	40	5311.9	2083.5	
50	3709.0	$\underline{1095.7}$	6227.2	50	4463 . I	1533	70	50	5327.4	2094.	7 SO 3.0
66°	3720.9	I		6°				86 ${ }^{\circ}$			
10	3732.7 $374+6$	I 108.6		10	4489.9	1549.7	7068. 2	10			
20	$374+.6$	III 5.1	6269.1	0	4503.4	1558.0	7081.3	20	5374.2	2126.0	
30	375	II2I. 7	6283	30	4516.9	I 566.3	7094.4	30	538	2136	
40	3768.5	II28.2	6297.0	40	4530.4	I 574.7	7107.5	40	5405.6	2147.5	
50	3780.4	$113+.8$	6310.9	50		158	5	50	5421.4	2158.4	. 0
67°	37	$11+1.4$		8°				57°	5437.2		7888.1
10		1148.0	6338.7	10	4571.2	1600	7146.6	10		21	. 1
20		I 154.7		20	4584.8	1608.6	7159.6	20	5469.0	21	
30	38	I161. 3		30	4598. 5	16I7. I	7172.6	30	5484.9	2202.2	3
40		II68. 1	6380.3	40	4612.2			40	5500.9	2213.2	
50	3852.6	$117+.8$	$639+$.	50	4626.0	1634.4	7198.6	50	5517.0	2224.3	7948.3
68°	386	188.	6408.0	75°			1.6	55°	5533. I		
1	3876.8	1188.4	$6+2 \mathrm{I} .8$	10	4653.6	1651.7	224.5	10	5549.2	2246.7	
20	3889.0	1195.2	6435.6	20	4667.4	1660.5	7237.4	20	5565.4		
30	3901	1	6.4	30	468 I. 3	1669.2	7250.4	30	558 I. 6		
40	391	12	6.63 . 1	40	4695.2	1678.1	$7263 \cdot 3$	40	5597.8	2280.6	8008. I
50	392	1215	6476.9	50	4709.2	1686.9	7276.1	50	5614.2	2292.0	Sozo.0
63°	3937.9	12	0490.6	79°	4723.2	.		53°	5630.5	-	
10	3950	1229.7		10	4737.2	1704.7	301.9	10			
20	396	1236.7	6518.1	20	4751.2	1713.7	7314.7	20	5663.4	2326.6	So5 5.7
30	3974.8	I 243.7		30	+765.3	1722.7	7327.5	30	5679.9	2338.2	8067. 5
40	3987. 2	1250.8	$65+5 \cdot 5$	40	4779.4	1731.7	7340.3	40	5696. 7	2349.8	8079.3
50	3999.5	1257.9	6559.I	50	4793.6	1740.8	7353.1	50	5713.0	2361.5	So91.2
70°	401	126, 0	6572.8	50°	4808.7	$17+9.9$		90°	5729.7		
IO	402	1272. 1	6586.4	IO	4822.0	1759.0	7378.7	10	5746.3		SII 4.7
20	4036.8	I279.3	66	20	4836.2	1768.2	$7391 .+$	20	5763 . 1	2397.0	8I26. 5
30 40	404	1286.5	6613.7	30	4850.5	1777.4	7404.1	30	5779.9	2408.9	8i38.2
40 50	4061.8 4074.4	1293.7	6627.3	40	4864.8	1786.7	7416.8	40	5796.7	2420.9	8150.0
$\frac{50}{81}$	4074.4	I 300.9	6640.9	50	4879.2	1796.0	7429.5	50	5813.6	2432.9	8161.7
1	4086.9	1308.2	6654.4		4893.6	1805.3	442.2		5830.5	$24+4.9$	8173.4

lead-ralls circular throughout; gauge 4^{\prime} S $_{2}^{1 \prime \prime}$. See $\$ 262$.

$\left\lvert\, \begin{gathered} \text { Frog } \\ \text { Number } \\ (n) . \end{gathered}\right.$	Frog Angle (F)			Lead (L) (Eq. 79).	$\begin{gathered} \text { Chord (QT) } \\ \text { (Eq. 77). } \end{gathered}$	Radius of Lead Rails (r, E.q.78).	Logr	Degre Curve	$\begin{gathered} \text { ce of } \\ \left(d^{\prime}\right) . \end{gathered}$	$\begin{gathered} \text { Frog } \\ \text { Nurnber } \\ (n) . \end{gathered}$
4	14°	15^{\prime}	00"	37.67	37.38	150.67	$2.1780 \hat{1}$			4
4.5	12	40	59	42.37	+2. 12	190.69	. 2 So32			4.5
5	II	25	16	47.08	46.85	235.42	. 3715			
5.5	IO	23	20	51.79	51.58	$28+55$	- 45.462	20	13	55
6	9	31	38	56.50	50.30	339.00	. 53020		58	
6.5	8	47	51	61.21	61.03	397.85	. 59972			6.5
7	8	10	16	65.92	65.75	461.42	. 66.409		26	7
$7 \cdot 5$	7	37	41	70.62	70.47	529.69	. 72402		50	7.5
8	7	09	10	75.33	75.19	602.67	. 78007	9		S
8.5	6	43	59	80.04	79.90	680.36	. $8327 \frac{3}{3}$	S		8.5
9	6	2 I	35	84.75	S4. 62	762.75	. 85238	7		9
9.5	6	OI	32	89.46	S9. 33	849.85	.9293í			$9 \cdot 5$
10	5	43	29	$9+.17$	94.05	941.67	2.97359			10
10.5	5	27	-9	95.87	95.76	1038.19	3.01627		32	10.5
II	5	12	I8	103.58	103.47	1139.42	. 0566 S			11
II. 5	4	58	45	108.29	108.19	1245.36	.09529			II. 5
12	4	46	19	113.00	112.90	1356.00	3.13226			12

TURNOUTS WITH STRAIGHT POINT-RAILS AND STRAIGHT FROG-RAILS; GAUGE 4^{\prime} S $\frac{1}{2}{ }^{\prime \prime}$. See § 265 .

$\begin{gathered} \text { Frog } \\ \text { Number } \\ (n) . \end{gathered}$	$\begin{aligned} & \text { Switch } \\ & \text { PointAngle } \\ & \text { (a). } \end{aligned}$		Length of Straight Frog-rail (f).	$\begin{aligned} & \text { Leead (} L \text {) } \\ & \text { (Eq. go). } \end{aligned}$	$\begin{gathered} \text { Chord } \\ \text { (ST) } \\ \text { (Eq. 88). } \end{gathered}$	$\begin{gathered} \text { Radius of } \\ \text { Lead- } \\ \text { rails } \\ (r . \text {. } \mathrm{F} .87 \text {) } . \\ \hline \end{gathered}$	$\log r$.	Degree of Curve (d).	$\begin{gathered} \text { Frog } \\ \text { Number } \\ (n) . \end{gathered}$
4	$3^{\circ}+0^{\prime}$	$7 \cdot 5$	I. 50	32.20	23.09	125.21	2.09764	$47^{\circ} 05^{\prime}$	4
$4 \cdot 5$	340	$7 \cdot 5$	1.69	34.29	25.03	159.25	. 20208	$36 \quad 36$	4.5
5	245	10.0	1.87	41.85	29.58	197.65	. 29580	2922	5
$5 \cdot 5$	245	10.0	2.06	44.16	32.03	240.44	-38100	24 OO	5.5
6	150	15.0	2.25	56.00	38.66	285.09	. 45953	1959	6
6.5	I 50	15.0	2.44	58.84	41.34	340.19	. 53172	1654	6.5
7	150	15.0	2.62	6r. 65	$43 \cdot 95$	397.65	. 59950	I4 27	7
$7 \cdot 5$	150	15.0	2.81	64.36	46.50	460.00	. 66276	1229	$7 \cdot 5$
8	50	15.0	3.00	67.04	4 S. 99	527.91	. 72256	10 52	
8.5	150	15.0	3.19	69.60	51.38	600.94	. 77883	933	S. 5
9	150	15.0	$3 \cdot 37$	72.20	53.80	6SI. 16	. 83325	S 25	9
$9 \cdot 5$	I 50	15.0	$3 \cdot 56$	74.70	56. II	767.11	. 88456	7 2S	$9 \cdot 5$
10	I 50	15.0	3.75	77.04	58.28	85 S.I4	. 93356	6 +1	10
10.5	I 50	15.0	3.94	79.51	60.57	959.00	2.95152	$5 \quad 59$	10.5
II	I 50	15.0	4.12	81.82	62.69	1065.52	3.02756	523	11
II. 5	I 50	15.0	$4 \cdot 31$	84.09	64.75	IISo. 16	3.07194	45 I	II. 5
12	I 50	15.0	4.50	86.16	66.67	1299.93	3.15392	424	12

TRIGONOMETRICAL FUNCTIONS OF THE FROG ANGLES (F).

$\begin{gathered} \text { Frog } \\ \text { Number } \\ (n) . \end{gathered}$	FrogAngle (F).			Nat. sin F.	Nat. $\cos F$.	Log $\sin F$.	Log $\cos F$.	Log cot F.	Log vers F^{2}.	$\begin{gathered} \text { Frug } \\ \text { Number } \\ (n) . \end{gathered}$
4	14°	15^{\prime}	00' ${ }^{\prime \prime}$. 24615	. 96923	9.39120	9.98642	10.59522	8.45811	4
4.5	12	40	49	. 21951	. 97561	- 3414	. 95927	. 64782	-3572î	4.5
5	II	25	16	. $\mathrm{I} \mathrm{S}^{\text {So } 2}$.9S020	. 296 \%	. 9913 ī	. $69+61$. 29670	5
$5 \cdot 5$	10	23	20	. ISO33	. 95360	. 25606	-99252	. 73675	. 21467	$5 \cdot 5$
6	9	3 I	38	. 16552	. 95621	. 21884	. 99397	. 77513	. 13966	6
6.5	8	47	5 I	. 15294	. 98823	. 18453	-99486	. 81033	.0705	6.5
7	8	10	I6	- $1+213$. 98955	. 1526 Ŝ	-99557	. $8+2 \mathrm{~s}$ ¢	S.00655	7
$7 \cdot 5$	7	37	4	-13274	. 99115	. 12301	-99614	. 87313	7.94691	$7 \cdot 5$
8	7	09	10	. 12452	. 99222	. 0952 2	. 99660	. 9013 ¢	. S91Iō	
8.5	6	43	59	. 11724	. 99310	. 06909	. 99690	-92790	. 5386	8.5
9	6	21	35	. 11077	. 99355	. 04442	. 99732	.95239	- 7 S915	
$9 \cdot 5$	6	OI	32	. IG497	. $99+48$	9.02107	. 99759	. 97652	-74232	$9 \cdot 5$
10	5	$+3$	29	. 09975	. 99501	8.99591	- 99783	10.99892	. 69788	10
10.5	5	27	O9	. 09502	. 99545	. 977 Sî	-99503	11.02021	. 65560	10.5
II	5	12	15	. 09072	. 995 SS	. 95770	-99520̂	. 0.4050	. 61528	11
II. 5		55	45	. 08679	. 99623	.9354	. 99536	.05987	. $5-6,6$	11. 5
12	4	46	19	.08319	. 99653	S.92007	9.95549	II .07842	7.53986	12

TABLE IV.-ELEMENTS OF TRANSITION CURVES.

N.	0	1	${ }^{2}$:3	4	5	6	7	8	9	P. P.
100	00000	043	087	130	173	216	260	303	346	389	
IOI	43^{2}	475	518	561	604	646	659	732	775	817	
102	860	902	945	987	*030	* ${ }_{7}{ }^{\text {a }}$	* I 14	*157	* 199	* 24 İ	$43 \quad 434241$
103	Or $28 \hat{3}$	326	368	410	45^{2}	494	536	578	619	66 İ	
104	703	745	787	828	870	911	953	994	*036	*077	
105	02 II9	160̂	$20 \hat{1}$	243	284	325	366	$40 \hat{7}$	445	4 S ¢	
106	530	57 Î	612	653	694	735	775	816	857	S98	$626.1{ }^{5}$
7	938	979	* 19	*060	* 1000	*141	* δ_{1}	*22 î	*262	${ }^{3} 302$	
8	-3 $34{ }^{\text {a }}$	382	42 2	463	503	543	583	623	663	703	
109	$74 \hat{2}$	782	822	S62	90 Î	94 I	9^{81}	*02ô	* 060	*100	
110	$0413 \hat{9}$	178	218	257	297	336	375	415	454	493	
I	$53^{\hat{2}}$	57 I	610	649	688	727	-766	805	844	883	$40040 \quad 3938$
I I 2	922	960	999	* 3^{8}	*○76	* I J 5	* 154	* $19{ }^{2}$	*23I	*269	
I I 3	05308	346	38 ¢	423	46 I	499	538	576	614	5^{2}	
4	690	72 ¢	766	$80 \hat{4}$	8.2 2	SSô	$91 \hat{8}$	$95 \hat{6}$	994	*O32	2
5	06070	$10 \hat{7}$	145	I S_{3}	220	258	296	$33 \hat{3}$	371	$40 \hat{8}$	
II6	44^{6}	483	520	558	595	632	670	707	744	78 î	.6 $24.3{ }^{24.0}{ }^{23.4}{ }^{22.8}$
I I 7	81 8	855	893	930	967	*004	*040	*077	* I I 4	* 15 î	
I 18	07188	225	26 Î	298	335	372	408	445	48 I	518	$9{ }^{9} 36.4{ }^{\text {a }}$
I I 9	$55 \hat{4}$	591	627	664	700	737	773	809	845	882	
120	918	954	990	${ }^{*} \mathrm{O} 26$	*062	*098	* 34	* 170	*206	$*_{242}$	
121	$08 \overline{27 \hat{8}}$	314	350	386	422	457	493	529 88	564	600	$\begin{array}{llll}37 & 37 & 36 & 35\end{array}$
122	636	67 Î	707	742	778	813	+ 849	884	920	+955	
123	990	*026	*06I	*096	${ }^{1} 31$ Î	* 166	*202	* 237	* 272	*307	2 7.5 7.4 7.4 7.2 7.0 .3 11.2 11.1 10.8 10.5
124	09342	377	412	447	482	7	55^{2}	5^{86}	62 î	656	$3{ }^{11.2} 11.1{ }^{10.8}{ }^{10.5}$
125	691	725	760	795	830	$86 \hat{4}$	899	033	968	* 002	
126	10037	-7	106	140	174	209	$24 \hat{3}$	277	312	346	.6 22.5 ${ }^{22.2}{ }^{21.6} \mathbf{2 1 . 0}$
127	380	414	448	483	517	55 I	585	619	653	687	
I28	721	755	789	822	856	890	924	958	99 I	*025	
129	I I 059	092	126	160	193	227	260	294	327	361	
130	394	427	461	494	528	561	594	627	661	694	
131	727	760	793	826	859	S92	925	958	991	O2 4	
132	$1205 \hat{7}$	090	123	156	189	22 İ	$25 \hat{4}$	287	320	35^{2}	
133	385	418	45°	483	515	548	580	613	645	678	
134	710	743	775	807	840	872	$90 \hat{4}$	937	969	* 001	
135	$1303 \hat{3}$	-63	$09 \hat{7}$	130	162	194	226	258	290	322	
136	354	386	417	449	48 İ	513	545	577	608	640	
137	672	$70 \hat{3}$	735	767	798	83 ô	862	893	925	956	${ }^{1} 1{ }^{\text {a }}$
138	988	*OI9	*05 1	*082	* I I 3	* 145	* 176	*207	* 239	270	
I 39	1433 Î	33^{2}	364	395	426	457	488	519	55°	582	
140	613	644	675	706	736	767	798	829	860	891	
1	922	952	983	*014	*045	*075	* 10 ¢	* 137	* $16 \hat{7}$	198	Î 313029
142	15229	259	290	320	351	38 Î	412	44^{2}	473	503	
143	$53 \hat{3}$	564	$59 \hat{4}$	624	655	685	715	* 745	776 $*$	So6	
4	836	866	896	926	956	987	* 17	*047	* 077	$\text { * } 107$.3 9.4 9.3 9.0 8.7 .4 12.6 12.4 12.0 11.6
I 45	16137	166	$19 \hat{6}$	226	256	$28 \hat{6}$	316	346	376	405	
146	435	465	$49 \hat{4}$	$52 \hat{4}$	554	584	613	643	672	702	
147	731	76 1	79 I	820	849	879	908	938	$96 \hat{7}$	997	
I48	17026	$05 \hat{5}$	085	114	143	17^{2}	20	231	260	289	.9128.3
149	318	348	377	406	435	464	493	522	551	580	
150	609	638	667	696	725	753	782	81 î	8.0	S69	
N.	0	1	2	3	4	5	6	7	8	9	P. P.

TABLE V.-LOGARITHMS OF NUMBERS.

N.	0	1	${ }^{6}$	3	4	5	6	7	8	9		P. P.
150	17609	638	667	696	725	753	782	8 I İ	840	869		
151	$\overline{897}$	926	955	984	* Ol 12	*04ì	*070	*09 ${ }^{8}$	* 127	* 156		$\begin{array}{lll}29 & 28 & 27\end{array}$
152	I 8 18 4	213	$24 \hat{\text { İ }}$	270	298	327	355	384	412	44ô		2.9 28 27 2.9 2.8 2.7
I 53	469	$49 \hat{7}$	526	554	$58 \hat{2}$	6 II	639	$66 \hat{7}$	695	724	. 2	5.9 2.8 5.8 5.6 5.4 8.7 8.4 8.1
I 54	75^{2}	780	$80 \hat{8}$	S36	$86 \hat{4}$	893	92 I	949	977	*005		8.7 8.4 8.1 II 6 11.2 10.8
155	19033	-6I	-89	117	145	173	201	229	$25 \hat{6}$	$28 \hat{4}$. 4	11.6 11.2 10.8 14.5 14.0 13.5
156	312	340 ô	368	396	$42 \hat{3}$	45 Î	479	507	$53 \hat{4}$	$56 \hat{2}$.6	
I 57	590	617	645	673	700	728	755	783	8 I ô	838	. 7	20.3 19.6 18.9 23.2 22.4 21.6
158	865	893	920̂	948	975	*003	* 330	* $05 \hat{7}$	*085	* II 2		23.2 22.4 21.6 26.1 25.2 24.3
159	$2013 \hat{9}$	167	I 94	22 Î	249	276	303	330	357	385		
160	4 I 2	439	$46 \hat{6}$	$49 \hat{3}$	520	$54 \hat{7}$	574	$60 \hat{1}$	62 8	655		
I6I	682	709	+ 736	$76 \hat{3}$	790̂	SI $\hat{7}$	$\bigcirc 84$	871	898	${ }^{9} 2 \hat{4}$		
I62	95 Î	$97 \hat{8}$	* 005	*O32	*05 8	*085	* 112	* 139	* 165	* 192		$\begin{array}{l\|l} 26 & 20 \\ 2.6 & 2.6 \end{array}$
163	2 I 219	$24 \hat{5}$	272	298	325	352	$37 \hat{8}$	405	43 Î	458		2.6 2.6 5.3 5.2 7.9 7.8
I64	$48 \hat{4}$	5 I I	$53 \hat{7}$	564	590	6 I 6	643	669	695	722		$7 \cdot 9 \quad 7$.
165	$74 \hat{8}$	774	801	827	853	880	906	93 2ิ	$95 \hat{8}$	984		10.6 10.4 13.2 13.4
I 66	22 OII	$\bigcirc 37$	063	$\bigcirc 89$	I I 5	14 Î	I $6 \hat{7}$	193	2 I 9	245		15.9 15.6
1 67	27 I	$29 \hat{7}$	$32 \hat{3}$	$34 \hat{9}$	375	40 İ	$42 \hat{7}$	453	479	505		$18 . \hat{5}$ 18.2 21.2 20.8
I 68	53 I	557	5 S2̂	$60 \hat{8}$	634	660	686	7 I Î	737	763		18.2 28.8 23.8 23.4
I 69	$78 \hat{8}$	814	840	865	891	917	$942 \hat{2}$	968	994	* I I 9		
170	23045	070	0.96	12 Î	147	$17{ }^{1}$	198	$22 \hat{3}$	249	274		
17 I	$29 \hat{9}$	325	350	375	401	426	45 I	477	$50 \hat{2}$	527		
r 72	553	578	603	62 ¢	653	679	704	729	$75 \hat{4}$	779		.5 2.5 2.4
173	$80 \hat{4}$	829	855	880	905	930	955	980	* 005	*030	. 1	2.5 2.5 2.4 5.1 5.0 4.8
I 74	$24 \bigcirc 55$	-80	105	129	154	179	$20 \hat{4}$	229	254	279	$\cdot 3$	7.6 7.5 7.2
175	304	$32 \hat{8}$	$35 \hat{3}$	378	403	$42 \hat{7}$	$45^{\hat{2}}$	477	$5 \bigcirc 2$	$5^{2} 6$.2 10.0 9.6 7 12.5 12.0
176	55 Î	576	600	625	650	$67 \hat{4}$	699	$72 \hat{3}$	748	773	. 6	12.7 12.5 1.0 15.3 15.0 14.4
177	$79 \hat{7}$	822	84	87 I	895	920	$94 \hat{4}$	$96 \hat{8}$	993	* 017		17.8 17.5 16.8
178	25042	-66	09 I	115	139	164	188	212	237	261		
I 79	285	309	3.34	35^{8}	382	406	430	455	479	503		
180	529	55	575	$59 \hat{9}$	$62 \hat{3}$	64.7	672	696	720	744		
181	768	79^{2}	816	840	86⿳⺈	88\%	911	$93 \hat{5}$	959	$98 \hat{3}$		
182	26007	031	055	$07 \hat{8}$	102	126	150	I 74	$19 \hat{7}$	22 Î		$\begin{array}{ll} 23 & 23 \\ 2 . \hat{3} & 2.3 \end{array}$
183	245	269	292	316	340	363	387	4 II	$43 \hat{4}$	45^{8}		2.3 2.3 4.7 4.6
184	482	$5 \circ \hat{5}$	529	$55^{\text {2 }}$	576	599	623	646	670	693		7.0 ¢ 6.9
I 85	7 I 7	$740 \hat{}$	764	787	8 I I	834	858	881	$90 \hat{4}$	928		9.4 9.2 11.7 T1.5
186	95 Î	974	998	*O2	*044	*068	*091	* I I $\hat{4}$	* $13 \hat{7}$	* 161		14.5 13.8
I 87	27184	207	2.30	254	277	300	323	346	$36 \hat{9}$	$39^{\text {2 }}$		
188	416	439	462	485	508	531	554	577	600	623		8 18.8 18.4 9 $21 . \hat{I}$ 10.7
189	646	669	692	715	738	761	784	$80 \hat{6}$	829	852		
190	875	898	921	944	$9^{6} 6$	989	*012	* 35	*058	*080		
191	$28 \overline{10 \hat{3}}$	126	149	17 I	I 94	217	239	262	285	307		
192	330	35^{2}	375	398	420	443	$46 \hat{5}$	488	510	533		$\mathbf{2} \mathbf{2}$ $\mathbf{2 2}$ $\mathbf{2 Y}$ $2 . \hat{\mathrm{I}}$ 2.2 $2 . \hat{\mathbf{I}}$
193	$55 \hat{5}$	578	600	623	645	668	690̂	713	735	75^{8}	.1 .2	2.2 2.2 2.1 4.5 4.4 4.3 6.7 6.6 6.4
194	780	Sô	825	847	$86 \hat{9}$	892	914	936	959	981		6.7 6.6 6.4
I 95	29003	025	048	070	O9 ${ }^{2}$	114	137	159	$\underline{1} 8 \hat{1}$	$20 \hat{3}$		
196	225	248	270	292	3 4	336	$35 \hat{8}$	380	402	$42 \hat{4}$		
197	446	46 ¢	490	512	534	556	578	600	62 2	$64 \hat{4}$.7	$15 . \hat{7}$ 15.4 15.0 18.0
198	$66 \hat{6}$	68 88	710	732	754	776	+798	*20	84	$86 \hat{3}$		18.0 17.6 17.2 20.2 19.8 19.3 1
199	885	907	929	950	972	$99 \hat{4}$	* 16	*038	*059	*08		
200	30103	$12 \hat{4}$	146	168	190	2 I 1	233	254	276	298		
N.	0	1	2	3	4	5	6	7	8	9		P. P.

TABIE $\because-L \cap G A R I T H M S ~(O F ~ N ゙ M B E R S . ~$

N.	0	1	2	3	4	5	(;	7	8	!		1) I'	
200	30103	12.4	146	168	190	211	233	254	276	295		22	
201	319	341	363	$3^{8} \hat{4}$	406	427	4.49	470	49?	513	. 1	2.2	2.1
202	535	556	578	599	621	6.42	664	6.55	707	728	. 2	4.4	4.2
203	$7+9$	771	79^{2}	S13	835	856	878	S99	920	$94 \hat{1}$	$\cdot 3$	6.6	6.3
204	963	98.	*005	*027	*0.18	\%069	*onó	* 112	* 13.3	* 154		S.S	
205	31175	196	$21 \hat{7}$	239	260	281	302	323	$34 \hat{4}$	365	.4 .5	3.5 11.0	S. 10.5
206	386	408	429	450	+71	492	513	534	555	576	. 6	13.2	12.6
207	597	6 I 8	639	660	$6 S_{\text {I }}$	702	722	743	764	785			
20 S	SO6	S27	S. 4	S69	890	910	931	952	973	994	. 7	15.4 17.6	$1 .+7$ 16.5
209	32 OIf	035	056	077	097	118	139	100	180	201	.9)	19.8	IS. 9
210	222	242	263	284	304	325	3.46	368	387	407			
2 II	42 S	449	469	490	510	531	55 i	572	592	613	. I	2.0	2.0
2 I 2	633	654	674	695	71 \%	736	756	776	797	S17	. 2	2.0 4.1	2.0 4.0
2 I 3	S38	S5	S7S	S99	910	940	960	980 -	* 001	\%O2	. 3	6.1	6
214	3304 i	-6î	OS2	102	122	$14 \hat{2}$	163	183	$20 \hat{3}$	$22 \hat{3}$			
215	244	264	$2 S_{4}$	304	324	$3+\hat{f}$	365	385	405	423	. 4	0.2 10.2	8.0 10.0
2 I6	445	465	4 S 5	505	525	546	566	586	606	626	. 6	12.3	12.0
2 I 7	646	666	686	706	726	746	766	${ }_{7} 86$	So6	S25			
218	S45	S65	SS5	905	925	945	965	985	*004	*O2 ${ }^{4}$. 7	14.3 16.4	1.4 .0 16.0
219	$3+0+4$	064	$\bigcirc S_{4}$	104	123	143	163	183	203	$22 \hat{2}$.9	15.4	IS.0
220	$24 \hat{2}$	262	28 Î	301	321	341	360	380	400	419			
221	439	459	47S	49 s	513	537	557	576	596	615		I 0	1.9
222	635	655	674	694	713	733	$75 \hat{2}$	772	79 î	SII	. 1	1.9 3.9	1.9 3.8
223	830	850	S6o	SSO	$90 \hat{\mathrm{~S}}$	923	947	966	986	* 005	. 2	3.9 5.3	3.8 5.7
224	35025	044	-63	-83	102	I 2 Î	141	160	I 79	199			
225	$21 \hat{8}$	$23 \hat{7}$	257	276	295	314	$33+$	353	37	39 î	. 5	7.8 9.7	7.6 9.5
226	411	430	449	$46 \widehat{8}$	$48 \hat{7}$	507	526	545	$56 \hat{4}$	58.3	. 6	11.7	11.4
227	602	62 Î	641	660	679	698	717	736	$75 \hat{5}$	$77 \hat{4}$			
228	793	8I2	$83 \hat{1}$	850	$86 \hat{}$	$88 \hat{3}$	*90\%	926	945	* $90 \hat{4}$	7	13.6 15.6	13.3 15.2
229	983	* 002	*O2 İ	*040	* $05 \hat{9}$	$\cdots 07 \hat{8}$	*097	* 116	I 35	*:54	9	15.0	15.2 17.1
230	$36 \underline{173}$	$19 \hat{\mathrm{I}}$	210	$22 \hat{9}$	248	267	$2 S 6$	305	323	$34 \hat{2}$			
231	36 I	380	399	$41 \hat{7}$	436	455	46	49^{2}	511	530		18	S
232	549	$56 \hat{7}$	586	605	623	$6+\frac{2}{2}$	661	679	698	717	. 1	3.7	1.8
233	735	754	773	79 I	810	$82 \hat{8}$	S47	S66	8S4	903	$\cdot 3$	3. $5 \cdot 5$	3.6
234	92 Î	940	958	977	996	*OI 4	- 3.3	*05	*070	*08 8			
235	37107	125	143	162	180	199	217	236	254	273	. 4	7.4 9.2	7.2 9.0
236	291	309	328	346	364	383	40 Î	420	438	456	. 6	II. 1	10.8
237	475	493	5 I Î	530	548	$5^{6} 6$	$58 \hat{4}$	603	621	639			
238	657	676	694	712	730	749	767	785	So3	S2	. 7	12.9	12.6 14.4
239	S40	858	876	894	912	930	$94 \hat{S}$	967	985	-003	9	16.6	10.2 10.2
240	$3^{8} \underline{021}$	039	$05 \hat{7}$	075	$09 \hat{3}$	1 I I	129	$14 \hat{7}$	165	183			
$2+1$	20 Î	219	$23 \hat{7}$	255	273	291	309	327	345	363		17	17
242	38 Î	399	417	435	453	47 I	489	507	525	543	. 2	1.7 3.5	1.7 3.4
243	560	578	596	614	632	650	667	685	703	721	. 3	3. 5	5.1
244	739	757	774	79^{2}	Sio	828	845	$86 \hat{3}$	SSI	S99			
245	916	934	952	970	$98 \hat{7}$	* 005	*O23	*040	*05 8	*076	. 4	7.0 8.7	6.5 8.5
246	39093	I II	129	I 46	164	18 Î	199	217	234	252	. 6	10.5	10.2
247	269	$28 \hat{7}$	305	322	340	$35 \hat{7}$	375	392 2	410	427			
248	445	463	430	$49 \hat{7}$	515	532	550	$56 \hat{7}$	585	602	.7 .8	12.2 14.0	I 1.9 13.6
249	620	$63 \hat{7}$	655	672	689	707	$72 \hat{4}$	74^{2}	759	776	. 9	14.0 15.7	13.0 15.3
250	794	SIÎ	828	846	863	881	S98	915	9.3 .3	950			
N.	0	1	2	3	4	5	(7	8	9		P. P	

TABLE V.-LOGARITHMS OF NUMBERS.

N.	0	1	2	3	4	5	6	7	8	9		P. P.	
250	39794	SIÎ	82 ¢	846	863	881	898	915	933	950			
25 I	967	984	* OO 2	*OI9	*036̂	*054	*07 I	*088	* 105	* 123			
252	40140	I 57	I7 ${ }^{\text {¢ }}$	I9 1	209	226	$24 \hat{3}$	260	27 7	295			
253	312	329	$34 \hat{6}$	363	380	398	415	432	449	$46 \hat{6}$			I7
254	$48 \hat{3}$	500	517	534	55 İ	569	586	603	620	637	2	1.7	1.7
255	654	671	688	705	722	739	756	773	790	So7	. 2	3.5 5.2	3.4 5.1
256	824	84 I	858	875	892	90§	925	$94 \hat{2}$	959	976			5.1
257	993	*OIO	* 027	*044	*06I	*077	*O9 4	*II	* $12 \hat{8}$	* 145	. 4	7.0 8.7	6.8 8.5
258	41162	I79	I9 5	212	229	246	263	279	$29 \hat{6}$	313	.5 .6	8.7 10.5	8.5 10.2
259	330	346	$36 \hat{3}$	380	397	413	430 ¢	447	464	480			
260	$49 \hat{7}$	514	530	$54 \hat{7}$	564	58 I	597	6 I 4	631	647	. 7	12.2.	II. 9
261	664	680	$69 \hat{7}$	714	730	747	764	780	797	SI 3	. 8	15.7	13.6 15.3
262	S30	$S_{4} 6$	863	8So	890́	913	929	946	962	979			
263	995	*OI2	*O2 ${ }^{\text {8 }}$	*045	*06	*078	\%09 4	* I I I	* $12 \hat{7}$	*144			
264	42 I 60	177	$19 \hat{3}$	$20 \hat{9}$	226	$242 \hat{2}$	259	275	292	308			
265	324	341	$35 \hat{7}$	$37 \hat{3}$	390	406	423	439	455	472		6	6
266	488	$50 \hat{4}$	52 I	537	553	$56 \hat{9}$	586	602	618	635	I	1.6	I. 6
267	65 I	$66 \hat{7}$	683	700	7 I6	73 2̂	$74 \hat{8}$	765	78.	797	. . .	3.3 4.9	3.2 4.8
268	81 3	82 $\hat{9}$	846	862	$87 \hat{8}$	S9 ${ }^{\text {a }}$	910	927	943	959	-		
269	975	991	*007	* O 23	*040	*056	*072	*088	*104	* 120	. 4	6.6	6.4
270	43 13 ${ }^{\text {2 }}$	$15 \hat{2}$	$16 \hat{8}$	I $8 \hat{4}$	200	21\%	233	249	265	281	. 5	$9 \cdot 9$	8.0 9.6
27 I	297	313	329	345	361	377	393	409	425	44 I			
272	457	473	489	505	520	536	$55 \hat{2}$	$56 \hat{8}$	5 S 4	600	. 7	II .5 I 3.2	II. 2 12.8
273	616	632	648	664	680	695	7 I Î	727	$74 \hat{3}$	759	. 9	14.3	12.8 14.4
274	775	79 I	806	S22	$83 \hat{8}$	854	870	886	90 Î	917			
275	933	949	965	980	996	*OI2	* 228	*04 ${ }^{3}$	*059	*075			
276	44 091	106	122	I 38	154	ェ69	I 85	201	216	232			
277	248	$26 \hat{3}$	279	295	310	326	342	357	373	389		15	15
278	$40 \hat{4}$	420	435	45 I	467	$48 \hat{2}$	498	5 I 3	529	545	.1 .2	1.5 3.1	1.5 3.0
279	560	576	59	607	$62 \hat{2}$	638	653	669	685	700	. 3	3. 4.6	3.0 4.5
280	716	73 I	747	$76 \hat{2}$	778	$79 \hat{3}$	809	824	839	855			
281	870	886	901	917	932	948	$96 \hat{3}$	978	994	*009	. 4	6.2 7.7	6.0 7.5
282	45025	040	055	071	-8	102	II7	I 32	148	16 ${ }^{\text {a }}$. 6	$9 \cdot 3$	9.0
283	17 S	194	209	$22 \hat{4}$	240	255	270	286	301	$31 \hat{6}$			
284	332	347	362	377	393	408	$42 \hat{3}$	438	454	469	.7 .8	10.5 12.4	10.5 12.0
285	48 ¢	499	515	530	545	560	576	591	606	62 Î	. 9	$13 . \hat{9}$	13.5
286	636	652	667	682	697	712	727	743	75^{8}	773			
287	788	Sô	818	$83 \hat{3}$	$84 \hat{8}$	864	879	894	909	924			
288	939	$95 \hat{4}$	$96 \hat{9}$	$98 \hat{4}$	999	*oi 4	*o2 ${ }^{\text {¢ }}$	*04 4	*059	*075			
289	46090	105	120	135	150	165	180	195	210	225			
290	240	255	$26 \hat{9}$	$28 \hat{4}$	$29 \hat{9}$	314	329	$34 \hat{4}$	359	374	.1 .2	1.4 2.9 4	1.4 2.8
291	389	404	419	434	449	464	479	$49 \hat{3}$	$50 \hat{8}$	$52 \hat{3}$	- 3	4.3	4.2
292	538	553	568	583	$59 \hat{7}$	6 I 2	$62 \hat{7}$	642	657	672		5.8	5.6
293	687	701	7 I 6	731	746	761	775	790	805	820	. 4	7.2	5.6 7.0
294	834	$84 \hat{9}$	$86 \hat{4}$	879	894	90 $\widehat{8}$	923	938	95^{2}	$96 \hat{7}$. 6	8.7	8.4
295	982	997	*OI I	*026	*041	*05 5	*o7ô	*085	*IOO	* I I 4		10.	9.8
296	47 I29	I44	I 58	173	I 88	202	217	232	$24 \hat{6}$	26 I	. 8	11.6	11.2
297	275	290	305	319	334	348	$36 \hat{3}$	378	392	407		13.0	I2.6
298	42 İ	436	451	465	480	$49 \hat{4}$	509	523	538	55^{2}			
299	567	58 î	596	610	625	639	654	$66 \widehat{8}$	683	$69 \hat{7}$			
300	712	$72 \hat{6}$	74 I	755	770	$78 \hat{4}$	799	81 3	828	842			
N.	0	1	2	3	4	5	6	7	8	9		P. P.	

N.	0	1	2	3	4	5	6	7	8	!)		1. P.	
300	47712	726	741	755	770	$78 \hat{4}$	799	SI. ${ }^{3}$	S28	84^{2}			
301	85	87 I	885	900	914	$92 \hat{8}$	$9+3$	957	972	986			
302	48000	O15	O29	0.4	058	072	$\bigcirc{ }^{\circ} 7$	101	115	130			
303	$14 \hat{4}$	$15 \hat{8}$	173	187	201	216	230	$24 \hat{4}$	259	273			
304	287	30 I	356	330	$34 \hat{4}$	$35 \hat{8}$	373	387	40 î	415			
305	430	444	$45 \hat{8}$	472	487	501	$5^{1} 5$	529	$54 \hat{3}$	558			
306	572	5^{8} \%	6000	614	629	643	657	671	685	699	.	14.	14
307	714	728	742	756	770	$78 \hat{4}$	$79 \hat{8}$	SI2	827	S41	. 2	1.4 2.9	1.4 2.5
308	855	869	883	$89 \hat{7}$	9 I Î	925	939	953	967	$9^{8.2}$	$\cdot 3$	$4 \cdot 3$	4.2
309	996	*oro	* 24	*038	*O52	*066	*080	*094	* 108	\%122			
310	$4 9 \longdiv { 1 3 6 }$	150	164	178	192	206	220	234	248	262	. 4	5. 7.3	5.6 7.0
3	276	290	304	318	33^{2}	346	359	373	387	40 I	. 6	3.7	8.4
312	415	429	$4+3$	457	471	485	499	513	$52 \hat{6}$	540		10.î	
3 I 3	554	56 ¢	5 S 2	596	610	624	637	65 İ	665	679	. 78	10.1 11.6	9.8 11.2
$3 \mathrm{I}+$	693	707	720	$73 \hat{4}$	$7+8$	762	776	789	So 3	SI 7	.9	13.0	12.6
315	δ_{31}	845	S58	872	886	900	913	$92 \hat{7}$	941	955			
316	$96 \hat{8}$	9 S 2	996	*OIO	*023	*037	*O5 I	*065	*078	*092			
317	50106	I I 9	133	147	160	174	188	20 Î	215	229			
318	$24 \hat{2}$	256	270	$28 \hat{3}$	$29 \hat{7}$	311	$32 \hat{4}$	338	352	365			
319	379	392	406	420	$43 \hat{3}$	447	460	474	488	50 İ			
320	515	$52 \hat{8}$	542	555	569	583	596	610	$62 \hat{3}$	637			
321	650	664	$67 \hat{7}$	691	704	718	73 I	745	$75 \hat{8}$	772	. 1	1.3	13
322	785	799	812	S26	839	S53	866	880	893	907	. 2	2.7	1.3 2.6
323	920	$93 \hat{3}$	947	960	974	9 S 7	*OOI	*oif	*027	* ${ }_{4} 1$	- 3	4.0	3.9
324	5 I $05 \hat{4}$	068	-8î	O9 4	IOS	12 Î	I 35	148	16 Î	175			
325	$18 \hat{8}$	20 Î	215	$22 \hat{8}$	242	255	$26 \hat{8}$	282	295	$30 \hat{8}$. 5	6.7	5.2 6.5
326	322	335	$34 \hat{8}$	361	375	3^{8} ¢	40 I	415	428	44 I	. 6	8.1	7.8
327	455	468	48 I	$49 \hat{4}$	508	521	$53 \hat{4}$	547	56 I	574			
328	587	600	614	627	640	$65 \hat{3}$	667	680	693	706	. 8	9.4 10.8	9.1 10.4
329	719	733	746	759	772	785	798	SI2	825	$S_{3} 8$.9	12.1	11.7
330	85	86 4	$87 \hat{7}$	S91	904	917	930 -	$94 \hat{3}$	956	$96 \hat{9}$			
331	983	996	*009	$\bigcirc 22$	**35	\% $04 \hat{S}$	*06 İ	*074	*08 7	*100			
332	52 II 4	127	140	153	166	I 79	192	205	$21 \hat{8}$	23 I			
333	$24 \hat{4}$	257	270	283	296	309	322	335	348	36 Î			
334	374	389	400	413	426	439	$45^{\hat{2}}$	465	$47 \hat{8}$	49 Î			
335	$50 \hat{4}$	517	530	543	556	569	582	595	60S	62 I		$\underline{12}$	12
336	634	647	660	672	685	698	711	724	737	750	. 1	1.2	12
337	763	776	789	SoÎ	81 4	827	840	S53	866	879	. 2	1.2 2.5	2.2 2.4
338	891̂	$90 \hat{4}$	91 7	930	943	956	$96 \hat{8}$	9 Sî	994	* 007	$\cdot 3$	3.7	3.6
339	$53 \bigcirc 20$	033	045	058	071	$\bigcirc 84$	097	109	$12 \hat{2}$	135			
340	148	I60̂	$17 \hat{3}$	186	199	211	$22 \hat{4}$	237	250	$262-$. 4	5.0	4.5 6.0
34 I	275	288	301	313	326	339	352	$36 \hat{4}$	377	390	. 6	7.5	7.2
342	402	415	428	440	$45 \hat{3}$	466	478	49^{1}	504	516		S. 7	8.4
343	529	542	$55 \hat{4}$	567	580	59^{2}	605	6 I 8	630	643	. 8	8.7 10.0	3.4 9.6
344	656	$66 \hat{8}$	681	693	706	719	73 Î	744	756	$76 \hat{9}$		II. 2 2	10.8
345	782	$79 \hat{4}$	807	819	832	845	S_{57}	870	SS2̂	895			
346	907	920	$93 \hat{2}$	945	958	97 ô	983	995	*008	*020			
347	54033	045	058	070	-83	095	108	120	133	145			
348	I58	170	183	195	208	220	$23 \hat{}$	245	257	270			
349	282	295	$30 \hat{7}$	320	332	$34 \hat{4}$	357	369	382	$39 \hat{4}$			
350	407	419	431	444	45\%	469	481	$49 \hat{3}$	506	$51 \hat{8}$			
N.	0	1	2	3	4	5	6	7	8	\bigcirc		P.P.	

TABLE V.-LOGARITHMS OF NUMBERS.

N.	0	1	${ }^{2}$	3	4	5	6	7	8	9		P.
350	54407	419	431	444	456	$+69$	481	493	506	5 I $\hat{8}$		I2
35 I	530	543	555	568	5 So	592	605	617	629	$6+2$. I	1. 2.
352	654	666	679	69 î	$70 \hat{3}$	716	728	740	753	765	. 2	2.5
353	777	790	So2	81 4	826	S39	S 51	S63	S76	SS8	$\cdot 3$	$3 \cdot 7$
. 354	900̂	9I 2	925	937	949	96 Î	974	986	$99 \hat{8}$	*orô		
355	55023	$\bigcirc 35$	0.47	059	-7	-8 ${ }_{4}$	096	I O§	I20	I 33	.4	6.2
356	145	I 57	r 69	I S î	$19+$	206	2 I 8	230	24^{2}	$25 \hat{4}$. 6	7.5
357	267	279	29 I	303	315	$32 \hat{7}$	340	352	364	376		
358	3^{8} Sิ	40 ̂	412	$42 \hat{4}$	437	449	461	473	485	$49 \hat{7}$. 7	8.7 10.0
359	509	52 Î	$53 \hat{3}$	$5+5$	558	570	582	594	606	6 I 8	. 9	II. ${ }^{\text {a }}$
360	630	$64 \hat{2}$	$65 \hat{t}$	666	678	690	$70 \hat{2}$	714	726	738		2
361	750	$76 \hat{2}$	775	787	799	SII	823	835	847	859	. 1	12
362	871	883	895	907	919	931	943	955	$96 \hat{6}$	97 ${ }^{8}$. 2	2.4
363	990̂	* OO 2	*OI $\hat{4}$	*026	*03 ${ }^{\text {c }}$	*050	*062	*074	*os 6	*og8	. 3	3.6
364	56 IIIO	122	134	146	15 S	170	I 8 Î	$19 \hat{3}$	205	217		
365	229	$2+1$	253	265	277	$28 \hat{\delta}$	300	3 I 2	$32 \hat{4}$	336	.4 .5	4.8 6.0
366	$3+8$	360	372	$38 \hat{3}$	395	409	419	431	443	455	. 6	7.2
367	$46 \hat{6}$	$47 \hat{S}$	490	502	5 I 4	525	$53 \hat{7}$	549	561	573		
368	585	596	$60 \hat{8}$	620	632	$64 \hat{3}$	655	$66 \hat{7}$	679	691	. 7	8.4 9.6
369	$70 \hat{2}$	7 I f	726	738	749	76 Î	773	785	796	Sô	.	10.6 10.8
370	820	832	8. 43	$85 \hat{5}$	867	879	890	$90 \hat{2}$	914	925		Î
37 I	93रิ	$9+9$	961	972	984	996	*00¢	*OI $\hat{9}$	*O3I	*04 ${ }^{2}$		I İ
372	$57 \bigcirc 5 \hat{4}$	066	-7 7	-Sô	101	I 12	I $2 \hat{4}$	I 36	I 47	159	. 1	1.1 2.3
373	171	I $\delta \hat{2}$	I94	206	217	229	240	$25^{\hat{2}}$	264	275	-3	$3 \cdot \hat{4}$
374	287	299	310	322	$33 \hat{3}$	345	357	$36 \hat{8}$	3 So	39 I		
375	403	41 4	426	438	$44 \hat{9}$	461	472	$4 S_{4}$	495	507	.4	4.6
376	519	530 ¢	542	553	565	576	588	$59 \hat{9}$	611	622	. 6	6.9
377	634	645	657	$66 \hat{8}$	680	69 Î	703	71 ¢	726	$73 \hat{7}$		
378	749	760	772	783	795	Sô6	Si 8	$82 \hat{9}$	841	S5 ${ }^{2}$. 7	8.0 9.2
379	S64	875	887	$89 \hat{8}$	909	92 I	$932 \hat{2}$	944	955	967	.9	9.2 10.3
380	97 ${ }^{\text {¢ }}$	990	*OOI	*OI 2	*024	*○35	*047	*058	\%069	*08 I		
38 I	$58 \widehat{\text { O9 }}$	104	I 15	I 26	138	149	I6 I	172	183	195		II
382	$20 \hat{6}$	$2 \mathrm{I} \hat{7}$	229	$240 \hat{}$	252	263	$27 \hat{4}$	286	297	$30 \hat{8}$. 12	1.1 2.2
$3 \mathrm{~S}_{3}$	320	33 I	34^{2}	354	365	376	388	399	410	422	. 3	3.3
384	433	$4+\hat{j}$	455	467	$47 \hat{8}$	4 S 9	501	j12	$52 \hat{3}$	535		
385	546	$55 \hat{7}$	$56 \hat{8}$	580	591	602	6 I 3	625	636	$6+\hat{7}$.4 .5	4.4 5.5
3S6	$65 \hat{8}$	670	68 I	692	703	715	726	$73 \hat{7}$	$74 \hat{8}$	760	. .6	5.5 6.6
387	771	$78 \hat{2}$	$79 \hat{3}$	$80 \hat{4}$	816	S27	$83 \hat{8}$	$84 \hat{9}$	S6I	872		
388	SS_{3}	89 4	90 ${ }^{\text {a }}$	91 6	928	939	950̂	*6 ${ }^{6}$	$97^{\hat{2}}$	984	.7 .8	7.7 8.8
389	995	*006	* OI 7	* $\mathrm{O} 2 \hat{8}$	* 039	*05ô	*062	*073	*o84	*095	. 9	99
390	59 106	I I $\hat{7}$	I $2 \hat{8}$	140	151	162	173	I84	195	206		-
391	2If	229	240	25 I	262	273	284	295	306	$31 \hat{7}$		Iô
392	3^{2} §	339	35 I	362	373	384	395	406	417	423	. 1	1.0 2.1
393	439	450	46 I	47^{2}	483	$49 \hat{4}$	505	516	$52 \hat{7}$	538	. 3	3. I
394	$54 \hat{9}$	560	57 I	$58 \hat{2}$	$59 \hat{3}$	604	6 I 5	$62 \hat{6}$	$63 \hat{7}$	$64 \hat{8}$		
395	659	670	681	692	703	7 I 4	725	736	$74 \hat{7}$	$75 \hat{8}$.4	4.2 5.2
396	769	780	79 i	802	8 I 3	$82 \hat{4}$	835	S46	857	S68	. 6	5.2 6.3
397	S79	890	901	912	*23	$93 \hat{3}$. $94 \hat{4}$	955	${ }^{96}$ 6	* $97 \overline{7}$		
398	9888	999	* 10	*O2I	* ${ }^{\circ} 32$	* ${ }^{4} 4$	* 053	*06 4	* 075	*08 6	. 7	7.3 8.4
399	$60.09 \hat{7}$	108	I 19	130	141	I5 5	I62	173	I 8 ¢	195	. 9	
400	206	217	$22 \hat{7}$	$23 \hat{8}$	249	260	27 I	282	293	$30 \hat{3}$		
N.	0	1	2	3	4	5	6	7	8	9	P	\mathbf{P}

N．	0	1	$\stackrel{12}{ }$	3	4	I	6	7	S	4）		I＇．
400	60206	217	227	238	249	260	271	$2 \mathrm{Si}_{2}$	29.3	303		
401	314	325	33^{6}	$3+7$	357	$30 \hat{8}$	379	3） 0	401	412		
402	$42 \hat{}$	433	444	455	466	470	485	495	500	519		
403	530	54 I	55^{2}	563	573	58，	595	606	616	627		I I
404	638	6.49	659	670	68 I	692	70 2	－13	72．4	7.35	． 1	1.1 2.2
405	745	756	767	フラ7	$75 \hat{8}$	799	S10	S20	S31	$8+2$	3	$3 \cdot 3$
406	85 2	863	874	S8 4	S95	906	916	92 \％	938	$9+9$		
407	959	970	981	99 ì	＊002	＊013	＊023	＊034	＊04 4	＊055	.7	$\begin{aligned} & 7 \cdot 4 \\ & 5 \cdot 5 \end{aligned}$
408	61066	076	－ $8 \hat{7}$	$\bigcirc 0$ S	$10 \hat{8}$	II9	130	1.40	151	16 î	． 6	6.6
409	172	${ }_{1} S_{3}$	193	20.4	215	225	236	2.46	257	268		
410	278	289	209	310	320	331	$3+2$	35^{2}	363	37.3	． 7	7.7 6.5
4II	$3^{8.4}$	$39 \hat{4}$	405	416	426	437	$4+7$	45 S	$46 \hat{8}$	479		9.9
412	489	500	5 II	52 Î	532	$54 \hat{2}$	553	563	574	$58 \hat{4}$		
4 I 3	595	605	616	$62 \hat{6}$	637	647	658	668	679	689		
4^{14}	700	710	721	73 I	7.2	$75 \hat{2}$	763	$77 \hat{3}$	78.	$79 \hat{4}$		Iô
415	SO5	S15	S 25	836	S +6	857	$86 \hat{7}$	S78	SS ${ }^{\text {S }}$	899		I． 0
416	909	920	930	$9+0$	9ちı	9^{61}	972	982	993	＊003	． 1	I． O 2.1
417	62013	024	$03 \hat{4}$	0.45	$\bigcirc 55$	－65	076	－ 8 ¢	097	107	． 3	$3 \cdot \mathrm{I}$
418	I 19	128	$13 \hat{S}$	149	I59	169	1 So	190	200	2 II		
419	221	232	24^{2}	252	263	273	283	294	30.4	314	$\cdot 4$	4.2 5.2
420	325	3.35	$3+5$	356	$3^{6} 6$	376	387	397	40%	418	． 6	6.3
42 I	428	$43 \hat{8}$	449	459	469	480	490	500	510	521	． 7	7.3
422	531	54 i	552	562	572	5S	593	603	613	624	.8	8.4
423	634	$64 \hat{4}$	$65 \hat{4}$	665	675	683	695	706	716	$72 \hat{6}$.9	9.7
424	736	747	757	$76 \hat{7}$	$77 \hat{7}$	TSS	798	Sos	SI $\hat{\delta}$	$S_{2} \hat{8}$		
425	S39	S 49	S59	869	879	Soo	900	910	$92 \hat{0}$	931		
426	941	951	9^{61}	97 Î	98î	992	＊002	＊OI	＊O22	＊03 2		
427	630.43	$\bigcirc 53$	06.3	073	－8 ${ }^{\text {¢ }}$	－0 $\hat{3}$	104	II 4	I 24	I 34		10
428	$14 \hat{4}$	15 $5 \hat{4}$	16 6	175	I 85	195	205	215	225	235	． 1	1.0 2.0
429	245	256	266	276	286	296	$30 \hat{6}$	316	$3=2$	336	－3	3.0
430	$3+7$	357	367	377	387	$39 \hat{i}$	407	417	42%	4.37		
431	447	458	468	478	488	498	508	518	528	$53 \widehat{8}$.4 .5	4.0 5.0
43^{2}	$54 \hat{8}$	$55 \hat{8}$	$56 \hat{S}$	57 S	5SS	$59 \hat{S}$	$60 \hat{8}$	$61 \hat{8}$	$6=\widehat{8}$	639	． 6	6.0
433	649	659	669	679	65_{0}	699	709	719	729	739		
434	7.49	759	769	779	7So	799	80%	SI？	S29	S39	.7	7.0 8.0
435	849	859	869	879	889	S99	909	919	$22 \hat{S}$.9	9.0
43^{6}	$94 \hat{S}$	958	$9^{6} \hat{S}$	97s	$98 \hat{8}$	$99 \hat{8}$	＊00 ${ }^{\text {a }}$	＊०：${ }^{\text {\％}}$	＊02 ${ }^{\text {¢ }}$	＊038		
437	64048	058	－68	078	－SS	093	109	I 17	12%	บ $3 \hat{7}$		
43^{8}	$14 \hat{7}$	157	167	177	I 87	197	207	217	226	236		
439	$2+6$	256	266	276	286	29^{6}	306	315	325	3.35		
440	$3+5$	355	365	375	$38 \hat{4}$	$39 \hat{4}$	$40 \hat{4}$	419	424	43.4	． 1	0.9 1.9
44 I	444	$45 \hat{3}$	$46 \hat{3}$	$47 \hat{3}$	483	493	503	512	522	532	． 3	2.8
44^{2}	542	55^{2}	562	571）	58 I	59 î	601	611	621	630		
443	640	650	660	670	679	689	699	709	715	$72 \hat{S}$.4 .5	3.5 4.7
444	738	748	758	$76 \hat{7}$	777	787	797	So ${ }^{\text {¢ }}$	SI6	$S=6$.6	$5 \cdot 7$
445	836	846	855	S65	S75	88_{5}	S9 4	$90 \frac{1}{4}$	$91+$	92，${ }^{\text {a }}$		
44^{6}	$93 \hat{3}$	943	953	962	972	9^{88}	99^{2}	＊OO Î	\％\％1 İ	＊O21	． 7	6.6 7.6
447	6503 I	040	050	－60	－69	070	－ 89	$00 \hat{8}$	$10 \hat{8}$	118	.9	5． 5
448	I 28	137	147	I 57	${ }^{166}$	176	186	195	205	215		
449	$22 \hat{4}$	$23 \hat{4}$	244	$25 \hat{3}$	263	273	282	292	302	311		
450	32 I	331	340	350	360	369	379	． 3 SO	398	408		
N．	0	1	2	3	4	5	（i	7	S	！）		1 ＇

TABLE V.-LOGARITHMS OF NUMBERS.

N.	0	1	2	3	4	5	6	7	8	$\boldsymbol{9}$	P. P.	
450	6532 l	331	34ô	350	360	$36 \hat{9}$	379	389	398	408		
45 I	41 7	427	437	446	456	466	475	485	$49 \hat{4}$	504		
45^{2}	514	523	533	54^{2}	55^{2}	562	57 I	581	590̂	600		
453	610	619	629	638	648	657	$66 \hat{7}$	677	686	696		10
454	705	715	$72 \hat{4}$	734	744	$75 \hat{3}$	763	772	782	79 I	. 12	1.0 2.0
455	801	8iô	820	830	839	849	858	868	877	887	$\cdot 3$	3.0
456	896	906	915	925	934	944	953	963	972	982		
457	99 I	*001	*orô	*020	* 029	*039	* $04 \hat{8}$	*058	*067	*077	. 5	4.0 5.0
458	66 O8 6	096	105	II5	$12 \hat{4}$	134	$14 \hat{3}$	153	162	172	. 6	6.0
459	18 î	1900	200	209	219	$22 \hat{8}$	238	$24 \hat{7}$	257	266		
460	276	285	294	304	313	323	33^{2}	342	351	360	. 7	7.0 8.0
46 I	370	379	389	39§	408	417	$42 \hat{6}$	436	445	455	$\cdot 9$	9.0
462	464	473	483	492	502	511	$520 \hat{}$	530	539	548		
463	55^{8}	56\%	577	586	595	605	614	623	633	642		
464	652	661	670	680	689	698	708	757	726	736		
465	745	754	764	$77 \hat{3}$	782	792	80 I	810	820	829		- ${ }^{\text {¢ }}$
466	$83 \hat{8}$	848	857	$86 \hat{6}$	876	885	894	904	913	$92 \hat{2}$. 1	0.9 1.9
467	93 Î	941	950	959	969	978	987	996	*006	*OI 5	. 3	2.9 2.8
468	$67 \quad 024$	$\bigcirc 34$	0.43	-52	-6î	071	080	-89	099	108		
469	II 7	$12 \hat{6}$	I36	145	${ }_{5} 54$	163	173	182	19 I	2000	.4	3.8 4.7
470	210	219	$22 \hat{8}$	$23 \hat{7}$	$24 \hat{6}$	256	265	274	$28 \hat{3}$	293	. 6	4.7 5.7
47 I	302	3 IT	320	329	339	348	$35 \hat{7}$	366	376	385		
472	$39+$	$40 \hat{3}$	412	422	43 I	440	449	458	467	477	. 7	7.6
473	486	495	$50 \hat{4}$	$5 \mathrm{I} \hat{3}$	523	532	54 I	550	559	56 ¢	. 9	8.5
474	578	587	596	605	614	$62 \hat{3}$	633	642	651	660		
475	669	678	687	697	706	715	724	$73 \hat{3}$	$74 \hat{2}$	751 İ		
476	760	770	779	788	797	806̂	815	824	$83 \hat{3}$	842		
477	852	861	870	879	888	897	906	915	924	$93 \hat{3}$		9
478	943	952	961	970	979	988	997	* $00 \hat{6}$	* 015	*024	.1 .2	0.9 1.8
479	$6803 \hat{3}$	$0{ }^{1}+2$	$0_{5}{ }^{\text {I }}$	0600	070	079	088	097	106	I 15	. 3	2.7
480	124	133	142	15 I	160	169	${ }^{7} 7 \hat{8}$	187	196	205		
481	214	$22 \hat{3}$	$23 \hat{2}$	$24 \hat{1}$	250	259	$26 \hat{8}$	$27 \hat{7}$	$28 \hat{6}$	295	.4 .5	3.6 4.5
482	304	3I 3	322	33 I	340	$3 \div \hat{9}$	358	367	376	385	.6	4. 5.
483	394	$40 \hat{3}$	412	42 I	430	439	448	457	466	475		
484	48爯	493	502	51 I	520	$52 \hat{9}$	$53 \hat{8}$	$54 \hat{7}$	556	565	.7 .8 8	6.3 7.2
485	574	583	592	601	610	610	628	637	646	654	. 9	8.1
480	$66 \hat{3}$	672	68î	690	699	$70 \hat{8}$	717	726	735	744		
487	753	762	7700	779	78 Ŝ	797	So6̂	8i5	824	833		
488	842	85 I	860	868	879	886̂	895	904	913	922		
489	931	940	$9+\hat{\delta}$	$95 \hat{7}$	966	975	984	993	*002	*010		8
490	$69 \stackrel{\text { O19 }}{ }$	028	$03 \hat{7}$	0.46	055	064	073	-8î	$090 \hat{}$	099	.1 .	0. ${ }^{\text {¢ }} .7$
49 I	108	117	126	${ }^{1} 3 \hat{4}$	14 3	${ }^{1} 52$	161	170	179	189	. 3	2.5
492	196	205	214	223	232	240	$24 \hat{9}$	$25 \hat{8}$	267	276		
493	284	2931	302	311	320	32 8	337	346	355	364	.4	3.4 +1 2
494	372	38 I	390	399	408	41合	425	434	443	45 Î	. 6	5.1
495	460	$46 \hat{9}$	478	487	495	$50 \hat{4}$	$5^{1} 3$	522	530	539		
496	548	557	565	574	583	592	600̂	$60 \hat{9}$	618	627	. 78	5.9 6.8
497	635	$64 \hat{4}$	653	662	670	679	688	697	705	714	. 9	$7 \cdot 6$
498	723	7312	740	749	758	${ }^{76} 6$	775	784	792	80 i		
499	810	819	827	836	845	853	862	871	879	88 ${ }^{\text {B }}$		
500	897	905	914	923	93 Î	940 or	949	958	${ }^{66} 6$	975		
N.	\bigcirc	1	2	3	4	5	6	7	8	9		

TABLE V.-LOGARITHMS OF NUMBERS.

N.	0	1	$\stackrel{3}{ }$	3	4	$\bar{\square}$	(;	7	8	9		
500	69897	905	914	923	93 Î	$9+0$	949	958	${ }^{9} 6 \overline{6}$	975		
501	9^{84}	992	*001	*OIo	*OI	*027	*036	*0.44	*05.3	*o6 î		
502	70070	079	-S 7	096	105	I I 3	122	I 31	139	148		9
503	157	165	I 74	I $8 \hat{2}$	19 î	200	208	217	226	$23 \hat{4}$		9
504	$2+3$	25 Î	260	269	277	286	$29 \hat{4}$	303	312	320	. 2	1.8
505	329	$33 \hat{7}$	346	355	$36 \hat{3}$	372	380	389	398	$40 \hat{6}$	- 3	2.7
506	415	$42 \hat{3}$	432	44 I	449	45^{8}	466	475	483	492	. 4	3.6
507	501	$50 \hat{9}$	5 IS	$5^{2} 6$	535	$54 \hat{3}$	552	560	$56 \hat{9}$	578	.4	3.6 4.5
508	586	595	603	612	620	629	637	6.46	$65 \hat{4}$	663	. 6	$5 \cdot 4$
509	672	680	689	697	706	$71 \hat{4}$	72.3	73 I	740	$74 \hat{8}$		
510	757	765	774	$78 \hat{2}$	791	799	SoS	SI6	825	$83 \hat{3}$.7 .8	6.3 7.2
5 I I	842	850	S59	$86 \hat{7}$	876	SS 4	893	901̂	910	${ }_{4} 918$.9	8.1
512	927	935	944	$95 \hat{2}$	961	969	978	$9{ }^{\text {Sof }}$	995	*003		
513	71 OII	020	$02 \hat{8}$	$\bigcirc 37$	$0+5$	054	062	07 I	079	088		
514	096	105	113	I $2 \hat{\text { I }}$	130	$13 \hat{8}$	147	155	${ }_{164}$	172		8
515	I 8ó	I S9	197	206	$21 \hat{4}$	223	23 Î	239	248	256		8
516	265	273	282	290	$29 \hat{8}$	307	3 I 5	324	$33^{\hat{2}}$	340	.1 .2	0.8 1.7
517	349	357	366	374	382	39 I	399	408	416	$42 \hat{4}$	- 3	2.5
518	433	44 İ	449	458	$4^{6} 6$	475	$48 \hat{3}$	49 Î	500	$50 \hat{8}$		
519	516	525	$53 \hat{3}$	542	550	$55 \hat{8}$	567	575	5 S 3	59^{2}	.4	3.4 4.2
520	600	$60 \hat{8}$	617	$62 \hat{5}$	$63 \hat{3}$	642	650	659	667	675	. 6	5.1
521	684	692	700	709	717	725	734	742	750	$75 \hat{8}$		
522	767	775	783	792	Soô	$80 \hat{8}$	SI 7	825	833	842	. 8	5.9 6.8
523	850	858	867	875	8S3	89 î	900	90\%	$9^{1} 6$	925	.9	7.6
524	933	94 I	$94 \hat{9}$	958	$9^{6} 6$	974	983	99^{1}	999	*00 7		
525	72016	024	-32	040	049	057	065	074	O82	090		
526	$09 \hat{8}$	107	II5	I $2 \hat{3}$	I 3 Î	140	148	I $5 \hat{6}$	164	173		
527	181	I $8 \hat{9}$	I $9 \hat{7}$	206	214	222	2300	238	247	255		8
528	$26 \hat{3}$	27 Î	280	258	296	$30 \hat{4}$	312	321	329	$33 \hat{7}$.1 .2	0.5 I. 6
529	$34 \hat{5}$	354	362	370	378	386	395	403	4 I I	419	. 3	2.4
530	$42 \hat{7}$	436	444	452	460	468	476	485	493	$50 \hat{1}$		
1531	$50 \hat{9}$	517	526	534	54^{2}	550	$55 \hat{8}$	566	575	583	. 4	3.2 4.0
532	591	599	$60 \hat{7}$	615	624	632	640	648	656	664	. 6	4.8
533	672	681	689	697	705	713	72 İ	729	738	746		4.8
534	754	$76 \hat{2}$	770	778	786	795	803	SI I	SI9	827	.7 .8	5.6 6.4
535	835	843	85 Î	859	868	S76	$8 S_{4}$	S92	900 -	$90 \hat{S}$. .9	5.4 7.2
536	916	$92 \hat{4}$	$93{ }^{2}$	912	949	957	965	973	9 Sİ	989		
537	997	* 005	*OI 3	*O2	* 30	*O38	*046	*054	\%062	*070		
538	73078	-86	094	102	IIO	119	$12 \hat{6}$	$13 \hat{4}$	143	15 I		
539	$\underline{1} 59$	167	175	183	19 I	199	207	215	223	23 I		
540	$\underline{239}$	247	255	263	271	279	287	295	303	311	. 1	0.7
54 I	319	328	336	344	35^{2}	360	368	376	384	39^{2}	. 2	1.5 2.2
542	400	408	416	424	432	440	448	456	464	472		
543	480	488	49^{6}	504	512	520	52 S	536	5.4	552	. 4	3.0 3.7
544	560	568	576	584	592	600	608	615	623	63 I	. 6	+ +.5
545	639	$6+7$	655	$66 \hat{3}$	67 I	679	657	695	703	711		
546	719	727	735	743	751	759	767	775	783	791	.7 .8	5.2 6.0
547	798	806	814	82 2	830	838	S4 6	S5 4	862	870	. 9	6.7
548	878	S86	S94	902	909	917	925	\% 933	*941	* 949		
549	$\underline{957}$	965	973	981	989	997	*004	*OI2	*020	* $22 \hat{8}$		
550	$7+036$	$0+4$	052	060	068	075	083	O) I	009	107		
N.	0	1	2	3	4	5	(7	8	9		1

TABLE V.-LOGARITHMS OF NUMBERS.

TABLE V.-LOGARITHMS OF NUMBERS.

N.	0	1	6	3	4	5	(;	7	8	!)	P. P.	
600	77 815	822	829	837	844	$\mathrm{S}_{5} \mathrm{I}$	858	866	873	880		
601	$88 \hat{7}$	894	902	909	916	$92 \hat{3}$	93 I	938	945	952		
602	959	967	974	98 Î	988	$99 \hat{5}$	*003	* 10	*OI 7	*O24		
603	7803 İ	-39	046	-5 3	-60̂	$06 \hat{7}$	075	082	-089	096		
604	103	1 I I	I 18	125	132	139	147	I 54	161	$16 \hat{8}$		
605	$17 \frac{1}{}$	I $8 \hat{2}$	190	197	204	2 I 1	218	226	233	240		
606	247	$25 \hat{4}$	26 Î	269	276	283	29°	297	304	31 I		7
607	319	326	333	340	347	354	362	369	376	383	. 1	0.7 1. 5
608	390	397	$40 \hat{4}$	412	419	426	433	440	447	$45 \hat{4}$. 3	1.5 2.2
609	46 İ	+69	476	483	490	497	$50 \hat{4}$	5 I Î	$51 \hat{8}$	526	.	
610	533	540	547	554	$56 \hat{1}$	$56 \hat{8}$	575	583	590	597	. 4	3.0
6 II	604	6 II	$61 \hat{8}$	625	632	639	646	654	661	668	. 6	3.7 4.5
6 I 2	675	682	689	696	703	710	$7 \mathrm{I} \hat{7}$	725	732	739		
613	746	753	760	$76 \hat{7}$	774	78 Î	78 ¢	$79 \widehat{5}$	802	810	.7 .8	5.2 6.0
614	817	824	831	838	845	852	859	866	873	880	8	6.7
6 I 5	887	$89 \hat{4}$	901	$90 \hat{8}$	915	923	930	- 937	944	951		
6 ¢ 6	958	965	972	979	986	993	*000	*00 7	*OI 4	*O2 1		
6 I 7	$7902 \hat{8}$	-35	$0{ }^{+}{ }^{2}$	049	${ }^{\circ} 56$	-63	070	078	085	092		
6i8	099	106	113	120	127	I 34	141	148	155	162		
619	$\underline{1} 69$	1 76	183	190	197	204	2 II	218	225	232		
620	239	246	25.3	260	267	274	281	288	295	302		
621	309	316	323	330	337	344	351	35^{8}	365	372		7
622	379	386	393	400	407	414	42 I	428	435	442	. 1	0.7 1.4
623	449	456	$46 \hat{2}$	469	476	$48 \hat{3}$	490	497	$50 \hat{4}$	5 I Î	. 3	1.7 2.1
624	518	525	$53{ }^{2}$	539	546	553	560	567	574	581		
625	588	595	602	609	616	622	629	636	643	650	. 4	2.5
626	657	664	67 I	678	685	692	699	706	713	720	. 3	3.5 4.2
627	727	733	740 ¢	$74 \hat{7}$	754	$76 \hat{1}$	$76 \hat{8}$	775	782	789		
628	796	803	810	81 6	$82 \hat{3}$	830	$83 \hat{7}$	844	85 Î	858	.7 .8	4.9 5.6
629	865	872	879	886	$89 \hat{2}$	899	906	91 3	920	927	. 8	5.6 6.3
630	934	94 I	948	954	96 İ	$96 \hat{8}$	975	9^{82}	989	996		
631	80003	OIO	O1 $\hat{6}$	$02 \hat{3}$	-3ô	03 ${ }^{\text {a }}$	044	05 I	$\bigcirc 58$	$\bigcirc 65$		
632	07 I	$0 ; 18$	-85	$\bigcirc 9^{\hat{2}}$	099	106	1 I 3	120	126	I $3 \hat{3}$		
633	140	147	I 54	16x	106	174	18 Î	18 ¢	195	202		
634	209	216	222	229	$23 \hat{6}$	243	250	257	263	270		
635	$27 \hat{7}$	284	291	298	$30 \hat{4}$	3 I ลิ	318	325	332	339		
636	345	35^{2}	359	366	373	3 So	386	393	400	407		6
637	414	42 I	$42 \hat{7}$	$43 \hat{4}$	44 I	448	455	46 Î	$46 \hat{8}$	475	. 1 .2	0.6 1.3
638	482	489	495	$50 \hat{2}$	$50 \hat{}$	516	5-3	529	536	543	.2 .3	1.3 1.
639	550	557	$56 \hat{3}$	570	$57 \hat{7}$	584	591	$59 \hat{7}$	$60 \hat{4}$	611		
640	618	625	63 Î	$63 \hat{8}$	645	652	658	665	$67{ }^{-}$	679	. 4	2.6
641	$\overline{686}$	$69 \hat{2}$	699	706	713	719	726	733	740	746	. 6	3.9
642	$75 \hat{3}$	760	767	774	780	$78 \hat{7}$	794	SOI	807	8 I 4		
643	821	828	834	84 I	848	855	86	86 ${ }^{\text {¢ }}$	875	S82	.7 .8	4.5 5.2
644	$88 \hat{8}$	895	902	909	91 5	922	929	*936	* $94{ }^{\text {a }}$	+949	. 9	5. $\frac{\text { S }}{}$
645	956	$96 \hat{2}$	969	976	983	989	$99 \hat{6}$	*003	*O10	*016		
646	81 02 3	030	036	-43	050	057	-63	07ô	077	-83		
647	090	097	104	110	117	124	130	137	144	15 I		
648	$15 \hat{7}$	164	17 I	177	$18 \hat{4}$	19 I	197	$20 \hat{4}$	2 I 1	218		
649	$22 \hat{4}$	231	238	$24 \hat{4}$	25 I	258	264	27 Î	278	284		
650	29旡	298	$30 \hat{4}$	3 I İ	318	$32 \hat{4}$	33 I	338	345	35 İ		
N.	0	1	2	3	4	5	6	7	8	9		

TABLE V.-LOGARITHMS OF NUMBERS.

N.	0	1	2	3	4	5	6	7	8	9	P. P.	
650	Sr 29 î	298	304	311	318	324	33 I	33^{8}	345	351 ̂		
651	358	365	37 I	378	385	391̂	398	405	4 I Î	418		
652	425	43 Î	438	444	45 I	458	464	47 I	478	484		
653	49 I	49^{8}	504	51 Î	518	524	531	538	544	55 I		
654	558	564	57 I	577	58 ¢	591	597	604	611	617		
655	624	631	637	644	650	657	66.	$670 \hat{}$	677	684		
656	6900	697	703	710	717	723	730	736	$74 \hat{3}$	750		7
657	756	763	770	776	783	789	796	803	809̂	816	. 1	0. 7
658	822	829	836	842	849	855	862	869	875	882	2	1.4 2.1
659	888	895	90 Î	$90 \hat{8}$	915	92 İ	928	934	94 I	948	3	
660	954	961	$96 \hat{7}$	974	980̂	$98 \hat{7}$	994	*00ô	*007	*01 $\hat{3}$. 4	2.8
661	82020	${ }^{02} \hat{6}$.	033	040	046	$\bigcirc 53$	059	066	$07 \hat{2}$	079	. 5	3.5 4.2
662	086	$\bigcirc 0^{2}$	099	105	112	118	125	13 î	138	145		
663	151	158	$16 \hat{4}$	17 I	179	184	190	197	$20 \hat{3}$	2100	. 7	4.9 5.6
664	217	$22 \hat{3}$	230	$23 \hat{6}$	243	249	256	262	269	275	.9	5.6 6.3
665	282	$28 \hat{8}$	295	302	$30 \hat{8}$	315	32 I	328	334	34 I		
666	347	354	360	367	373	380	386	393	399	406		
667	412	419	425	432	438	445	45 Î	45^{8}	464	471		
668	$47 \hat{7}$	484	490 O	497	$50 \hat{3}$	510	516	523	529	536		
669	$54{ }^{2}$	549	555	562	$56 \hat{8}$	575	581	588	594	601		
670	607	614	620	627	$63 \hat{3}$	640	$64 \hat{6}$	653	659	666		
671	672	678	685	$69 \hat{1}$	698	704	711	717	724	730	.	${ }^{6}$
672	737	$74 \hat{3}$	750	$75 \hat{6}$	763	769	775	782	788	795	. 1	O. I. a
673	801	808	81	82 I	$82 \hat{7}$	834	840	846	853	859	. 3	1.9
674	866	872	879	885	892	898	$90 \hat{4}$	911	917			
675	930	*937	*943	* 949	*956	*962	* 969	*975	*982	*988	. 4	2.6
676	$99 . \hat{4}$	*001	*007	*14	* 020	*027	*033	*039	*046	*052	. 6	3.9
677	83 059	065	07 I	078	084	091	097	103	110	II 6		
678	123	129	136	142	$14 \hat{8}$	I. 55	16 ̂̂	168	174	r 80 ̂	. 8	4.5
679	187	$19 \hat{3}$	200	206	212	219	225	23 Î	238	$24 \hat{4}$. 9	$5 \cdot \hat{8}$
650	2.51	$25 \hat{7}$	$26 \hat{3}$	270	276	283	289	295	302	$30 \hat{8}$		
68 I	31.	32 I	327	334	340	$34 \hat{6}$	353	359	365	372		
682	378	385	391	397	404	$410 \hat{}$	416	4.23	$42 \hat{9}$	435		
683	44^{2}	448	45.5	46 I	467	474	480	486	493	$49 \hat{9}$		
684	505	512	518	52 ¢	531	537	543̂	550	556	$56 \hat{2}$		
685	569	575	58 Î	588	594	600	607	6 r3	619	626		6
686	632	$63 \hat{8}$	645	65 î	657	664	670	676	683	689		0.6
687	695	702	$70 \hat{8}$	714	721	727	$73 \hat{3}$	740	746	75^{2}	. 2	I. 2
688	759	765	77 I	778	784	7900	796	803	809	815	$\cdot 3$	1.8
689	822	828	$83 \hat{4}$	841	847	853	859	866	872	878		
690	$\underline{885}$	891	897	904	910	916	922	929	935	94î	.4	2.4 3.0
691	948	954	960	$96 \hat{6}$	973	979	985	992	998	*00.4	. 6	3.6
692	S4010	OI 7	023	029	035	042	0.48	$\bigcirc 54$	061	067		4.2
693	073	079	-86	092	${ }^{\circ} 98$	104	III	117	123	129	. 8	4.8
694	136	142	$14 \hat{8}$	154	161	167	173	179	186	192	. 9	$5 \cdot 4$
695	198	204	211	217	$22 \hat{3}$	229	236	242	2488	254		
696	261	267	273	279	286	292	298	304	311	317		
697	32 3	329	335	342	348	354	360	367	373	379		
698	385	39^{2}	398	404	410	416	423	429	435	4.4 î		
699	447	454	460	$46 \hat{6}$	472	479	485	491	497	$50 \hat{3}$		
700	510	516	522	$52 \hat{8}$	$53 \hat{4}$	541	547	553	559	565		
N.	0	1	2	3	4	5	6	7	8	9		P。

TABLE V.-LOGARITHMS OF NUMBERS.

N.	0	1	2	3	4	5	(7	8	()		P.
700	84510	516	522	528	534	54 I	547	553	559	565		
701	572	578	584	590	596	603	609	615	62 î	627		
702	633	640	646	65^{2}	658	$66 \hat{4}$	671	677	683	689		
703	695	70 Î	708	714	720	726	732	739	745	751		
704	757	763	769	776	782	788	$79 \hat{4}$	80o	806	813		
705	819	S25	831	837	843	849	856	862	868	874		
706	880̂	886	893	S99	905	9 II	917	923	929	936		
707	942	948	954	960	966	972	979	985	991	997	I	0. 6 1.3
708	85003	009	-15	O2 2 İ	028	O34	040	046	-52	$\bigcirc 5 \hat{8}$	$\cdot 3$	I. 9
709	$\bigcirc 6 \hat{4}$	070	077	-83	-89	095	10î	107	I $1 \hat{3}$	II9		
710	$\overline{126}$	132	138	144	150	156	I62	168	174	181	$\cdot 4$	2.6 3.2
711	$\underline{187}$	193	199	205	$21 \hat{1}$	217	223	229	236	242		3.9
712	248	254	260	266	$272 \hat{2}$	$27 \hat{8}$	$28 \hat{4}$	290̂	297	303		
713	309	315	32 I	327	$33 \hat{3}$	339	$34 \hat{5}$	$35^{\text {î }}$	357	363	78	4.5 5.2
714	370	376	3^{82}	388	394	400	406	412	418	424		$5 \cdot \hat{8}$
715	430	436	443	449	455	461	467	473	479	485		
716	49 ${ }^{\text {I }}$	497	503	509	515	52 Î	527	533	540	546		
717	552	558	564	570	576	582	588	594	600	606		
718	612	618	624	630	636	642	648	655	661	667		
719	673	679	685	69 I	697	703	709	715	721	727		
720	733	$73 \hat{9}$	$74 \hat{5}$	75 İ	757	763	769	775	78 I	787		6
721	793	799	805	81 1	817	823	829	835	84 I	$8+7$		0.6
722	853	859	865	872	878	884	S90	896	902	908	. I	0.6 I . 2
723	914	920	926	932	938	944	950	956	962	968	$\cdot 3$	I. 8
724	-974	980	986	99^{2}	998	*004	*010	* 16	*022	*028		
725	86034	040	046	052	058	-63	-69	075	08î	087	.4 .5	2.4 3.0
726	093	099	105	I I Î	I 17	123	- 129	135	I 4 Î	$14 \hat{7}$. 6	3.6
727	$15 \hat{3}$	r 59	165	17 Î	177	183	189	195	201	207		
728	213	219	225	231	237	243	249	255	261	267	.7 .8	4.2 4.8
729	273	$27 \hat{8}$	$28 \hat{4}$	290 ¢	296	302	308	314	320	$32 \hat{6}$. 9	5.4
730	$\underline{332}$	338	344	350	356	362	368	374	380	386		
731	39 Î	$39 \hat{7}$	$40 \hat{3}$	$40 \hat{9}$	415	42 I	427	$43 \hat{3}$	4.39	445		
732	451	457	463	469	475	48 I	486	$49^{\hat{2}}$	498	$50 \hat{4}$		
733	510	516	522	528	534	540	546	55^{2}	558	563		
734	569	575	58 Î	587	593	599	605	611	617	623		
735	$62 \hat{8}$	634	640	646	652	658	664	670	676	682		
736	688	693	699	705	711	717	723	729	735	741	. 1	0. 5
737	746	75^{2}	$75 \hat{8}$	764	770	776	782	788	794	800	. 2	I. 1
738	805	SII	8ı 7	823	829	835	S4I	847	852	$85 \hat{8}$. 3	I. $\hat{6}$
739	864	870	876	882	888	894	899	905	911	917		
740	923	929	9.35	941	946	95^{2}	$95 \hat{8}$	964	970	976	. 4	2.2 2.7
74 I	9^{82}	987	993	999	*005	*OII	*017	*023	*028	*03 4	. 6	$3 \cdot 3$
742	87 04ô	046	$\bigcirc 52$	$\bigcirc 58$	064	-69	075	-8	087	093		
743	099	$10 \hat{4}$	110	I 16	122	128	134	140	145	15 I	.7 .8	3.8 4.4
744	159	163	169	175	I Sô	186	192	198	204	210	. 9	4.9
745	215	22 Î	227	233	239	245	250	256	262	268		
746	274	279	285	29 Î	297	303	309	314	320	326		
747	332	338	$34 \hat{3}$	349	355	361	367	37^{2}	$37 \widehat{8}$	$3^{8} \frac{1}{4}$		
748	390	396	402	409	415	419	425	431	436	$442 \hat{}$		
749	448	454	460	465	47 I	477	483	489	494	500		
750	506	512	517	523	$52 \hat{9}$	5.35	541	$54 \hat{6}$	5.52	558		
N.	0	1	2	3	4	5	6	7	8	!		

TABLE V.-LOGARITHMS OF NUMBERS.

TABLE V.-iOGARITHMS OF NUMBERS.

TABLE V.-LOGARITHMS OF NUMBERS.

N.	0	1	2	3	4	5	6	7	8	9	P. P.	
850	92942	947	952	957	$96 \hat{2}$	$96 \hat{7}$	972	977	98 2̂	988		
85 I	993	998	*003	*008	*OI $\hat{3}$	*O1 $\hat{8}$	${ }^{\circ} \mathrm{O} 2 \hat{3}$	*02 8	*034	*039		
852	93044	049	054	059	$06 \hat{4}$	-69	074	079	084	$\bigcirc 90$		
853	095	100	105	110	115	$120 \hat{0}$	125	$130 \hat{}$	${ }^{1} 35$	140		
854	146	151	${ }^{1} 56$	161	166	171	${ }^{1} 76$	I 8 î	I $8 \hat{6}$	19 î		
855	196	$20 \hat{1}$	207	212	217	222	227	232	237	242		
856	247	25^{2}	$25 \hat{7}$	262	269	272	278	283	288	293		
857	298	303	308	$31 \hat{3}$	318	$32 \hat{3}$	$32 \hat{8}$	$33 \hat{3}$	$33 \hat{8}$	$34 \hat{3}$. I	0.5 1.1
858	3481	354	359	364	369	374	379	384	389	394	. 3	1. 6
859	$\underline{399}$	404	409	414	419	$42 \hat{4}$	$42 \hat{9}$	434	439	445		
860	450	455	460	465	470	475	480	485	490	493	. 4	2.2 2.7
86 I	500̂	505	510	515	$520 \hat{}$	525	530	535	$540 \hat{}$	545	. 6	2.7 3.3
862	55°	556	561	566	571	576	58 I	586	591	596		
863	601	606	611	6 I6	621	626	63 Î	636	64 î	$64 \hat{6}$. 7	
864	651 İ	656	66î	666̂	67 I	676	68 î	${ }^{68} 6$	69î	696		
865	70 1̂	706	711	716	$72 \hat{1}$	726	73 î	736	742	747		
866	75^{2}	757	762	767	772	777	782	787	79^{2}	797		
867	802	807	812	817	822	827	832	837	842	847		
868	852	857	862	867	872	877	882	887	892	897		
869	902	907	912	917	922	927	932	937	942	947		
870	952	957	962	967	972	977	982	987	992	997		
871	$94 \overline{002}$	007	012	$\bigcirc 17$	022	$02 \hat{6}$	03î	-36	04î	04 $\hat{6}$		
872	O5î	$05 \hat{6}$	-6̂̂	${ }^{066}$	07 I	$\bigcirc 76$	-8î	-8 6	091	096	. 12	0.5 1.0
873	Iồ	${ }^{10} 6$	II İ	${ }^{11} 6$	12 Î	$12 \hat{6}$	${ }^{1} 3 \hat{1}$	${ }^{1} 36$	14 I	146	. 3	1.5
874	151	156	161	166	171	176	181	186	191	196		
875	201	206	2101	215	220 ิ	225	230	235	$240 \hat{}$	$24 \hat{5}$. 4	2.0 2.5
876	250	255	2600	265	270	275	280	285	290	295	. 6	3.5 3.0
877	300	305	310	315	320	$32 \hat{4}$	329	334	339	$34 \hat{4}$		
878	349	354	359	364	369	374	379	384	389	394	.7	3.5 4.0
879	399	404	409	413	418	423	428	433	438	443	.9	4.5
880	448	453	458	463	468	473	478	483	487	49^{2}		
881	497	$50 \hat{2}$	507	512	517	522	527	532	537	54^{2}		
882	547	55^{2}	556	56î	566	57 I	576	581	586	591		
883	59^{6}	601	606	611	615	620	625	630	635	$640 \hat{}$		
884	645	650	655	660	665	670	674	679	684	689		
885	694	699	704	709	714	719	724	728	733	738		
886	$74 \hat{3}$	748	753	758	763	768	773	777	782	787		4
887	792 2	797	802	807	812	817	$82 \hat{1}$	$8^{82} 6$	83 T	836	. 1	0.4 0.9
888	84 I	846	85 I	856	861	865	870 O	875	880̂	885	. 3	
889	890	895	900	905	909	914	919	924	929	934		
890	939	944	949	953	958	963	968	973	978	983	. 4	1. 8.8
891	988	992	997	*002	*00	*OI2	*017	* 222	*02 $\hat{6}$	03 I	. 6	2.8 2.7
892	$95 \bigcirc 36$	04 i	046	051	$\bigcirc 56$	${ }^{\circ} \mathrm{6}$ I	$\bigcirc 65$	070	075	$\bigcirc 80$		
893	085	$\bigcirc 90$	095	099	104	$10 \hat{9}$	114	119	124	129	. 78	3.1 3.6
894	134	138	$14 \hat{3}$	1488	r 53	158	163	$16 \hat{7}$	172	177	. 9	4.0
895	182	187	192	197	20 I	206	21 If	216	221	226		
896	231	235	240	245	250	255	260	264	269	274		
897	279	284	289	294	298	303	$30 \hat{8}$	313	318	323		
898 899	327 376	332 L	337 385	342	347	352	356	36 I	36 h	371		
899 $\mathbf{9 0 0}$	376	381	385	390	395	400	405	410	414	419		
900	424	429	434	438	443	448	453	458	463	467		
N.	0	1	2	3	4	5	6	7	8	9		P.

TABLE V．－LOGARITHMS OF NUMBERS．

N．	0	1	2	3	4	－	（；	7	8	！）		I＇．
900	$95+2 \hat{4}$	429	434	438	$44 \hat{3}$	$44 \hat{8}$	45.3	458	40.3	467		
901	472	477	482	487	49^{2}	496	50 İ	506	511	516		
902	520	525	530	535	5.40	$54 \hat{4}$	549	$55 \hat{4}$	559	564		
903	569	573	57 ¢	583	$5 S S$	593	597	602	607	612		
904	617	$62 \hat{1}$	620	63 İ	6,36	$6+1$	＇5\％	650	655	660		
905	665	669	67%	679	68．t	689	0ヶ3	OリS	703	708		
906	713	717	722	フマ7	732	737	$7+\hat{1}$	746	751	756		
907	760	765	770	775	7 So	${ }_{7} 8 \hat{4}$	789	79－4	799	80． 4		
908	Sos	SI3	SIS	S23	S2 7	S32	837	S． 22	S47	$8_{5} \hat{1}$		
909	856	S61	866	870	875	SSo	885	Soo	SO 4	S09		
910	904	909	913	$91 \hat{8}$	92.3	92S	93.3	$93 \hat{7}$	9＋2	$9+7$		
911	952	95\％	96 î	966	971	975	$9^{\text {Sô }}$	955	990	$99 \hat{4}$		5
912	999	＊00．	＊009	＊014	＊015	＊02．	\％028	＊033	＊037	＊04 ${ }^{2}$.1 .2	0.5 1.0
913	$960+7$	052	$05 \hat{6}$	－6î	066	Oji	075	－ 0 ó	085	090	.2 .3	1.0 1.5
914	$09 \hat{t}$	$09 \hat{}$	104	IO9	113	$11 \hat{8}$	12.3	128	$13{ }^{2}$	I 37		
915	142	147	15 İ	156	161	166	170	175	180	$1 S_{5}$	． 4	2.0
916	I Sô	$19 \hat{4}$	199	204	$20 \hat{8}$	213	218	$22 \hat{2}$	$22 \hat{7}$	232	． 5	2.5 3.0
917	237	$2+1$	246	251	256	260	265	270	275	279		
918	2 S $\frac{1}{}$	289	293	$29 \hat{8}$	303	308	312	317	322	327	.7	
919	33 Î	$33 \hat{6}$	$3+1$	$3+5$	3506	355	360	$36 \hat{4}$	369	374	． 8	4.0 4.5
920	379	$38 \hat{3}$	388	393	395	402	407	412	$+16$	＋21		
92 I	426	430	435	$+40$	445	$44 \hat{9}$	$45+$	459	463	$+6 \hat{8}$		
922	473	478	482	487	492	496	50 Î	506	511	515		
923	520	525	529	$53 \hat{4}$	539	543	$54 \hat{S}$	553	558	$56 \hat{2}$		
924	567	572	576	5 Ŝิ	586	590	595	600	605	609		
925	614	619	623	62 S	633	637	$6+2$	647	651	$65 \hat{6}$		
926	661	666	670 ¢	675	680	68.	689	$69+$	698	703		
927	708	712	717	722	726	73 I	736	741	745	750		
928	755	759	764	769	$77 \hat{3}$	778	783	$78 \hat{7}$	792	797		
929	Sol̂	So6	8II	815	820̂	825	S29	83 4	839	S43		
930	$\underline{S+S}$	853	857	862	867	871	876	881	S85	890		
931	895	890	904	909	$91 \hat{3}$	$9 \mathrm{I} \hat{S}$	923	927	932	937		4
932	94 Î	$94 \hat{6}$	951	\％ 955	＊960	${ }^{965}$	\％${ }^{6} 6$	＊ $97+$	\％ 979	98 ${ }^{9}$.1 .2	0.7 0.9
933	988	993	997	＊002	＊007	＊or	＊016	＊020	＊02 5	＊030	． 3	$\begin{aligned} & 0 \\ & 1 . \frac{9}{3} \end{aligned}$
934	97 03t	－39	0.44	$0.4 \hat{8}$	053	05 S	－62	－67	072	076		
935	－SI	－ 66	090	095	099	$10 \hat{4}$	109	113	118	12.3		$\begin{aligned} & 1.8 \\ & 2 . \hat{2} \end{aligned}$
936	127	132	137	14 î	146	151	153	160	$16 \hat{j}$	169	． 5	2.2 2.7
937	174	$17 \hat{8}$	1 83	188	$19 \hat{2}$	197	202	206	211	215		
938	220	225	229	234	239	243	248	$25 \hat{2}$	$25 \hat{7}$	262	． 7	3.1 3.6
939	266	271	276	280	$2 S_{5}$	289	$29 \hat{4}$	299	30.3	． 308		$\begin{aligned} & 3.6 \\ & +.0 \end{aligned}$
940	313	317	322	326	33 I	． 336	$3+0$	345	$3+9$	$35 \hat{t}$		
94 I	359	$36 \hat{3}$	368	373	37%	382	386	391	396	400		
942	405	409	414	419	423	428	432	437	442	$+4 \hat{6}$		
943	45 I	45^{6}	460	465	469	474	479	$4 \% 3$	488	$+9^{2}$		
944	497	502	50\％	5 II	515	520	525	520	$5.3+$	$53 \hat{8}$		
945	543	548	$55 \hat{2}$	557	56 Î	566	570	575	580	$58 . \hat{4}$		
946	589	593	$59 \hat{8}$	603	60%	612	616	621	626	630		
947	635	639	6.4	649	653	658	662	667	67 Î	$67 \hat{6}$		
948	681	685	690	$69 \hat{4}$	699	$70 \hat{3}$	$70 \widehat{ }$	713	717	722		
949	726	731	736	740	745	$7+9$	754	$75 \hat{8}$	763	768		
950	$77 \hat{2}$	777	78 1ิ	786	790	795	800	Sof	So9	813		
\mathbf{N}	0	1	2	3	4	5	6	7	S	9		P．

TABLE V.-LOGARITHMS OF NUMBERS.

N.	0	1	2	3	4	5	6	7	8	9		P. P.
950	$9777 \hat{2}$	777	خ 8 î	786	7906	795	800	804	Sog	$81 \hat{3}$		
95 I	818	822	827	$83 \hat{1}$	836	841	845	850	854	859		
952	863	86 ${ }^{8}$	873	87ヶ	882	886	891	895	900	904		
953	$90 \hat{}$	914	918	923	$92 \hat{7}$	932	936	94I	945	95°		
954	955	959	964	$96 \hat{8}$	973	977	982	9 $9 \hat{6}$	991	996		
955	$98000 \hat{1}$	005	-009	or_{4}	-1 8	023	$02 \hat{7}$	032	036	041		5
956	046	05°	055	059	064	-6 ${ }^{\text {ch }}$	073	$07 \hat{7}$	082	086	I	0.5
957	091	095	100	105	109	I 14	118	123	127	132	. 2	I. 0
958	$13 \hat{6}$	141	I 45	150	$15 \frac{1}{4}$	159	$16 \hat{3}$	$16 \hat{8}$	173	$17 \hat{7}$	$\cdot 3$	1.5
959	182	IS 6	191	195	200	204	209	$21 \hat{3}$	218	$22 \hat{2}$. 4	2.0
960	227	23 İ	236	240	245	249	$25 \hat{4}$	259	$26 \hat{3}$	268	5	2.5
961	272	277	28î	286	$290 \hat{0}$	295	$29 \hat{9}$	304	308	313		3.0
962	317	322	$326 \hat{6}$	331	335	340	$34 \hat{4}$	349	353	358	. 7	3.5
963	362	367	37 I	376	380	385	389	394	$39 \hat{8}$	403	. 3	4.0
964	$40 \hat{7}$	412	41 $\hat{6}$	42 I	425	430	$43 \hat{4}$	439	44 $\hat{3}$	448		
965	452 2	457	46î	466	47ô	475	479	484	488	493		
966	$49 \hat{7}$	502	$50 \hat{6}$	511	515	520	$52 \hat{4}$	529	533 B	538		
967	542	547	55 Î	556	560	565	$56 \hat{}$	574	578 ¢	583		
968	$58 \hat{7}$	592	596	601	605	610	614	619	$62 \hat{3}$	628		
969	632	637	64î	646	$650 \hat{}$	655	659	663	668	672		
970	677	68	686	6906	695	$69 \hat{9}$	704	$70 \hat{8}$	713	717		4
971	722	$72 \hat{6}$	731	$73 \hat{5}$	740	$74 \hat{4}$	749	753	$75 \hat{7}$	762	. 1	0.4
972	${ }^{766}$	771	775	780	784	789	$79 \hat{3}$	798	Soz	807	.2 .3	0.9 1. ${ }^{\text {a }}$ -
973	8 I Î	815	820	$82 \hat{4}$	829	$83 \hat{3}$	838	842	847	85 ${ }^{\text {I }}$. 3	1.3
974	856	86ô	865	$86 \hat{9}$	$87 \hat{3}$	878	8S2̂	887	89 I	896	4	1.8
975	9000	905	909̂	914	$91 \hat{8}$	922	927	93 I	936	9400	. 5	2.2 2.7
976	945	949̂	954	958	963	967	97 I	976	980	985	. 6	2.7
977	989̂	$99+$	998	*003	*007	*OÎ	*0i6	* 220	*025	*029	7	3. $\hat{\text { İ }}$
978	99034	0388	0.43	047	05	056	060	065	-69	074	. 8	3.0 4.0
979	078	-82̂	$\bigcirc 87$	09 I	096	100	105	109̂	II ${ }^{\text {a }}$	118	$\cdot 9$	
980	I2 2	127	$13 \hat{1}$	136	140	145	149	$15 \hat{3}$	15^{8}	162		
981	167	17 î	176	180	184	189	$19 \hat{3}$	198	202	206		
982	2 I	215	220	224	229	$23 \hat{3}$	$23 \hat{7}$	242	$24 \hat{6}$	25 I		
983	$25 \hat{5}$	260	264	$26 \hat{8}$	273	279	282	286	$290 \hat{}$	295		
984	299	304	$30 \hat{8}$	312	317	32 I	326	330	335	339		
985	$34 \hat{3}$	348	352	357	36 î	365	370	374	379	$38 \hat{3}$		4
986	387	39^{2}	396	401	405	409	414	418	423	427	I	0.4
987	43 I	436	440̂	445	$44 \hat{9}$	$45 \hat{3}$	45^{8}	462	467	47 I	. 2	0.8 r .2
988	475	480	484	489	493	$49 \hat{7}$	502	506̂	511	515	3	1.2
989	5 I 9	524	$52 \hat{8}$	533	537	54 I	546	$55^{\text {ô }}$	554	559	4	I. 6
990	563	568	$572 \hat{2}$	576	58 I	585	590	594	$59 \hat{8}$	603	. 5	2.0
991	607	6IT	616	620	625	629̂	$63 \hat{3}$	638	$64 \hat{2}$	647	6	2.4
992	65 I	655	660	664	668 ¢	673	679	682	686	б́90̂	. 7	2.8
993	695	699	703	708	7 I 2	717	721	725	730	734	. 8	3.2 3.6
994	738	743	$74 \hat{7}$	75 Î	756	760	765	769	$77 \hat{3}$	778	. 9	3.6
995	782	786	791	795	800	804	$80 \hat{8}$	813	817	82 i		
996	826	8300	834	839	$84 \hat{3}$	$84 \hat{7}$	852	856	86 r	865		
997	869	874	878	882	887	89 ${ }^{\text {İ }}$	895	900	904	90 ${ }^{8}$		
998	913	917	922	926	930	935	939	$94 \hat{3}$	948	952		
999	956	961	965	969	974	978	982	987	99 I	995		
1000	$00 \quad 000$	$00 \hat{4}$	$00 \hat{8}$	or3	$\bigcirc 1 \hat{7}$	02 I	026	030	034	039		
N.	0	1	2	3	4	5	6	7	8	9		P. P.

TABLE V.-LOGARITHMS OF NUMBERS.

N.	0	1	2	3	4	5	6	7	8	9		P. IP.	
1000	000000	043	087	${ }^{1} 30$	17.3	217	260	304	$34 \hat{7}$	3900			
OI	434	$47 \hat{7}$	521	564	607	651	69.	$73 \hat{7}$	781	S2 4			
02	S67	9 I I	$95 \hat{4}$	997	*041	*08 4	* $12 \hat{7}$	\%171	* $21 \hat{q}$	${ }^{2} 25$			
$\bigcirc 3$	OOI 301	344	$38 \hat{7}$	43 I	474	51 7	560	60.4	6.47	690			
04	733	777	820	863	906	950	99.3	*0,36	*079	*123			
05	002166	$20 \hat{9}$	252	$29 \hat{5}$	339	$3 \mathrm{~S}^{2}$	425	46	511	555			
06	59^{8}	6.4	684	$72 \hat{7}$	7700	SI. 7	857	900	943	98%			
07	003029	072	115	159	202	245	288	331	374	417			
08	4600	$50 \hat{3}$	546	590	633	676	719	762	805	8.48	$\cdot 1$	4.3 4.3 8.7	43 4.3 8.6
09	S91	93.4	977	*O20	\%063	* 106	* 149	* $19{ }^{\text {® }}$	* 235	* 27 ¢	.2 .3	8.7 13.0	8.6 12.9
1010	00432 I	$36 \hat{4}$	$40 \hat{7}$	45°	493	536	579	622	665	708	$\cdot 4$		17.2
I I	751	794	837	880	923	966	*009	*)5	*09 ${ }^{\text {\% }}$	* 130	. 5	21.4 26.1 2 26.	21.5 25.8
12	005 ISô	223	266	309	352	395	438	481	$52 \hat{3}$	56 \%			
13	$60 \hat{9}$	652	695	738	781	S24	866	909	$95^{\frac{1}{2}}$	995	. 7	30.4 34.8 3	30.1 $3+4$
14	006038	$\bigcirc S_{\text {I }}$	123	166	209	252	295	337	380	$42 \hat{3}$. 9	39.î	38.7
15	466	509	55 Î	$59 \hat{4}$	637	6So	$72 \hat{2}$	$76 \hat{5}$	SoS	851			
16	S93	936	979	*022	\%06 4	* $10 \hat{7}$	* 150	* 193	*235	* 278			
17	00732 I	363	406	449	491	534	577	620	662	705			
18	748	790	S33	875	915	961	* 003	*046	*os0	13 Î			
19	008174	217	259	302	344	387	430	472	515	55 ${ }^{\text {¢ }}$			
1020	$\overline{600}$	$6+2$	685	728	770	813	855	S98	940	983			
2 I	Oog 025	06 ¢	1 I 1	$15 \hat{3}$	196	$23 \hat{8}$	281	$32 \hat{3}$	366	$40 \hat{8}$			
22	45 I	$49 \hat{3}$	536	+ 57 ¢	+621	663	706	$74 \hat{8}$	790	833		4 ${ }_{4} \hat{2}$	42 4.2
23	875	918	960	*003	*045	*oSS	* 130	$*_{1} 7$, $\hat{2}$	*215	* $25 \hat{7}$.1 .2	4.2 8.5 1.5	4.2 8.4 12.6
24	010300	$3+\frac{1}{2}$	385	427	469	512	554	596	639	68 î	$\cdot 3$	$12 . \hat{\jmath}$	12.6
25	724	766	80 ${ }^{\text {8 }}$	851	893	935	978	*020	*062	* 105	4	17.0 17. 21.	16.8 21.0
26	OII I $4 \hat{7}$	I 8 ¢	232	274	316	359	40 Î	443	486	528	.6	$25.5{ }^{21.2}$	25.2
27	570	6 L 2	655	$69 \hat{7}$	-739	782	S24	86 6	* 908	* 951	.7	$\begin{array}{cc}29.7 & \\ 34 & \end{array}$	
28	993	*035	*079	* 120	* 162	*204	* $24 \hat{6}$	* $28 \hat{8}$	*331	* 373	. 8	34.0 38.2 3	33.6 37.8
29	OI2 415	$45 \hat{7}$	500	542	584	626	$66 \hat{8}$	710	75.3	795			
1030	837	879	92 Î	963	*006	\%048	*OOO	* 132	17.4	216			
3 I	OI3 $25 \hat{8}$	301	$3+3$	$3{ }^{8} 5$	427	469	5 I Î	553	595	637			
32	679	722	764	So6	8.48	Soo	932	974	*016	*058			
33	OIt 100	I 42	IS ${ }^{\text {q }}$	$22 \hat{6}$	26 ¢	3 IO	$35^{\text {2 }}$	$39 \hat{4}$	$43 \hat{6}$	$47 \hat{8}$			
34	520	562	$60 \hat{4}$	646	68 Ŝ	730	772	814	S5 6	S 98			
35	9400	98 2	* $22 \hat{4}$	*066	* 108	* I 50	*I92	*234	*276	*318			
30	OI5 360	40 Î	$44 \hat{3}$	483	527	569	611	653	695	737		4î	
37	779	820̂	862	904	946	9SS	*030	*072	*113	I 55	. 2	$\|$4.1 8.3 8.3	4.1 8.1 8.2
38	O16 19	239	281	323	$36 \hat{4}$	406	448	490	53^{2}	573	.2 .3 .	8.3 12.4 10.6	8.2 12.3
39	615	657	699	74 I	782	S2. ${ }^{\text {f }}$	S66	908	950	99 î		16.6	16.4
1040	OI7 033	075	117	$15 \hat{8}$	200	242	$2 S_{4}$	325	. 369	409	. 6	$\begin{array}{ll}20.7 & = \\ 24.9\end{array}$	20.5 24.6
4 I	450	$49 \hat{2}$	534	576	$6 \mathrm{I} \hat{7}$	659	\% 71	\% $74 \hat{2}$	789	S26		20 ó $=$	$2 \varepsilon .7$
42	867	909	951	99^{2}	*03 ${ }^{\text {a }}$	*076	*117	* $15 \hat{9}$	*201	$24 \hat{2}$. 8	20.3 3.3 37	22.7 32.4 36.4
43	OIS $28 \hat{4}$	326	367	409	45 I	492	534	$57 \hat{5}$	617	659			
$4+$	700	742	$78 \hat{3}$	825	867	$90 \hat{8}$	950	99 î	*033	*074			
45	Ol9 II 6	I 58	199	241	282	324	365	407	448	490			
46	53 Î	573	614	656	697	739	7 Sô	822	863	905			
47	946	988	*O29	*07 I	* I I 2	* 154	*195	*237	* 275	*320			
48	02036 T	$40 \hat{}$	444	$48 \hat{5}$	527	$56 \hat{8}$	610	63 I	692	*34			
49	775	817	$85 \hat{8}$	899	94.1	982	*024	*065	*106	* 148			
1050	$02118 \hat{9}$	230	272	$31 \hat{3}$	$35 \hat{4}$	39^{6}	4.37	478	520	561			
N.	${ }^{3}$	1	2	3	4	5	(;	7	8	()		P. P.	

TABLE V.-LOGARITHMS OF NUMBERS.

TABLE VI.-LOGARITHMIC SINES AND TANGENTS OF SMALL AN(BLES.

$\begin{aligned} & \log \sin \phi=\log \phi^{\prime \prime}+S \\ & \log \tan \phi=\log \phi^{\prime \prime}+\overparen{I} \end{aligned}$			0°		$\begin{aligned} & \log \phi^{\prime \prime}=\log \sin \phi+S^{\prime \prime} . \\ & \log \phi=\log \tan \phi+2^{\prime \prime} . \end{aligned}$		
"		S	T	Log. Sill.	N'	'I'	lag. 'İan.
0	0	$4.6855 \hat{7}$	$5 \hat{7}$	- ∞	$5 \cdot 31442$	42	-
60	I	57	$5 \hat{7}$	6.46372	$4 \hat{2}$	42	(6.4) 372
120	2	57	57	.76 .473	42	42	$.76+73$
180	3	59	$5 \hat{7}$. 9408 ¢	+2	42	. 9408 ¢
240	4	57	57	$7.0657 \hat{8}$	42	42	7.06578
300	5	4.68559	57	$7.1626 \hat{9}$	5.31442	42	7.16209
360	6	57	57	.2.4 18 ¢	42	42	. $2+188$
420	7	59	59	.30882 ²	42	42	.30882
480	8	57	57	.3668 Î	$4 \hat{2}$	42	. 36681
540	9	57	57	+11797	42	42	+1797
600	10	4.68557	$5 \hat{7}$	7.46372	$5 \cdot 31+42$	42	7.46372
660	11	$5 \hat{7}$	57	. 50512	42	+2	. 50512
720	12	$5 \hat{7}$	59	. $5+2900$	$4 \hat{2}$	42	. $5+291$
780	13	57	57	. 57767	$4 \stackrel{3}{2}$	42	. 57767
8.40	14	57	$5 \hat{7}$. 60983	$4 \hat{2}$	t2	. 60983
900	15	$4.6855 \hat{7}$	58	7.63981	$5 \cdot 31+42$	42	7.63982
960	16	57	58	.6678 th	$4 \frac{2}{2}$	42	.66785
1020	17	57	58	$.69+17$	42	42	$.69+18$
1080	18	$5 \hat{7}$	58	.71899	$4 \hat{2}$	42	.71900̂
1140	19	57	58	. $74.2+8$	42	42	$.7+2+5$
1200	$\because 0$	4.68557	58	7.76473	$5 \cdot 31+43$	4^{2}	$7.76+76$
1260	21	57	58	$.7859 \hat{1}$	43	42	.78595
1320	22	57	58	. 8061 t	43	42	. 80613
1380	23	57	58	. $825+5$	43	42	. $825+6$
1440	24	57	58	. $8+39 \hat{3}$	43	42	. $8+39$ ¢
1500	25	4.68557	$5 \hat{8}$	7.86166	$5 \cdot 31+43$	$4 \hat{1}$	7.86167
1560	26	57	$5 \hat{8}$.87869	43	$4 \hat{1}$. 87871
1620	27	57	5 ¢̂	. $8950 \hat{8}$	43	4 I	. 89510
1680	28	57	58	.91088	43	$4 \hat{1}$.91089
1740	29	57	58	. 92612	43	$4 \hat{1}$.92613
1800	30	4.68557	$5 \hat{8}$	$7.9408+$	5.31443	$4 \hat{1}$	$7.9+086$
1860	31	57	$5 \hat{8}$. 95508	43	41	. 95510
1920	32	57	$5 \widehat{8}$.96887	43	$4 \hat{1}$. 96889
1980	33	57	59	. $9^{8} 223$	43	41	.98223
20.40	34	57	59	.99520	43	41	. 99522
2100	35	4.68556		$8.0077 \hat{8}$	$5 \cdot 31+4 \hat{3}$	41	8.00781
2160	36	$5 \hat{6}$	59	. 02002	$4 \hat{3}$	41	. 02001
2220	37	56	59	.03192	$4 \hat{3}$	$4!$. 03194
2280	38	56	59	.04 350	$4 \hat{3}$	40	.0+352
2340	39	56	59	.05478	$4 \hat{3}$	40	$.05+81$
2400	40	4.68556	$5 \hat{9}$	8.06577		40	S.O6 5So
2460	4 I	56	59	. 07650	$4 \hat{3}$	40	.07653
2520	42	56	59	. 08696	$4 \hat{3}$	40	. OS 699
2580	43	56	60	. 09718	$4 \hat{3}$	40	.0972i
2640	44	56	60	.10716	$4 \hat{3}$	40	.10720
2700	45	4.68556	60	8.11 $69 \hat{2}$	$5 \cdot 31+44$	40	8.11696
2760	46	56	60	.12 647	$4+$	40	.12651
2820	47	56	60	.13581	$4+$	40	.13585
2880	48	56	60	$.14+93$	$4+$	39	.1.499
2940	49	56	60	.15390	44	39	.15395
3000	50	4.68556	60	8.16268	5.3144	39	S.16272
3060	51	56	60	. 17128	44	39	.17133
3120	52	56	6 I	.17971 î	$4+$	39	.17976
3180	53	56	61	.18798	44	39	. 18803
3240	54	53	61	.19610	$1 \hat{4}$	39	.19615
3300		4.68553	6 I	8.20407	$5 \cdot 314+\hat{4}$	39	$8.20+12$
3360	56	5 5	61	. 21189	44	38	. 21193
3420	57	53	$6 \hat{1}$. 21958	$4 \hat{4}$	3 S	. 21964
3480	58	55	61	.22713	$4 \hat{4}$	38	.22719
3540	59	55	62	. $23+55$	- $4 \hat{4}$	38	.23462

$\begin{aligned} & \hline \log ^{\sin } \phi=\log \phi^{\prime \prime}+S \\ & \log \tan \phi=\log \phi^{\prime \prime}+T \end{aligned}$			1°		$\begin{aligned} & \log \hat{\phi}^{\prime \prime}=\log \sin \phi+S^{\prime} \\ & \log \phi^{\prime \prime}=\log \tan \phi+7^{\prime \prime} . \end{aligned}$		
"		S	T	Log. Sin.	\mathbf{S}^{\prime}	T'	Log. Tan.
3600	0	4.68553	62	8.24183	$5 \cdot 314$	38	8.24192
3660	I	55	62	. $2490 \hat{3}$	45	38	. 24910
3720	2	55	62	.25609	45	38	. 25616
3780	3	55	62	$.2630+$	45	$3 \hat{7}$. 2631 Î
3840	4	55	62	. 26988	45	$3 \hat{7}$. 26993
3900	5	4.68555	62	8.27 661	5.31445	39	8.27669
3960	6	55	63	. 28324	45	37	.28332
4020	7	$5 \frac{1}{4}$	63	. 28977	43	37	. 28983
4080	8	54	63	.29620	45	37	. 29629
4140	9	54	63	. 30254	45	$3 \hat{6}$. $3026 \hat{3}$
4200	10	$4.6855 \ddagger$	$6 \hat{3}$	8.30879	5.31445	36 ¢	8.30888
4260	11	54	63	. 31493	45	36	. 31504
4320	12	54	64	. 3210 2̂	43	36	. 32112
4380	13	54	64	. 32701 î	46	36	. 327111
4440	14	54	64	. 3329 2	46	36	. 33302 2
4500	15	$4.6855+$	64	8.33875	$5 \cdot 31446$	35	8.33885
4560	16	54	64	- 34450	46	35	. 3446 I
4620	17	54	65	. 35018	46	35	. 35029
4680	18	$5+$	65	. 35578	46	35	. 35589
4740	19	$5 \hat{3}$	65	. 3613 Î	46	35	. 36143
4800	20	4.68553	63	8.36679	$5.3144 \hat{6}$	$3 \uparrow$	8.36689
4860	21	$5 \hat{3}$	63	. 37217	- 46	34	. 37229
4920	22	$5 \hat{3}$	63	. 37750	46	34	. 37762
4980	23	$5 \hat{3}$	66	. 38276	46	34	. 38289
5040	$2+$	53	66	. 38796	47	34	. 38809
5100	25	4.68553	66	8.39310	$5 \cdot 31447$	3 3	8.39 32 ${ }^{\text {3 }}$
5160	26	53	66	-39 818	47	$3 \hat{3}$	- 3983 ¢1
5220	27	53	67	. 40320	47	. 33	. 40334
5280	28	52	67	. 40816	49	33	. 4083 Ô
5340	29	$5 \frac{1}{2}$	67	.41307	$4 \hat{7}$	33	. 4132 Î
5400	30	4.68552	67	8.41792	5.31447	$3 \hat{2}$	8.41807
5460	31	$5 \hat{2}$	69	. 422711	49	32	. 42287
5520	32	52	68	. 42746	$4 \hat{7}$	32	. 42762
5580	33	52	68	. 43213	48	32	. 4323 i
5640	34	52	$6 \hat{8}$. 43680	48	3 I	. 43695
5700	35	4.68552	$6 \hat{8}$	8.44139	5.31448	3 ¢	8.44156
5760	36	52	69	. 44594	48	31	.44611
5820	37	51	69	. 45 O+4	48	31	. 4506 î
5880	38	51	69	. 45489	488	30	.45507
5940	39	51	69	. 45930	$4 \hat{8}$	30	. 45948
6000	40	4.6855 ¢	$6 \hat{9}$	8.46366	$5.3144 \hat{8}$	30	8.46385
6060	41	51	70	. 46798	49	30	. 46817
6120	42	51	70	. 47 22 6	49	30	. 47245
6180	43	51	70	. 47650	49	29	- $.4766 \hat{9}$
6240	44	51	70	. 48069	49	29	. 48089
6300	45	4.68550	71	8.48485	$5.3144 \hat{9}$	29	8.48505
6360	46	50	7 T	. 48895	- $4 \hat{9}$	28	. 48917
6420	47	50	7 I	. 49304	$49 \hat{}$	28	. 49325
6480	48	50	72	. 49708	49	28	. 49729
6540	49	50	72	.50 108	50	28	. 50 \% 30
6600	50	4.68550	72	8.50504	5.31450	29	$8.50{ }^{52}$ 6
6660	51	50	72	. 50897	50	$2 \hat{7}$. 50920
6720	52	50	73	. 51286	50	27	. 51310
6780	53	49	73	. 51672	50	27	. 51696
6840	54	$4 \hat{9}$	73	. 52055	50	26	. 52079
6900	55	4.68549	73	8.5243 f	5.31450	26	8.52458
6960	56	49	74	. 52810	51	26	. 52835
7020	57	49	74	. 53183	51	25	. 53208
7080	58	49	74	. $5355{ }^{2}$	51	23	. 53578
7140	59	49	75	. 53918	51	25	. 53944

TABLE VI．－LOGARITHMIC SINES AND TANGENTS OF SMALL AN゙Gies．

$\begin{aligned} & \log \sin \phi=\log \phi^{\prime \prime}+S_{4} \\ & \log \tan \phi=\log \phi^{\prime \prime}+T^{\prime} \end{aligned}$			2°		$\begin{aligned} & \log \phi=\log \sin \varphi^{\prime}+S^{\prime} \\ & \log \phi=\log \tan \left(\xi^{\prime}\right)+T^{\prime \prime} . \end{aligned}$		
＂	，	S	T	Lor．Sill．	S^{\prime}	＇${ }^{\text {＇}}$	Lug．Tan．
7200	0	$4.6854 \hat{8}$	75	$8.5+282$	5．31＋5i	25	$8.5+305$
7260	1	48	73	． $5+6+2$	51	$2 \stackrel{1}{4}$	． $5+560$
7320	2	48	73	－5＋999	51	$2 \hat{4}$	． 55027
7380	3	48	76	． $5535+$	52	24	． 55381
$74+0$	4	48	76	． 55 T03	52	$2 \hat{3}$	． 5573 3
7500	5	4.68548	76	8.56054	$5 \cdot 31452$	$2 \hat{3}$	S． 500083
7560	6	48	77	． 56 400	52	23	． $56+29$
7620	7	47	79	． $567+3$	$5 \frac{1}{2}$	2 2	． 5677 2
7680	8	47	77	． 57083	52	2 2	． 57115
7740	9	＋9	78	． 5742 I	52	22	． $57+5^{2}$
7800	10	4.68547	78	8.57756	$5 \cdot 31+53$	22	8.57789
7860	11	47	78	．58089	53	21	． 58121
7920	12	47	79	． 58 ＋19	53	21	． 58 ＋510
7980	13	46	79	． $587+7$	53	21	． 58779
8040	14	$4 \hat{6}$	79	． 59072	$5 \hat{3}$	20	． 59105
8100	15	$4.685+6$ ¢	So	8.59395	$5 \cdot 31453$	20	$8.59+25$
8160	16	46	\＆o	． 59715	$5+$	20	． 59749
8220	17	46	¢ô	． 60033	54	19	． 60067
8280	18	46	81	． $603+9$	54	19	． $6038+$
8340	19	43	SI	． 60662	$5 \ddagger$	19	． 60698
8400	$\because 0$	$4.685+3$	8i	$8.6097 \hat{3}$	$5.3145 i$	18	8.61009
$8+60$	21	43	82	． 61282	$5 \frac{1}{4}$	18	． 61319
8520	22	45	82	． 61589	55	18	． 61626
8580	23	45	82	． 61893	55	19	． 61931
8640	$2+$	＋5	83	． 62196	55	17	． 6223 ¢
8700	25	$4.685+\hat{4}$	$8{ }^{8}$	$8.62+96$	5.31455	$1 \hat{6}$	8.62535
8760	26	4	${ }_{8} 8$	． 62795		16	． 62837
8820	27	$4 \hat{4}$	$8+$.63091	53	16	． 63131
8880	28	$4+$	$8 \hat{1}$	． 63385	56	13	． $63+23$
$89+0$	29	$4+$	8	． 63677	56	13	． 63718
9000	30	$4.685+\frac{3}{3}$	85	8.63968	$5 \cdot 31+56$	15	8：64009
9060	3 I	43	83	． $6+25 \hat{6}$		17	． $6+298$
9120	32	$4 \hat{3}$	86	． $6+5+3$	56	14	$.6+583$
9180	33	43	86	． $6+827$	57	$1+$	． 64.870
$92+0$	$3+$	43	86	． 65110	57	13	． 65153
9300	35		87	8.65391	5．314 57		$8.65+35$
9360	36	$4{ }^{4}$	87	． 65670	57	12	． 65715
$9+20$	37	42	87	． $659+7$	57	12	． 65993
$9+80$	38	42	88	． 66223	58	12	． 66269
9540	39	42	S ${ }^{8}$	． 66497	58	1 I	． 66 5＋3⿹丁口
9600	40	4.68542	89	8.66769	$5 \cdot 31+58$	11	8.66816
9660	41	$4 \hat{1}$	89	． 67039		10	． 67087
9720	42	41	89	． 67308	$5 \hat{8}$	10	.67356
9780	43	41	$\bigcirc \bigcirc$	． 67575	59	10	． $6762+$
9840	$4+$	41	gô	． 67 ¢ ¢ $¢$	59	O9̂	． 67890
9900	45	4.68541	91	8.68104	5．31459	0 ）	8.68157
9960	46	40	91	$.6836 \hat{6}$	59	oŝ	． $68+17$
10020	47	40	91	． 68627	59	－88	． 685 5
10080	48	40	92	． 68886	60	－S	． 68938
10140	49	40	92	． $69 \mathrm{I}+4$	60	09	． 69 ！n
10200	50	4.68540	93	8.69400	$5.31+60$	07	$8.69+53$
10260	51	39	93	． 6965		O 6	． 69708
10320	52	39	93	． 69907	60	O6	． 6996 ？
10380	53	39	9.	． 70159	61	06	．70214
10440	54	39	97	． $70+09$	61	03	． $70+4$
10500		4.68538		8.70657	$5 \cdot 31+61$		$8.7071+$
IO560	56	38	93	． 70905	61	－	． 70962
10620	57	38	96	． 71150	61	$\bigcirc+$	． 7120 S
10680	58	38	96	． 71395	62	${ }^{\circ} \mathrm{J}$	． $71+5$ 3
10740	59	38	97	.71638	62	03	． 71697

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS 0°

,	Log. Sin.	D	Log. Tan.	Com. D.	Log. Cot.	Log. Cos.	
0	- ${ }^{\text {c }}$	$\begin{aligned} & 30103 \\ & 17609 \\ & 12494 \end{aligned}$	∞	30103	$\pm \infty$	0.00000	60
I	6.46372		6.46372		3.53629	0.00000	59
2	6.76475		6.76475		$3.2352 \hat{4}$	0.00000	58
3	6.94084		6.94084	${ }_{7} 17609$	3.05915	0.00000	57
4	7.06578		7.06578	124	2.9342 Î	0.00000	56
5	7.16269		7.16 269	7918	2.837300	0.00000	55
6	7.24 I 87	7918	7.24188		2.75812	0.00000	54
7	7.30882	6695	7.30882	6694	2.69 II 9	0.00000	53
8	7.3668 Î	5799	7.3668 Î	5799	2.63318	0.00000	52
9	7.41797	5115	7.41797	5115	2.58203	0.00000	5 I
10	7.46372		7.46372	41399	2.53627	0.00000	50
II	7.50512	3778 ิ	7.50512		2.49488	0.00000	49
12	7.54290	3778 ¢	7.54291	3779	2.45709	9.99999	48
13	7.57767	3476	7.57767	3476	2.42233	9.99999	47
14	7.60985	$\begin{aligned} & 3218 \\ & 2996 \end{aligned}$	7.60983	3218	2.39014	9.99999	4.6
15	7.6398 î		7.63982	2803	2.36018	9.99999	45
16	7.66784	2803	7.66785		2.33215	'9.99 999	44
17	7.69419	2633 2482	7.69418	2633	2.30582	9.99999	43
18	7.71 899	2482	7.71900	2482	2.28099	9.99999	42
19	7.74248	$\begin{aligned} & 234 \hat{8} \\ & 222 \hat{7} \end{aligned}$	7.74248	$\begin{aligned} & 2348 \\ & 222 \hat{7} \end{aligned}$	2.2575 İ	9.99999	4I
20	7.76475		7.76476	2119	2.23524	9.99999	40
21	7.78594		7.78595		2.21405	9.99999	39
22	7.80614	2020	7.80615	2020	2.19384	9.99999	38
23	7.82545	1930	7.82546	1930	2.17454	9.99999	37
24	7.84393	$\begin{aligned} & 184 \hat{8} \\ & 177^{2} \end{aligned}$	7.84394	1848	2.1560弓	9.99999	36
25	7.86166		7.86167	1773	2.13832	9.99999	35
26	7.87869	-3	7.87871		2.12129	9.99999	34
27	$7.8950 \widehat{1}$	1639	7.89510	${ }^{1639}$	2.10 490	9.99998	33
28	7.91088	1579̂	7.91 089	15790	2.08910	9.99998	32
29	7.92612	1524	7.92613	$\begin{array}{r} 1524 \\ 1572 \hat{2} \end{array}$	2.07386	9.99998	3 I
30	$7.9+084$	1424	7.94086	1424	2.05914	9.99998	30
3.	7.95508		7.95510		2.04490	9.99998	29
32	7.96887	1379	7.96889	1379	2.03 II I	9.99998	28
33	$7.9822 \widehat{3}$	1336̂	7.98225	1336	2.01774	9.99998	27
34	7.99520	1295	7.99522	1296	2.00478	9.99998	26
35	8.00778	1258	8.00781	1223̂	I. 99219	9.99997	25
36	8.02002	1190	8.02004	IIgo	1.97993	9.99997	24
37	8.03192		8.03191	I158	I1. 96803	9.99997	23
38	$8.0+350$	1158	$8.0+35 \hat{}$		$1.9564 \hat{7}$	9.99997	22
39	8.05478	$\begin{aligned} & \text { II28 } \\ & \text { Ioوĝ } \end{aligned}$	8.05481		1.94519	9.99997	21
40	8.06577	1072̂	8.06580	Iog9̂	I. 934 Î	9.99997	20
41	8.07650	1072	8.07653	1046̂	1.92347	9.99997	19
42	8.08696	1022	8.08699	1022	1.91300̂	9.99997	18
43	8.09718	998	$8.0972 \hat{1}$		$1.9027 \hat{8}$	9.99996	17
44	8.10716		8. 10 720	999	1.89279	9.99996	16
45	8. I I 692	976	8. I I 690	97	$1.8830 \hat{3}$	9.99996	15
46	8.12 647	934	8.12651		1.87349	9.99996	14
47	8.13 581	,	S. 13585	934	1.86415	9.99996	13
48	8.14 495	914	S.14 499	914	$1.8550 \hat{}$	9.99996	12
49	$8.15390 \hat{}$	$\begin{aligned} & 895 \\ & 877 \end{aligned}$	8. I 5395	895	1.84605	9.99995	I I
50	8.16268	86	8.16273	877	1.83727	9.99995	10
51	8.17 128		8.17 I 33	843	1. 82867	9.99995	9
52	8.1797î	843	8.17 976		$1.8202 \hat{3}$	9.99995	8
53	8.18798	827	8. 18803	827	1.81196	9.99995	7
54	8.19610		8.19615	812	1.8038 ¢	9.9999 t	6
55	8.20407	797	8.20412	797 783	1.79587	9.99994	5
56	8.21189		8.21195	768	$1.7880 \hat{4}$	9.99994	4
57	8.21958	768	8.21964		1.78036	9.99994	3
58	8.227 I 3	755	8.22719	7551	1.77280	9.99994	2
59	8.23453	742	8.23462	742	1.76538	9.99993	I
60	8.24 I 85	730	8.24192	730	1.75808	9.99993	0
	Log. Cos.	D	Log. Cot	Com. ${ }^{\text {D }}$	Log. Tan.	Log. Sin.	

,	Log. Sin.	D	Log. Tan.	Com. lo.	Lom. (ont.	10\%. cos.	
1	$8.2+183$	718	8.24192	718	1.75 SOS	9.99993	(i)
1	$8.2+90 \hat{3}$	706	8.24910		1.75090	9.99993	59
2	$8.2560 \hat{9}$	706 609	8. 25616	7०ถิ	1.743803	9.99993	58
3	$8.2630+$	69.	8. 2631 I	695 68.4	1.73685	9.9999	57
4	8.26988	${ }_{6} 68$	8. 26993	673	1.73004	9.99992	56
5	8.27661		8.27669	663	1.72331	9.99 992	55
	$8.2832 \hat{4}$	663	S. 2 S 332		1.71667	9.99992	54
7	8. 28979	653	8. 28985	653	1.71 OIf	9.99992	53
8	S. 29620 -	643	8.29629	$6+3$	1.70371	9.99991	52
9	S. $3025 \hat{4}$	$\begin{aligned} & 63+ \\ & 625 \end{aligned}$	S. $3026 \hat{3}$	634	1.69736	9.9999 î	51
10	8. 30879		8. 30 SSŞ	6.6	1.69 IIÎ	9.99991	.) 0
II	8.31493	616	8.31 50 ¢̂		1.68493	9.99990	49
12	8.32102	607	S. 32112	607	1.67888	9.99 990̂	48
13	8.32701	599	8. 32711	599	1.67285	9.99990	47
14	8.33292	591	8. 33 302	591	1.66697	9.99990	46
15	8.33875	575	S. 33885	$5-5$	1.66 IIf	9.99989	45
16	$8.34+5$ Ô		S. $3+461$	568	1.65539	9.99989	$4+$
17	S.35018	${ }_{567}$	8.35 029		1. $6+971$	9.99989	43
18	8.35778	56	S. 3558 ¢	560	1.64410	9.99989	42
19	8.36131	55.3	S. 36143	$\begin{aligned} & 55 \hat{3} \\ & 54 \hat{6} \end{aligned}$	1.63857	9.99988	41
20	$8.3667 \hat{7}$	5391	8.36689		$1.63310 \hat{}$	9.99 988	40
2 I	8.37257		S. 37229	539	1.62771	9.99988	39
22	8.37750	533	S. 37762	533	1.62238	9.99987	38
23	8.38276	526	8. 38289	527	1.61711	9.99987	37
24	8.38796	520	S. 38 So9	520	1.61191	9.99987	j^{6}
25	8.39310	503	8.39323	508	$1.6067 \hat{6}$	9.99986	35
26	S.39818		8. 3983 I	502	$1.6016 \hat{8}$	9.99986	$3+$
27	8.40320	502	8.40334		I. 59666	9.99986	33
28	8.40816	49^{6}	8.40830 ¢	$49 \hat{6}$	I. 59 I 69	9.99986	32
29	8.41307	$\begin{aligned} & 491 \\ & 485 \end{aligned}$	S.41 32 Î	$\begin{aligned} & 491 \\ & 485 \end{aligned}$	I. 58678	9.99983	31
30	8.41792		8.41807		1.58193	9.99985	30
31	8.4227 Î	479	8.42287	480	1.57713	9.99985	29
32	8.42746	$47 ¢$	8.42762	475	1.57238	9.9998 4	28
33	843213	$46 \hat{9}$	8.43231	46	1.56769	9.99984	27
34	8.43680	46 ¢	8.43696	$\begin{aligned} & 464 \\ & 460 \end{aligned}$	I. 56304	9.99984	26
35	8.44139	459	8.44156	455	I. 5584.4	9.999^{83}	25
36	S. 44594	454	8. +4611	450	I. 55389	9.99983	24
37	S. 450.44	450	8.4506î		1. $5+93 \overline{8}$	9.99983	23
38	8.45489	445	8.45507	$4+5$	1. $54+93$	9.99982	22
39	S. 45930	440 436	S. 45948	441	1.54052	2.99982	21
40	$8.4636 \hat{6}$	436	8.46355	437	1.53615	9.99981	$\because 1$
41	8.46798	43^{2}	8.46817	$42 \hat{8}$	I. 53183	9.99981	19
42	$8.4722 \widehat{6}$	428	8.47245		1.5275.	9.99981	18
43	8.47650	423	S. 47669	42.	1.52330	9.99 980̂	17
44	8.48069	419	8.48089	19	1.51911	9.99980	16
45	8.48485	415	S. 48505		I. 51495	9.99979	15
46	8.48896	411	S. 48917		1. 51083	9.99979	14
47	8.49304	407	8.49325	$40 . \hat{1}$	1.50675	9.99979	13
48	8.49708	404	S. 49729		I. 50270	9.99975	12
49	8.50108	400396	S. 50130	4000	1.49 870	9.99978	11
50	8. $5050 \hat{4}$		S. 50526	393	1.49473	9.99975	10
51	8. 50 S97	393	8. 50920		1.49080	9.99977	9
52	8. 5128 ¢	389	8. 51310	390	1.48690	9.99977	S
53	S. 51672	386	8. 51696	386	1.48304	9.99976	7
54	8. 52055	3^{382}	8.52079	3^{83}	1.47921	9.99976	6
55	8. $5243 \hat{4}$	379	8.52 458	376	$1.475+\hat{1}$	9.99975	5
56	8. 52810		8.52835	376 373	1.47165	9.99975	4
57	8. 53183	373	8.53208	373	1.46792	9.99975	3
58	$8.5355 \frac{3}{2}$	$369 \hat{9}$	8.53578	370	1.46422	9.99 97f	2
59	8.53918	$\begin{aligned} & 366 \\ & 36 \hat{3} \end{aligned}$	$8.539+4$	$\begin{aligned} & 360 \\ & 364 \end{aligned}$	1.46053	9.99974	1
60)	8. $5+282$		$8.5+30$ ¢		1. 4569 I	$9.9997 \hat{3}$	0
	log. Cos.	1)	Los. Cot.	('0in. 11.	log. Tan.	Lar. Sill.	,

TABLE VII-LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS. 2°

,	Log. Sin.	D	Log. Tan.	Com. D.	Log. Cot.	Log. Cos.	
0	8.54282		$8.5+30 \hat{8}$		I. 4569 I	$9.9997 \hat{3}$	60
1	8.54642	${ }^{360}$	8.54669	360	I. 45331	9.99973	59
2	8. 54999	$\begin{array}{r}357 \\ 354 \\ \hline\end{array}$	8.55027	358	I. 44973	$9.9997{ }^{\text {2 }}$	58
3	8.55354	354 3 3 51	8. 5538 II	$35 \hat{4}$	1.44618	9.99972	57
4	8.55703	${ }^{35 \hat{1}}$	8.55733	352	1. 4.266	9.9997 Î	56
5	8.56054	346	8.56083	3491	1.43917	9.9997 Î	55
6	8. 55400	346	8.56429	346	1.43571	9.99971	54
7	8.56743	$34 \hat{0}$	8. 56772	$34 \hat{3}$	1.43227	9.99970 -	53
8	8.57083	340	8.57113	341	1. 42886	9.99970	52
9	8. 5742 I	${ }^{33}$	8. 57452	34	I. 42548	9.99969	51
10	8.57756	335 332	8. 57787	$33 \overline{3}$	1.42212	9.99969	50
11	8.58089	$33{ }^{2}$ 330	8.58121	333 330	1.41879	9.99968	49
12	8.58419	330	8.5845I	33	1. I I 5488	9.99968	+8
13	8. 58777	327	3.58779		1.41220	9.99967	47
14	8.59072	325	8.59 IO 5	3^{223}	I. 40895	9.99967	$+6$
15	8. 59395	323 320 3	S. 5942 8		1.40 57î	9.99966	45
16	8.59715	320	8.59749	$3^{2} 20$	1. 40251	9.99966	44
17	8.60033	$3{ }^{3} 3$	8.60067	${ }^{31} 8$	1. 3993 2̀	9.99963	43
18	8.60349	316	$8.6038+$	31 ¢̂	1.39616	9.99965	42
19	8.60662	${ }_{3} \times \hat{3}$	8.60698	$3^{14} 4$	1. 39302	9.9996 ¢	4 I
$\because 0$	$8.6097 \hat{3}$		$8.6100 \hat{1}$	311$30 \hat{9}$30	I. 38990	9.99964	40
21	8.61 283	309	8.61319		1. 3868 I	9.99963	39
22	8.61589	$306{ }^{3}$	8.61626	307305	1. 38374	9.99963	38
23	8.61893	${ }^{304}$	8.6193 Î		I. 38068	9.9996 2̂	37
24	8.62196	302	8.6223 f	305	I. 37763	9.99962	36
25	8.62496	3000	8.62535	3000	I. 37465	9.99.96	35
26	8.62795	$29 \hat{8}$	$8.6283+$	299	I. 37166	9.99961	34
27	8.63091	296	8.63 I 31	297299	I. 36869	9.99960	33
28	8.63385	$29 \mathfrak{4}$	8.63423		1. 36574	9.99 959	32
29	8.63679	292	8.63718	$\begin{aligned} & 293 \\ & 291 \\ & \end{aligned}$	1. 3628 î	9.99959	31
30	8.63968	2900	8.6400 ¢̂		1. 35990 O	9.99958	30
31	$8.6+256$	283 286 8	$8.6+298$	2888	1.35702	9.99958	29
32	$8.6+543$	286 288	$8.6+583$	289 285 285	1. 35414	9.99957	28
33	8.64827	$28 \stackrel{4}{4}$	8.64870	285	I. 35129	9.99957	27
34	8.65 IIO	282	8.65153		I. 34846	9.99956	26
35	8.65391	281 279	8.65435		I. 34565	9.99956	25
36	8.65670	279 279	8.65715	278	I. 34285	$9.9995{ }^{\text {a }}$	24
37	$8.659+7$	277	8.65993		1. 34007	$9.9995+$	23
38	8.66223	275	8.66269	276	1.33731	9.99954	22
39	8.66497	$\begin{aligned} & 274 \\ & 272 \end{aligned}$	8.66 5+3	$\begin{aligned} & 27 \hat{\uparrow} \\ & 27 \bar{z} \end{aligned}$	1.33 456	$9.9995 \hat{3}$	21
40	8.66769		8.66816		1.33184	9.99953	20
41	8.67039 ¢	270 2688	8.67087	$26 \hat{g}$	I. 32913	$9.9995{ }^{\text {2 }}$	19
42	8.67308	268 267	8.67356		I. 32643	9.99952	18
43	8.67575	${ }_{267}^{265}$	8.67624	267	1.32376	9.99951	17
$4+$	8.67 St	264	8.67890		I. 32 I 10	9.99950	16
45	8.6810 .1		8.68 15t	$26 \hat{4}$	I. 31845	9.99950	15
46	$8.6836 \hat{6}$	262	8.68417	${ }^{262}$	I.31 583	$9.999+9{ }^{\text {a }}$	14
47	8.68627	260	8.68678	261259	I. 3132 I	9.99 9+88	13
48	8.68886	259	S.68938		1.31 062	9.99948	12
49	8.69 I4t	257256	8.69 I96	2581	I. 30803	9.99947	1 I
50	8.69400		8.69453	256	I. 30547	9.99947	10
51	8.69651	254	8.69708	255	1. 30292	9.99 9+6̂	9
52	8.69907	253	8.6996 î	${ }_{25 \hat{2}}^{253}$	I. 30038	9.99945	8
53	8.70159		8.70214		1. 29786	9.99945	7
54	8.70409		8.70464	5	1.29535	9.99944	6
55	8.70657	$\begin{aligned} & 24 \hat{8} \\ & 2+\hat{7} \end{aligned}$	8.70714	${ }_{24}{ }^{49}$	1.29286	9.99 943̂	5
56	8.70905	$\begin{aligned} & 2+7 \\ & 245 \end{aligned}$	8.70962	$24 \hat{6}$	1.29038	9.99943	4
57	8.71150		8.712081		I. 2879 Î	$9.9994 \hat{2}$	3
58	8.71395	244	8.71453	245	1. 28546	9.99942	2
57	8.71638	$\begin{aligned} & 24 \sqrt{2} \\ & \\ & 24 i \end{aligned}$	8.71697	$\begin{aligned} & 24 \hat{3} \\ & 24 \hat{2} \end{aligned}$	1.28303	9.99941	1
60	8.71880		$8.71939 \hat{}$		1.28 o6ô	$9.99940 \hat{}$	0
	Log. Cos.	D	Log. Cot.	Comil. D.	Log. Tan.	Log. Sin.	,

TABLE VII－LOGARITIMIC SINES，COSINES，TAN゚（；ENTS，ANH COTAN゙（BENTS．
3°

	Log．Sin．	J．	Lo\％．Tan．	c．d．	$\frac{\text { LOE. Cot. }}{1.28 \text { OGO }}$	$\frac{\text { Lng. Cos. }}{9.99940}$	（；）	I＇．P＇．			
0	8.71 SSo	240	8．71939	241							
1	8.72120	240	8.72180		1.27819	9.999 .40	59				
2	8.72359	239 237	8．72 420	240	1.27579	9.99939	58				
3	8.72597		8.72659	238	$1.273+1$	9.9993 ¢	57	330	320	310	
4	$8.7283 \hat{3}$	236	8.72896	237	1.27104	9.99938	56	$6 \|$$33 . n$ 15	32.0	310	
5	8.73069	235	8.73131	2.35	1．26 86s	9.99937	55	7 38.5 8 34.0	37. 42	31 $3^{\prime} 1$ 4 1	
6	8.73302	2331	8.73366	235	$1.2663 \hat{3}$	9.99930	5		44^{42}	$\begin{array}{ll}4^{1} \\ 4^{1} & 3 \\ \\ 5\end{array}$	
7	8.73533	233	8.73599	233	1.2640 ̂	$9.9993{ }^{\circ}$	53	10 $55 . \%$ 20 110	5i，	51	
8	8.73766	231	8．73831	233	1.26168	9.99935	52	30	1 cos	15	
9	8.73997	2300	8.74062	231	1.25937	$9.9993 \hat{4}$	51	40220.0	1	．， 1	
10	$8.7+226$		8.74292		1.25708	$9.9993 \hat{3}$	50				
II	$8.7+45 \bar{j}$	227	8.74520	228	1．25479	9.99933	0				
12	$8.7+650$	226	8.74748	227	1.25252	9.99932	）				
13	8.74903	225	8.74974	226	1.25026	9.9993 î	47	290	280	270	260
$1+$	8.75129	224	8.75199	225	1． $2+801$	9.99931	46	6 29.0	28.0	27.0 31.5	26.0
15	8.75353		8.75422	223	$1.2+57 \overline{7}$	9.99930	45	7 8	37	31.5 36.0	30.3 3.8 3.8
16	$8.7557 \hat{4}$		8.75645	223	$1.2+35 \hat{f}$	9.99929	47	${ }^{9} \mathrm{C} 43$	42.	405	
17	8.75793	221	8.75867	22 I	$1.2+133$	9.99 92 ${ }^{\text {¢ }}$	＋	10 48.3 20 96.6	46	45.0	
18	8.76015	$219 \hat{}$	8.76087	220	1.23913	9.99928	42	$30 \quad 145.0$	140.0	135.0	130.0
19	8.762333	$2 \mathrm{I} \hat{8}$	8.76306	2191	1． 23693	9.99927	41		18%	180.0	
20	$8.75+51$	217	$8.7652 \hat{4}$	218	1.23473	9.99 926	40				
2 I	8.76669	${ }^{21} 6$	8.76741	217	$1.2325 \hat{8}$	9.99 92\％					
22	8.76883	215	8.76958	216	$1.230+2$						
23	8.77097	214	8.77 1ヶ2	21%	1． 22829			250	240	230	220
24	8.77310	213	8.77386	21	1.22613	$9.9992 \hat{3}$	，	6 25.0 7 29.1	2.10 28.0	23.0	22.3
25	8.77 522	212	8.77 599	213	1.22400	9.99 922	35	3．3．3	3^{2} ．	30	29.3
26	$8.7773 \hat{3}$	211	8.77 81	212	$1.2218 \hat{8}$	9.99922	4	9 37.5 10 41.6 10.6	36.0 40.0	34 38 3	
27	$8.779+\hat{3}$	210	8.78022	210	I． 21978	9.99 921	33	20 83.3	80.0	76	73.3
28	8.78 1 5 2	209	8.78232	210	1． 21768	9.99920		30125	120.	115	110.0
29	8.78360	208	$8.784+\mathrm{I}$	209	1．21 559	9.99 910	3 I	 50 208.3	200.0	191．	183.3
30	$8.7856 \hat{7}$	207	8.78648	207	I． $2135 \hat{1}$	0.99919	80				
3 I	8.78773	206	8.78853	207	$1.2114 \hat{4}$	9.99918					
32	8.78978	205	8.79061	206			－9				
33		204	8.79266	204			8	210	200	190	180
3	8.79183		8.7		1.20734	9.99 916	27	6 21.0	20.0	19.0	180
34	8.79386	203	$8.79+70$	204	1.20530	9.99916	26	7 2.5 8 28.5	23.3 3	22．$\hat{1}$	
35	8.79588	202	8.79673	203	1.20327	9.99915	25	$9 \quad 31.5$	30	28.5	
36	8.79789	201	8.79875	202	1.20125	9.99914	24	10 35.0 20 70 30		31	30.0
37	8.79989	200	8.80 о产	20 î	I．19 923	9.99 913	23	20 70.0 30 105.0	100.	05	
38	8.80189	199̂	$8.8027 \hat{6}$	200	I． $1972 \hat{3}$	9.99912	22	40	133.	126．6	120.0
39	－8．80 387	198	8.80476	199ิ	I． 19524	9.99912	21	50， 175.0	166	158.	ז50．0
40	－8．80－585	7	$8.8067+$	198	1.19326	9．99 9II	$\underline{30}$				
41	8.80782	197	8.8087 î	197	I． $1912 \hat{8}$	9.99910					
42	8.80977	195	8．81 068	197	1．18931	9.999000	18	9ิ 9	8	$7 \quad 6$	
43	8．81 172	195	8．81 $26+$	195	1.18736	9.99908	17	$\begin{array}{lllll}6 & 0.9 \\ 7 & 1.1 & 0 \\ 8\end{array}$	$\left\lvert\, \begin{aligned} & 0.8 \\ & 0.0\end{aligned}\right.$		
$4+$	8．81 366	194	8．81 459	195	1.18541	9.99905	16		－ 1.6	08 0 0 0	
45	8．81 560	193	8．81 653	194	I．I $83+7$	9.99907	15		1－31．		
46	8．81752	192	8．81 846	193	1.18154	9.99906	14	20 3．î 3 ．	2．6	2.312	
47	8．8ı $9+3$	19 I	8.82038	192	1．1796î	9.99903	13	30 4.3 4 40 6.3 4	4.	353	
48	8.82 I 3 4	191	8.82230	191	1.17770	$9.9990 \frac{1}{4}$	12	40 1.3 6.0 50 7.9 7.5	¢ 6.4	+6.0 5.8 4 5.0	
49	8.82324	$18 \hat{9}$	8.82420	190̂	1.17579	$9.9990 \hat{3}$	1 I				
50	8.82513		8.82 610̂		1.17389	9.99 902̂	10				
51	8．82 701		8.82799	188	I． 17201	9.99902					
52	8.82888	187	8.82987	188	1．17012	9.99901	8	610 10．	3	－ 10	
53	8.83075	186	8.83175	187	1．16825	9.99900			0.3 0.3 0.		
$5+$	8.83 26ô	183	8.8336 Î	$18 \frac{6}{}$	I． $1663 \hat{8}$	9.99899	6		0.1	20	
55	$8.83+45$		8.83547		1.16453	$9.99 \overline{89}$		 10 0.7 0.7 0.6	－0． 4	？ 0.1	
56	8.83629		8.83732	18 ¢	1.16268	9.99897	5	20 1.5 1.3 30 2.5	1	$\hat{6}_{6} 0.3$	－． 1
57	8.83813	183	8.83916	184	1．16083	$9.9989 \hat{6}$	4	30 2.2 2.0 40 3.0 2.0	1.	（1）	0．$\frac{1}{2}$
58	8.83993	182	$8.8+100$	$18 \hat{3}$	1.15900	9.99856	2		2.5	$\begin{array}{ll}15 & 0.8\end{array}$	
59	8.84177	182	8.84282	182	1.15719	9.99895					
60	$8.8435 \hat{8}$		$8.84+46$	182	1.15535	9.99894	（）				
	Log．Cos．	d．	Log．Cot．	c． 11.	1．02．Tan．	Lug．Sin．	1		I＇，I＇．		

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS. 8°

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS.
10°

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS, 12°

TABLE VII．—LOGARITHMIC SINES，COSINES，TAN゙（FENTS，ANI COUMN゙GENTS。

TABLE VH.-LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS. 14°

	Log．sin．	1.	loges Tam．	1.	Line．cont．	1，0上2．cos．	II．		P．I＇．
0	9.46593	4 I	9.48534	15	0.51400	9.98059	3	（i）	
1	9.46635	4	9.48579	45	$0.51+21$	9.98056	3	59	
2	9.46676	41	9.48624	43	O． 51376	9．9805	4	58	
3	$9 .+6717$	41 41	9.48669	45	－． 51330	9.980 .48	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	57	， 45 ， $55,4 \hat{4}$ ， 44
4	$9.4675 \hat{8}$	41	9.4871 f	45	0.51283	9.98044	4	56	$\begin{array}{lllllllllllllll} & 4.5 & 4.5 & 4.7 & 4.4\end{array}$
5	9.46790	41	9．48759	45	0． 51240	9.980 .40	3	55	3 l
6	9.46 840	41	9.4880	45	0． 51195	9.98030	4	$5+$	80.06 .05 .950 .8
7	9.46 S81	4	9.488 .49	$4+$	0． 51151	9.98032	$+$	53	$\begin{array}{llllllllllllllll}0 & 0.8 & 0.7 & 6.7 & 6.6\end{array}$
8	9.4692 2̂	41	9．48894	45	0．51 106	9.9802 S	4	52	$10,7.117 .5 \quad 7.47 .3$
9	9.46963	$+1$	9.48939	45	0.51061	9.9802 t	4	51	$2015.115 .01+.814 .6$
10	$9.4700 \hat{4}$	1	$9.4898+$	45	0． 51010	9.98 021	3	S）	$30,22 . \overline{\text { F }} 22.5$ 22． 222.0
I I	$9.470+5$	4	$9.4902 \hat{8}$	4	－． 50971 î	9.98017	4	49	$30.3 \quad 30.0,29 \cdot 620.3$
12	9.47086	＋ô	9.49073	1	0． $5092 \hat{6}$	9.98013	4	48	50，37．9．37．5．31．1 30．6
13	9.47127	40	9．49 1 8	$+$	0． 50882	9.98009	4	47	
$1+$	9.47168	4	$9 .+9$ 162		0． 50837	9.98005		46	$4 \hat{3} 43$
15	$9.4720 \overline{8}$	＋0	9.49207	1	0． 50792	9.98001	3	45	$614.3{ }^{6} 4.3$
16	9.47249	40	9．49 252	$4+$	0． 50748	9.97997	3	$4+$	$7 \quad 5.1,5.0$
17	9.47290	$+1$	$9 \cdot+9296$	4	－． 50703	9.97993	4	43	$\begin{array}{llll}8 & 5.8 & 5.7\end{array}$
18	9.473300	$+$	$9.493+1$	4	0.50659	9.97989	4	42	$9 \quad 6.5 \quad 6.7$
19	9.47371	40	9．+9385	4	0.50617	9.97985		41	$107 . \grave{2} 7.1$
20	9.47 ＋11	4	$9 .+9+30$		0． 50570	9.97 98＇î	4	40	$20.1+.51+.3$
21	9.47452	40	$9 .+9+7 \hat{4}$	4	0.50523	9.97977	4	39	3021.721 .5
22	9.47492	40	$9 .+951 \hat{8}$	＋	$0.50+8$ î	$9.9797 \hat{3}$	4	38	$40 \quad 29.0$
23	$9.4753 \hat{2}$	40	9.49563	4	0.50437	9.97969	$\frac{4}{3}$	37	$50,36.2,35.8$
24	9.47573	40	9.49607	4	0.50392	9.97966		36	
25	9.47613		9.49651		$503+8$	9．97962		35	
26	9．47 653	40	9.49693	$4+$	$0.5030 \hat{4}$	9.97958	4	$3+$	4î 41,40 ， 40
.27	9.47694	40	$9 .+9740$	$+$	0.50260	$9.9795+$	4	33	
28	9．4773t	－	9．4978t	4	0.50216	9.97950		32	$\begin{array}{llllllllllllll}7 & 4.8 & 4.8 & 4.7 & 4.6\end{array}$
29	$9+7774$		9.49 828		0．50172	$9.979+6$	4	31	
30	$9.4781+$	40	9.49872		0.50128	$9.979{ }^{2}$		30	
31	$9.4785+$	$4 \bigcirc$	9.49916	41	－． $5008 \hat{3}$	9.97938	4	29	$\begin{array}{llllllllllll}10 & 6.9 & 6.5 & 6.9 & 6.6\end{array}$
32	9.47 S9＋	40	9.499^{60}	4	－． $5003 \hat{9}$	9.97934	4	28	$2013.8113 . \hat{6} 13.5$ 1 $3 . \hat{3}$
33	9.47934	10	9．50004	43	0.49996	9.97930	4	27	$30-2.5$ 20． 520.220 .0
$3+$	9.47974	40	9． 50048	4	$0 .+995=$	9.97926	4	26	$4027.6,27 \cdot \hat{3} 27.0 \quad 26.6)$
35	9.48014	40	9． 50092		0．t）908	9.97922		25	$34 \cdot 0,34 \cdot 1,33 \cdot 7,33 \cdot 3$
36	$9.4805+$	กิิ	9． 50136	4	0.49864	9.97918	4	$2+$.	
37	$9.4809 \hat{3}$	39	9.50179	43	0.49820	9.97914	4	23	3939
38	$9.4813 \hat{3}$	40	9.50223	$4+$	0.49776	9.97910		22	
39	9.48173	39	9．50 267	43	$0 .+9733$	9.97906		21	
40	9.48213	40	9． 50311	$4+$	$0 .+9689$	9.97902		\because	$8 \quad 5.2 \begin{array}{lll}1.2\end{array}$
41	$9.4825^{-\frac{1}{2}}$	$3{ }^{\text {}}$	$9.5035 \hat{+}$	43	0.49645	9.97898	1	19	$9 \quad 5.9$ 5 8． 5.8
42	9.48292	39	9.5039^{8}	43	0.49602	9.97 S94	＋	18	$10.6 .6 \quad 6.5060 .+$
43	9.48331	39	9． $504+2$	$4+$	0.49558	9.97890		17	$2013 . \hat{1} 13.0 \cdot 12 . \hat{S}$
$4+$	9.48371	39	$9.50+83$	43	0.4951 f	9.97886		1	$\begin{array}{lllllllll}30 & 19.7 & 19.5 & 19.3\end{array}$
45	$9.48+10$	39	9.50529	4	0.49471	9.97881		15	
46	$9.48+50$	39	9． 50572	43	$0.49+2=1$	$9.9787 \hat{7}$	4	14	$50132.9,32.5132 .1$
47	9.484809	39	9．50616	43	0.4938 .4	$9.9787 \hat{3}$		13	
48	9.48529	39	9．50659	43	0.49340	9.97860	4	12	
49	9．48 568	39	9． 5070 ล	43	－． 19207	9.97865		1 I	
50	9．48607	39	9． 50746	43	0.49254	9.97861	4	1）	6 $0 . \hat{4}$ 0.4 $0 . \hat{3}$
51	$9.4864 \hat{6}$	39	9.50789	43	0.49210	9.97857	4	9	$\begin{array}{llllll}7 & 0.5 & 0.1 \\ 8 & 0.6 & 0.4\end{array}$
52	9，48686	39	0.50832	43	0.49167	9.97 S 5 3	4	8	8 S 0.6
53	9.48725	39	9.50876	43	0．49 124	9.97840	4	7	90^{9}
$5+$	$9.4876 \hat{4}$	39	9.50919	43	0.49081	$0.978+5$	4	6	
55	$9.4880 \hat{3}$	39	9.50962	43	0.4903 S	9.9781	$+$	，	$\begin{array}{lllll}20 & 1.3 & 1.3 & 1.1 \\ 30 & 2.3 & 2.0 & 1.7\end{array}$
56	$9.488+\frac{1}{2}$	39	9.51003	43	0.48997	9.97837	4	4	$\begin{array}{lllll}40 & 3.0 & 2.0 & 2.3\end{array}$
57	9.4888 î	39	$9.510+8$	43	0.48951	9.97833	4	3	$50 \quad 3 . \hat{7} \quad 3 . \overline{3} \quad 2.9$
58	9.48 920̂	39	9.5109 l	43	0.48908	9.97829	4	，	$50.30 \cdot 3 \cdot 2.0$
59	9.48959	39	9．51 13 ${ }^{\text {9．}} 17$	43	0．4886\％	$9.9782 \hat{4}$	4	1	
（i）	9．48998	38	9.51179	43	O．4ヶ8さえ	9.97820	4	1	
	lug．Cos．	d．	LuE．Cot．	． 1.	102．Tan	l，or．Sin．	1.	，	1＇．1＇．

TABLE VII.-LOGARITHAIC SINES, COSINES, TANGENTS, AND COTANGENTS.

	Log. sin.	d.	Log. Tan. c. d.	Log. Cot.	Log. Cos.	d.				P. P.	
0	9. 57357	3 I	$9.606+1$	0.39359	$9.967 \mathrm{I} \hat{6}$		60				
I	9. 57389	3 I	$\begin{array}{ll}9.60677 & 36\end{array}$	0.39 32 2	9.967 I Î	5	59				
3	9. 57420	3 I	$9.6071 \hat{3}-36$	0.39 286	9.96706	5	58				
3 4	9. 57451	3 I	9.60750	0.39250	9.96701	5	57				
4	9.57482	31	9.60786	0.39213	9.96696	5	56		6	$3 \cdot 6$	3.6
5	9. 5751 3	3 I	$9.6082 \hat{2}$ - 3 3̂	0.39 I77	9.96691	5	55		7	4.2	4.2
7	9. 57544	3 i	9.6085936	0.39 I 41	9.96686		54		8	4.8	4.8
7	9. 57576	3 I	9.6089536	0.39 IO5	9.96681	5	53		9	5.5	5.4
8	9. 57607	31	9.60931	0.39069	9.96673		52		10	6. I	6.0
9	9. 57638	31	9.60967 - 36	$0.39032{ }^{2}$	9.9667 ô	5	51			I2.Î	12.0
10	9.57669	31		0.38996	9.96663	5	50			18.2	18.0
1 I	9. 57700	31	9.6ı O39̂ 3 ¢	0. 38960	9.96660	5	49			24.3	24.0
12	9. 57731	31 31	9.61 076336	0.38924	9.96655	5	48			30.4	30.0
13	9.57762	3 l	9.61 11236	0.38888	9.96650	5	47				
If	9. 57792	30	9.61 148 ${ }^{\text {96 }}$	0.38852	$9.966+\frac{1}{4}$	5	46				
15	9. 57823	31	9.61 184 ${ }^{36}$	0.38816	9.96639	5					35
16	9. $5785 \hat{4}$	31	9.6122036	0.38780	$9.9663 \hat{4}$	5	4		6	3. ${ }^{\text {a }}$	$3 \cdot 5$
17	9.57883	30̂	9.61 256336	0.38744	9.96629	5	44		7	4. î	4. I
18	9.57916	30	9.6129236	0.38708	9.9662 .4	5	43		8	4.9	$4 \cdot 6$
19	$9.579+7$	30	9.61 328 36	0.38672	9.96619	5	42 41		9	$5 \cdot 3$	5.2
20	9. $5797 \hat{7}$	3 I	9.61	0.38636	9.96 61	5	40			5.9	$5 \cdot 8$
21	9. $5800 \hat{8}$	30 ¢	9.61 40036	0.38600	$9.9660 \hat{8}$	5	40			11.8	II. 6
22	9.58 039	31	9.6143636	$0.3856+$	$9.9660 \hat{3}$	5	39			17.7	17.5
23	9.58070	30	9.61472	0.38528	9.96598	5	38			23.6	$23 \cdot 3$
24	9.58 100	30	9.61 $50 \hat{7} \quad 35$	-. 38492	9.96593	5	37			29.6	29. î
25	9.58 I 3 I	30 31	9.61 $54 \hat{3}$	0.38 456	9.96589	5	36				
26	9.58162	31	$9.6157 \hat{9}$ 36	0. 38420 ¢	$9.9658 \hat{2}$	5	35			3Î	31
27	9.58 I 9 2	30	9.61615 35	0.38385	9.96577	5	34			3.1̂	
28	9. $5^{8} 223$	30	9.6ı 651 36	0. 38349	9.96572	5	33			3.7	3.6
29	9. 58253	30	9.61 686 35	0.383 I 3	9.96567	5				4.2	4. İ
30	9.58284	30	9.61 72⿺廴	$\overline{0.38} 27 \hat{7}$	9.9656 I	5	3			4.7	4.6
3 I	$9.5831 \hat{4}$	30	9.6175835	0. 38242	9.96556	5				5.2	5. 1 İ
32	$9.583+5$	30	$9.6179+36$	0.38206	9.96551	5	29 28			10.5	10. 3
33	9. 58373	30	9.61 829 35	0.38 170̂	9.96546	5	27			15.7	I 5.5
34	9.58406	30	9.6186535	0.38135	9.96540 -	5	27			21.0	20.6
35	$9 \cdot 58+36$	30	9.61 901 36	0.38 099	$9.9653 \overline{5}$	5				26.2	$25 \cdot 8$
36	$9.5846 \hat{6}$	30	9.61 936̂ 33	$0.3806 \hat{3}$	9.96535 9.96530	5	25				
37	9.58497	30	9.61972 93	0.38028	9.96 9.96	5	24				
38	9.58527	30	$9.6200 \hat{7}$ 35	0.37992	9.96519	5	23		30	30	29
39	9. 58557	30	$9.620+3 \quad 35$	0.37992 0.37957	9.96519 9.96514	5	22	6		3.0	- 2.9
40	9.58 $58 \hat{7}$	30	$\underline{9.62078} 35$	0.37 92î			21	7		3.5	- 3.4
4 I	9.58618	30	9.62 114 33	0.37886	9.96509	5	$\because 0$	8		4.	3.9
42	9.58648	30	$9.62149 \hat{9} 35$	-. 3788	9.96503	5	19	9	4.6	4	- 4.4
43	9.58678	30	9.6218533	0.3785	9.96498	5	18	10		5.0	4.9
44	$9.5870 \hat{8}$	30	$9.62220 \hat{~} 35$	7815	9.96493	5	17	20		10.0	9.8
45	$9.5873 \hat{8}$	30	$\frac{9}{92} \frac{25}{25}$	779	9.96488	5	16		I $5 . \hat{2}$	15.0	14.7
46		30		0.37744	9.96482	5	15			20.0	19.6
47	9.30769 9.58799	30	9.62291	0.37708	9.96477	5	14			25.0	24.6
48	9.58799 9.58829	30	9.62327 0.62362 63	0.37673	9.96472	$\frac{}{2}$	13				
49	9.58859	30	$9.62362{ }^{2} \times 15$	0.37637	9.96466	5	12				
	9.50859	30	9.62397	0.37602	9.96461	5	11				
50	9.58889	30	9.624333	0.37567	9.96456	5	10			0.5 0.	
51	9.58919	30	9.62468 3 3	$0.3753 \hat{1}$	9.96450	5	9			0.6	. 6
52	9.58949	30	$9.6250 \hat{3} 35$	0.37496	9.96443	5	8			0.7	
53	9.58979	30	9.6253935	0.37461	9.96440	5	7			0.80	
54	9.59009	30	9.62574	0.37426	$9.9643 \hat{4}$	3	6			0.90	
55	9.59 038	29	$9.6260 \hat{9} 35$	$0.37390 \hat{}$		5				I. $\hat{8}$ I	. 6
56	9.59068	30	$9.6264 \hat{4} 35$	-. 37355	9.96424	5	5			2.72	. 5
57	9.59098	30	$9.62679 \hat{35}$	0.3732 ô	9.96418	5	4			3.63	
58	9.59128	29	9.6271535	-. 37295	$9.964 \mathrm{I} \hat{3}$	5	3			4.64	
59	9.59 I 58	30	9.6275035	-. 37250	$\begin{aligned} & 9.96415 \\ & 9.96408 \end{aligned}$	5	2				
60	9.59188	30	$9.62785 \quad 35$	0.37215	$9.96402 \hat{1}$	5	0				
	Log. Cos.	d.	Log. Cot. c. J.	log. Tan.	log. Sin.	d.	1			P	

25

,	Low. Sin.	d.	Log. Tan.	r. d.	Low. Cot.	1.0g. Cos.	d.		P. I'.							
0	9.62595	27	9.66867	32	$0.3313 \hat{2}$	$9.9572 \hat{7}$	6	(i)								
1	9.62622		9.66900		0.33 100	9.95721	6	59		33	32	32				
2	9.62649	27	9.66933	33	0.33067	9.95716	6	58								
3	9.62676	27	9.66966	33 33	0.33034	9.95710	6	57								
4	9.62703	27	9.66999	33	$\frac{0.33001}{0.32} 968$	$\frac{9.95}{9.95} \frac{704}{698}$	6	56								
6	9.62730	27	9.67032	33			6	55								
6	9.62757		9.67065		0.32935	9.95692	6	54	6	3.3	3.2	3.2				
7	9.62784	27	9.67097	$\begin{aligned} & 32 \\ & 33 \end{aligned}$	0.32902	9.95686	5	53	7	$3 \cdot 8$	3.8	$3 \cdot \overline{7}$				
8	9.62811	27	9.671300	3333	0.32869	9.95680		52	8	4.4	4.3					
9	9.62838	26	9.67163		$0.3283 \hat{6}$	$9.9567 \hat{4}$	5	51	9	4.9	$4.9 \quad 4.8$					
10	9.62 86		9.67 196	33	0.32803	9.95668	6	50)	10	$5 \cdot 5$	5.4	$5 \cdot \overline{3}$				
II	9.62 8911	27	9.67229	32	0.32771	9.95662	6	49	20	I 1.0	10.8	10.616.0				
13	$9.6291 \hat{8}$	27	9.67262	$\begin{aligned} & 33 \\ & 33 \end{aligned}$	c. 32738	9.95656	6	48		16.5						
13	9.62945	$2 \hat{6}$	967297		$\begin{aligned} & 0.32705 \\ & 0.32672 \end{aligned}$	$\begin{aligned} & 9.95650 \\ & 9.956+1 \end{aligned}$	6			22.0	27.1 26.6					
1.4	9. 62972	26	$9.6732 \hat{7}$	33			6	46	40							
15	9.62999	27	9.67360	32	0.32 640	$9.9563 \hat{8}$	6	45								
16	9.63025	26	9.67393	33 3 2	0.32607	9.95632	\%	+4								
17	9.63052	26	9.67425	3	0.32574	9.95627	5	43								
18	9.63079	27	$9.6745 \hat{8}$	33 3 3	0.32541 î	9.95621	6	42								
19	9.63 106	26	9.67491	32	0.32509	9.95615	6	41			27					
20	9.63132	27	9.67523	32	0.32476	9.95-609	6	40	6 2.7							
21	9.63 I59	27	9.67556	$\begin{aligned} & 33 \\ & 3 \hat{2} \end{aligned}$	$0.324 .4 \hat{3}$	9.95603	6	. 39	7 3. ${ }^{\text {I }}$							
22	9.63 I 86	26	9.67589	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	0.32411	9.95597	6	38	δ							
23	9.63212	26	9.676210			9.95591	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	37	9							
24	9.63239	26	9.67654	$\begin{aligned} & 33 \\ & 3 \hat{2} \end{aligned}$	$0.323+\hat{5}$	9.95585	0	36	10							
25	9.63266	27	9.67687	$3{ }^{3}$	0.32313	9.95579	6		20 9.0							
26	9.63292	26	9.67719	$3{ }^{2}$	0.32280 ¢	9.95573	6	34	40 I8.0							
27	9.63319	26	9.67752		0.32248	9.95567	6	33								
28	$9.633+5$	26	9.6778 .4	32	$\begin{aligned} & 0.32215 \\ & 0.32183 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.95561 \\ & 9.95555 \end{aligned}$	6	32	50 22.5							
29	9.63372	26	9.67817	3232				31								
30	9.63398		9.67849		0.32 I 50	9.95549	6	30								
3 I	$9.63+25$	26	9.67882	32	0.32 II 8	9.95543	6	29								
32	9.63 45 ${ }^{\text {I }}$	26	9.67914	32	-. 32085	9.95537	6	28								
33	9.63478	26	$9.679+7$	32	0.32053	9.955300	6	27		26	26	25				
34	9.6350 .1	26	9.67979	32	0.32020	9.955^{2+}	6	26	6							
35	9.63530	26	9.68 O12		0.31988	9.95518		25	7	3. 1	3.0 -	3.0				
36	9.63557		$9.6804 \hat{1}$	32	0.31955	9.95512	6	$2+$		$3 \cdot 5$	$3 \cdot 7$	3.4				
37	9.63583	26	9.68077	32	0.31923	9.95506	6	23	9	4.0	3.9	$3 \cdot 8$				
38	9.63 609̂	26	9.68109	32	0.31891	$9.95500 \hat{1}$	6	22	10	4.	4.	+. 2				
39	963636	26	9.6814	32	$0.3185 \hat{8}$	$9.9549 \hat{4}$	6	2 I			8.6	8.5				
40	9.63662	26	9.68174	3	0.31826	9.95488	6	$\because()$		13.	13.0	12.7				
41	9.63688	26	9.68206	32	0.31793	9.95482	6	19		17.	17.3	17.0				
42	9.63715	26	9.682388	32	$0.3176 \hat{1}$	9.95476	6	18		22.1	ค1.	21.2				
43	9.63741	26	9.6827 I	32	0.31729	9.95470	6	17								
44	9.63767	26	$9.6830 \hat{3}$	32	0.31696	9.95464	6	16								
45	$9.6379 \hat{3}$	26	9.68335	32	$\overline{0.31664}$	9.95458	6	15								
46	9.63 819	26	9.68368	32	0.31632	9.95452	6	14								
47	9.63846	26	9.68400	32	0.31600	$9.954+\hat{j}$	6	13								
48	9.63872	26	9.68432	32	0.31569	9.95439	6	12		0. 0^{2}	0.6					
49	9.63898	26	$9.6846 \hat{4}$	32	0.3153	$9.95+3 \hat{3}$		11		0.	0.7	-. $\hat{6}$				
50	9.63924	26	9.68497	32	0.31503	9.95429	6	10)		O.	0.8	0. ${ }^{0}$				
51	9.63950 -	26	9.68529	32	0.3147 I	$9.9542 \hat{1}$)		1.0	0.9					
52	9.63976 ¢	26	9.68 56I	32	0.31439	9.95415	6	8	10	1.	I. 0	0.9				
53	9.64002	26	9.68593	32	$0.3140 \hat{6}$	9.95409	6	7		2.	2.0	1.8				
54	9.64028	26	9.68625	32	$0.3137 \hat{4}$	9.95403	6	6		3.	3.0	2.7				
55	$9.6405 \hat{4}$	26	9.68657	,	0.31 342	9.95397	0	5			4.0					
56	9.64080	26	9.68590	32	0.31310	9.95390 -	6	4			5.0					
57	9.64106	26	9.68722	32	0.31278	9.9538 4	6	3								
58	$9.6413 \hat{2}$		9.68754	32	0.31 246	$9.9537 \overline{8}$										
59	9.64158		9.68786	32	0.31214	9.95372	6	I								
60	$\overline{9.64}$ I 84	25	9.68818	3	0.31 182	9.95366		0								
	Log. Cos.	d.	Log. Cot.	c. 11.	Log. Tan.	Lag. sill.	I.	,			I'.					

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS 26°

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS.
30°

	Log. Nill.	d.	Log. Tan.	C.d.	Log. Cot.	Log. Cos.	1.		P. P.			
0	9.69897	$\begin{aligned} & 22 \\ & 2 \hat{1} \\ & 22 \\ & 22 \end{aligned}$	9.76144	29	0.23856	9.93753	$\begin{aligned} & 7 \\ & 9 \\ & 9 \\ & 7 \end{aligned}$	60				
1	9.69 919		9.76173		0.23827	9.93746		59				
2	9.69940 ô		$9.7620 \hat{2}$	29	0.23797	-9.93738		58				
3	9.59962		9.762311	29	$0.2376 \hat{8}$	9.93731		57				
4	$9.6998 \hat{4}$		9.76260		0.23739	9.93724		56				
5	970006	22	9.76289	29	0.23710	$9.9371 \hat{6}$	9	55				
6	9.70028	22	9.76319	29	0.2368 I	9.93709	7	54				
7	9.70050	22	9.76348	29	0.23652	9.93702	9	53				
8	9.7007 I	22	9.76377	29	0.23623	9.93694	9	52				
9	$9.7009 \hat{3}$	22	9.76406	29	0.23594	9.93687	7	5 I	6			
10	9.70115		9.76435	29	\bigcirc	9.93680	$\begin{aligned} & 7 \\ & 5 \end{aligned}$	50	7	3.4		2.8 3.3
11	9.70137	22	9.76464	29	0.23535	9.93672	9	49	7	3.4	3.4 3.8 8	3.3 3.8
12	9.70158	2 I	9.76493	29 29	0.23506	9.93665	7	48	9	3.9 4.4	$3 \cdot 8$ $4 \cdot 3$	3.8 4.3
13	9.70180	22	9.7652 2	29	$0.2347 \overline{7}$	9.93658	9	47	10	4.9	$4 \cdot \hat{8}$	4.7
14	9.70202	22	976551	29	$0.2344 \hat{8}$	9.93650	9	46	20	9.9	9. 6	9.5
15	9.70223	2 Î	9.76580	29	0.23419 9	9.93643	\hat{y}	45	30	14.7	I 4.5	$14.2{ }^{2}$
16	$9.702+5$	22	$9.76609{ }^{9}$	29	$0.23390 \hat{}$	9.93635	7	44	40	19.6	I 9.3	19.0
17	9.70267	2 I	9.76638	29 29	0.2336 î	$9.9362 \widehat{8}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	43		24.6	24.1 İ	23.7
18	9.7028 §	$2 \hat{1}$	$9.7666 \hat{7}$	29	$0.2333 \frac{2}{2}$	9.93621	9	42				
19	9.70310	21	9.76696		$0.2330 \hat{3}$	9.93615	7	4 I				
20	9.70331		9.76725	29	0.23274	9.93606	7	40				
21	$9.7035 \hat{3}$	2	$9.7675 \hat{4}$	29	$0.2324 \hat{3}$	9.93599	7	39				
2	9.70375	$2 \hat{1}$	$9.7678 \hat{3}$	29	0.23216	9.93591	7	38				
23	$9.7039 \hat{6}$	21	9.76812	29	0.23 I 89	9.93584	9	37				
2.4	9.70418	21	9.76841	29	0.23158	9.93576	7	36				
25	9.70439	$2 \hat{1}$	$\overline{9.76870 \hat{O}}$	29	0.23 129	9.93569	7	35				
26	9.70461	21	9.76899	28	0. 23 IOI	9.93562	7	34		22	2î	
27	9.7048 2	21	9.76928	29	0.23072	9.93554	7	33	6	2.2	2.1 İ	2.1
25	9.70504	21	9.76957	29	0.23043	9.93547	7	32	7	2.5	2.5	2.4
29	9.70525	21	9.76986	29	0.23014	9.93539	7	3 I	8	2.9	$2 . \hat{8}$	2.8
80	9.70547	2 İ	9.77015	29	0.22985	9.93532	7	30	9	$3 \cdot 3$	3.2	3. 1
3 I	$9.7056 \hat{8}$	21	$9.7704 \hat{3}$	28	$0.2295 \hat{6}$	$9.9352 \hat{4}$	7	29	10	3.6	3.6	$3 \cdot 5$
32	9.70590	21	$9.770^{\circ}{ }^{\text {a }}$	29	0.22927	9.93517	7	28	20	$7 \cdot 3$	7. 1	7.0
33	9.70611	2 I	9.77 ı Ô̂	29	$0.2289 \hat{8}$	9.93509	9	27		II. O	10.7	10.5
34	9.70632	2 I	9.77 I 30	29	0.22869	9.93502	7	26		14.6	I 4.3	14.0
35	9.70654	$2 \hat{1}$	9.77 I 59	28	0.22841	9.93495	7	25		I8.3	I7	17.5
36	9.70675	2 I	9.77188	29	0.22812	9.93487	7	24				
37	$9.7069 \hat{6}$	2 I	9.77217	29	0.22783	9.93480	7	23				
38	9.70718	2 I	9.772 .45	28	$0.2275 \hat{4}$	$9.93472 \hat{2}$	7	22				
39	$9.7073 \hat{9}$	21	$9.7727 \hat{4}$	29	$0.2272 \hat{3}$	9.93465	7	21				
40	9.70760		$9.7730 \hat{3}$	29	$0.2269 \hat{6}$	$9.9345 \hat{7}$	7	20				
- 41	9.70782	21	9.77332	28	0.22668	9.93450	7	19				
42	9.70803	2 I	9.77361	29	0.22639	9.93442	7	18				
43	9.70824	21	9.773^{89}	28	$0.22610 \hat{}$	9.93435	\%	17		8	7	7
44	9.70846		$9.7741 \hat{8}$	29	0.2258 î	9.93427	7	16		0.8		
45	9.70867	21	9.77447	28	0.22553	9.93420	7	15		0.9	0.9	0.8
46	9.70888	21	9.77476	29	0.22524	9.93412	9	14		I.Ô	1.0	0.9
47	$9.7090 \hat{1}$	2 I	$9.7750 \hat{4}$	28	0. 22495	9.93405	7	13		I. 2	I. I	I. ${ }^{\text {or }}$
48	9.70930	21	9.77533	29	$0.2246 \hat{6}$	9.93397	$\stackrel{7}{8}$	12		I. $\hat{3}$	1. $\hat{2}$	I. 1
49	9.70952		977562	28	0.22438	9.93390	7	1 I		2.6	2.5	2.3
50	9.70973	21	9.77591	29	0.22409	9.93382	8	10		4.0	3.7	3.5
51	9.70994	21	9.77619	$2 \widehat{8}$	$0.22380 \hat{0}$	9.93374	9	9		$5 \cdot 3$	5.0	4.6
52	9.71013	2 I	9.77648	28	0. 22352	9.93367	9	8		6.6	6.2	$5 \cdot \hat{8}$
53	$9.71036 \widehat{6}$	2 I	9.77677	29	0.22323	9.93359	7	7				
54	9.71057	21	9.77703	28	0.22294	9.93352	7	6				
55	9.71 $07 \hat{8}$	21	9.77734	28	0.22266	9.93344	7	5				
56	9.71 o99̂	2 I	9.77763	29	0. 22237	9.93337	9	4				
57	9.71121	2 I	9.7779 î	28	$0.2220 \hat{8}$	9.93329	7	3				
58	9.71142	21	9.77820	28	0.22 I 80	9.9332 I	8	2				
59	9.71163	21	9.77849	29	0.22151	9.93314	7	1				
60	9.71184	21	9.77877	28	0.22 122	9.93306	9	0				
	Log. Cos.	d.	Log. Cot.	c. 1.	Log. Tan. 1	Log. Sin.	d.	1			P.	

TABLE VII.-LOGARITIIMC SINES, COSINES, TAN(シENTS, INI) COT.INGFNTYS.

34°

35

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS.
38

,	Log. Sin.	d.	Log. Tan.	c. d.	Log. Cot.	Low. Cos.	d.		P. P.					
0	9.78934		9.89281	26	0.10 719	9.8963		60						
1	9.78950	1616161616	9.89307	262626	-. 10693	9.896433	$\begin{array}{r} \hat{9} \\ \text { 10 } \\ \text { 10 } \\ 10 \\ \hat{9} \end{array}$	59						
2	9.78966		9.89333		o. 10667	9. 89633		58						
3	9.78982		9.89 859		o. $106+1$	$9.8962 \hat{3}$		57						
4	9.78999		9.89385	26	0.10615	9.89613		56						
5	9.79015	16	9.8941 I	26	O. 10589	$9.8960+$	$\begin{aligned} & \text { Io } \\ & \text { 10 } \\ & \text { 10 } \\ & \text { 10 } \end{aligned}$							
6	9.79031	16	9.89437	26	o. 10563	9.89 $59+$		55545352						
7	9.79047	16	9.89463	26	O. 10537	9.89 584								
8	9.79063	1 ¢	9.89489	26	0.10 511	9. 89574		52						
9	9.79079	16	9.89515	26	0. 10485	$9.8956+$		51						
10	9.79095	16	9.8954	26	O. 10 459	9.89 $55+$	10	50						
11	9.79 111 I	16	9.89567	26	o. IO 433	9.89544	$\begin{aligned} & 10 \\ & \text { 10 } \end{aligned}$	49						
12	9.79 127	16	9.89593	26	o. 10 407	9. 8953 4		47						
13	$9.79 \mathrm{I}+3$	16	9.89619	26	o. IO 381	$9.8952 \ddagger$	10							
15	9.79159	16	9.8964	26	0.10 355	9.89514	10 46							
16	9.7919 I	16	9.89697		-. IO 303	9.8949 t	10	44						
17	9.79209	16	9.89723	26	-. 10 277	9.8948 ¢	$\begin{aligned} & \text { Io } \\ & \text { Io } \end{aligned}$	43						
18	9.792233	16	$9.897+9$	26	0.10251	$9.8947 \hat{f}$		42						
19	9.79239 g	16	9.89775	26	0.10225	9.8946 t		4 I						
20	9.79253	16	9.89801	26	0.10 199	$9.8945 \hat{4}$		40						
21	9.79271 î	16	9.89827	26	-.10 173	9.8944	10	39						
22	9.79287	16	9.89853	26	-. 10 144	9.8943 ¢								
23	$9.79303{ }^{\text {a }}$	16	9.89879	26	-. 10121	9.8942 ¢	10	3736						
24	979319	16	9.89905	26	0. 10095	9.89414	$10-\frac{36}{35}$							
25	9.79333	16	9.89 93I	26	0.10 069	9.89404								
26	$9.7935 \hat{1}$	16	9.89957	25	-. 10043	9.89394	10							
27	9.79367	15	9.89982	26	-. 10019	9.89384	10	34 33 32						
28	9.79383	16	9.9000 S	26	0.09 991	98937 f		32						
29	9.79397	16	9.90037	26	0.09963	9.89364	10	31						
30	$9.79+15$	16	9.900600	26	0.09 939̂	$9.8935 \hat{4}$	10	30						
31	$9.79+31$	15	9.90086	26	0.09913	¢. $8934+\frac{1}{4}$	10	29						
32	9.79 +4రิ	16	9.90112	26	0.09887	9.8933 f	10	28						
33	$9.79+6 \mathrm{z}$	16	9.901388	23	$\begin{array}{\|l\|} 0.0986 \hat{1} \\ 0.09836 \end{array}$	9.8932 ¢	10	27						
34	9.7947 S		9.90164			9.89314		26						
35	$9.7949+$	16	9.90190	26	0.09810	9.89304								
36	9.79510	16	9.90216	26	0.09784	9.89294	10	25 24 24						
37	9.79526	15	9.90242	26	0.09758	9.89284		24 23						
38	9.79 54î	16	990268	26	0.09732	9.89274	$\begin{aligned} & \text { Io } \\ & \text { Io } \end{aligned}$							
39	$9.7955 \hat{7}$	16	9.90294		0.09706	9.89264		21						
40	9.79 573	I 3	$9.9031 \hat{9}$		0.09680	9.89253		20						
41	9.79589	16	9.90345	26	0.09654	$9.8924 \hat{3}$	10	19						
42	9.79605	15	9.9037 I		$0.0962 \hat{8}$	$9.89233 \hat{3}$		18						
43	9.79 62ô	15	9.90397	23	$0.09602{ }^{\text {a }}$	9.89 22 ${ }^{\text {a }}$	$\begin{aligned} & 10 \\ & \text { 10̂ } \end{aligned}$	17						
44	9.79635	16	9.90423		0.09577	9.89213		16						
45	9.79652	16	9.90449	26	0.0955 I	9.89203		15						
46	9.79668	15	990475	26	0.09525	9.89193	10	14						
47	9.796831	16	9.90501		0.09499	9.89 I 82 2	Iô	13						
48	9. 79699	15	$9.9052 \hat{6}$	$\begin{aligned} & 25 \\ & 26 \end{aligned}$	-09 473 3	9.89172 2	$\begin{aligned} & \text { 10 } \\ & \text { 10 } \end{aligned}$	12						
49	979715	1	9.90552		0.0) 447	9.89162		1						
50	9.79730	15	9.90578		0.09 42î	9.89 $15 \frac{1}{2}$		10						
51	$9.79746 \hat{1}$		9.90604	25	0.093950.09370	9.89142	10	9 8						
52	9.79762	15	9.90630			9.89132								
53	9.79779	15	9.90656		-0.09 344	9.89 I21̂		7						
54	$9.7979 \hat{3}$		9.90682		0.09318	989 IIİ		6						
55	9.79809	15	9.90709	25	0.09292	9.89 Iô̂								
56	9.7982 4	15	$9.9073 \hat{3}$		0.09266	9. 89091	10	3						
57	9.79840	16	9.90759	2626	0.09240 O	9.89081								
58	9.79856	$\begin{aligned} & 1 \hat{5} \\ & 1 \hat{j} \end{aligned}$	9.90783		0.09214	$9.89070 \hat{1}$	10	3 2						
59	9.7987 I		9.9081 I	25	0.09189	$\frac{9.89060}{9.89050}$	$\begin{aligned} & \text { IO } \\ & \text { Io } \end{aligned}$	1						
60	9.79887		9.90837		0.09163									
	Log. Cos.	d.	Loy. Cot.	c. d.	Log. Tan.	Log. Sin.	i.		P. P'.					

40

,	Log. Sill.	d.	Log. Tan.	1.d.	Lug. Cont.	Log. Cos.	d.			I'. 1	
0	$9.8337 \hat{\delta}$	13	9.96963	23	0.0303 t	9.86412	1 I	(6)			
1	9.83392	13	9.96991	25	0.03009	9.86401	12	59			
2	$9.83+03$	I 13	9.97016	23	0.02984	9.86389	$1 \frac{1}{1}$	58			
3	$9.83+19$	I $\frac{1}{3}$	9.97 O4î	23	$0.0295 \hat{5}$	9.86379	12	57			
4	$9.83+3$ 2	$1{ }^{1}$	9.97067	25	0.02933	9.86363	12	56			
5	$9.83+46$	13	9.97092	23	0.02908	$9.8635+$	12	55			
6	9.83459	13	9.97117	23	0.02882	9.86342	12	54			
7	9.83473	$1{ }^{1}$	9.97143	25	0.02857	9. 86330	1 I	53			
8	9.83486	13	9.97168	25	0.02832	9.86318	12	52		25	
9	9.83500	$1{ }^{1}$	9.97193	23	0.02806	9.86306	12	51		$\begin{array}{l\|l} 25 \\ 6 & 2.5 \end{array}$	$\begin{aligned} & 25 \\ & 2.5 \end{aligned}$
10	9.83513	13	9.97219	25	0.02 781	$9.8629 \hat{4}$	12	5)		6 2 7 3	2.5 2.9
11	9.83527	I 1	9.97244	23	0.02756	9.8628 2̂	I 1	49		83.4	2.9 3.3
12	9.83540	$1{ }^{1}$	9.97269	23	0.02730	9. 86271	12	48		9 3.7	3.7
13	9.83554	13	9.97295	25	0.02705	9.86259	12	47		10 +. ${ }^{2}$	4.î
14	9.83567	13	9.97320	- 2	0.02680	$9.862+7$	1 I	46		2088	8. 3
15	9.83580	13	$9.973+5$	25	$0.0265 \hat{4}$	9.86235	12	45		3012.7	12.5
16	9.83594	13	9.9737 ô	25	0.02629	$9.8622 \hat{3}$	12	$4+$		4017.0	16.6
17	9.83607	13	9.97396	25	0.02604	9.862111	12	43		50121.2	20.8
18	9.83621	13	9.97421	25	0.02578	9.86199	12	42			
19	9.83634	13	$9.974+6$	25	$0.0255 \hat{3}$	$9.8618 \hat{7}$		41			
20	9.83647	13	9.97472	23	0.02528	9.86176	12	40			
21	9.83661	13	$9.9749 \hat{7}$	25	0.02502	9.86164	12	39			
22	9.83674	13	9.97 522ิ	25	0.02479	9.86152	12	38			
23	9.83688	13	9.97548	25	0.02452	9.86140	12	37			
24	9.83701	1	9.97573	-5	0.02427	9.86128		36			
25	$9.8371 \hat{4}$	13	9.97598	23	$0.0240 \hat{1}$	9.86116	12	35			
26	9.83728	13	9.97624	25	0.02376	9.86104	12	34		$\left.\right\|^{13}$	13
27	9.83741	13	9.97649	23	0.02351	9.86092	12	33		6 1. 3	I. 3
28	9.83754	13	9.97674	25	0.02325	9.86080	12	32		$7 \quad 1.6$	1.5
29	9.83768	13	9.97699	23	$0.02300 \hat{}$	9.86068	12	31		81.8	1.7
30	9.83781	13	9.97725	23	0.02275	9.86056	I	30		92.0	1.9
31	9.83794	13	9.97750	25	$0.0224 \hat{9}$	9.86044	12	29		10.2 .2	2.11
32	9.83808	13	9.97773	23	$0.0222 \hat{4}$	9.86032	12	28		204.	$4 \cdot 3$
33	9.83821	13	9.97 SOI	25	0.02199	9.86020	12	27		30.	6.5
34	98383 t	13	9.97826	- 23	0.02174	9.86008	12	26		409	8.6
35	$9.8384 \hat{7}$	13	9.97851	25	0.02148	9.85996		25			
36	9.83 S6I	$1 \begin{aligned} & 13 \\ & 13\end{aligned}$	9.97877	25	0.02123	9.85984	12	24			
37	9.83874	13	9.97902	25	0.02098	9.85972	12	23			
38	9.8388 ¢	13	9.97929	25	0.02072	9.85960	12	22			
39	9.83900 -	13	9.97952	2	$0.020+9$	9.85948	12	21			
40	9.83914	13	9.97978	25	0.02022	9.85936		$\because 0$			
41	9.83927	13	9.98003	25	0.01996	9.85924	12	19			
42	9.83940	13	$9.9802 \widehat{8}$	25	0.01971	9.85912	12	18			
43	9.83953	13	9.98054	25	0.01 946	9.85900	12	17		12	12 I İ
44	9.83967	13	9.98079	25	0.01921	9.85887	12	16	6	I. 2 .	1.2 $1.1 ̂$
	9.83980	13	9.9810.	25	0.01893	$\overline{9.85875}$	12	15	7	$1 . \frac{1}{4}$	1.4 1.3
46	9.83993	13	9.98129	25	$0.01870 \hat{6}$	9.85863	12	14	8	1.6	1.61 .3
47	9.84006	1	9.98155	25	0.01845	$9.8585 \hat{1}$	12	13	9	1.9	$\begin{array}{ll}1.8 & 1.7\end{array}$
48	9.84 OI9	13	9.98 180	25	0.01 819	9.85839	12	12	10	2.1	$\begin{array}{lll}2.0 & 1.9\end{array}$
49	9.84033	13	9.98203	25	0.01 $79 \hat{4}$	9.85827	12	1 I	20	4. ${ }^{\text {? }}$	$4.03 . \hat{8}$
50	$9.8+046$	13	9.98231	25	$\overline{0.01769}$	9.85815	12	10	30	6.2 ²	$\begin{array}{lll}6.0 & 5.7\end{array}$
51	$9.8+059$	13	9.98256	25	0.0174 .4	9.85803	12	9	40	S. 3	8.0 7.6
52	9.84072	${ }^{1} 3$	9.9828 1̂	25	O.OI 718	9.85791	12	8	50	10.4	0.0 9.6
53	$9.8+083$	13	9.9830 6̂	25	$0.0169 \hat{3}$	9.85778	12	7			
54	9.84098	13	9.98332	25	0.01 668	9.85766	12	6			
55	9.84 II Î	13	$9.9835 \hat{7}$	25	0.0164 6	9.85754		5			
56	$9.8412 \hat{4}$	13	$9.98382 \hat{2}$	25	0.01617	9.85742		4			
57	9.84 I 38	13	9.98408	25	O.O1 592	9.85730	12	3			
58	9.84151	13	9.98433	25	0.01567	9.85718	12	2			
59	9.84164	13	$9.9845 \hat{8}$	25	O.O1 $5+\hat{1}$	9.85703		1			
60	9.84177	13	9.98 +8 ${ }^{\text {c }}$	25	0.01516	9.85693		0			
	Log. Cos.	d.	Log. Cot.	c. d.	Log. Tan.	Lar. Sill.	11.	,		1. 1	

table vil.-LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS. 44°

TABLE VIII.

LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

,	Log. Vers.	D	Log. Exsec.	D	Log. Vers.	D	Log. Exsec.	D	
0	$-\infty$	$\left.\begin{aligned} & 60206 \\ & 3521 \hat{8} \\ & 2498 \hat{7} \\ & 19382 \\ & 1583 \hat{6} \\ & 1538 \hat{6} \\ & 11598 \\ & 10230 \end{aligned} \right\rvert\,$	$-\infty$	$\begin{array}{\|l\|} 60206 \\ 35218 \\ 24989 \\ 19382 \\ 15836 \\ 1 \\ 13389 \\ 1598 \\ 15230 \end{array}$	6.182711	$\begin{aligned} & 143 \hat{5} \\ & 1411 \\ & 138 \hat{\hat{1}} \\ & 1368 \end{aligned}$	6.18278	$\begin{aligned} & 1436 \\ & 1412 \\ & 1390 \\ & 1368 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$
1	2.62642		2.62642		. 19707		-19714		
2	3.22848		3.22848		. 21119		. 21126		
3	3.58066 3.83054		3.58066 3.83054		.22509 .23877		22516 .23884		
4	3.83054					$\begin{aligned} & 1346 \\ & 1326 \\ & 1306 \\ & 1286 \\ & 1268 \end{aligned}$	6.2523 Î	134713261	5
8	4.02436		4. 02436		$6.2522 \hat{3}$.26549				
	18272		. 18272					1306	
	- 31662		. 31662		. 27856		. 27864	1287	8
	. 43260		.43260 .53491		. 29142		. 30419	1268	9
		$\begin{array}{r} 10230 \\ 915 \hat{1} \\ 820 \hat{0} \end{array}$	4.62642	$\begin{aligned} & 9151 \\ & 8279 \end{aligned}$	6.31660 ¢	1250	6.31669	1250	10
11	4.620920	$\begin{aligned} & 7558 \\ & 6953 \\ & 6437 \end{aligned}$. 70921		$\cdot 328922$	$\begin{aligned} & 1214 \\ & 1198 \end{aligned}$	$\begin{array}{r} \cdot 329011 \\ .3411 \hat{6} \end{array}$	1232	11
12	. 78.778			$\begin{aligned} & 7557 \\ & 6952 \\ & 6437 \end{aligned}$				1215	
13	. $85+3 \mathrm{I}$		$\begin{array}{r} .85431 \\ .91868 \end{array}$		$\begin{array}{r} .35305 \\ .36+87 \end{array}$		$\begin{array}{r} 35315 \\ .36497 \end{array}$	$\begin{aligned} & 1198 \\ & 1182 \end{aligned}$	13
14	. 91868							1166	14
15	4.97860 ¢	$\begin{aligned} & 5992 \\ & 5603 \\ & 5266 \\ & 4964 \\ & 4696 \end{aligned}$	4.97861	$\begin{aligned} & 5993 \\ & 5603 \\ & 5266 \\ & 4964 \\ & 4696 \end{aligned}$	6.37653	11	37663		
16	5.03466		$\begin{array}{r} 5.03466 \\ .0873^{2} \end{array}$. 38803	1150 113 15	$\text { . } 38814$	$\begin{aligned} & 1151 \\ & 1135 \end{aligned}$	16
17	. 08732				$\begin{array}{r} .3993 \hat{8} \\ .4105 \hat{9} \end{array}$	11211106	$\begin{aligned} & .399+\overline{9} \\ & .41070 \end{aligned}$		$\begin{aligned} & 17 \\ & 18 \end{aligned}$
18	. 13696		$\begin{array}{r} .08732 \\ .13697 \end{array}$					$\begin{aligned} & 1121 \\ & 3106 \end{aligned}$	
19	. 18393		.18393		. 42165			J10	19
20	5.22848	$\begin{aligned} & 4+55 \\ & 4238 \\ & 4040 \\ & 3861 \\ & 3697 \end{aligned}$			6.43258	1093	6.43270	1093	20
21	. 27086		$\begin{array}{r} 5.22849 \\ .27087 \end{array}$	4238	. $4+337$	1066	$\begin{array}{r} 443+9 \\ .45415 \end{array}$	1066	21
22	. 31126		$\begin{array}{r} 31129 \\ .34988 \\ .3498 \end{array}$	$\begin{aligned} & 4040 \\ & 386 i ̂ \\ & 3697 \end{aligned}$	$\begin{array}{r} 45403 \\ .46453 \end{array}$	$\begin{aligned} & 1000 \\ & 105 \hat{2} \\ & 104 \hat{0} \end{aligned}$			
23	. 31989						$\begin{aligned} & .46+6 \overline{8} \\ & .47509 \end{aligned}$	$1040 \hat{1}$	23
24	. 3868 ¢		$\begin{array}{r} 34988 \\ \cdot 38685 \end{array}$		47496				24
25	5.42230	$35+5$	-5.42231	$\begin{aligned} & 3545 \\ & 3107 \end{aligned}$	6.48524	1015	6.48537	$\begin{aligned} & 1028 \\ & 1016 \end{aligned}$	25
26	. 45636		.45638 .489	$\begin{aligned} & 3+07 \\ & 3278 \\ & 3159 \\ & 30+8 \end{aligned}$	$\begin{array}{r} 4953 \hat{9} \\ .50544 \\ .51536 \end{array}$.49553.50557.515	$100 \hat{4}$$993$	2627
27	48915					$\begin{gathered} 100 \hat{1} \\ 99 \hat{z} \\ 98 \hat{1} \\ 9 \end{gathered}$			
28	. 52073	$\begin{aligned} & 3158 \\ & 30+8 \end{aligned}$	$.52075$				- 51550	992	28
29	. 5512 Î				$\begin{aligned} & .51536 \\ & .52518 \end{aligned}$. 52532		29
30	5.58066		5.58068	2945	$6.53+88$	970	6.53503	$\begin{aligned} & 970 \\ & 960 \\ & 960 \end{aligned}$	30
31	. 60914		. 60916		. $544+8$	949	. 54463	950	31
32	.63672	2757	. 63674	2672	. 55397	949	. 55413	93	32
33	. 66344	2593	. 66346	2593	. 56336	939	- 56352	929	33
34	. 68937	2518	. 68940	2517	. 57265		5728 î	19	34
35	5.71455		5.71457		6.58184	$\begin{aligned} & 919 \\ & 90 \hat{9} \end{aligned}$	6.58201		35 36 37 38 39
36	. 73902	2379	. 73904	2380	. 59093	900	. 59110	900	
37	. 76282	2316	. 76284	2316	. 59993	89 I	.60011	891	
38	. 78598		. 78601	2256	. 60884	882	.60902	882	
39	. 80854	99	80857		. 61766		. 61784	88	
40	$5.8305 \hat{3}$		$5.8305 \frac{1}{}$		6.62639	872	6.62659		40
41	. 85198		$\begin{aligned} & 8520 \mathrm{î} \\ & .87295 \end{aligned}$	$\begin{aligned} & 2145 \\ & 209 \\ & \hline \end{aligned}$. 63503	$\begin{aligned} & 004 \\ & 855 \\ & 8+5 \\ & 8+5 \end{aligned}$	$\begin{array}{r} 63522 \\ .6+378 \end{array}$	856	41
42	. 8729 Î	204							42
43	. 89333		. 89338 8	$\begin{aligned} & 2043 \\ & 1997 \end{aligned}$	$\begin{aligned} & 65206 \\ & .66045 \end{aligned}$	839	$\begin{array}{r} .65226 \\ .66065 \end{array}$	839	43 44
44	. 91332		. 91333						45
45	5.93284		5.93288	1952	6.66876	831	6.66897	$832 \hat{1}$	
46	. 95193	1868	. 95197	1868	. 67700	815	67720	816	46
47	. 97061	1829	. 97065	1829	. 68515	808	68536	80	47
48	5.98890	1790	5.98894	791	. 69323	80ô	$693+5$	80	49
49	6.0068 ô		6.00685	1755	70124	$\begin{aligned} & 793 \\ & 786 \end{aligned}$	70145		
50	$6.02+3 \hat{}$	1755 1720	6.02440		6.70917		$6.7093 \hat{9}$	799	50
51	. $0+153$	1788	. 0.04160	1720 1687	.71703.72482.7325	779	. 71723	779 ¢	51
52	. 05842	1654	. 05847	1654		772	. 72505	77 ̂	52
53	. 07496		. 0750 1	1623	. 73254	772	. 73277		53
54	. 09120	162	.09125		74019		. 74043		54
55	6. 10714		6.10719		$6.7+779$		6.74802		55
56	. 12279	1537	. 12284		. 75529		. 75554	746	56
57	. 13816		. 13822	1531	. 76275		. 763000	739	57
58	. 15327	14811	. 15333	1585 1485	. 77014		. 77040	7	58
59	. 1681 I		. 16818	1460	. 77747	726	. 77773		59
60	6.1827 i		6.18278		6.78474		6.78500		60
	Log. Vers.	D	Log. Exs	$1)$	Lag. Vers.	I)	g. E	D	

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
$\boldsymbol{Z}^{\circ} \quad 3^{\circ}$

	Low. Vers.	"	Log. Exsec.	1)	Lus. Vers.	I)	L.0E. Ewar.	/)	
0	$6.78+7+$		$6.7850 \hat{1}$	721	7.13687	$\begin{aligned} & 481 \\ & 478 \\ & 473 \\ & 473 \end{aligned}$	$7.137+\hat{6}$	$\begin{aligned} & 48 i \\ & 479 \\ & 476 \\ & 474 \end{aligned}$	0
1	. 79195	71 \%	. 792211	$\begin{aligned} & 713 \\ & 709 \end{aligned}$. $1+168$		14228		I
2	. 79909	709	. 79937		. $1+6+6$. $1+707$		2
3	. 80618	703	. $806+6$. 15122		. 15183		3
4	. 81322		. 81350	698602	. 15593		15657		+
5	6.82019	692	$6.820+8$		7.16066	$\begin{aligned} & 470 \\ & +68 \end{aligned}$	7.16129	+	,
6	. 827111	$68 \hat{6}$. 82740	687682	. 16334	466463	. 16598	+66	6
7	. 83398	681	83129		. 17000		. 1706	$\begin{aligned} & 464 \\ & 46 \hat{6} \end{aligned}$	7
8	. 84079	676	$8+109$	676	$.17+63$	+603	. 17528		8
9	. $8+755$	670	. $8+783$. 17923		. 17989		9
10	$6.85+23$	$\begin{aligned} & 670 \\ & 66 ? \end{aligned}$	$6.85+57$	$\begin{aligned} & 671 \\ & 666 \end{aligned}$	7.18382	$+5 \hat{8}$	7. 18.448	459	10
1 I	.86091	66 Ô	. 86123	660	. 18837	45	. 18905	+56+54	11
12	. 8675 1̂	65	. 86783	656	. 19291		. 19359		12
13	. $87+07$	6亏0	. 87439 ¢		. 1974 ²	45 I	$\begin{aligned} & 19811 \\ & .20260 \end{aligned}$	+52	
14	. 88057	6	.88090̂	651	. 20191	$4+\hat{8}$		$+49$	13
15	$6.8870 \hat{3}$	$\begin{aligned} & 6+6 \\ & 6+1 \end{aligned}$	6.88737	$6+6$ $6+1$	7.20637	+44	$7.2070 \hat{7}$	$4+7$	15
16	8934 ${ }^{\text {¢ }}$	636	. 89378	636	. 2108 î		. 2115 2		
17	. 8998 Ô	63 î	. 90005		. 21523	$4+2$	$\begin{array}{r} .21595 \\ .2203 \text { 3 } \end{array}$	+42	178
18	. 90612	627	. 90647	632 628	21963	+40		$4+0$	
19	. 91239 ¢	622	. 91275	623	224000		. 22.47 今		19
20	6.91862		6.91898		7.22836	433	7.22909 .	436	$\because 0$
21	. $92+80$	613	. 92516	618	. 23269	433 +31	. $233+\hat{3}$	+34	21
22	. 93093	$60 \hat{}$	-93131	$\begin{aligned} & 617 \\ & 610 \end{aligned}$$603$. 23700	$\begin{aligned} & +31 \\ & +29 \end{aligned}$.23775$.2+204$	$\begin{aligned} & +31 \\ & 29 \end{aligned}$	22
23	. 93703	6	-937+1		- $2+129$				2324
2.	. $9+308$	60,	. $9+3+6$	603	24553	$\begin{aligned} & 229 \\ & 426 \end{aligned}$	$\begin{aligned} & 2+204 \\ & 2+632 \end{aligned}$	$\begin{aligned} & +29 \\ & +27 \end{aligned}$	
25	$6.9490 \hat{9}$	601	$6.9+9+8$	597	7.24980	424 422	7.25057	$+25$	25
26	. 95506	592	. $955+5$	597	. 2540 2̂	+220̂	. 25480	+2	26
27	. 96099		. 96139	589	. 25823		. 25902	+-1	27
28	. 96688	589	. 96728	589	. $262+1$ î	418	. 26321	+19	28
29	. 97272	507	. 97313	503	. 26658	416	. 26738	417	29
30	$6.9785 \hat{3}$	581	6.97895	581 579	7.2707 2	412	$7.2715 \hat{3}$	115 +15	30
31	. $98+30$	577	. $9847 \pm$	$\begin{aligned} & 57+ \\ & 577 \\ & 566 \end{aligned}$. $27+85$	$\begin{aligned} & 410 \hat{0} \\ & 409 \\ & 40 \hat{6} \end{aligned}$	$\begin{aligned} & .27567 \\ & .27095 \end{aligned}$	41 I	3132
32	. 99004	573	. $990+6$. 27895				
33	$6.9957 \hat{3}$	56	6.99616		$2830 \hat{}$. 28389	409	33
34	7.00139		7.00132		28711		28795		34
35	7.00701	$\begin{aligned} & 52 \\ & 558 \\ & 58 \end{aligned}$	$7.007+5$	563	7.29116	405 402 4	$7.29200 \hat{}$	405	35
36	. 01259		. 01304	$\begin{aligned} & 399 \\ & 553 \\ & 552 \\ & 5+8 \end{aligned}$	2951 ¢	$\begin{aligned} & 402 \\ & 401 \\ & 399 \\ & 39 \hat{7} \end{aligned}$	$\begin{array}{r} .29604 \\ .30006 \end{array}$	$\begin{aligned} & 40+ \\ & 402 \\ & 400 \end{aligned}$	36
37	. 0181 f	555551548	. 18860		. 29919				37
38	.02366		. 02412		. 30319		. 30406	398	38
39	. 02914		. 02960 ¢		30716		30804		39
40	$7.03+\overline{5}$	54	7.03505	545 $5+1$	7.31112	393	7.31201	396	40
41	. 03999	531	. $0+4047$	538	. 31503	$\begin{aligned} & 393 \\ & 392 \\ & 39 \hat{0} \\ & 38 \hat{\$} \end{aligned}$	$\begin{array}{r} .31595 \\ .31988 \end{array}$	393	41+2
42	. 04537	537	. 04585		. 31897				
43	.0507	331	.05120̂	535	. 32288		. 32379	389	43
4	. 05603	531	.05652		. 32676		32768	309	+4
45	7.061300	527	7.061800		7.33063	$\begin{aligned} & 3866 \\ & 385 \end{aligned}$	7.3315	388	15
46	.06653	$\begin{aligned} & 525 \\ & 521 \\ & 518 \\ & 515 \end{aligned}$. 06706	525 522	- $33+48$.33831	$\begin{aligned} & 382 \\ & 385 \\ & 382 \\ & 380 \end{aligned}$	$\begin{array}{r} 335+2 \\ -33926 \end{array}$	38338838238	46
47	. 07177		. 07228	522519					47
48	. 07693		. $077+7$		- $3+213$		- $3+309$	$350 \overline{1}$	48
49	.0821I		. 08263	5135090	. $3+593$		34689	300	49
50	7.08723	512 5091 	7.08776		7-34971	378	7.35069	79	5051525354
51	.09232		. 09286	509	. $353+8$	377	35 3 +6	317	
52	. 09739		. 09793	507	.35723	375	-3582	37	
53	. $102+\frac{1}{}$	503	. 10297	503	. 36097	373	. 36096	374	
54	. $107+3$	500	. 10798	+98	. 36468	371	. 36569	373	
55	7.11240	$49 \hat{7}$	7.11297		7.36839	$\begin{aligned} & 370 \hat{0} \\ & 36 \hat{g} \end{aligned}$	7.36940	371 360	
56	. 11733	$\begin{aligned} & 495 \\ & 492 \\ & 489 \\ & 486 \\ & 484 \end{aligned}$. 11792	$\begin{aligned} & 495 \\ & 493 \\ & 490 \\ & 487 \\ & 48 \hat{4} \end{aligned}$. 37209	$\begin{aligned} & 308 \\ & 367 \\ & 366 \\ & 364 \\ & 362 \end{aligned}$	37310 $380+4$ $3^{8}+09$	368	56
57	. 12229		. 12285		- 3757 ¢				57
58	. 12716		. 12775		. 37940				58
59	. 13203		. 13262		. 38304			-6\%	59
60	7.13687		$7.137+6$		7.38667		7.38773		$1 ; 1$
	Log. Ters.	I)	L.og. Exser.	I)	l.ay.	I'	1.ane	1	

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

	Log.	D	Log. Exsec	D	Log. Vers.	D		D				P.				
0	7.38667	$\begin{aligned} & 361 \\ & 359 \\ & 358 \\ & 356 \end{aligned}$	7.38773		7.58039	$\begin{aligned} & 289 \\ & 285 \\ & 287 \\ & 286 \end{aligned}$	7.58		0							
1	. 39028		39134	361	. 58328		. 58494	290	1	$360 \quad 350 \quad 340$						
2	. 39389		. 39495		.5661 5		$5878 \hat{3}$		2							
3	. 39745		. 39854	359	. $58902{ }^{2}$. 5907 1̂		3							
4	40102		. 4021 IT	$\begin{aligned} & 356 \\ & 354 \end{aligned}$. 5918 ¢		. 59358	286	4							
5	7.404	$\begin{aligned} & 355 \\ & 355 \end{aligned}$	7.40569		$7.5947 \hat{3}$	$\begin{aligned} & 285 \\ & 28 \hat{4} \end{aligned}$	7.59645		5							
6	. 408	$35 \frac{1}{2}$. 40922	353	. 59758	283	59930	284	6	10	通					
7	.41163	350	. 41275	352	. 60041	28 2̂	60214	283	7		20.0					
9	41513 .41863	349		350		281		28	8		240.0					
10	7.42211	348	7.42326	349	7.60885		7.61062	$\begin{aligned} & 281 \\ & 280 \end{aligned}$	10							
11	. 42559		. 42673	346	. 61164	279	$\begin{aligned} & .61342 \widehat{2} \\ & .6162 \hat{2} \end{aligned}$	280	II							
12	. 42903	$3+3$342	$\begin{aligned} & .4301 \hat{1} 9 \\ & .43364 \end{aligned}$													
13	. 43246			345343	. 61443 . 61721 61998		. 6190 î	$\begin{aligned} & 279 \\ & 278 \end{aligned}$	13		330	320	10			
14	. 43589		. 43708				. 62179				33.0 38.5		ì			
15	7.43930	341	7.44050	$\begin{aligned} & 342 \\ & 340 \end{aligned}$	7.62274		7.62456	277	15		44.0 49.5	48.0				
16	. 44270		. 44390 O	339338			7.62456	$\begin{aligned} & 276 \\ & 275 \end{aligned}$	16		55.0 110.0					
17	. 44608		. 44730		6282		. 63		17		110.0		103.3155.20.0258.625.3			
18	. 44946	337	. 45068	338	. 63096 ¢	273	. 63	274	18							
19	. 4528 î		. 45405	335	. 63369		63556		19							
20	7.45616	$33 \hat{3}$	7.45740		7.63641		7.63829	273	$\because 0$							
21	. 45949		7.46075	$\begin{aligned} & 33 \hat{4} \\ & 33 \hat{2} \end{aligned}$. 6391 î	$270 \hat{0}$	- 6410 I	$\begin{aligned} & 272 \\ & 271 \end{aligned}$	21							
22	. 4628 in	$\begin{aligned} & 332 \\ & 330 \end{aligned}$	$\begin{aligned} & .4640 \hat{F} \\ & .4673 \hat{9} \end{aligned}$		$\begin{aligned} & .6418 \hat{1} \\ & .64451 \end{aligned}$	$\begin{aligned} & 270 \\ & 269 \\ & 268 \end{aligned}$	$\begin{array}{r} .6437 \hat{2} \\ .64643 \end{array}$		$\begin{aligned} & 22 \\ & 23 \end{aligned}$		$300 \quad 290 \quad 280$					
23	. 46612			$\begin{aligned} & 332 \\ & 332 \\ & 330 \end{aligned}$				$\begin{aligned} & 2717 \\ & 270 \\ & 269 \end{aligned}$			${ }^{30.0}$	29.0	28.0 38.6 38.6 7.3			
$2+$. $469+$ +̂		. 47070		. 64719		. 64912		24	7	3.5 40.0					
25	7.47270		7.47399	$\begin{aligned} & 329 \\ & 328 \end{aligned}$	$7.6498 \hat{6}$	$\begin{aligned} & 269 \\ & 26 \hat{6} \end{aligned}$	7.65181	269		(10	(100.0					
26	. 47597		. 47727	327	. 65253	266	. 65449									
27	. 47922		. 48054	325	. 65519	265	. 65716		27							
28	. 48247	324	. 48379	325 324	. 65784	264	. 65982	265	28							
29	. +8570 O		. $4870 \hat{3}$	324	. 660	264	. 662		29							
30	7.48892		7.49026	323	7.66311	263		264	30							
31	. 4921 ¢	321 320	$.4934 \hat{8}$ $.4966 \hat{9}$	$\begin{aligned} & 322 \\ & 321 \\ & 31 \hat{9} \\ & 318 \end{aligned}$	6657466836 67097 6735	$\begin{aligned} & 263 \\ & 26 \hat{\mathrm{i}} \\ & 26 \mathrm{I} \\ & 260 \end{aligned}$	$\begin{array}{r} .66776 \\ .67039 \\ .67301 \\ .67562 \end{array}$	$\begin{aligned} & 264 \\ & 263 \\ & 262 \\ & 26 \hat{1} \end{aligned}$	31	$70 \quad 260 \quad 250$						
32	. 49533 3	3-0							32							
33	. 49852		. 49989						33							
$3+$. 50169 ¢		. 50309						34	8	36. 36.					
35	7.50		7.50624	316	7.67617	258	7.67823	260		10	40.5 45.0					
36	. 5080 ô	315	. 50941	316 315	. 678	258 258	. 68083	259	36		,					
37	. 51114	314	. 51256	315	.68133	258 257	. 68342	258	37		135.0 180.0					
38	. 51427	313	. 51569	313	. $68390 \hat{}$	257 256	.68601	258	38		225.	216.6				
39	. 51739		. 51882	313	. 68647	256	. 68858	257	39							
40	7.52050	$\begin{aligned} & 3 \mathrm{II} \\ & 30 \hat{1} \end{aligned}$	7.52194	$\begin{aligned} & 31 \hat{1} \\ & 310 \hat{l} \end{aligned}$	7.68902	255	7.69115	257	40							
41	. 5235	308	$\begin{array}{r} 52504 \\ .52814 \end{array}$	$\begin{aligned} & 30 \hat{1} \\ & 30 \hat{8} \end{aligned}$	$\begin{aligned} & .69157 \\ & .694 \mathrm{II} \end{aligned}$	$\begin{aligned} & 254 \\ & 253 \end{aligned}$. 693627			$\begin{array}{llll}240 & 230 & 220\end{array}$						
42	. 52669							$\begin{aligned} & 255 \\ & 254 \\ & 254 \end{aligned}$	42							
43	. 52975	307306	$\begin{array}{r} .5312 \hat{2} \\ .5342 \hat{9} \end{array}$		$.69665$		$\text { . } 69881$	254	43		24.0					
44	. 53281			307		$\begin{aligned} & 253 \\ & 25 \hat{2} \end{aligned}$		254	44				29.3			
	$7.5358 \overline{6}$		7.53733		7.70169 ¢	252	7.70388		45		40.0					
46	. 53890 O	$30+$ 303	. $540+1$	305 304	.70+21	251 250	. 7064 I	252	46		80.0		${ }_{12}$			
47	. 54193	303 302	. 54345	304 303	. 70671	250 250	. 70893	251	47		160.0					
48	. 54493	3002	. 54648	302	. 70921	249	71144	250	48		200.0	91.6	: 83			
49	. 54796	300	. 54950	302	. 71170	249	. 71394	250	49							
50	7.55096		7.55251	299	7.71418		7.71644	24	50							
51	. 55395	297	. 55550 O		. 7166		. 71892 2	248	51		210	200	90			
52	- 5569	297	- 55849	298	. 71913	246	. 72141	249	52		21.0	,				
53	. 55989		. 56147		. 72159		. 72388	246	53		24.5 28.0					
54	. 5	29	. 56444	296	. 72404	24	. 72635	246	54		28.0 31.5					
	7.5658	293	7.56740		7.726499	24.	7.72881	245	55		35.0 70.0					
56	. 56873	293	. 57035	294	. 72893	$24 \hat{3}$. 7312 亿̂	245	56		10.0					
57	. $5716 \hat{6}$	292	- 57329	292	.73137	242	. 733711	$24+$	57				${ }_{1} 58.8$			
58	. 57458	290	57621 1	292	. 733	242	. 736	243	58							
59	. 57749	20	. 57913	292	. 736	2	. 73859	242	59							
60	7.58039		7.58204		7.73863		7.741010		60							
	Log. Yers	I)	2. Exs	I)	V)	02. Exs	1)				P.				

TABLE VHI．－LOGARITHAIC VERSED SINES ANI EXTERNAL SECANTS
6°
$\%$

	Los．Vers．	1）	10g．Fixsere：	＂	Lus．Vers．	1）	Dog．Eixpre	I＇		1 ． 1 ．			
0	7.73563	$\begin{aligned} & 241 \\ & 240 \\ & 239 \\ & 239 \end{aligned}$	7－7＋101	$\begin{aligned} & 2+2 \\ & 2+1 \\ & 2+1 \\ & 2+0 \end{aligned}$	7.87238			208	0				
1	－ $7+104$		． $7+3+\hat{3}$		． $87+4 \hat{4}$	20%	．S77T	207	1		180	$\hat{9}$	9
2	$.7+3+4$		$.7+585$		． 87650	20.	． 87978	，	2	\％	150		0.
3	． 74583		.74826		． 87855	207	． 88153	$20 \hat{0}$	3	8	210 2% 29	1.1	1：
$+$	．74822		．75066			204	88391	206	＋	8	$\because 40$ 27	1．1	1．2
5	7.75060		7.75305	239 239	7.88264		7.88597			\pm	\cdots	－ 6	\therefore
6	． 75297	2	． 7554	239	． 88.69		． 85803	5	6	3）	10.0	3．	$\therefore=$
7	． 75534		.75752	237	．SS672	3	．Sy00S	，	S	（1）	120.0 150.0		\because
8	． 757700		． 76019	237	． 85875	203	．S9212		S	50	150.0		7
9	76006	23	76256	237	． 8907		S9＋16		9				
10	7.76240	234	$7.76+92$	23	7.89279		7.89620	，	10			8	
11	． 76475	$23 \frac{1}{3}$	． 76728	235	． $89+51$		．S9823	3	11	6	8	8	
12	． $7670 \overline{8}$	233	． 76963	－35	． 89682		．9002	2	12	\％	1.0	0.1	0.1
13	$.769+1$ 1	233	．77197	234	． 89882	200	． 5022 S	202	13	8	$1 . \hat{1}$ 1.3	1.6	
It	． 77173	232	$77+31$	233	． 9008 2ิ	200	.90429		1.4	10	1.4	1．3	1.2
15	7.77403		$7.7700 \hat{4}$		7.90282		7.90630		15	30	2.8		\％$\%$
16	． 77636	231	． 77.897	232	． 9048 î	199	． 9083 Î	201	16	$4{ }^{2}$	－	53	\bigcirc
17	． 77867	O	． $7812 \overline{8}$	23	． 90680	S	． 91032		17	50	$7 \cdot 1$	$6 i$	C． 2
18	． 78097	－ 50	． 78360		． 9087 ¢	198	． 9123 I		18				
19	．78326	229	．78590	230	．910－6	197	（）1431	199	19				
$\because 0$	7.78	8	7.75820	วつดิ	7．91273		7.91630	80	$\because()$	6	0.7		0.6
21	． 787	228	． 79050	229	．9147ô	197	．9182S	198	21	7	0.8	0.7	07
22	． 79010	227	． 79279	229	.91667	196	．92027	198	22	8	0．0	9．8	0.9
23	． 79237	227	． 79507	228	.91863	190	－9222¢	197	23	10	1.1 2.3	1.1	1.0 20
$2+$	． $79+63$	22	． 79735	228	． $9205 \hat{8}$	193	．92．421	191	$2+$	20 30	$2 . \hat{3}$	2．$\frac{1}{2}$	2.0 3.0
25	7.79689	225	7.79962	227	7．9225	195	7.92618	197	25	40 50	5.8	4．35	4.0
26	$.7591+$	22¢	．Soı88	226	． $92+4 \hat{8}$	195	． 92815	$\underline{6}$	26	50	5.8		5.0
27	．Sol3 3	224	Solily	220	． 92642	$19+$	． 930100	10	27				
28	．So362	224	． 80639	225	． 92836	$1)^{+}$	．93206	195	28		5	5	4
29	． 80,586		． 8086 th	225	．93029	193	．93401	195	29				
30	7.80808	222	7.81085	$22+$	7.9322 z	19.3	7.93596	195	：30	8	－	0.6	¢
3 i	．Siozı	22	．81312	$22+$	． $93+15$	102	． 93790	$19+$	31	10	0.8 0.9	\bigcirc	0.7 0.5
32	． 81252		． 81535	2	．93607	192	．93984	194	32	20			1.5
33	． 81473	221	． $8175{ }^{\circ}$	222	． 93799	191	．94177	193		30	2.7	2．	22
$3+$	． 81694		． 81980	222	． 93990 －	191	$9+370$	193	it	50	3.6 4.6	3－3	3.0
35	7.81914	－	7.82201	I	7.94	190	$7.9+562$	192					
． 36	． 82133	219	7．82＋22	221	． $9+37 \mathrm{l}$	190	． 9475 it	192	30		4	3	3
37	．82352	19	． 82642	20	． $9+56$ î	190	.94946	192	37	6	0.4	0.3	，
38	． 825 ， 0	，	．S2862	219	． 94751	159	．95137	191	3 S	${ }_{8}^{7}$	$\bigcirc{ }^{\circ} \mathrm{4}$	0.4	，
39	． 82788	217	．Sjosi	219	． $949+0$	159	． 95328	191	39	9	－0．6	－0．5	4
40	7.83005		7.833		7.95129		7.95519	180	40	20	0.6 1.3	1．11	0.5 10
4	． S3222 $^{\text {S }}$	217	． 83518	215	．95317	188	． 95709	190	41	30	20	1.7 2.7	1.5 .11
$+2$	． $83+38$	16	． 83733	217	． 95505	187	． 95808	18	42	$4{ }^{4}$	2.0 3.3	2.3 29	
43	． 83653	215	． 8395 2	217	． 95693	188	． 96085	9	43				
＋+	． 83868	215	． $8+169$	216	． 95880	187	． 96276	188	＋4		$\hat{2}$		
＋5	7.85		7.8		7.90006		$7.96+65$		45	6	－．	0.2	－i
46	． 84297	，	．S460ô	215	． 96253	S6	． 0,0653	S	46	${ }_{8}^{7}$	$\bigcirc 3$	$0 . \frac{2}{3}$	$\bigcirc 2$
47	． $8+510$	213	． 84815	215	． 96439	15	． $968+1$	S	47	9	0.4	0.3	
48	． $8+723$	213	． 850	214	． 960 二年	$1 S_{5}$	． 97028	S7	4	10	0.4	0.3	－
49	$8+93{ }^{\circ}$		． $852+3$	21	． 96809	185	． 97215	IS7	49	20 30	1.2	（\％）	0 －
50）	7.	212	$7.85+57$	213	$7.9609+$	18%	7．97， 401	80	i）	413	1.6	1.3	
51	． 55359	211	． 8567	213		＋	． 97589	0	51	50	2.1	1.0	．
52	． 85570	211	． 85882	21		$1{ }_{18}+$		185	5				
53	． 85750	10	． 56094	211	－913＋6	183	． 97	185	53		1	Ô	
$5+$	． 55990	210	． 86303	211	． 97	j	． $951+3$		5		0.		
	7.86199	，	7.56516		7.97912		7.98327		55	8		\bigcirc	
56	．S6ios	9	． $8672 \hat{6}$	10	． 98054		． 98512	154	56	${ }_{15}{ }^{\text {a }}$			
57	． 86616	208	． 86936	00	． 9820		． 98505	－¢	57	＂：	－		
；8	． 86824	S	． 87146	209	． $98+58$	IS2	． 9857	$1{ }^{18} 3$	53	30	0.5		
59	． 8703 l	207	． 8735 ¢	208	． 98639		－y906	－	5 （）				
60	7.87238		7.57503		－nsszo		－．¢）		（i）1				
	Log．Yers．	I）	．	1）	dov．Pir	］	T．ug．lianer．	／＇				．	

TABLE VIII-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
10°
11

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
13°

	Log. Vers.	D	Log. Exsec.	1)	Log. Vers.	I)	Log. Exsec.	D				1 .					
0	8.33950	$\begin{aligned} & 120 \\ & 120 \\ & 119 \\ & 120 \end{aligned}$	S. 34909	123	8.40875	I Iô	8.42002	II 3	0								
I	. 34070		. 35032	$12 \hat{2}$. 40985	110	42116	II 3	I								
2	-34190		-35155	122	. +1096	110	. 42229	II 13	2								
3	-3+309		$.35399 \hat{9}$	122	$.4120 \hat{6}$	110	.42343	I13	3			II9	II8				
4	. 34429				$.41317$	110	. 42456		4		14.0	11.9 13.9	11.8 13.7				
5	8.34549	II	8.35522	$\begin{aligned} & 122 \\ & 122 \end{aligned}$	$8.4142 \hat{7}$	$\begin{aligned} & \text { IIO } \\ & \text { IIO } \end{aligned}$	$8 .+2569$	$\begin{aligned} & \text { I I } 3 \\ & \text { I I } \end{aligned}$	5	8	16.0 18.0	$15 . \hat{8}$ 17	15.7 17.7				
6	. 34668	I19	. $3564+$	121̂	. 41537						20.0	19.839.6	19.639.3				
7	. $3+787$	119	. 35763		. 41647	110	. 42795	II 3	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	10							
8	. 34906	119	. 35887	$\begin{aligned} & \mathrm{I} 22 \\ & \mathrm{I} 2 \hat{\mathrm{I}} \end{aligned}$. 41757	$\begin{aligned} & \text { IO9̂ } \\ & \text { I IO } \end{aligned}$		113		2030404050			59.0 78.6				
9	. 35025	II 8	. 36009		. 41867		43021		9		100.0		${ }_{98.3}$				
10	$8.3514 \hat{3}$		8.36130	1	8.4197	9ิ	$8.4313 \hat{3}$		10								
I I	. 35262		3625 Î	121	. 42086	$\begin{aligned} & \text { IO9̂ } \\ & \text { IO9 } \end{aligned}$. 43246	112	I I								
12	. 35380		. 36372		. 42195		. 43358	$\begin{aligned} & 112 \\ & 112 \end{aligned}$	12	117		116	115				
13	. 3549 ¢̂	II8	. 36493	$\begin{aligned} & \text { I } 20 \text { O } \\ & \text { I2 } \end{aligned}$.42304	109	. $43+70$		13	6	11.713.6						
14	. 35616	117	. 36614		. 42413		. 43582	112	I 4	7		13.5	13.4				
15	8.35734		8.3673 ${ }^{\text {f }}$	$\begin{aligned} & \text { I } 20 \widehat{ } \\ & \text { I } 20 \hat{} \end{aligned}$	8.42522	109	8.43691	2	I 5	9	15.6 17.5	15.417.4					
16	. 35852	118	. 36855	1200	. 42630 ̂	108109	. 43805	I I Î	16	1020	19.5 39	$\begin{array}{lll}19 . \hat{3} & 10.1 \\ 38 . \hat{6} & 38 . \hat{3} \\ 38 .\end{array}$					
17	. 35969		. 36975	$\begin{aligned} & 120 \\ & 120 \\ & \mathrm{~J} 2 \mathrm{O} \end{aligned}$. 42739		. 43917	I 1 Î	17								
18	. 36086	I I	. 37095		. 42849	108	. $4402 \hat{8}$			20	78.0	77.3	76.695.8				
19	. 36204		. 37215		. 42956		. 44139		19		$97 \cdot 5$	96					
9	8.36321	117	8.37335	120	8.		8.4+251	I	$\underline{9}$								
21	. $36+37$	116	. $37+5$ 4	$\begin{aligned} & \text { II9 } \\ & \text { II } \end{aligned}$. 43172	$\begin{aligned} & \text { IOS } \\ & \text { IoS } \end{aligned}$. 44362	$\begin{aligned} & \text { I I I } \\ & \text { I I I } \end{aligned}$	21	14 II3 II2							
22	. 3655 f	I 16	. 37574		. 43280		. $44+73$	$\begin{aligned} & \text { I IÔ } \\ & \text { I } 10 \text { Ô } \end{aligned}$	22								
23	. 3667 I	116	. 37693	$\begin{aligned} & \text { II9 } \\ & \text { II } \end{aligned}$. 43388	Io8	. 44583		23	6	11.4	${ }_{11}$. 2				
24	. 36787	116	. 37812		. 43495	1	.44694		24	7	13.3 15.2	13.2 15.0	.ô				
25	8.36903		8.3793	8	8.43603	7	$8.448 \mathrm{c} \frac{1}{4}$		25	9	17.1	${ }^{16.0}$	16.8				
26	. 37019	116	. 38050	118	. 43710	107	. $4+495$		26	120	19.0 38.0		8. $\hat{6}$33¢$4 . \hat{6}$3.3				
27	. 37135	1115	. 38169	119	. 43817		. 45025		27	30	57.0	$5^{5} .5$					
28	. 37251		. 38287	18	. +392 ¢		. 45133		28	40	76.0	$75 \cdot \frac{3}{3}$					
29	. 37366	II 5	. 38.406	$\text { II } 8$. 4403 Î	107	. 45245		29								
30	8.37482		8.38524		8.44138	106	8.45355	110	30								
31	. 37599	II 5	. 38642	II 8	. 44245	$\begin{aligned} & 107 \\ & 10 \hat{6} \end{aligned}$. 45465	110	31								
32	. 37712	II 5	. 38760		. $4+35$ Î		. 4557 ¢		32		III	10	109				
33	. 37829	115	. 38878	118	. $44+58$	106	45684	109	33	6	11.1	11	10.9				
34	. $37942 \hat{2}$	115	. 38995	117	. 44564	106	. 45793	IO9	34	7	12.9 14.8	12.	12.7 14.5				
35	8.38057	114	8.39113	7	8.44670	6	8.45902	9	35		16.6 18.5	16.5	16.3				
36	. 3817 l	114	. 39230	117	. +4776	106	. 4601 Î	109	36	20	37.0	$36.6 \hat{6}$	$36.3 \hat{3}$				
37	. 38296	114	. 39347	117	. 44882	10	. 46120	109	37	30	55.5	55.0	54.5				
38	- 38400	+	. 3946 4	117	. 44988		. 46229	108	8			${ }^{73.3}$. 6				
39	. 38514	II4	. 3958 î	II7	. +54093	105	. 46338	109	39				. 8				
40	8.38628		8.39698	6	S.45199		$8.46+46$	§ิ	40								
41	. $387+1$ î	113	. 39814	II6	. $4530 \hat{4}$	105	. .4655	108	41								
42	. 38855	114	. 39931	${ }^{11} 6$		105		108			108	107	106				
43	. 38969	113		II6		105		108		6	10.8	10.7	10.6				
44	. 39082	II 3		116		105		IoS	4	8	14.4	14.2	14.1				
45	8.3919	113	8.40279		8. $4572 \hat{4}$		8.46987	8	45		18.0	17.8	15.9 17.6				
$+6$. 39308	113	. 40395		. 45829		47095		46	20	36.0	$35 \cdot 6$	$35 \cdot \hat{3}$				
47	. 39421	113	. 405 II	115	. 45934	105	. +72	108	47	40	54.0	53	53.0				
48	. 39534	113	. 4062 6	II 5	. 46038	IO_{4}	. 47310 Ô	10	48			89	70.6 88.3				
49	. $396+6$	I 12	. 40742	115	. 46142	$10 \hat{4}$		107									
50	S. 39758		S.40857		$8.462+7$		8.47525		50								
51	. 3987 I		. 40972	115	+6351	104	. 47632	107	51								
52	. 39983	112	. 41089	I15	$+6+55$	104	. 47739	107	52	6	105		.ô				
53	.40095	I12	. $4120 \hat{2}$	115	465	103	. $+78+6$	107	53	7	12.2	12.1	${ }_{0}^{0.0}$				
54	. 40207		. 41317	11	46662	$10+$	+7953	106	$5+$	8	14.	13.8	0.03				
	8.40318		8.4143İ		8.46766		8.48060			10	17.5	17.3 3	-. 1				
56	. $40+30$. $415+6$	4	. +6869	3		1			35.	$3+6$	-. 1				
57	. 405	111	. 41660	14		103	. 48273	10	57	40	52.5 70.0		0.2				
5	. $4065 \hat{2}$	1 I	. 41774	14	4707	103̂	+8379	106	58	50	87.5	86					
59	. 40764		. 4188 S	114	. 47179	103	. $48+85$	106	59								
69	S. 40875		8.4200 2̂		S.47282	1	8.48591		60								
	Lok. Ver	I)	g. F	I)	$\underline{\text { İ. }}$	I)	O, Ex. Exsec.	n)				P.					

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTTERNAL SECAN゙TS.

	Log．Vers．	I）	Log．Exsec．	I）	Log．Vers．	D	Log．Exsec．	I）		1．P．			
0	8．588I4	$\begin{aligned} & 90 \\ & \text { Sô } \\ & 90 \\ & 8 \hat{9} \end{aligned}$	8.60530	$\begin{aligned} & 9 \hat{3} \\ & 93 \\ & 9 \hat{3} \\ & 93 \end{aligned}$	8.64043	$\begin{array}{r} 8 \hat{4} \\ .8 \hat{4} \\ 84 \\ 8 \hat{4} \end{array}$	8.65984	$\begin{aligned} & 88 \\ & 88 \\ & 88 \\ & 88 \end{aligned}$	0				
1	． 58904		． 60623		． 64128		． 66072		1				
2	． 58993		． 60716		． $6+2 \mathrm{I}$ 2		．66160		2				
3	． 59083		． 60810		.64296		． 66248 ¢		3		93		
4	． 59173		． 60903		64381		． 66336		4		$9 \cdot 3$ 10.88	9.2 10.7	9.1 10.6
5	8． $5926 \hat{2}$	89 89	8.60996	93	8.64465	84	8.66425	S8	5	8	12.8 13.9 13.9	12.2 13.8	12.1 13.1 13.6
6	． 5935 Î	89	． 61089	93	． 64549	84	． 66512	88	6	\％	12.9 15.5	${ }^{13.8}$	$\begin{array}{r}12.6 \\ 15.1 \\ \hline 1\end{array}$
7	． $59+4$	89	． 61182	93	.64533	84	． 66600	88	7	25	31.0	30.6	$30 . \hat{3}$
8	． 59530	89 89	． 61275	92	． 64717	84	． 6668 §̂	88	δ		46.5 62.0	${ }^{46.0}$	$45 \cdot 5$ 60.6
9	． 59619	89	． 61368	93	．64801	84	． 66776	87	9		77.5	${ }_{76.6 \hat{6}}$	75．8
10	8.59708	89	8．61460	92	8.64884	83	8.66863	87	10				
II	． 59797	89	． 61553	92	． 64968	8	． 6695 İ	88	11				
12	． 59886	89	． $616+5$	92	． 65052	84	． 67039	87	12				
13	． 5997 f̂	89	．61738	0	． 65135	83	． 67126	87	I 3		90	89	88
14	． 60063	89	． 61830	92	． 65218	83	． 67213	87	14	6	9.0	8.9 10.4	8.8
I 5	8.60152	8 ¢	8．61922		8.65302	8	8.67301	7	15	8	12.0	${ }^{11} .8$	． 7
16	． 602401	88	． 62014	92	． 65385	83	． 67388	87	16	30	13.5 15.0	13.3 3.8 8	13.2 14.6
17	． 60328	80	． 62106	92	． $6546 \hat{8}$	83	． 67475	87	17	20	30．0，	29.6	29.3
18	． 60417	88	． 62198	92	． 6555 İ	83	． 67562	87	18	30	45.0 60.0	44.5	44．0
19	． 60505	88	． 62290 ¢	92	． 65634	83	． 67649	87	19		75.0	74．1	73．3̂
20	8.60593	88	8.62382	？	8.65717	83	8.67736	87	$\because 0$				
21	． 6068 I	88	． 62474	92	． $65800 \hat{}$	83	． 6782 2	86	2 I				
22	． 60769	88	． 62565	9 I	.65883	82	． 67909 ¢	87	22		87	86	85
23	． 60857		． 62657	91	． 65963	8	.67996	8	23	6	8.7	8.6	8.5
24	． 60944	87	． $6274 \hat{8}$	91	． $660+8$	83	．68082	86	24	8	${ }^{10.7}$	${ }^{10.0}$	$9 \cdot 9$
25	8.61032	87	8.62840	91	8．66131	8	8.68169		25	9	13.0 ¢	12.9	12.7
26	．61119	87	． 62931	91	． 66213	82	． 68253	86	26	10	14.5	${ }_{12}{ }_{2} 8.3$	14．${ }^{\text {P }}$
27	． 61207	87	． 63022	91	． 66295	82	． 6834	86	27		29.0	28.6	28.3
28	． 6129 ¢	87		91	． 66378	82	． 68428	86	28	40	48.0	57．${ }^{4}$	42.5 56.6
29	． 6138 Î	87	． $6320 \frac{1}{4}$	91	． 66460	82	．68514	86	29		72.5		70.8
30	8.61469	8	8.63295	90	8.66542	82	8.68600	86	80				
31	． 61556	87	． 63386	91	． 66624	82	． 68686	86	3 I				
32	． 61643	87	． $63+77$	91	． 66706	82	． 68772	85	32		84	83	82
33	． 61730	87	． 63567	90	． 66788	82	． 68858	86	33	6	8.4	8.3	8.2
$3+$	． 61816	8	． 63658	90	． 66870	82	． 68944	86	34	8	9.8 11.2	9.7 11.0	9．⿳⺈़
35	$8.6190 \hat{3}$	8	8.63748	90	8.66951	81	8.69029	5	35	10	12.6	12.4	12.3
36	． 61990	86	． 63839	90	． 67033	8 I	． 69115		36		14.0 28.0	13.8 27.6	13.6 27.6
37	． 62076	86	． 63929	90	．67115	82	． 69201	85	37	30	42.0	41.5	4 4 .0
38	． 62163	86	． 64019	90̂	． 67196	81	． 6928 人	85	38		56.0	55.	54．6
39	． $62249 \hat{}$	86	． $6410 \hat{9}$	90	． 67277	81	． 69372	85	39				
40	8.6233	86	8．641999	90	8.67359	8 I	8.69457	85	40				
41	． 62422	86	． 64289	90	． $674+0$ O	81	． 69542 2	85	4 I				
42	． 62508	86	． 6437 ¢̂	90	． 6752 I	81	． 69629	85	42		8I	80	79
43	． 62594	86	． 64469	90	． 67602	81	． 69712	85	43	6	8．1	8.0	7.9
44	． 62680	86	． 64559	89	． 67683	8 I	． 69798	83	44	8	8.4 10.8	10.6	10.5
45	8.62766		8.64649	9	$8.6776 \hat{4}$	8 I	8.69883	85	45		12.10 13.5	12.0 13.3	13.1
46	． 62852	86	． 64738	89	． 67845	81	． 69969	84	46		270	26.6	$26 . \hat{3}$
47	． 62937	8	． 64828	89	． 67926	So	． $7005 \hat{2}$	8	47		40.5 54.0	40.0	39.5 -2.5 6
48	.63023	85	． 64917	89	． 68007	81	． 70137	85	48		67.5	66． 6	65.8
49	． 6310 ¢̂	83	． 65006	89	． 68089	80	． 70222	84	49				
50	8.63194	85	8.65096	89	S．68ı68	80	8.7030	¢	50				
51	． 63279	85	． 65185	89	． 68248	80	． 70391	4	51			¢	
52	． 6336 全	85	． 65274	8	．68329		． $70+75$	84	52			0.0	
53	． $63+4 \hat{9}$	85	． 65363	89	．68409̂	80	.70560	84	53		7	0．Ô	
54	． 63534	85	． 65452	89	．68489̂	80	.70644	84	54		8	0．ô	
55	8.63619	85	8.65541	89 80	8．68569		$8.7072 \hat{8}$	84	55		10	． 1	
56	． 63704	85	． 65629	88	．	Sô	8.70813 .7081	84	56		20	，$\frac{1}{2}$	
57	． 63789	85	． 65718	88	． 68730	So	． 70897	84	57		$4{ }^{\circ}$	－0．${ }^{\text {O }}$	
58	． 63874	84	． 65807	S	．68810	80	． 70981		5 S				
59	． 63959	85	． 65895	S	．68889ิ	8	.71065		59				
60	8.64043		8.65984		8.68969		¢．7II 49		60				
，	Log．Vers．	I）	Lag．Exsec．	I）	Low．Vars．	I）	Log．Exnfe．	I）				P．	

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS. 15

	Loz. Vers.	$1)$	Log. Fixsec.	1)	Log. Vrrs.	1)	Lugr. Exure.	I)		1. 1'.			
0	8.68969		8.71149	83	8.73025		5.76058		${ }^{1}$				
1	. 69049	79 80	. 71232	8	. 7370 ô	75	. 76137	79 So	1				
2	. 69129	80	.71316	S ${ }^{3}$. 73773	73	76217	50	2				
3	. 6920 §̂	79	.71400	84	. 73851	73	. 76297	79	3				
4	. 69288	79	. 71484	${ }^{8}$. 7392 ¢	75	. 76376	79	4		84	83	82
5	8.69367	79	8.71567	83	8.7400 I	75	S.76+56		5	6	8.4	8.8	8.2
6	. 69446		. 71651	83	.74076	75	. 76536	70	6	7		${ }_{9}^{9.7}$	9.5
7	. 69526	79	. 71734	83	.7415	75	. 76615	79	7	8	11.2 12.6	11.6	10.9 12.3
8	. 69605	79	. 71817	S 3	. $7+22 \mathrm{O}$	75	. $7660 \frac{1}{4}$	79	8	10	12.6 14.0	12.4	12.8 13.6
9	. 6968 亿	79	. 71901	S3	. $7+301$	75	. 76774	79	9		28.0	27	27.3
10	$8.6976 \hat{3}$	79	8.71984	83	8.74376	75	S.76853	79	10		42.0 56.0	41.5	41.0 54.6
II	. $698+\frac{1}{2}$	79	. 72067	83	. 74451	74	. 7693 2	79	I I		70.0	69.1	63.3
12	. 6992 î	79	.72150	S3	-74526	75	. 7701 I	79	12				
13	. 70000	$7 \hat{8}$.72233	S3	.74600	7	-77000	79	1				
14	. 70079	79	. 72316	S3	.74675	$7 \hat{4}$	77169	79	13				
I 5	8.70157	78	S.72399	83	8.74749		S.77248	79	15				
16	. 70236	78	.7248	82	. 74824	74	- 77327	79	16		8 I	80	79
17	. 70314	78	.7256	83		74	+06	78	17	б	8.1	8.0	$7 \cdot 9$
I 8	. 70393	78		82		$7 \hat{4}$	77	79	18	7	9.4 10.8	${ }^{9.3}$	9.2 105 10.8
19	. $70+7 \mathrm{I}$	78	.72729	82		74		78	19	9	12 x	12.	12.
80	8.70550	78	8.72812	S ${ }^{2}$	8.7512 I	74	8.77642	78	$\because 0$		27.0	13.3 26.6	26.3
21	. 70628	78	. 7280 ¢	S2	. 75193	74	-7772Ô	78	21	30	40.5	40.0	39.5
22	. 70706	78	. 72977	S2	. 7526	74	. 777	79	22		54.0	53	52.6
23	. 70784	78	. 73059	82	. $753+3$	74	. 77877	78	23				
24	. 70862	78	.73141		. $75+17$	7	. 77956	7	2+				
25	8.70940 ¢̂	78	8.7322 ${ }^{\text {3 }}$	82	8.7549 Î	74	8.78034	78	25				
26	. 71018	70	. 73306		. 75565	73	.78112	78	26				
27	. 71096	77	. 73388	82	. 75639	73	. 78191	78	27				
28	. 71174	78	. 73470	82	. 75712	73	.78269	78	28	6	7.8		6
29	. 7125 Î	77	. 73470	8î	- ${ }^{\text {r }}$	73		78	29		9.1	9.0	
30	8.71329	77	8.7	S2	8.75860	74	8.78	78	30	8		10.2	11.4
31	. 7140 ¢	77	. 73715	82		73		78	31	10	13.0	12.	12.
		77	-73715	8î	-7 7933	74	-7835	78	32	20	26.0	25.6	25.3
32	-71484	77	. 73797	8î	. 76006	73	. 78581	78	32	30	39.0	38.5	38.
33	. 71561	79	. 73878		. 76080	$7 \frac{3}{3}$. 78659	78	33		52.0 65.0		50.
34	. 71639	77	. 73960	81	. 76153	73	. 78736	78	34				$3 \cdot 3$
	8.71716	77	$8.7404 \hat{1}$	Sī	8.76226	3	8.78817	75	35				
36	. 71793	77	.74123	Sİ	. 76300	73	. 78892	77	36				
37	. 718700	77	. $7+20 \hat{4}$	81	. 76373	73	.78960	77	37				
38	. $719+7$	77	-742S6	8î	. 76446	73	. 70047	77	3 S				
40	$8.7210 \hat{1}$	77	8.7	81	8.76	73		77	40	6	7.5 8.7	7.1 8.6	7.3 8.5 8.5
41	. 72178	76		Sî	. 766	72		77		8	10.0	9.8	9.7
42	. 72255	77	-74	8 I	. 767	73	-79-7	77	42	${ }_{10}^{9}$	11.2	12.1	12.1
43	. 7233 Î	76		81	. 768	72	-7935	77		20	25.0	24. $\hat{6}$	24
	-7230	77	-7691	8ô		73	-7943+	77	43	30	37.5	37.0	36
44	. 72408		. 74772		. 76883		. 7951 I		44	50	50.0	49.	4_{6}
45	8.72485	76	8.74853	81	8.76955	$7{ }^{\text {7 }}$	8.79588	7	45				
46	. 7256 î	76	. 74934	80	. 77028	${ }^{7}$ フ	. 79663	77	46				
47	. 72637	76	. 75014	80	. 771000	72	. 79742	77	47				
48	.72714	76	. 75095	80	. 77173	72	. 79819	77	48				
49	. 72790 ¢	76	. 75175	80	.772+5	72	. 79896	77	49				
50	8.72866	76	8.75256	80	8.77317	,	8.79973	76	50		72	71	
5 I	- 72942 2	76	8.75256 .75336	8ô	8.77317 .77390	72	- 8.80050	77	51		7.2 8.4	7.1	0.i
52	. 7301 8	76	-75330	Sô	-77462	72	. Soi 26	76	52	-	0.6	0.1	0.0
		76		80	-77	72		77	5	9	10.8	10.18	. 1
53	-7	76	- 7 - 790	80	-77334	72	. ${ }^{\text {cos }}$	76	51	10	12.0	11.8	0.1
54	.73170		. 75577		. 77606		. 80280		54		2.4 .0 36.0	23.12	0.1
55	8.73246	76	8.75658	80	8.77678	72	S. 80356	70	55		38.0 48.0	47.35	0.3
56	.73322	76	. 75738	So	. 77750	72	. $80+33$	76	56		60.0	59.1	$\cdot 4$
57	. 73398	75	.75SI8	So	. 77822	72	. 80509	\%	57				
58	. $73+73$	75	. 75898	So	. 77893	71	. 80586	76	58				
59	. 73349	76	. 75978	80	. 77965	72	. 80662	76	59				
60	8.73625	75	8.76058		8.78037	7	$8.8073 \hat{8}$		(i)				
,	Log. Vers.	I)	Log. Eissec.	1)	Lug. Vers.	1)	E.	I)				1 .	

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
20°

TABLE VIII.-LOGARITHMIC VERSED SINES ANI ENTERNAL SECANTS.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
24° 25°

	Log. Vers.	D	Log. Exsec.	I)	Log. Vers.	1)	Log. Exsec.	I		P. P.			
0	8.93679	$\begin{aligned} & \hline 59 \\ & 59 \\ & 59 \\ & 59 \\ & 59 \\ & 59 \\ & 59 \\ & 59 \\ & 59 \end{aligned}$	8.97606	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 6 \hat{4} \end{aligned}$	8.97 I 70	$\begin{aligned} & 57 \\ & 56 \\ & 57 \\ & 57 \end{aligned}$	9.OI 443	62 0 63 1 62 2 63 3 62 4					
1	. 93738		. 97671		. 97227		. 01505						
2	. 93797		. 97736		. 97284		. OI 568						
3	. 93857		. 97801		. $973+\mathrm{I}$. 01631						
4	. 93916		. 97863		. 97398								
5	8.93973		8.97930	65	8.97455	57	9.01756	$\begin{aligned} & 62 \\ & 63 \end{aligned}$	$\frac{4}{5}$	6	6.5	6.4	6.3
6	. 9403 f		. 97995	63	. 9751 Î	56	. 01819	63	6	7 8 8	7.6 8.6	7.4 8.5	7.3 8.4
7	. 94094		. 98060	65	. 97568	57	. 01882	62	7	8	8.6	0.5	8.4
8	. 94153		. 98125	65	. 97625	56	. $019+4$	62	8	10	10.8	10.6	10.5
9	. 94212		. 98190	65	. 9768 Î	56	. 02007	63	9	23	21.6	21.3	21.
I I	. 94330	59	. 98319	64	. 97795	57	. $021313{ }^{\text {a }}$		II				52.5
12	. 94389	59	. 98383	6	. 9785 î	56	. 02195	2	12				
13	- 94448	59	. $98+48$	63	. 97908	56	. 02257		13				
14	. $9+506$.98513		. 9796 f	56	.02319		14				
I 5	$8.9+563$	59	8.98577		8.98020		9.02382		15				
16	. $9+62$ fr	59	. 98642		. 98077	56	. $02+4$ th	62	16		62	61	60
17	. 94683	58	. 98706	64	. 98 I $3 \hat{3}$	56	. 02506	62	17	6	6.2	6.1	6.0
I 8	. 94742	59	. 98770 ¢	6	. 98190	56	. 02569	62	18	7	8.2	7.11	7.0 8.0
19	. 94800	58	. 98835	64	. 98246	56	. 0263 i	62	19	9	9.3	O.î	9.0
$\because 0$	8.94859	58	8.98899	64	8.983021	56	9.02693 ¢	62	$\underline{\square}$	20	20.	20.3	10.0 20.0
21	. 94917	58	. 9896 3	64	. 98358	56	. 02755	62	2 I	30	31.0	30.5	30.0
22	. 94976	58	. 99028	6	. $98+1$	56	. 02817	62	22		41.3 51.6	40.6 50.8	40.0 50.0
23	. 9503 ¢̂	58	. 99092	64	. $98+70$	5	. 02880	62	23				
24	. 95093	58	. 99156	64	. 98527	56	. 02942	62	24				
25	S.9515 5	58	8.99220̂		8.98583		9.03004		25				
26	.95210	58	. 9928 +	6	. 98639	5	. 03066	62	26				
27	. 95268	5	. $993+8$	6	. 98695	5	.03128	6	27		59	58	57
28	. 95326	58	. $99+12$	64	. 98750 ¢	5	.03190	62	28	6	5.9	5.8	$5 \cdot 7$
29	. 9538 ¢	5	. 99476	64	. 98806	50	. 03252	62	29	7	6.9	$6 . \hat{7}$	6.6
30	$8.954+3$	58	8.99540	64	8.98802	56	$9.0331{ }^{\text {\% }}$	61	30	9	8.8	8.7	8.5
31	. 95501	58	. 9960		. 98918	56	. 03375		31	10	9.8	$9 \cdot 6$	9.5
32	. 95559	58		6		55	-	62	32	30	29.5	20.0	19.0 28.5
33	. 95617	58	. 9973 2	64	. 99030	56		6	33		39.	38. ${ }^{\text {¢ }}$	38.0
34	. 95675	58	. 99796	63	. 99085	55	.0356I	62	34				47.5
35	$8.9573 \hat{3}$	58	8.99860	64	8.9914 I	55	9.03622	61	35				
36	. 9579 Î	5	. 9992 3	63	. 99197	56	. 03684	61	36				
37	. 95849	57	8.99987	$6 \pm$. 9925 2	55	. 03746	6 î	37				
38	. 95907	58	9.00051	63	. 99308	55	. 03807	61	38				
39	. 95965	58	.00114	63	. 99363	55	. 03869	6 I	39		56	55	54
40	8.96023	5	$9.0317 \hat{8}$		8.99419	55	9.03930	1	40	7	6.5	6.4	5.4 6.3
41	. 96080	57	. 00242	63	. 9947 4	55	. 03992	61	4	8	$7 \cdot 4$	$7 \cdot \frac{3}{3}$	7.2
42	. 96138	57	. 0030	63	. 9952 ̂̂	55	. 040	6 I		9 10	8.4	8.	8.1
43	. 96196	58	. 003	63	. 99958	55	. 0411	6î	4	20	${ }^{18} .6$	$18 . \hat{3}$	18.0
44	. 96253	57	. $00+3$ 2	63	-995	55	. 041	6î	43	30	28.0	27.5	27.0
					. 9		. $0+17$	6î	44	40 50 50	37.3 46.6	36.6 45.8	36.0 45.0
45	8.96311	57	9.00495	63	8.99695	55	9.04238	61	45				
46	. 96368	57	. 00559	63	. 9975 I	55	. 04299	6î	46				
47	. 96426	57	. 00622	63	. 99806	55 5	. 04360	6 6i	47				
48	. 96483	57	. 00686	63	. 99861	55	. 0442 Î		48				
49	. 9654	5	.00\%49	6	. 9991 6̂	55	. 04483		49				
50	8.96598	$5 \hat{7}$	9.00812	6	8.9997 Î	55		6î	50			ô	
51	. 96656	57	. 00875	63	9.00026	55	$\begin{array}{r} 9.04344 \\ .04605 \end{array}$	6 I	51		6		
52	. 96713	57	. 00933	63	9.0008	55	. $0+666$	61	52		8	0.00	
53	. 9677 Ô	57	. 01002	63	. OOI 36	55	. $0+7727$	61	53		9	0.1	
54	. 96827	57	. 01065	63	. 001919	55	. 0478 S	61	54		20	$\stackrel{\text { O.1 }}{0.1}$	
55	8.96885	57	9.OII28	63	$9.002+\hat{6}$	55	9.04850	6 I	55		30 40	0.2 0.3	
56	. 96942	57	. OII9I	63	. 00301 î	55	. 04911	61	56		50		
57	. 96999	57	. OI2 24	63	. 00356	55	. 04972	61	57				
58	. 97056	57	. 01317	63	. $00+1$ I	54	. 05033	61	58				
59	. 97113	57	. 01380	63	. $00+66$	55	. 05093	60	59				
60	8.971700	57	9.01443		9.00520 -		9.05154		60				
,	Log. Vers.	1)	Log. Exsec. 1	I)	Los. Vers.	I)	Lag. Emspe	I)	,			P.	

TABLE VIII.-LOGARITHMIC VERSED SINES AN゙D ENTERNAI SECANTS.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

TABLE VIII-LOGARITHMIC VERSED SINES ANI EXTERNAL SECANTS.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

TABLE VIII－LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS

	Log．Yers．	D	Log．Exsec．	I）	Lug．Vers．	D	Log．Exsec．	I）			P．P．	
0	9.28099	39	9.37303	$4 \hat{8}$	$9 \cdot 30398$	37	$9.4016 \hat{3}$		0			
I	． 28138	39	． 37352	48	－ $30+36$	37	． 402 IÔ	47	I			
2	．28177	38	． 37400	48	． 30474	3\％	． 40258	47	2			
3	． 28216	39 39	． 37448	48	． 3051 Î	$3 \hat{7}$	． 40305	47	3		48	48
4	． 28255	39	． 37496	48	． 30549	37	． 4035	47	$\begin{aligned} & 3 \\ & 4 \end{aligned}$		48.8	48
5	9.28293	38 39	$9 \cdot 37544$	48	9.30587	37	9.40399	47		8	5.6 6.4	5.6 6.4
6	． 28333^{2}	39	． 37592	48	． 3062 ¢	37	． 40447	7	6	9	$6 \cdot 4$ $7 \cdot 3$	． 4
7	． 2837 I	39	． 37640	48	． 30662	37	． 40.494	47	7	20	8.1 16.1	8.0
8	． 28410	39 38	． 37689	47	． 30700	38	$.405+1$	47	8	20 30	16．${ }_{24}$	16.0 24.0
9	$.2844 \hat{8}$	38	． 37735	48	． 30737	37	． 4058 S	47	9	4°	32.3 40.4	32.0 40.0
10	9.28487	39	9.3778	48	9.30775	37	$9.4063 \hat{3}$	47	10			
I I	． 28526	38	． 3783 Î	48	． 30812	37	$\text { . } 4068 \text { J }$	47	10			
12	． $2856 \hat{4}$	38	． 37879	48	． 30850	37		$4 \hat{7}$	II			
13	． $2860 \hat{3}$	39	． 37927	48	． 30887	$3 \hat{7}$	． 40730	47	12		$4 \hat{7}$	
14	． $286+2$	38	． 37975	$4 \hat{7}$	． 30925	$3 \hat{7}$		47	，	6	，	7
I 5	9.28680	38	9.38023	48	2	37		47	15	7	5．${ }^{\text {5 }}$	－ 5
16	． 28719	38	． 3807 I	48	31000	$3 \hat{7}$	9.4	$4 \hat{1}$	15	9	7.1	7.0
17	． 28757	3 8	． 38 I 19	48	31000	$3 \hat{7}$	4091	47		10	7.9	． 8
18	． 28796	38	． 38166	$4 \hat{7}$		37	－40965	47	7	20	15.8 23.7	
19	． 28835	39	． 38214	48		37		47		40	$31.6 \widehat{6}$	5
20	9．28873	38	9.38262	47	． 3111	37	41059		19	50	39.	39.
21	． 28912	38	9．38310	48	9．31150	37	9.41106	7	$\underline{0}$			
22	． 28950	38	3	$4 \hat{7}$	31	$3 \hat{7}$	41153	47	21			
23	． 28988	$3 \widehat{8}$		48	312	37	41200	47	22			6
24	． 29027	38		47		37		47	23		6	． 6
25	9.29063	38		48		$3 \hat{7}$		47	24		7	． 4
26	． 29104	$3 \hat{8}$		47	9．31336	37	9.41341	47	25		9	．
27	． 29142	$3 \hat{8}$		48	－31374	37	41388	47	26			7
28	． 29180	38		47	3141	37	． 41435	47	27		30	． 2
29	． 29219	38		48	－3144	37	． 41482	47	28		40	
30	9．29257	38		49		37	．41529	6	29			
3 I	． 29293	38	9.38739	47	9.31523	37	9.41576	47	30			
32	． 29334	38	． 38787	$4 \hat{7}$	． 31560	37	． 41623	4	3 I			
33	． 29372	38		48	－31597	37	． 41670	47	32		39	38 ¢
34	． 29410	$3 \hat{8}$		47	－3163	37	． 41717	46	33		3.9 4.5	$3 \cdot 8$
	＋	38		47			． 41		34	8	5.2	
	－ $9+48$	38	9.38977	$4 \hat{7}$	9.31708	\％	9．41810		35	9	5.8	5.8
36	． 29487	38	． 39025	47	． $317+6$	37	． 41857	47	36	10	6.5 3.0	6.
37	． 29525	38	． 3907 2	48	． 31783	37	． 41904	46	37	30	13.0 19.5	12.8 19.2
38	． 29563	38	－ 39120	48	． 31820	37	． 41951	47	38	40	19.5 26.0	25．${ }^{2}$
39	． 2960 Î	38	． 39168	47	． 31857	37	． 41998	47	39	50	32.5	32.1
40	9.29639	38	9．3921 ${ }^{\text {S }}$	47	9.31	37	9.4	$4 \hat{6}$	4			
4 I	． 29677	38		48	$9 \cdot 3$	37	9.4	47	4			
42	． 29715	38	－	$4 \hat{7}$	－31931	37	42091	46	4 I			
43	． 2975	38	－39310	47	－31968	37	． 42138	46	42		38	37
43 4	． 29757	38	－ 39358	47	． 32005	37	． 42 I 85	46	43		3.8	3.7
44	． 29792	3	． $39+05$	4	． 32042	37	． 4223 Î	46	44	8	4.4	4.4
45	9.29830	38	9.39453	， 1	9.32079	37	9.42278			9	5.7	5.
46	． 29868	38	． 39500	$4 \hat{7}$	$9 \cdot 32116$.3219	37	9.42278	46	45	10	6．3	$6 . \hat{2}$
47	． 29906	38	． 39548	47		37	4	47	47	30	19.0	12.5 18.7
48	． 29944	38	． 39595	47	－32153	37	4237	46	47	40	25.3	25.0
49	． 29982	38	． 3964	$4 \hat{7}$		37	4	47	48	50	$3 \mathrm{3} \cdot 6$	31.2
50	9.300	38		47		36			49			
		37	9	47	9．32263	37	9.42512	$4 \hat{6}$	50			
51	－ 300	38	－ 397	$4 \hat{7}$	－ 32300	37	． 42558	47	51			36
52	－ 30095	38	－ 39785	47	－ 32337	36	． 42603	47	52	6	37	36
53	－ 3013	38	． 39832	47	． 32374	36	． 42652	46	53	7	3.7 4.3	3.6 4.2
54	． 3017 I	38	． 39879	47	． 3241 I	37	． 42698	46	54	8	4.9	4．8．8
55	$9 \cdot 3020 \hat{9}$	3	9.39927	47	9.32447	38	$9 \cdot 427+5$	46		10	6．⿳亠丷厂犬	5． 5
56	． 30247	38	． 39974	47	． 3248 ¢	37	9．427＋5	47	6	20	12.3	12．î
57	． 30285	38	． 4002 Î	47	－ 32521	36	42 S3	$4 \hat{6}$	57	30	18.5	18.2
58	． 3032 2	37	． 40069	47	． 3255	37	428	$4 \hat{6}$	5	40 50		24.3 30.4
59	． 30360	38	． 40116	47	． 32594	36	－ 42885	46	50			30.4
	30		9.40163		9.3263 Î		9.42978	4	60			
	g．Yers．	1）	Log．Exsec． 1	I）	Log．Vers．	I）	Log．Exsec．	I）	，		P．P．	

TABLE VIII,-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
38
39

	Log. Vers.	I)	Log. Exsec.	I)	Loge Mras	1)	Lus	I)			P. P	
0	9.3263 Î		$9 \cdot+2978$		$9 \cdot 34802$		9.45752		0			
1	. 32668	36	. +302 ¢	46 47	- 34837	33	. 45797	$\begin{aligned} & 45 \\ & 16 \end{aligned}$	I			
2	. 3270 â	36	.4307 î	47	- 3487 3	36	. $458+3$	+6 +6	2			
3	. $327+$ Î	37 36	. 43118	46 +6	-34909	35	. 45889	40	3		47	46
4	. 32778	36	. 4316 f	46	$\cdot 3+9+\hat{4}$	35	. +5935	40	4	6	4.7	$4 \cdot \mathrm{i}$
5	9.328 If	36	$9 \cdot+3211$	46 +6	9.3+980	35	9.45981	45	5	8	5.5	5.4 5.2
6	. 32851	36	. 43259	46	. 35016	30	. 46027	40 16	6	9	7.01	7.0 7.7
7	. 32888	37	. 43304	+6	. 35051	35	.46073	15		20	15.6	15.5
8	. 3292 t	36	. 43350 O	+6 +6	. 35087	35	. $4615 \overline{8}$	$+5$	8	$3{ }^{3}$	23.5	2\%. ${ }^{\text {2 }}$
9	. 32961	36	.43396	+6	. $3512 \hat{2}$	35	. 46169	4	9	40 50	${ }^{31} 31.3$	31.0 38.7
10	9.32997	36	$9 \cdot 43+43$	46	9.35158	35	$9 .+6210$	$+$	10			
I I	. 33034	36	. $+3+8 \hat{9}$	46	. 35193	35	. 46256	$+5$	I 1			
12	. 330% Ô	36	. 43536	46	. 35229	35	. 46302	40	12			
13	. 33107	36	. 43582	46	. 3526 ¢	35	.+6347	16	13	6	4.6	. 5
14	$.33 \mathrm{I}+\hat{3}$	36	. +3629	+6	. 35300	35	. +6393	40	14	7	4. $5 \cdot 3$	4.5 5.3
15	9.33180	36	$9 \cdot 43673$	16	9.35333	35	$9.46+39$	46	15	8	6.9	1.0 6.8
16	. 33216	36	. +372 Î	+6	. 3537 Ô	35	. 46485	4	16	10	7.6	7.6
17	. 33252	36	.43768	46	. 35406	35	.46530 ¢	45	17	20 30	15.3 23.0	15.1 22.7
18	. 33289	36	. 4381 1	46	. 35441 î	35	. 46576	$1 \hat{3}$	18	30 40 40	23.0 30.6	22.7 $3^{0 .}$.
19	. 33325	36	. 4386 I	+6	. $35+77$	35	. 46622	t)	19	50	38.3	37.9
$\underline{0}$	9.33361		$9 \cdot+3907$	16	$9 \cdot 35512$	3	9.46668		$\because 0$			
2 I	. 33398	36	. $+395 \hat{3}$	46	. $355+7$	35	. 46713	$+5$	21			
22	. $33+3$ 年	36	. 43999	46	. 35583	35	. 46759	45	22			
23	. 3347 Ô	36	. $4+4046$	$+6$. 35618	35	.46805	46	23		6	
24	. 33507	36	. +4092	4	. 35653	35	. 46850	4	2.4			
25	$9 \cdot 33543$	36	9.44138	16	9.35689	33	9.46896	46	25			. 7
26	. 33579	36	. 44185	46 +6	. 35724	35	. $469+2$	4	26			. 5
27	. 33613	36	. 44231	$+6$. 35759	35	. 46989	43	27			. 5
28	. 33652	36	. 44277	46	. 3579 t	35	.47033	45	28			
29	. 33688	36	. $4+32 \mathrm{3}$	46	. 35829	35	. 4707 S	45	29			
30	$9 \cdot 33724$	36	9.44370	46 46	9.35865	35	9.4712		30			
31	. 33760 ¢	36	. 44416	46 +6	. 35900	35	. 47170	45	31			
32	. 33796	${ }^{36}$. +4462	+6 +6	. 35935	35	. 47215	45	32		37	36
33	. 33833	36	. 4450 S	+6 46	. 35970 O	35	. +7261	$4 \hat{3}$	33	6	3.7 4.3	$3 \cdot \mathrm{in}$
34	. 33869	36	$.4+55 \hat{4}$	46	. 36003	33	. +7306	+	34	8	4.3 4.9	4.8
35	9.33905	36	9.44601	46 46	$9 \cdot 36040$	35	9.47352		35	9 10	5. ${ }^{\text {¢ }}$	5.5
36	. 33941	36 36	. $4+6+7$	46 46	. 36076	35	. 47398	4	36	20	12. ${ }^{\text {¢ }}$	12.1 ì
37	. 33977	36	.44693	40	. 35111	35	$.474+3$	15	37	30	18.5	18.2
38	. 34013	36	. $+473 \hat{9}$	46	. 36146	35	. +7489	45	38	40 50	2.4.6 30.8	$24 . \hat{3}$ 30.4
39	. 34049	36	. 44785	46	. 36181	35	. +75331	45	39		30.8	30.4
40	$9 \cdot 3+0{ }^{\text {c }} 5$	36	$9 \cdot 4483 \hat{1}$	46	9.36216	35	9.47580	45	40			
41	. 3412 I	36	. $4+487 \hat{7}$	46	. 36251	35	. +7625	45	4			
42	. $3+157$	36	. $4+924$	46	. 36286	35	. 47671	5	42		36	35
43	. $3+193$	36	. $4+490$	+6	. 36321	35	. 47716	\%	43	7	4.2	3.5
+ +	. $3+229$	36	. 45016	46	. 36356	35	. 47762	45	4.4	8	4.8	$4 \cdot 7$
45	9.3426	30	9.45062	46	9.36391	35	9.47807	45	45	10	$5 \cdot 4$	$5 \cdot 3$ $5 \cdot 1$
46	. $3+301$	3	. 45108	4	. 36426	35	. +785	$+5$	46	20	12.0 18.0	11.8
47	. 34337	36	.45154	46 +6	. $36+61$	35	. 47898	+	47	40	24.0	2.36
48	. 34373	3	+ +5200	$+6$. $36+93$	$3+$	$.479+3$,	$4 \hat{}$	48	50	,	29.1
49	. $3+408$	35	+ $+52+6$	4	. 36530 O	35	. +7989		+)			
50	9.34-t+4	36	$9 \cdot+5292$	46	$9 \cdot 36503$	5	$9.4803 \hat{}$	$+3$	50			
51	. 34480	30	. +5338	$+6$. 36600	35	. 4 Soso	45	51		35	34
52	-3+516	35 36	. 45384	4	. 36635	34	. 48125	45	52	6	35	$3 \cdot 4$
53	. 34552	3	. 45430	46	. 36670	35	.48170 O	75	53	8	4.1	4.0
54	. $3+5587$	35	$45+76$	40	. 36705	33	48216	4	54	9	$5 \cdot 2$	5.2
55	9.3462 ${ }^{\text {a }}$	36 35	$9 \cdot+5522$	46	9.36739	34	9.48261	45	55	10 20	5-8	5.7 11.5
56	. 34659	35	. +5568	46	. 3677	35	. 48306	45	56	30	17.5	17. ${ }^{\text {5 }}$
57	. 34695	36	. $+561+$	46 46	. 36809	$3 \pm$	48352	4	57	40	23.3	${ }^{23.0}$
58	. $3+730$	35	. 45660	46	. $368+4$	35	. 48397	4	58			2.7
59	. 3476 6	3	. +5706	46 46	. 36878	$3 \pm$. $48+42$		59			
60	$9.3+802$	3	9.45752		9.36915		9.48485		60			
,	Log. Vers.	I)	Log. Exame.	I)	Lag. Vars.	I)	, \% F	11			I'. P	

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
40°
41°

	Log. Yers.	I)	Log. Exsec.	D	Log. Vers.	1)	Lor. Exsec.	I)			P. P.	
0	9.36913		9.48488		9.38968		9.51190		0			
1	. $369+8$	$3+$. 48533	45 45	. 39002	34	. 51235	45	I			
2	. 36982	34 35	. 48578	45	. 39035	33	. 5127 ف̂	45	2			
3	. 37019	33	. 48624	45	. 39069	$3{ }^{3}$. $5132 \hat{4}$	45	3			
4	. 37052	34	. 48669	45	. 39103	33	. 51369	44	4		45	45
5	$9 \cdot 3708 \mathrm{6}$	34	9.487 I 9	45	9.39137	34	9.51414	4	5	6	4.5 5.3	4.5 5.2
6	. 371212	35	. 48759	45	$.39170 \hat{1}$	33	. 51458	44	6	7	5.3	5.2
7	. 37 I 56	34 34	. 48805	45	. 39204	33	. $5150 \hat{3}$	4	7	9	6.8	6.7
8	. 371900	34	.48850	45	. 39238	34	. 51548	44	8	10 20	7.6 15.1	7.5 15.0
9	. 37225	34	. 48895	45	. 3927 Î	33	. 51592	44	9	30	22.7	12.5 22.5
10	9.37259	34	9.48940	45	9.39305	33	9.51637	45	10	40 50	30.3 37.9	30.0 37.5
I I	. 37294	$3+$. 48986	45	. 39339	$3+$. 51682	44	II			
12	. $3732 \hat{8}$	34	. 49031	45	. 3937 2	33	. $5172 \hat{6}$	44	12			
13	. 37363	$3 \hat{1}$. 49076	45	. 39406	33	. 5177 İ	4	13			
14	. 37397	$3+$. 4912 I	45	. 39439	33	. 51816	44	14			
15	9.37432	3	$9.4916 \hat{6}$	45	9.39473	3	9.51860̂		I 5		44	
16	. $37+66$	34	. 4921 Î	45	. 39507	34	. 51905	45	16	6	4.4	44
17	. 37501	34	. 49257	45	. 39540 Ô	33	. 51950	44	17	7	5.2	5. I
18	. $3753 \hat{5}$	$3{ }^{3}$. 49302	45	. 39574	33	. 51994	44	18	8	5.9	5.8 6.6
19	. 37570	$3+$. 49347	45	. 39607	33	. 52039	44	19	10	7.4	$7 \cdot \hat{3}$
20	$9 \cdot 3760{ }^{\text {a }}$	$3+$	$9.4939 \widehat{2}$		$9 \cdot 39641$	3	9.52084	45	$\because 0$	20 30	14.8 22.2	14.6 22.0
21	. 37639	31	. 49437	15	. 39674	$3 \frac{3}{3}$. 5212 §	4	21	40	29.6	29.3 3,
22	. 37673	3t	. 49482	45	. 39708	33	. 52173	44	22	50	37.1	366
23	. $3770 \hat{7}$	34	. 49527	45	. 3974	33	. 52217	44	23			
24	. 37742	34	. 49572	45	. 3977 ¢	33	. 52262	4	24			
25	9.37776	34	9.49618	45	9.39808	33	9.52306	45	25			
26	. 37810	$3+$.49663	45	. 3984	33	. 5235 Î	45	26			
27	. 37845	34	. 49708	45	. 39875	33	. 52396	44	27		35	$3 \hat{4}$
28	. 37879	34	. 49753	45	. 3990 ¢̂	33	. 52440	44	28	6	3.5	3.4
29	. 3791	3	. 49798	45	. 3994 Î	33	. 52485	44	29	8	4.11	4.6
30	9.3794 ${ }^{\text {a }}$	34	9.498.43	45	9.39975	33	9.52529	44	30	9 10	5.2 5.8 8.8	5.2 5.7
31	. 37982	$3+$. 49888	45	. $4000 \hat{8}^{2}$	33	. 52574	44	3 I	20	${ }_{11} 1.6$	11.5
32	. 38016	34	. 49933	45	. 4004	33	. 52618	44	32	30 40	17.5 23.3	$17 . \hat{2}$ 23.0
33	.38050	34 34	.49978	+5 45	.40075	33	. 52663	44	33	40	23.3 29.15	23.0 28.7
34	. 38084	34	. 50023	45	. 4010 8ิ	33	. 52709	44	34			
35	9.38 II 8	34 34	9.50068	45	9.40141	33	9.52752	44	35			
36	. 38153	34 34	. 50113	45 +5	. 40175	33	. 52796	44	36			
37	. 38187	34 34	. 50158	45	. 40208	33	. 5284 I	44	37			
38	. 3822 I	34 34	. 50203	45	. 4024 I	33 3	. 52885	44	38		34	33
39	. 38255	34	. 50248	45	. 40274	33	. 52930	44	39	6	$3 \cdot 4$	$3 \cdot 3$
40	9.38289	34	9.50293	45	9.40307	33	9.52974	44	40	7	3.9 4.5	3.9 4.4
41	. $3832 \hat{3}$	34	. 50338	45	. 4034 I	33	. 53018	44	41	9	5.1	5.0
42	. 38357	$3+$. 50383	45	. 40374	33	. 53063	44	42	10 20	5 5 $12 . \frac{6}{3}$	5.6 11.1
43	. 3839 Î	$3+$. 50427	44	. 40407	33	. 53107	$4+$	43	zo	17.0	$16 . \hat{7}$
44	. $38+25$	$3+$. $5047 \hat{2}$	45	$.40+40 \hat{}$	33	. 53152	44	44	40 50	22. ${ }^{\text {¢ }}$	$22 . \hat{3}$
	$9 \cdot 38+59$,	9.50517		$9.40+7 \hat{3}$	3	9.53196		45			
46	. 38.93	34	. 50562	45	. 40506	33	. 5324 ô	44	46			
47	. 38527	$3+$. 50607	45	. 40540	33	. 53285	44	47			
48	. 38561	34	. 50652	4	. 40573	33	. 53329	$4+$	48			
49	. 38595	3	. 50697	+5	. 40606	33	. 53374	$4+$	49			
50	9.38629	3	9.50742	5	9.40639	3	9.53+18	4	50			33
51	. $3866 \hat{3}$	34	. 50787	45	. 40672	33	. 5346 2	4	5 I			3.3 3.8
52	. 38697	34	. 5083 I	4	.40705	33 33	. 53507	4 4 4	52			4. 4.4 4.9
53	. 38731	33	. 50876	45	. 40738	33	. 5355 Î	$4+$	53		${ }_{10}^{9}$	4.9 5.5
54	. 38765	3	. 5092 Î	45	. 40771	33	. 53595	$4+$	54		20	11.0
55	9.38799	34	9.50966	45	9.40804	33	9.53540	44	55			16.5 2.0
56	. 38833	$3{ }^{3}$. 51011	45	. 40837	33	. 5368 ¢	$4+$	56			27.5
57	. 38866	3	. 51055	44	. 40870	33	. 5372 ¢ิ	4	57			
58	. 38900 Ô	3	. $51100 \hat{}$	45	. 40903	33	. 53773	44	58			
59	. 38934	33	. 51143	$4 \hat{4}$. 40936	33	. 53817	$4+$	59			
60	9.38968	34	9.51190		9.40969		9.53861		60			
,	Log. Vers.	I)	Log. Eixser.	I)	Lats. Vats.	I)	Lugr. Exsme.	I)			P. P	

TABLE VIII．－LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS．
4：
$4: 3$

，	Log．Vers．	1）	Log．Eixsec．	1）	Lug．Verri．	I）	Lar．Easec．	I）			1． 1	
0	9.40969	$3 \hat{}$	9．53861	$4 \hat{4}$	9．42918		9.50503	43	$1)$			
I	.41001 î	32	53906	4	． 42950	32	． 56549	43	1			
2	． 4103 ¢	33 33 3	53950	+4 +4 +4	.42982	32	． 56593	$+4$	2			
3	$.4106 \hat{}$	33 33	53991	$4+$ +4	43014	32	． 56637	4	3			
4	． 411000	33	． $5403 \hat{\mathrm{~S}}$	4	＋．3046	32	． 56680	43	4			
5	9.41133	32	9． 54083	44	$9 \cdot+3078$	32	9． 5672 4	44	5	6	44	44
6	． 41166	33	． $5+127$	4	． 43110 Ô	32	． 56,765	$4+$	6	7	4.4 5.7	4.1
7	． 41199	33	． $5+17 \mathrm{l}$	＋	．$+31+2$	31	． 56812	43	7	8	$5 \cdot 15$	${ }_{5}{ }^{\text {¢ }}$
8	． 4123 Î	32	． $5+213$	＋t	$+3174$	32	． 56856	$4+$	8	10	0.7	；
9	． 41264	33	． $5+259$	＋4	． 43206	32	． 568090	43	9	20	14.4	14.1
10	9.41297	32	9．5＋304	4	$9 \cdot+3238$	32	9．509＋3	＋4	10	30	22.	22.0 20.3
I I	． 41330	33	． $5+348$	$4+$	＋+3270	32	． 56989	＋t	11	50	37.	30．$\%$
12	． 41362	33	． $5+39$ 2̂	$+$	．+3302	32	． 57031	$+3$	12			
13	． 41393	$3{ }_{3}$	． $5+4.36$	$+4$	． 43334	32	． 57075	4	13			
I 4	． $41+28$	32	． $5+480$	＋4	．+3363	31	． 57118	$+3$	1.4			
15	9.41461	33	9．54525	7	9．$+339 \hat{7}$	32	9．57162	$+4$	15			
16	． 41493	32	． 54569	$+$	．+3429	32	． 57206	$+3$	16		43	43
17	．41526	33	． 546.13	＋	．$+3+6$ î	32	． 57250	4	17	6	$4 \cdot 5$	4.3
18	． 41559	3	． $5+657$	4	．+3493	31	． $5729 \hat{3}$	$+3$	18	8	5.1 5.8	5.0 5.7
19	． 41591		． 5470 î	$t+$	．+3525	32	． 57337	4	19	9	6.5	6.4
20	9.41624		$9 \cdot 5+7+5$	4	$9 \cdot+3557$	32	9.57381	3	$\because 0$	10 20	7.2 14.5	7.1 14.3
21	． 41657	33	． 54790	$+$	． 43588	31	． 5742 f	43	2 I	30	21.7	21.5
22	． 41689	32	． 54834	＋4	． 4362 Ô	32	． 57469	$+4$	22	$4{ }^{\circ}$	29.	8． 6
23	． 41722	32	． 54878	＋t	.43652	31	． 57512	$+3$	23		30.2	$35 \cdot 8$
24	． $4175 \hat{4}$	32	． 54922	4	．+3684	32	． 57556	4.	$2+$			
25	9.41787	32	9．5496 6	$++$	9.43715	31	9.57599	43	25			
26	．41819	3 32	． 55010 ¢	$4+$	． $437+\hat{7}$	32	． 57643	43	26			
27	． 41852	32	． 55054	4	． 43779	31	． 57687	$4+$	27			
28	． 41885	33	． 5509 §	$4+$	．438ıô	31	． 57730	43	28	6	33	． 2
29	． 41917	32	． 5514	44	$.438+2$	32	． $5777+$	＋3	29	8	$3 \cdot 8$	3.8
30	9.41950	32	9．55186	$+$	9.43874	31	9．57818	4	30	8	4.4	． 3
3 I	． 41982	32	． 55230 ¢	4	． 43906	32	． 5786 i	43	31	10	5.5	5.4
32	． 42014	32	． 55275	$4+$.$+393 \hat{7}$	31	． 57905	43	32	30	11.0 16.5	$10 . ⿳ ⺈ ⿴ 囗 十 大$
33	． 42047	3	． 55319	44	． 43969	31	． 57949	$4+$	33	30 40	16.5	21.6
34	． $4207 \hat{9}$	3	． 55.363	$4+$	．+4000	31	． 5799 2	43	34	50	27.5	27.1
35	9.42112	32	9.55407	$4+$	9.44032	32	9．58036	43	35			
36	． 42144	32	． $55+5 \mathrm{I}$	$4+$.44064	3 İ	． 58079	43	36			
37	． 42177	32	． 55495	74	．+4093	31	． 58123	4	37			
38	． 42209	32	． 55539	$+4$	． $4+127$	31	． 58167	43	38			
39	． 4224 Î	3	． 55583	＋＋	． 44158	31	． 58210 O	43	39		32	3 I
40	9.42274	32	9.55627		9.44190	31	9．58254	43	40	7	3.7	3.1 3.7
41	． 42306	32	． 55671	44	． 4422 Î	31	． 58297	43	4 I	8	4.8	4.3
42	． 4233 8	32	． 557 I 5	$4+$	． $4+253$	31	． $583+1$ 1	44	$+2$	9	4.8 5.8	4.7
43	． 4237 I	32	． 55759	$4+$	． 442 S＇İ	31	． 58385	43	$+3$	20	${ }^{\text {10．}}$ 方	10.5
44	． 42403	32	． 55803	44	． 44316	31	． 5842 S	43	$+4$	30	16.0	15.7
45	$9.42+3 \hat{5}$	32	9.55847	44	$9.4+3+\hat{7}$	31	9．58＋72	43	45	50	${ }_{20}^{21} 6$	26．2
46	． 42.467	32	． 55890	43	． 44379	31	． 58515	$+3$	46			
47	． 42500	32	． $5593 \hat{4}$	$4+$	． $4+410$	31	． 58559	43	47			
48	． 42532	32	． 5597 ¢	$4+$	． 44442	31	． 58602	$4 \frac{3}{3}$	48			
49	． 42564	3	． 5602 2	44	． $44+7$ 今	31	． $586+6$	$+3$	49			
50	9． 42596	32	$9.5606 \hat{6}$	4	9．44504	31	9．58689	5	50			I
51	． 42629	32	． 56110 or	44	． 44536	31	． 58733	43	51		6	．
52	． 42661	32	． 56154	$4+$	． 44567	31	． 58776	43	52			${ }_{i}$
53	． $4269 \hat{3}$	32	． 56198	43	． $4+599$	31	． 58820 ¢	4	53			8
54	． 42723	32	． 56242	4	． 4.4630	3	． 5886	＋	54			．$\frac{1}{3}$
55	$9.4275 \hat{7}$	32 32	9.56286	$4+$	9．4466î	31	9.58007	43	55			
56	． 42789	32	． 56330	44	． $4+693$	31	． 58951	43	56			
57	． 42822	32	． $5637+$	$4+$	． $4+724$	31	． 58994	43	57			
58	． 42854	32	． $56+19$	43	． 44755	31	． 5903 \％	43	58			
59	． 42886	32	． 56461 î	44	． 44787	31	． 590 ぶı	43	59			
60	9.42918	32	9．56503	43	9.44818	3	9． 59124		（i）			
，	Log．Vers．	J）	Log．Fixsec．	I）	Iotre Vers．	1）	Loge Finime．	I）			P．P	

	Log. Vers.	1)	Log. Exsec.	1)	Log. Vers.	D	Log. Exsec.	I)			P. P.	
0	9.44818	31	9.5912 ${ }^{\text {a }}$,	9.46671		9.61722		0			
1	. 44849	31	. 59168	43	. 4670 î	30	. 61765	43	I			
2	. 44880 ô	31	. 59211	43	.46732	3	.6ı80今̂	43	2			
3	. 44912	31	. 59255	43	. 46762	30	.61852	43	3			
4	.44943	31	. 59298	43	. 46793	30	.61895	43	4		43	
5	$9.4497 \hat{4}$	31	9.59342	4 ${ }^{3}$	$9.4682 \hat{3}$	30	9.61938	43	5	6	$4 \cdot 3$	$4 \cdot 3$
6	. 45005	31	. 59385	43	. $4685 \hat{3}$	30	.6i98I	43	6	7	5.1 5.8	5.0
7	. 45036	31	. 59429	43	. 46884	30	.62024	43	7	8	5.8 6.5	5.7
8	. 45068	31	. 59472	43	.46914	30	. 62069	43	8	10989	7.5	. ${ }_{\text {I }}$
9	. 45099	31	. 59515	43	. 46945	30	. 621100	43	9	20	14.5	14.3
10	9.45130	3 I	9.59559	43	$9.4697 \hat{5}$	30	$9.6215 \hat{3}$	43	10	40	29.0	28.6
11	. 45161	31	. 5960 2̂	43	. $4700 \hat{3}$	30	. 62196	43	I I	50		$35 \cdot 8$
12	.45192	3 I	. 59646	43	. 47036	30	. $62239 \hat{}$	43	12			
13	. 45223	31	. 59689	43	. 47066	30	.62282	43	13			
14	. 4525 ¢	3	. 59732	43	. 47096	3	.62326	43	14			
I 5	9.45285	31	9.59776	43	9.47127		9.62369	43	15			
16	. 4531 ¢	,	. 59819	43	. 47159	30	. 62412	43	16			
17	. 45348	31	. 59863	43	. 47189	30	. 62455	43	17		6	$\hat{9}$
18	. 45379	31	. 59906	43	. 47218	30	. 62498	43	18			. 6
19	. 45410	31	. 59949	43	. 47248	30	. 6254 I	43	19			. 1
20	9.45441	31	9. 59993	43	9.47278	,	9.62584	43	90			, $\frac{1}{1}$
21	. 45472	31	. 60036	43	. 4730 ¢̂	30	9.62627	43	21			. 3
22	. 45503	3 I	. 60079	43	. 47339	30	. 62670	43	22			. 4
23	. 45534	31	. 60123	43	. 47369	30	. 62713	43	23			
24	. 45565	31	. 60166	43	. 47399	30	. 62756	43	24			
25	9.45593	30	9.60209	43	9.47429	30	9.62799	43	25			
26	. 45626	31	. 60253	43	. 47459	30	. 62842	43	26			
27	. 45659	3 I	. 60296	43	. 47490	30	. 62885	43	27		31	31
28	. 45688	3I	. 60339	43	. 47520	30	. 62928	43	28	6	3 . i	3.1
29	. 45719	31	. 60383	43	. 47550	30	. 6297 I	43	29	7	3.7 4.2	3.1
30	9.45750	31	9.60426	43	9.47580	30	9.63014	43	30	${ }^{9} 9$	4.7 5.2	4. ${ }_{\text {4. }}^{6}$
31	. 45781	30	. $60+469$	43	. 47610	30	. 63057	43	31	20	10.5	${ }_{10} 0 . \hat{3}$
32	. 45812	31	. 60512	43	. 47640	30	. 63100	43	32	30	15.7 ¢	15.5
33	. 45843	31	. 60556	43	. 47670	30	. 63143	43	33	40 50	${ }_{26.2}^{21.0}$	20.6 25.8
$3+$. 45873	30	. 60599	43	. 47700	30	. 63186	43	34			
35	9.45904	31	$9.6064 \hat{2}$	4	9.47731	30	9.63229	43	35			
36	. 45935	3 l	. 60683	43	. 47761	30	. 63272	43	36			
37	. 45966	30	. 60729	43	. 47791	30	. 63315	43	37			
38	. 45997	3 I	. 60772	43	. 47821	30	. 63358	43	38			
39	. 46027	30	. 60815	$4 \hat{3}$. 47851	30	. 63401	43	39	6	$3 . \hat{1}$	30
40	9.46058	31	9.60858	43	9.4788I	30	$9.634+\frac{3}{3}$	42	40	7	3.5	3.5
41	. 46089	30	. 60902	43	. 47911	30	. 63486	43	41	8	4.	4.0
4.2	. 46120	3 I	. 60945	43	. 47941	30	. 63529 ¢	43	42	10	5. I	5.0
43	. 46150	30	. 6098 ¢̂	43	4797	30	. $635-\frac{3}{2}$	43	4	20	10. I	10.0
44	. 4618 Î	3 I	. 6103	43	. 48001	30	. 63615	43	4	30 40	15.2 20.3	15.0 20.0
45	9.46212	30	9.61075	$4 \hat{3}$	9.48031	30	9.6365	43		50	25	25.0
46	. 46242	30	.61118	43	. 48061	30	. 63701	42	46			
47	. $4627 \hat{3}$	31	.6116î	43	. 48090 ¢	29	. 63744	43	47			
48	. 46304	30	. 61204	43	. 48120	30	. 63787	43	48			
49	. 46334	30	. 61247	43	. 48150	30	. 63830	43	49			
50	9.46363°	31	9.61291	43	9.48180	30	9.63873	43	50			
51	. 46396	30	.61334	43	. 48210	30	. 63915	42	51			. ${ }_{\text {¢ }}$
52	. 46426	30	. 61377	43	. 48240	29	. $6395 \hat{8}$	43	52			.9 9
53	. 46457	30	. 61420	43	. 48270	30	. 6400 î	43	53		9	-
54	. 46487	30	. 61463	43	. 48300	30	. 64044	43	54			8
55	9.46518	3 I	9.61506	43	9.48329	29	9.64087	42	55		${ }^{\circ}$	
56	. 46549	30	. 61550	43	. 48359	30	. $6+130$	43	56			
57	. 46579	30	. 61593	43	. 48389	30	. $6+173$	43	57			
58	. 46610	30	. 61636	43	. $48+19$	29	. 64216	43	58			
59	. 46640	30	. 61679	43	. 48449	30	. 64258	42	59			
60	9.4667 I		9.61722	4	$9.4847 \hat{\delta}$	-	9.6430 Î	43	60			
,	Log. Vers.	I)	Log. Eixsec. 1	I)	Log. Vers.	I)	Log. Exsec.	I)	,		P. P.	

TABLE VII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

	Log. Vers.	$1)$	Log. Exsec.	$1)$	Log. Vers.	1)	Log. Eixser.	I)		1'. P'		
0	$9.4847 \hat{8}$	$\begin{aligned} & 30 \\ & 29 \\ & 30 \\ & 29 \end{aligned}$	9.6430 î	$\begin{aligned} & 43 \\ & 42 \\ & 43 \\ & 43 \end{aligned}$	9.50243			+	0			
1	. 4850 S		$.6+3+4$. 50272	29 29	. 66907	$+$	1			
2	. 48538		. $6+387$. 50301	29	. 60950	$+3$	2			
3	. 48568		$.64+30$. 50330	29 29	. 66992	$+{ }_{+}^{+2}$	3			
4	. 48597		. $6+473$. 50359	29	. 67035	42	4			
5	9.48627	30 29	9.64515	43	9.50388	29 29	9.67077	+2 +2	6		43	$4{ }_{4 . \bar{z}}$
6	. 48657	29	. $6+558$	43 +3	. 50417	29 29	. 67120	$+\begin{aligned} & +2 \\ & +2\end{aligned}$	6	6	4.3 5.0	4.2 4.15
7	. 48686	30	. $6+6010$	${ }^{+3}$. $50+46$	29	. 67162 ²0	$+2$	S	8	5.7	5.6
8	.48716	30 29	. $6+6+4$	42	. 50475	29 29	. 67205	+3 +2	S	10	6. 5	6.4 7.1
9	. $487+6$	-9	. $6+687$	43	. 50504	29	. 67248	$+2$	9	10	$7 \cdot 1$ +4	7.1 14.1
10	9.48773	29	$9.6+729$	$+2$	9.50533	29	9.67290 ¢	42	10	30 40	21.5 28.15	21.2 28.3
1 I	. 48803	20	. $6+7772$	$+3$. 50562	29 29	. 67333	42	11	50	$35 \cdot 8$	35.4
12	. 48835	29	. 64815	+3	. 50591	$2 \hat{8}$. 67375	4	12			
13	. 4886	29	. 64858	+2 +3	. 50619	-8	. 67418	42	13			
14	. 4889 t	-9	. 64901	4	$.506+5$	-9	67460		14			
15	9.48923	29	$9.6+9+3$	43	$9.5067 \hat{7}$	29	9.67503		15			
16	. 48953	29	. 64986	+3 +2	. 50706	29 29	. $675+6$	43	10			42
17	. 48983	29	. 65029	$+$. 50735	28 20	. 6758 S	$+2$	17			4.2
18	. 49012	29 20	. 65072	+3 +2	. 50764	29	. 67631	$+\frac{1}{2}$	18			4.17 5.6
19	. 49042	-9	. 6511 f	4	50793	-9	. 67673	$+$	19			6.3
20	9.4907	29	$9.6515 \hat{7}$	43	9.50821	28	9.67716	42	$\because()$			7.0 14.0
21	. 49101	29	. 65200	$+$. 50850	29	. 67758	42	21			21.0
22	. 49130	-9	. 65243	$+3$. 50879	29	. 67801	42	22			28.0 35.0
23	. 49160	29	. 65283	4	. 50908	28	$.678+3$	-	23			
$2+$. 49189		. $6532 \hat{S}$	4	. 50937	29	. 67886		$2+$			
25	9.49219	$2 \hat{1}$	9.6537 I		9.50963	20	$9.6792 \widehat{8}$	42	25			
26	. $4924 \hat{8}$	29	. 65414	+3 +2	. 5099.4	28	. 67971	42	26			
27	. $4927{ }^{\circ}$	29	. $65+56$	$+$. 51023	28	. 68013	12	27		0	¢ิ
28	. 49307	29	. $65+99$	$+3$. 51052	29	.68056	$+2$	28	6	3.0	29
29	. 49336	29	. 65542	42	. 51080	28	. 68098	42	29	8	3.5	$3 \cdot 7$
30	9.49366	-̂ิ	9.65585	+3	9.51109	29	$9.681+1$,	30	9	4.0	3.9 4.4
31	. 49393	29	. 65627	42	. 51138	28	.68183	42	31	10	5.0	4.9
32	. $49+25$	29	. 65670 ¢	+3	. 51167	29	. 68226	42	32	30	10.0 15.0	9.8 14.7
33	. $49+5+$	29	. 65713	$+2$. 51193	28	. 68268	+	33		20.0	17.6
$3+$. $49+83$	-9	. 65753	42	. $5122+$	28	.683!1		34	50	25.0	2.4
35	9.49513	29	9.65798	$+3$	9.51253	29	9.68353	$+2$	35			
36	. $4954{ }^{2}$	29 29	. 65841	4	. 512812	28	. 68396	$\underline{12}$	36			
37	. 4957 Î	29	. 65884	+3	. 51310	20	. $6 \hat{0}+3 \hat{8}$	$+2$	37			
38	. 49601	29 29	. 65926	+2 +2	. 51338	28	. 68.481	$+2$	38			
39	. 49630	29	. 65969	42	. 51367	29	. 68523		39		29	28
40	9.49659	29	9.66012	43	9.51396	28	9.68566		40		2.9 3.	2.8 3.3
41	. 49689	29	. 66057	+2	. $51+2 \hat{4}$	-S	. 6860 s	12	$+1$	8	$3 \cdot 8$	3.8
42	. 49718	29	. 66097	42	. 51453	28	. 68651	1	42	ı	4	$4 \cdot 3$
43	. $497+7$	29	. 66140	$+3$. 5148 î	28	. $6869 \hat{3}$	$+$	43	20	$0 \cdot 6$	9.5
$4+$. 49776	29	. 66182	42	51510	28	. 68735	42	4	30	14.5	14.3
45	9.49806	29	9.66225	42	9.51539	29	9.68778°	2	$+5$			237
46	. 49835	29	. 66268	43	. 51567	-0	. 68820	42	46			
47	. 4986 . 4	29	. 66310 -	$+2$. 51596	28	.68863	へ	47			
48	.49893	29	. 66353	${ }^{2}$. $5162 \hat{4}$	28	. 6800	$+2$	48			
49	. 4992 2	29	. 66396	+3	. 51653	28	. 68048	4	49			
50	9.4995	29	$9.66+3 \overline{8}$	+2	9.5168i	28	9.689000	42	50			28
51	. 49981	29	. $66+81$	42	- 21710	25	.6y033	+2	51			2.8
52	. 50010	29	. 66523	42	. 5173 S	28	. 69075	$+2$	52		${ }_{5}^{7}$	3.7
53	. 50039	29	. 66566	$+3$. 51767	28	. 69117	$+$	53			$4 . ?$
$5+$. 5006 8	29	. 66609	42	. 51795	28	. Goibo	4	54			4
55	9. 50097	29	9.66651	42	9.51823	28	9.69202	$+\frac{2}{2}$	55			14.
56	. 50126	29	. 66694	42	. 51852	28	. $602+5$	$+2$	56			18.6 23.3
57	. 50153	29	. 66737	43	. 518 SOO	28	. 6028%	$+2$	57			
58	. 50185	29	. 66779	42	. 51909	28	. O0, ${ }^{\text {a }}$	12	58			
59	. 50214	-	. 66822		. 51937	-8	. 69372	$\underline{1}$	59			
60	9. $302+3$		$9.6656 \hat{4}$		9.510 (1) ${ }^{\text {a }}$		$9.60+17$		60			
	Log. Vers.	I)	Lag. Eisser.	1)	Low. Pers.	I)	Lug. Vince.	I)			1'. ${ }^{\prime}$	

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
48°
49°

TABLE VIII.-LOGARITIIMIC VERSED SINES AND EXTERNAL SECANTS.
50°
$\pi 1$

TABLE VIII－LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS

，	Loz．Vers．	I）	Log．Exsec．	1）	loge Vers．	1）	Lag．Fixerel	I）		P．1＇．		
0	9．61512	$\begin{aligned} & 2 \hat{4} \\ & 25 \\ & 2 \hat{4} \\ & 25 \\ & 2 \hat{4} \\ & 25 \\ & 2 \hat{4} \\ & 25 \\ & 2 \hat{4} \end{aligned}$	$9.8+590$	$\begin{aligned} & 42 \\ & +2 \\ & 42 \\ & 42 \end{aligned}$	9.62984	$\begin{aligned} & 24 \\ & 24 \\ & 24 \\ & 24 \end{aligned}$	9.87125	$\begin{aligned} & 4^{2} \\ & +2 \\ & 42 \\ & 42 \end{aligned}$	$1)$			
1	． 61537		． $8+632$		． 63008		． $8716 \hat{7}$		1			
2	． 61562		． $8: 675$		．63032		．87209		2			
3	． 61586		． $8+817$		． 63057		8725こ		3			
4	．61611		． $8+759$		． 63081		．8729t		$+$			
5	9.61636		$9.8+8010$	$+2$	9.63103	24	9.87336	4	5			
6	．61661		． $8+84 \overline{3}$	$+2$	． 63129	2	． 87379	12	6			
7	． 61685		．S4886	+2 +2	． 63554	$2+$	． $87+21$	$+2$	7			
8	． 61710		． $8+928$	42	． 63178	－1	． $87+63$	$+\frac{1}{2}$	8			
9	． 61735		． $8+970$	42	．63202	－	． 87506		9			
10	9.61760	23	9.85012	12	9.63226	2	9.87548	$+2$	10			
I I	． 6178 if	$2+$	． $8505 \hat{4}$	42	． 632500	$2+$	． 87590	＋2	II			
12	．61809	$2 \pm$	． 55097	4	． 63274	24	． 87633	12	12			
13	．61834	$2{ }^{2}$	．85139	42	． 63299	24	． 57675	＋2	13			
14	． 61858		． 85181	4	． 63323	－4	． 87717		14		4^{2}	42
15	9.61883	25	$9.8522 \hat{3}$	1	$9.633+7$	っ1	9.87760	17	I 5	6	$+2$	4^{4}
16	． 61908	24	． 85263	＋2	． 63371	$2+$	． 8780 2̂	$+2$	16	7	4． $5 \cdot 6$	$4 \cdot 4$
17	．61932	$2+$	． 85308	$+2$	． 63393	$2+$	． $878+\hat{4}$	42	17	9	6.4	6.3
18	．61957	$2 \pm$	． 85350	42	$.63+19$	$2+$	． 87887	$+2$	18	（1）	7 4 4	7.0 14.0
19	． 61982	25	． 85392	$+2$	． $63+4 \hat{3}$	$2+$	． 87929	$+2$	19	30	21	21.0
$\underline{0}$	$9.6200 \hat{6}$	24	$9.85+3 \hat{4}$	$+2$	9.63468	2t	9.87971	12	$\because()$	40 50	28.3 35.4	23.0 35.0
21	． 62031	－	． $85+76$	${ }^{+}$	． $63+92$	$2+$	．SSolt	17	2 I			
22	．62053	24	． 85519	42	． 63516	$2+$	．SSO56	＋2	22			
23	．620Sô	25	． 85561	42	． 63540	$2+$	．S8099	2	23			
24	． 62105	$2+$	． $8 ; 603$	$+2$	． 63564	$2+$	． $881+1$	12	$2+$			
25	9．62129	$2+$.	9．85645	42	9.63588	24	9.88183		25			
26	． $6215+$	$2+$	． 85688	4	． 63612	$2+$	． 88226	＋2	26			
27	． 62178	$2+$	． 85730	42	． 63636	$2+$	SS26S	＋2	27	6	2.5	24
28	． 62203	24	． 83772	$+2$	． 63660	$2+$	S83100	12	28	7	2.9	2.8
29	． $6222 \hat{7}$	24	． 5581 f	12	．6368 ${ }^{\text {f }}$	$2+$	． 88353	42	29	8	$3 \cdot 3$	$3 \cdot 2$
30	9.62252	24	9.85857	42	9.63708	24	9.88395	$+2$	：3）	10	4	4.
31	． 62276	$2+$	． 85899	42	． 6373 2	24	． 88.38	42	31	30	8.3 125	S． 12.2
32	．62301	27	． $859+1$	42	． 63756	$2+$	．SS＋80	$+2$	32	40	10.6	16.3
33	． 62323	$2+$	． 85993	42	． 63780	$2+$	． 8852 z	$+2$	33	50	．0．§	204
34	． 62350	$2+$	． 86026	42	.63 Sof	2.4	． 88565	$+2$	$3+$			
35	$9.6237 \hat{4}$	？	9.86068	$+2$	9.6382 S	$2{ }_{2}$	$9.8860 \hat{7}$	12	35			
36	． 62399	$2+$	． 86110	＋2	． 63852	27	． 88650	$+\frac{1}{2}$	36			
37	． 62.423	$2+$	． 86152	$+2$	． 63876	$2+$	． 8869 2	$+2$	37			
38	． 62448	$2+$	． 86195	42	． 63900	24	． 8873 y	$+2$	38			
39	． $62+7 \mathrm{2}$	2	． 86237	$t 2$	． 63924	$2+$	． 887 フ7	＋2	39		24	$2 \hat{3}$
40	9.62497	$2+$	9.86279	$+2$	$9.639+8$	24	9．85819	42	40	6	2.4 2.5	2.3 2.7
41	． 62521 Î	2.4	． 8632 î	$+2$	． 63972	24	． 88862	42	＋1	8	3.2	$3 \cdot 1$
42	． 62546	24	． 86364	42	． 63996	24	． 8890	$+2$	42	10	3.1	3.5
43	． 62570	27	．86406	42	． 64019	23	． 85947	＋	$+3$	20	8.0	7.
＋4	． $6259 \hat{}$	2.4	． $86+45$	42	． $6.40+3$	2.4	． 88989	42	4	30	12.0	11．7
45	9.62619	$2+$	$9.86+90$	$+2$	9.64067	24	9．S003î	12	＋5	50		1.9
46	． 62643	24	． 86533	$+$	．64091	，	． 59074	\％	16			
47	． 62668	－	． 86575	$+2$	． $6+115$	$2 \frac{4}{3}$	． 89116	$+$	47			
48	． 62692	$2+$	． 86619	$+2$	． 64139	－3	． 89159	4	48			
49	． 62716	$2+$	． 86659	$+$	． $6+163$	$2+$	． 80201	＋	49			
50	9.62741	2	9.86702	$+2$	$9.6+187$		9.89244	¢	：11			
51	． 62765	24	． $867+\frac{1}{1}$	42	． $6+2100$	23	．S9280	$+\frac{2}{3}$	51			
52	． 62789	$2+$	． 86786	42	． $6+237$	24	．Sojza	4	52			
53	． 62814	$2 \pm$	． 86829	42	． $6+25 \overline{5}$	$2+$	． 893 í	4	53			
54	． $6283 \hat{8}$	$2+$	． 86871	$+2$	． $6+282$		S9＋14		5.4			
55	9.62862		$9.8691 \hat{3}$	42	$9.6+3061$		$9.80+56$	＋	55			
56	． 62857	27	． 86956	＋2	． $6+330$	－	． $89+99$		50			
57	．62911̂	2	． 86998	＋2	． $6+353$	23	． 895.1	$+$	57			
58	． 62933	$2+$	． $870+0$ O	$+2$	． 64377	$2 \pm$	． 89583	＋	58			
59	． 62960	$2+$	． 87082	13	． $6+401$	－3	． 89620		5）			
（i）	9.62984		9.87125		$9.6+425$		9． 89065		（i）			
，	Log．Vers．	I）	Low．Exser．	1）	Low．Vars．	1）	，0上．Fix	I）			I＇．${ }^{\prime}$	

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
56°
5%

TABLE VIII.-LOGARITIMIC VERSED SINES AND EXTERNAL SECANTS.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
60°
61°

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
66°

	Log. Yers.	D	Log. Exsec.	D	Log. Vers.	D	Log. Exser.	1)			P. P.	
0	9.79613	18	10.22258		$9.8072 \hat{8}$		10.25295		0			
1	. 79634	18	. 22308	50	. 80747	18	. 25347	$5 \mathrm{I}$,			
2	. 79653	19	. 22358	50	. 80763	18	25398	51	2			
3	. 7967 Î	18	. 22408		. 80783		25449	51	3		53	52 2
4	. 79690	18	. 22458	50	. 80802	${ }^{1} 8$. 25501	51	4	7	5.3 6.2	5. ${ }_{5}$. $\hat{\text { i }}$
5	9.79709	19	10.22508	50	9.80820	18	10.25552	5 î	5	8	7.0	7.0
6	. 79727	19	. 22558	50	. 80839	18	25604	5	6	-	7.0	7.0
7	. 79746	19	. 2260 Ŝ	50	. 80857	$1 \hat{8}$. 25655	51	7		17.6	17.5
8	.79765	18	. 22658	50	. 80873	1 S	. 25707	5 Î	S	30 40	26.5 35.3	26.2 35.0
9	.79783		. 2270 ô	50	. 80894	18	. 25758	51	9	50		43.7
10	9.79802	10	10.22759	5	9.80912		10.25810	5 I	10			
I	. 79821	18	. 22809	50	. 80930	18	. 2586 î	51	II			
12	. 79839	18	. 22859	50	. 80949	18	. 25913	51	12			
13	. 79858	19	. $22909 \hat{}$	50̂	. 80967	18	. 25964	51	13		52	5.1 ì
14	. 99877	18	. 22960	50	. 80985	18	. 26016	51	14	7	5.2	5.1
15	9.79892	18	10.23010	50	9.81003		10.26067	51	15	8	6.9 7.8	6.8
16	. 79914	18	. 23060 ¢	50	. 81022	18	.26119	52	ı6		8.6	8.6
17	. 79933	19	. 23 IIô	50	. 81040	18	. 26171	51	17	20	17.3 26.0	17. 1
18	. 7995 İ	18	. 23161	50	. 81058	10	. 26222	51	18	40	$34 \cdot 6$	34. ${ }^{2}$
19	. 79970	18	. 23211	50	. 81077	8	. 26274	52	19	50	$43 \cdot 3$	42.9
20	9.7998 8	18	10.23262	50	9.81095	8	10.26326	51	90			
2 I	. 80009	19	. 23312	50	.81II 3	18	. 26378	52	21			
22	. 80026	18	. 23362	50	.8113	18	. 26429	57	22		51	50
23	. $800+4$	18	. 23413	50	. 81150	18	. 2648 î	52	23	6	5.1	5.01
24	. 80063	18	. $23+6$ 3	50	.81168	15	. 26533	52	24	7	5.0.8	5.9 6.7
25	9.8008 î	19	10.23514	50	9.81186	18	10.26583	52	25	9	7.6 8.5	7.6
26	. 801000	19	. 23564	50	. $8120 \hat{4}$	18	. 26637	51	26	10 20		$\begin{array}{r}8.4 \\ 16.8 \\ \hline 8\end{array}$
27	. 801I9	18	. 23613	50	81223	18	. 26689	52	27	30	25.5	25.2
28	. 80137	18	. 23666	50	. $812+1$	18	. 26741	52	28	40	34.0 42.5	33.6 42.1
29	. 80156	18	. 23716	50	. 81259	18	. 26793	52	29			
30	9.80174	18	10.23767	50	9.81279	18	10.26845	52	30			
31	. 80193	18	. 23817	50	. 81293	18	. 26897	52	31			
32	. 8021 Î	18	. 2386 ¢̂	51	. 81314	18	. 26949	52	32			
33	. 80230	18	. 23919	50	. 81332	18	. 27001	52	33			
$3+$. $802+8$	18	. 23969	50	. 81350	8	. 27053	5	34			
35	9.80267	19	10.24020	51	9.8136	18	10.27105	52	35			
36	. 80286	18	. 2407 I	50	. 81386	18	. 27157	52	36			
37	. 80304	18	. 24122	5	. 81.405	18	. 27209	52	37			
38	. 80323	18	. 24172	50	. 81423	I 18	. 2726 î	52	38			
39	. 8034 Î	18	. 24223	5	. 81441	18	27314	5	39			
40	9.80360	18	10.2427	51	9.81459	18	10.27366	52	40			
41	. 80378	18	. 24325	50	. 81477	18	. 27418	52	41			
42	. 80397	18	. 24376	51	. 81495	18	. $27470 \hat{1}$	52	42		19	18
43	. 80415	18	. 24427	51	. 81513	18	. 27523	5	43	6	2	
44	. $80+34$	18	. 24478	51	.81532	18	. 27573	5	44	8	2.5	2.4
45	$9.80+52$		10.24529	51	9.81550	18	10.22625	52	45	10	$3 \cdot 1$	3.1
46	. 80470 Ô	18	. 24580	51	. 81568	18	. 27680	52	46	-	6.3	6. 1 İ
47	. $80+89$	18	. 24631	51	. 81586	I8	. 27732 2	52	47	30 40	9.5 12.6	9.2 12.3
48	. 80509	18	. 24682	51	. 81604	18	. 27785	52	48	50		
49	. 80526	18	. 24733	51	. 8162 L	18	. 27837	52	49			
50	$9.8054 \hat{4}$	I	10.24784	51	9.8164ô	18	10.27890	5	50			
51	. 80563	18	. 24835	51	. 81658	18	. $2794 \hat{2}$	52	51			
52	. 80587	$1{ }^{1} 8$. 24886	5 I	. 81676	18	. 27995	52	52		6	
53	. 80600	18	. 24937	51	. 81695	18	. 28047	52	53		7	
54	. 80618	18	. 24988	51	. 81713	18	28100	52	54		8	
55	9.80636	18	10.25039	5 I	9.81731	18	10.28152	5	55		10 20	-
56	. 80635	18	. 25090 Ô	51	. 81749	18	. 28203	53	56			-
57	. 80673	18	. 25142	51	. 81767	18	. 28258	52	57			
58	. 80692	18	. 25193	51	. 81785	18	. 283 10̂	52	58			
59	. 80710	18	. $2524 \hat{4}$	51	. 81803	18	. 28363	53	59			
60	$9.8072 \widehat{8}$		10.25293		9.8182 I	8	10.28416	5	60			
,	Log. Vers.	D	g. Exsec.	D	Log. Vers.	7	0r. Exspc.	n			P. P.	

TABLE VIII.-LOGARITHMIC VERSED SIN゙ES AND EXTERNAL SECANTS. $\%$

TABLE VII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
78°
73°

	Log. Vers.	D	Log. Exsec.	D	Lag. Vers.	D	Log. Exsec.	D			P. P.	
0	$9.839+6$	19	10. $3494 \hat{8}$	56	9.849800		10.38387	$5 \hat{}$	0			
I	. 83964	19	. 35005	56	. 84997	17	. 38445	58	1			
2	. 8398 Î	17	. 3506 I	56	. 85014	17	. 38504	58	2			
3	. 83999	17	. 35117	56	. 85031	17	. 38562	58	3		61	60
4	. 84016	17	. 35174	56	. 85049	I7	. 38621	58	4	6	6.1	6.0
5	$9.8403 \hat{3}$	17	10.35230	56	9.85066	17	10.38679	58	5	7	7.1 8 .	8.0 8.ô
6	9.8405	17	10.3523 $.3528 \hat{6}$	56	. 85083	17	10.38679 .38738	$5 \hat{8}$	6	9	9. ${ }^{\text {¢ }}$	9.1
7	. 84068	17	. 35343	56	. 85100	17	. 38796	58	6	10 20	10.1 $20 . \hat{3}$ 2	10.1 20.î
8	. 84083	17	. 35399	56	. 851 i 7	17	. 38855	59	8	30	30.5	30.2
9	.84103	17	. 35456	57	. 85134	17	. 38914	58	9	40	40.6 50.8	40.3 50.4
10	9.84120̂	17	10.35513	56	9.8515 I	17	10.38973	59	10			
1 I	. 84133	17	+ 3556	56	9.85168	17	10.38031	58	I I			
12	. 84155	17	. 35626	56	. 85185	17	. 39090 O	59	12			
13	. 8417 72	17	. 35683	57	. 85202	17	- $3914 \hat{9}$	59	13		60	59
14	.84189	17	. 35739 ¢	56	. 85219	17	. 39208	58	It	7	6.0	5.9 6.9
15	9.84207	17	10.35796	57	9.85236	17	10.39267	59	I 5	8	8.0 9.0	7.9 8.9
16	. 8422 令	17	. 35853	56	. 85253	17	. 39326	59	16	10	10.0	8.9 9.9
17	. $8+24$ Î	17	. 35910	57	. 85270	17	. 39385	59	17	20	20.0	19.8 ¢
18	. 84259	17	. 35967	57	. 5287	17	- 39444	59	18	30 40 40	30.0 40.0	29.7 39.6
19	. $8+276$	17	. 36023	56	. 85304	17	. 39503	59	19	50	50.0	49.6
20	$9.8429 \hat{3}$	17	10.36080̂	57	9.8532 I	17	10.39562	9	20			
2 I	. 84310	17	. 36137	57	. 85338	17	. 3962 Î	59	2 I			
22	. 84328	17	- $3619 \hat{4}$	57	. 85355	17	. 39681	59	22		59	8
23	. 84345	17	. 36251 î	57	. 85372	17	. 39740	59	23	6	5.9	$5 \cdot \hat{8}$
24	. $8+362$	17	.36308	57	. 85389	17	39799	59	24	8	6.9	6.8 7.8
25	9.84380	17	10.306366	57	$9.8540 \hat{5}$	16	10.39859	9	25	9	8.8	8.8
26	. 84397	17	. $36+23$	57	. 85423	17	. 39918	5	26	10	9.8	9.7
27	. 8441 I 4	17	. 36480	57	. 54339	17	. 39974	59	27	30	19.6 29.5	9.5 29.2
28	. 8443 Î	17	. 36537	57	. 85456	17	. 40037	59	28	40	39. ${ }^{\text {3 }}$	39.0
29	. 84449	17	. 36594	57	. $8547 \hat{3}$	17	. 40096	59	29			
30	9.84466	17	10.36652	57	9.85490	17	10.40156	59	30			
3 I	. 84483	17	. 36709	57	. 85507	17	. 40216	50	31			
32	. 8450 Ô	17	. $3676 \hat{6}$	57	. 85524	16	. 40275	59	32		58	57
33	. 84517	17	. 36824	57	. 8554 I	17	. 40335	59	33	6	5.8	$5 \cdot 7$
34	. 84535	17	. 3688 î	57	. 85558	17	. 40395	60	34	8	6.7 7.7	6.7 7.6
35	9.84552	17	10.36938	57	9.85575	17	10.40454	59	35	9	8.7 9.6	8.6 9.6
36	. 84569	17	. 36996	58	. 85592	17	. 40514	50	36	20	19.3	
37	. 84586	17	. 37054	58	. 8560 ¢	16	. 40574	59	37	30 40	29.0 38.6	$28 . \hat{7}$ 38.3
38	. 84603	17 17	. 37111 I	57	. 85623	17	. 40634	60	38	40 50	38.6 48.3	38.3 47.9
39	. 8462 Ô	17	. 37169	57	. 85642	17	. 40694	60	39			
40	9.84638	17	10.37226	57	9.85659	17	10.40754		40			
41	. 84655	17	. 37284	57	. 85676	16	. 40814	60	41			
42	. 84672	17	- $373+2$	57	. 85693	17	.40874	60	42	6	57	5.6
43	. $8+689$	17	. 37399 ¢	58	. 85710	10	.40934	60	43	7	6.6	6.6
44	. $8470 \hat{6}$	17	. $37+57$	58	. $8572 \hat{6}$	$1{ }^{1}$. 40994	60	44	8	7.6 8.5	7.5 8.5 8.5
45	9.84724	17	10.37515	58	$9.857+\hat{3}$	17	10.41054	60	45	10	9.5 10.0	9.4 8.8 8.8
46	. 84741	17	. 37573	58	. 85760	17	. 41114	60	46	30	19.0 28.5	18.8 28.2
47	. 84758	17	. 3763 I	58	. 85777	16	41174	6 6o	47	40	38.0	37.6
48	. 84775	17	. 37689	5	. 85794	17	41235	60	48		47.5	47.1
49	. 8479 2	17	37747	5	858II	17	. 41295		49			
50	$9.8480 \hat{}$	17	10.37805	58	9.85827	16	10.41355	6 ¢	50			
51	. 8482 6	17	. 37863	58	. 85844	17	. 41416	60	51			
52	. 84844	17	. 3792 I	58	. 5586 I	17	- $41+76$	60	52	6	17 17 1.7 1.7	1.6
53	. 84861	17	. 37979	5	. 85878	16	41537	60	53	7	2.0	1.6 r .9 2
54	. 84878	17	. 38037	58	. 85895	17	. 41597	60	54	8	$\begin{array}{ll}2.3 & 2.2 \\ 2.6 & 2.5\end{array}$	2.2 2.5
55	9.84895	17	10.38095	58	9.8591 I	16	10.41658	6	55	10	2.0 2.8 $5 . \hat{8}$ 5	2.7 5.5
56	. 84912	17	. $3815 \frac{3}{3}$	58	. 8592 ¢̂	17	. +1719	60	56	20 30	5.8 8.7 5.6 8.7	5.5.2
57	. 84929	17	-38212	58	. 85945	16	. 41779 ,	60	57		$\begin{array}{ccc}11 . \hat{6} & 11 . \hat{3} \\ 14.6 & 14 . \hat{1}\end{array}$	11.0 13.7
58	. 84946 人	17	. 38270 O	58	. 85962	16	. 41840	61	58		14.6 14.1	13.7
59	. 84963	17	. 3832 ¢̂	58	. 85979	16	41901	61	59			
60	9.84980		10.38387		9.85995		10.41962		60			
,	Log. Vers.	7)	Leg. Exsec.	D	Log. Vers.	I)	ar. Exsac.	J)			P. P.	

TABLE VIH.-LOGARITHMIC VERSED SINES ANI) EXTERNAL SECANTS.
$\%$

TABLE VIII-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

1ABLE VIII-LOGARITHMIC VERSED SINES AND ENTERNAL SECANTS.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
80°

	Log. Vers.	D	Log. Exsec.	I)	Lug. Vers	D	Log. Exsec.	I			P. P	
0	9.91716	15	10.67749	86	9.92612	14	$10.7317 \hat{8}$	95	0			
1	-9173Î	15	. 67836	87	. 92626	14	. $7327 \hat{3}$	$\begin{aligned} & 95 \\ & 94 \end{aligned}$	1			
2	. 91746	15	. 67923	87	. 9264	14	. 73368	94	2			
3	.9176î	15	. 68010	87	. 92656	14	. 73463	95	3		90	80
4	.91776	15	. 68097	87	. 9267 I	15	. 73558	95	4	6	9.0	8.0 .3
5	9.91791	15	10.6818 ${ }^{\text {a }}$	87	9.92686	15	10.73653	95	5	7	10	9.3 10.6
6	. 91807	15	. 68272	89	. 92700	14	.73748	95	6	9	13.5	12.0
7	. 91822	15	. 68359	8	. 92715	15	.73844	95	7	10	15	13.3
8	. 91837	15	. 68447	87	. 92730	14	. 73940	96	8	30	45.0	40.0
9	. 91852	15	. 68534	87	. 92745	I 5	. 74035	95	9	40	60.0	53. $\hat{3}$
10	9.91867	15	$10.6862 \hat{2}$	88	9.92759	1	10.7413 I	6	10			
I I	. 91882	15	. 687 ı̂̂	88	. 92774	15	.74227		I 1			
12	.91897	15	. 68798	88	. 92789	14	. 74324	96	12			
13	.91912	15	. 6888 6	88	. 92804	15	. 74420	96	13	6	9	8
I 4	. 91927	15	. 68975	8	. 92818	14	.74517	96	14	7	1.0	${ }_{0}^{0.8}$
15	9.91942	15	$10.6906 \hat{3}$	88	$9.9283 \hat{3}$	15	10.74613	96	15	9	1.2	I. $\hat{1}$
16	. 91957	15	. 69152	¢8	. 92848	14	. 74710 ¢	97	16	9	1.3 1.5 1.5	1.2 I. 1
17	. 91972	15	. 69240 O	8	. 92862	14	. 74809	97	17	20	3.0	$2 . \hat{6}$
18	. 91987	15	. 69329	80	. 92877	15	. 74905	97	18	30 40	4.5 6.0	4.0 5.3
I 9	.92002	15	. $69+1 \hat{8}$	89	. 92892	14	. 75002	97	19	50	$7 \cdot 5$	6.6
20	9.92016		$10.6950 \hat{7}$	80	9.92907	14	10.75099	97	$\underline{20}$			
2 I	. 9203	15	. 69596	S99	. 9292 î	14	. 75197	98	2 I			
22	. 92046	15	. 69586	S9	. 92936	14	. 75295	S	22		7	6
23	. 9206 Î	15	. 69775	S9ิ	. 92951	15	. 75393		23	6		0.6
24	.92076		. 69865		. 92963		. 75491		$2+$	7		0.6 0.7
25	9.9209 Î	15	10.69955		9.92980	14	10.755^{89}	8	25	9	1.0̂́	0.9
26	. 92106	15	. $700+4$	90	. 92995	14	. 75688	8	26	20	1.1 2.3 	1.0 2.0
27	. 92 I2Î	15	. 70134	9	. 93009	14	. 75786	98	27	30	3.5	3.0
28	.92136	15	. 7022 ¢	90	. 93024	15	. 75883	99	28	40 50	4.6 5.8	4.0
29	. 92151		70315	9	. 9.3039	14	. 75984	99	29			
30	9.92166	15	10.70405		$9.9305 \hat{3}$	15	$10.7608 \hat{3}$	99	30			
31	.92I $\mathrm{I}_{\text {I }}$	15	. 70495	90	. 93068	15	.76182	99	31			
32	. 92196	15	. 70586	91	. 93083	14	. 76282	99	32		5	4
33	. 9221 I	15	. 70677	90	. 93097	14	.76382	100	33	6	0.5	0.4
34	. 92226	15	. 70768	91	. 93 II2	15	.7648 i	99	34	7	0.6	0.4 0.5
35	9.92240	15	10.70859	91	9.93127	14	10.7658 İ	100	35	${ }_{10} 9$	0.0 0.7 0.8	$\bigcirc 6$
. 36	. 9225 ¢	15	. 70950	91	. 9314	14	.7668î	100	36	20	1. 6	1.6 1.3
37	. 9227 Ô	15	. 710.4 î	9î	. 93156	14	. 76782	100̂	37	30	2.5	2.0
38	. 92283	15	.71133	911	. 93171	15	.76882	100	38	40		2.6 3.3
39	. 92300	5	. 7122 4	9	. 93185	14	.76983	100	39			
40	9.923I5	15	10.71316	02	9.93200	14	10.77083		40			
41	. 92330	15	. 71408	92	. 93214	14	. 77184	101	41			
42	. 92345	15	. 71500	92	. 93229	15	. 77286	101	42	6		5
43	. 92360	15	. 71592	92	. 93244	14	.77387	101	43	7	1.5	1.5
44	. 92374	14	. 71684	92	. 93258	14	. 7748 8̂	IOİ	44	8	2.0	2.0
45	9.92389	15	$10.7177 \hat{6}$	92	9.93273	14	10.77590		45	10	2.3	2.5
46	. 92404	15	. 71869	92	. 93287	14	. 77692	102	46	20	5. i	5.0
47	. 92419	14	. 7196 î	92	. 93302	15	. 77794	102	47	30 40 40	7.7 10.3	7.5 10.0
48	. $92+34$	15	. 72054	93	. 93317	14	. 77896	102	48	50	12.9	12.5
49	. 92449	15	. 72147	92	. 9333 Î	14	. 77998 ¢	102	49			
50	9.92463	15	$10.722+0 \hat{0}$	9	9.93346		10.78101		50			
51	. $92+778$	15	. 72333	93	. 93360	14	. 78203	10	5 I			
52	. 92493	15	. 72427	93	. 93375	14	.78306	103	52			
53	. 92508	14	. 72520	93	. 9338 9̂	14	. 78409 ¢	103	53			
54	. 92523	15	.72614	93	. 9340 ¢	15	. 78513	103	54		8	
55	9.92538	15	$10.7270 \hat{7}$	1	9.93419	1	10.786:6	103	55		-	
56	. 92552	14	. 7280 I	$9+$. $9343 \hat{3}$	14	. 78720	$10 \hat{3}$	56		-	
57	. 92567	15	. 72893	94	. 93448	14	. 78823	103	57			
58	. 92582	15	. 72990	94	. 93462	14	. $7892 \hat{7}$	104	58			
59	. 92597	14	. 73084	94	. 93477	14	. 7903 Î		59			
60	9.92612		10.73178	94	9.9349 Î		10.79136		60			
,	Log. Vers.	I)	Log. Exrec.	n	Log. Vers.	I)	Log. Exsec	I)	,		P.	

TABLE VIII．－LOGARITHMIC VERSED SINES AN゙I ENTERNAL SECANTS．
$8 \overbrace{}^{\circ}$
$8: 3$

	Log．Vers．	I）	Log．Exsec．1）	Log．Virs	1）	Lug．Exuec．	I）			I＇．P＇．	
0	$9.93+9$ İ	$1 \hat{1}$	$10.7913610 \hat{4}$	$9 \cdot 9+356$	1.1	10.85706	119	${ }^{1}$			
1	． 93506	$1 \frac{1}{4}$	．79240 105	． $9+370$	14	． 53884	119	1			
2	． 93520	14	$.793+5$ 107	－ $9+38$ ¢	17	－S600í	117	2			
3	． 93535	$1{ }_{1}$	$.79+50105$	． 9439 S	14	． 56119	$\begin{aligned} & 117 \\ & 118 \end{aligned}$	3			
4	． $935+9$.79555 10？	． $9+413$		． 86237		4			
5	9.93564	$1 \hat{4}$	10.79660 103 103	$9 \cdot 9+42 \hat{7}$	$1+$	10．8635	11	5		130	
6	． 93578	14	.79766103	－ $9+4+1$ î	14	． 86474	115	6	7	15．i	14.0
7	． 93593	14 $1+$.7987 î 10，	． $9+456$	14	． 86592	115		8	$17 . \hat{3}$	16.0 180
8	． 93607	$1{ }_{1}^{1}$.79977106	． $9+470$	14	． 867 I î	119	8	9	${ }^{19} 9$	18.0 20.0
9	． 93622	$1+$	． 80083 3 100	． $9+48$＋	14	． 86531	119	9	20	43	40.0
10	9.93636	$1{ }^{1}$	10．Sor89̂ 106	$9.9+49 \hat{8}$	1	10．86950	119	10	40	88.	\＆o 0
I I	． 93651	14 14	． 80296106	． $9+512$	14	．870\％ô	120	11	5	108.3	100.0
12	． 93663	14 14	． $80+02106$	． $9+527$	$1+$	． 871900	120	12			
13	． 93680	14	．80309̂ 107	． $9+5+1$	$1+$	． 87310 or	120	13			
14	$.9369 \hat{4}$	17	． 8061 b	． $9+553$		． $87+31$	120	If			
15	9.93709	$1 \hat{4}$		$9.9+506$	1 1 1 4	10.87552	121	15			
16	． 93723	$1 \begin{aligned} & 1 \\ & 1+ \\ & 1\end{aligned}$	． So83I $^{\text {I }} 107$	． $9+584$	17	． 87673	121	16		110	100
17	． 93738	14	． 80938 108	－ $9+598$	$1+$	． 87794	121̂	17		12	$\hat{6}$
18	． 93752	14 14	．8104 6 108	． 94612	14	． 87016	121	18		14.	13．3
19	． 93767	1	．8115 ${ }^{108}$	$.9+626$	$1+$	． SSO$^{\text {8 }}$	122	19		11 18	15.0
$\because 0$	9.93781 Î	1	10．81262	9．9＋6＋0̂	$1+$	10.88100		$\because 0$		$3{ }^{\text {ci}}$	$33 \cdot 3$
21	． 93796	17	．81371 108	． $9+655$	1	． 88282 â	1つへ	21		55 73	${ }^{50.0}$
22	． 93810	14	．81479 108	$.9+669$	14	．S8405	122	22		91.	$183 \cdot \frac{3}{3}$
23	． 9382 －	$1+$	．81－8 ${ }^{\text {S }} 109$	． $9+683$	14	． 88528	123	23			
24	． 93839		． 81697	$.9+697$		．8S651	$1-3$	2.4			
25	9.930553	$1 \hat{4}$	10．81806 109	9．9＋711	14	10.88775		25			
26	． 93868	14	．81916 109	． 94726	17 14	． 88898	3	26			
27	． 93882	It	． 82025110	－94740	14	．89022	121	27		3	2
28	． 93897	14 14	． 82133110	． $9+754$	$1+$ $1+$	． 89147	124	28		$7{ }^{6}$	
29	． 93911	14	． $822+5$ 110	.94768	$1+$	． 8927 I	127	29		0.4	－0．2
30	9．93925	1	10．82356 110	$9.9+78$ 2	14	10.89396	125	30		$\begin{array}{ll}9 & 0.4 \\ 0.5\end{array}$	
31	．93940	17	． $82+66 \mathrm{~V}^{110} 10$	． 94796	$1+$	． 8952 I	125	31		1．0	－． 6
32	． 9395 ¢	$1 \pm$	．82577 110	． $9+810$	$1+$	． 89647	129	32		（1）	
33	． 93969	$1+$ $1+$	． 82688111	． $9+825$	14	． 89773	126	33		2.5	
34	． 93983	$1+$	． 8279911	.94839	14	． 89899	12	34			
35	9．93997	$1 \hat{1}$	10．82910 111	$9.9+853$	$1 \hat{1}$	10.90025		35			
36	． 94012	11	． 83022111	． 9.4867	17	.90152	127	36			
37	． $9+026$	17 14	． 831331112	． $9+88$ î	$1+$	． 90279	127	37			
38	． $9+40 \pm 1$	14 14	$.832+3112$	． $9+893$	$1+$	． $90+06$		38		${ }_{6}^{1}$	
39	． $9+955$	14	．83355112	． $9+909$	If	.90533	127	39		6｜l｜l｜l｜	
40	9．9＋069		10.83470	9．9492 ${ }^{3}$		10.90661		411		O 1	
41	． $9.408+$	14	.83583112	． $9+938$	$1+$	． 90789	128	41		0．î	－
42	． $9+1098$	14	.83693112	． 949 こ2	1	． 90917	12	42		0.3	－ 1
43	． $9+112$	$1+$.83809113	． 94966	1	$.910+6$	9	43		（1）	0.2
$4+$	． $9+1127$		． 83922	． $9+980$		$.9117 \hat{5}$		$4+$		10 ह̂	0.4
45	9．94I 4 Î		10.84035113	9．9499	14	10.91304	130	＋5			
46	． $9+115$	$1 \hat{1}$	． $8+149 \hat{9}$.95008	14	． $91+3 \hat{4}$	120	$+6$			
47	． $9+170$	$1+$	． $8+263117$	． 9502 2	$1+$	． 9156	130	＋7			
48	． $9+18$ f	14	． $8+37 \hat{7}$ 11 11	． 95030	$1+$.91694	130	48			
49	． $9+198$	1	． $8+492114$	． 95050	$1+$	． 91825	150	49		14	14
50	9．94213	1	$10.8+607$ 115	$9.9506 \frac{1}{4}$	14	10.91956	131	50		1	：
51	． $9+227$	1	． $8+72 \hat{1} 114$	． 95078	T	． 92085	131	51		${ }^{1}$	1.8 2.1
52	． 9424 Î	$1+$	． 84837 I15	． 95093	1	． 92218	131	52		） 2.4	$=\frac{3}{3}$
53	． $9+256$	14	． 84952115	． 95107	$1+$	． 92350	13	53		4． $\bar{\square}$	$4{ }^{4}$
54	． 94270	14	． $85068{ }^{116}$	． 95121	17	．924831	13	54		？	$\stackrel{7.0}{0.3}$
55	9．9428	14	10．85183 ${ }^{115}$	9．95135	$1+$	10.92614	135	55			11.0
56	． 94299	$1+$	．85299̂116 116	． 95149	$1+$	． 9274 th	133	56			
57	． 94313	$1+$	． 85416116	． 95163	1	．92880́	$13 \hat{}$	57			
58	． 94329	14	． 85532116	． 95177	17	． $9301{ }^{\text {c }}$	133	58			
59	． $9+34+1$ 1	14	． $856+9$ 117 117	． 95191	$1+$	$.931+\hat{7}$	13	59			
60	9．94356		10.85766	9.95205		10.9328 i		（i）			
，	Log．Vers．	I）	Log．Exspec．${ }^{\text {l }}$	Lom．Vers．	I）	Lot．Fixam	I）			P．P	

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
85°

TABLE VHI.-LOGARITHMIC VERSED SINES ANI EXTERNAL SECANTS.
86
5%

TABLE VIII-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
88°
89

TABLE IX.-NATURAL SINES, COSINES, TANGENTS, AND COTANGENTS.
$0^{\circ}-10^{\circ}$

TABLE IX.-NATURAL SINES, COSINES, TANGENTS, AND COTANGENTS.
$20^{\circ}-30^{\circ}$

TABLE IX. - NATURAL SINES, COSINES, TANGENTS, AND COTANGENTS.
$30^{\circ}-40^{\circ}$

	Sin.	d.			Cot.	d.	cos.	d.		P. P.	
50	0.5000	2525	0.5773	$\begin{aligned} & 39 \\ & 39 \end{aligned}$	1.7320		0.8660 ó		060		
	0.5025		0.58 I 2		1.7204	$\begin{aligned} & 116 \\ & 11 \hat{4} \end{aligned}$	0. 8645	$\begin{aligned} & 15 \\ & 14 \end{aligned}$			
	0.5050		0.5851		1.7090	${ }_{\text {Iİ }}^{\text {İ }}$	0. 8631	14	$\begin{aligned} & 40 \\ & 30 \end{aligned}$		
	0.5073		0. 5890 ̂̀	39 39	I. 6976	Ir $_{1}$	0.8616				
	0.5100		0.5929 0.5969	39	I. 6864 I. 6753		0.8601 0.8586	15			
	0.5125		$\frac{0.5969}{0.6008}$	39	$\frac{1.6753}{\text { I. } 6643}$	110	0.8586	15	$\begin{gathered} 10 \\ 0 \\ 59 \end{gathered}$	4 19.8 19.6 19.2 18.8×18.4 $5{ }^{2} 24 . \hat{7} 24 \cdot 5 \quad 24.023 .523 .0$	
$31 \begin{array}{r}50 \\ 0\end{array}$	0.5150			40		109108		15 15	50		
10	0.517	${ }^{2} 4$	0.6048 0.6088	391	I. 6533 1.6425		$\begin{aligned} & 0.855 \hat{6} \\ & 0.854 \hat{1} \end{aligned}$	15			
20	0. 5200	25	0.6088		1.6425	107	0.854 I	15			
30	0. 5225	25	0.6128	$4{ }^{40}$	I. 6318	106	0.8526	5	$\begin{aligned} & 30 \\ & 20 \end{aligned}$		
40	0. 5250		0.6168	40	1.6212	106	0.8511				
50	0. 5274		0.6208	40	1.6107	105	0.8496	${ }^{\text {I }}$	20	4545444342	
320	0.5299		0.6248		1.6003	104	0.8480		058		
10	0.5		0.6289		I. 5900	103 102	0.8465		50		
2	0. 5348 ¢	24 24 24	0.6330	${ }_{4}^{41}$	I. 5798	102	$0.844 \hat{9}$	15	40		
30	-. 5373	24 24 24	0.6370 री	40	I. 5697		0.8434	15	30		
40	-. 5397	${ }^{24}$	0.641 Î	41	I. 5596	100	0.8418		20		
50	0.5422	24	0.6453		I. 5497	99	0.8402				
330	0.5446		0.6494		1.5398 ¢	98	0.8386		057		
10	0.		0.6535		1.5301	$\begin{aligned} & 9 \hat{7} \\ & 96 \end{aligned}$. 8371		50	8 9 9	
20	0. 5495		0.6577		I. 5204	6	0.8355		40		
30	0. 5519		0.6619		1.5108	96	0.8339		3020	414039	
40	0. 5543		0.6661		I. 5013	95	0.8323				
5	0. 5568		0.6703		1.4919	94	0.8306		10		
0	0.5592		0.6745		1.4825		0.8290		056		
10	0.5616		0.6789		1. 4733	${ }^{92}$	0.8274	161616	50		
20	0. 5640		0.6830	42	I. 46	9 r	0. 8254		40		
30	0. 5664		0.6873	43	I. 45		. 824 î	16	30	${ }^{24.9}{ }^{24.6}{ }^{24.0}{ }^{23}$	
40	0. 5688		0.6913		I. 44	${ }^{90}$		1 x	20		
50	0. 5712		0.6959	43	1.4370		0.8208		10	9137.3136 .9136 .0135 .1	
350	0.5736	24	0.7002		1.428	${ }^{89}$	0.819 ${ }^{\text {in }}$		0 05		
10	57		0.7043		I. 41	$\begin{aligned} & 88 \\ & 87 \end{aligned}$				$25 \quad 252423$	
20	0. 578 3	${ }_{2}^{24}$	0.7089	43	1.41		8	17	40		
30	0. 5807	231	0.7133	44	I. 4019	86	0.8141	17	30		
40	0.5830		0.7177	4	I. 3933		0.8124	17	20	4 10.2 10.0 9.6 9.2	
50	0. 5854		0.7221		I. 3848 ¢		0.8107	17	10		
360	0.5878		0.7265		$\underline{1.3764}$		0.8090		054		
10	0.590î	23	0.73	$4 \hat{4}$	1.3680	83	0.8073	17	50	717.8 17.5 516.8 16.1	
20	0. 5925	${ }_{2} 2$	0.7354	4	I. 3597		0.805	177	40		
30	0. 5948	23	0.7399	45	1.3514		$0.803 \hat{8}$		30	9\|22.9̂	$22.5 / 2 \mathrm{I} .6 \mid 20.7$
40	0.5971	23	0.7444		I. 3432		0.802 I		20		
	0.5995		0.7490		I. 3351		0.8004		10	. 8	
0	0.6018		0.7535		1.3270 ¢		0.7986		053	1.8 3.7 1.8 .6	
10	0.604 I	23	0.75	46	I. 3	79	0.7969	18	50	$\begin{array}{llll}6.6 & 5.5 & 5.4\end{array}$	
20	0.6064	23 23	0.7627	46	1.31	79 78 78	0.7951	${ }^{17}$	40	9.0 8.8 7.4 7.2	
30	0.6087	23 23 23	0.7673	4	1.3032	$\begin{aligned} & 78 \\ & 7 \hat{8} \\ & 7 \hat{7} \end{aligned}$	$\begin{aligned} & 0.793 \hat{3} \\ & 0.7916 \end{aligned}$	$\begin{aligned} & 17 \\ & 1 \hat{7} \\ & 18 \end{aligned}$	30		
40	0.61100		0.77 I ¢	46	1. 2954				20		
	0.6133		0.7766		1.2876		0.7898		10		
38	0.6156		0.7813		1.2799		0.7880		052	(ex	
10	0.6179		, 78		1.27	77	$\begin{aligned} & 0.7862 \\ & 0.7844 \end{aligned}$	1850			
20	$\bigcirc .620$	22	0.7907		I. 26			18	40		
30	0.6225		0.795%		I. 257 Î	$7 \hat{4}$	$\begin{aligned} & 0.7826 \\ & 0.7808 \end{aligned}$	$\left\|\begin{array}{l} 18 \\ 18 \\ 18 \\ 18 \end{array}\right\|$	30		
40	0.6248		0.8002	47	1. 2497				20		
	0.6270		0.8050		1.2422		$0.778 \hat{9}$				
390	0.6293		0.8098		I. 2349		0.777 Î		051		
10	0.63	22	0.8		I. 22		. 77		50		
20	0.633	22	0.81		I. 220		0.773	$\begin{aligned} & 18 \\ & 18 \\ & 18 \end{aligned}$	40		
30	0.636		0.82		I. 2	${ }_{71}$	0.77	$\begin{aligned} & 18 \\ & 18 \\ & 18 \end{aligned}$	30		
40	0.638		0.82921		I. 20		0.76	18	20	(e)	
	0.640 5		0.834 I		I. 1988		0.7679		0		
400	0.6428		0.8391	49	1.1917		0.7660		050		
	Cos.	d.	Cot.		Tan.	d.	Sin			P. P.	

TABLE IX.-NATURAL SINES, COSINES, TANGENTS, AND COTANGENTS.
$40^{\circ}-45^{\circ}$

$\begin{array}{llllllllllllllllllll}65 & 64 & 64 & 63 & 62 & 6 \hat{I} & 60 ̂ & 59 ̂ & 59 & 58 & 58 & 5 \hat{7} & 57 & 5 \hat{6} & 56 & 55 & 5 \hat{4} & 54 & 5 \hat{3} & 53 \\ 52 & 52\end{array}$

Table for passing from Sexagesimal to Circular Measure.

\bigcirc	Circular Meas.	1	Circular Meas.	' 1	Circular Meas.
100	1.745329	10	0.002909	10	$0.0000+8$
200	$3.49065 \hat{8}$	20	0.005818	20	0.000097
300	5.235988	30	0.008726	30	$0.0001+3$
		40	O.OI 163 5	40	$0.00 \mathrm{OI} 9+$
$\begin{aligned} & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 0.69813 \hat{1} \\ & 0.87266 \hat{4} \\ & 1.04719 \hat{4} \end{aligned}$	50	O.OI $+5+\hat{4}$	50	$0.0002+\hat{2}$
		6	0.00 17+5	6	0.000029
70	1.221730	7	0.002036	7	0.000034
SO	$1.39626 \hat{3}$	8	0.002327	8	0.000039
90	I. 57079 6	9	0.002618	9	$0.0000+\hat{3}$

TABLE X.-NATURAL VERSED SINES AND EXTERNAL SECANTS.
$\mathbf{0}^{\circ}$-10 $0^{\circ} \quad 10^{\circ}$-20 ${ }^{\circ}$

TABLE X.-NATURAL VERSED SINES AND EXTERNAL SECANTS.

TABLE X．－NATURAL VERSED SINES AND EXTERNAL SECANTS．
$40^{\circ}-50^{\circ} \quad 50^{\circ}-60^{\circ}$

	rs．	d．	Exsec．	d．		Vers．	d．	Exsec．	d．	P．P．
40 10 20 30 40 50	2339		． 3054	32	500	－ 3572	2	． 5557		
	． 23358	18	－ 3086	$3 \hat{2}$	10	－ 359 f	$2 \hat{2}$	． 5611 İ	53	9887654
	． 2377	19	－ 3118	$3 \hat{2}$	20	－ 3617	22	． 5666	54	10．900．8＇0．7 0.660 .50 .4
	． 2396	19	－ 3151	32	30	． 3639	$2 \hat{2}$	． 5721	55	
	． 2415	19	－ 31818	$3 \hat{3}$	40	． 3668	$2 \hat{2}$	． 5777	56	
	． 2434	19	$\cdot .3217$	33	51^{50}	． 3684	23	． 5833 3	$5 \hat{6}$	
410	． 2453	19	． 3250	$3+$	510	． 3707	$2 \hat{2}$	5890	59	54.54 .84 .23 .63 .02 .4
10	． 2472	19	． 3284	$3 \hat{3}$	10	． 3729	$2 \hat{2}$	． $59+7$	58	${ }_{7} 6.35 .64 .94 .23_{3} 52.8$
20	． 2491	19	． 3317	34	20	． 3752	23	． 6005	58	
30	． 2510 ̂o	19	． 3352	$3 \uparrow$	30	－ 3775	22	． 6064	59	$988.117 \cdot 2 \mid 6 \cdot 3 \cdot 5 \cdot 414 \cdot 53.6$
40	． 2529	19	． 3386	$3 \stackrel{1}{4}$	40	.3797 .38200	23	．6123	59	
50	． 2549	19	． 34215	33	52 2^{50}	． 3884 令	23		60	$32219 \hat{8}$
420	． 2568	19	． 3456	35	［ 50	． 3843	23	． 6242	61	
30	． 2607	19	． 3555	36	30	． 3912	23	． 6427	62	41.20 .80 .43 .83 .4310
40	． $26+7$	20	． 3599	37	40	． 3933	23	． 6489	62	
50	． 266 万		． 3636	37	50	． 3958	2	． $655^{\text {2 }}$	63	$6^{1 ., 6} 1.20 .0{ }^{5}$
430	． 2686		． 3673		530	． 3982		． 6616	64	
	． 2706	20	． 3710	37	10	＋005	23	． 6681	64	$912.711 .810 .9 \mid 8.517 \cdot \hat{6} 6.5$
20	． 2726	20	． 3748	38	20	． 402 ¢̂	$2{ }^{2}$	． 6746	65	
30	． 2746	20	． 3786	38	30	． 4052	23	． 681 I	66	
40	． 2766	20	． 3824	39	40	． 4075	23	． 6878	67	
50	． 2786	20	.3863	$3 \overline{8}$	50	． 4098	2	． $69+5$	68	
440	． 2806	，	． 3901	$3 \hat{1}$	540	4122		．7013		－
\bigcirc	． 2827	20	－ $39+1$	39	10	＋1＋5	2	． 7081	68 69	
20	． $28+7$	20	－ 3980 ô	＋0	20	． 4169	24	． 7150	70	63.93 .32 .72 .111 .50 .9
30	． 2869	20	． 4020	40	30	． 4193	$2{ }^{2}$	． 7220	70	
40	． 2888	20	－ 4060	40	40	． 42 I 6	24	． 7291	7 T	
50	． 2908	20	． 4101	4	50	． $42+0$	2	． 7362 2	72	$9 / 5 \cdot \hat{8} 4 \cdot \hat{0} / 4 \cdot \hat{o} 3 \cdot \hat{1} / 2 . \hat{2} 1 \mathrm{I} \cdot \hat{3}$
450	． 2929		． 4142	$4 \hat{1}$	550	4264	24	． 74334		
10	． 2949	20	． 4183	4	10	． 4288	24	． 7509	73	$\begin{array}{llllll}25 & 25 & 24 & 24 & 2 \widehat{3} & 23\end{array}$
20	． 2970	21	． 4225	42	20	4312	24	． 7581	74	
30	． 2991	20	． 4267	$4 \hat{2}$	30	． 4336	24	． 7655	75	
40	． 3011 î	21	． 4309 9	43	40	4360	24	． 7730	75	
50	． 303 2	21	． 435 2	43	50	$+384$	24	． 7806	77	
± 60	． 3053	21	． 4395	4	560	4408	24	． 7883		
10	． 3074	21	． 4439	$4+$	10	＋432	24	． 7960	78	
20	． 3093	21	． 4483	44	20	． 4456	24	． 8039	79	
30	． 3116	21	． 4529	＋	30	． 4480	$2 \hat{4}$	8118	80	
40	． 3139	$2 \hat{1}$	． 4572	＋ 5	40	． 4505	24	.8198 .8279	81	
50	． 3157	21	． 4619	45	$5{ }^{50}$	． 4529	$2 \hat{4}$	．8279	82	$\begin{array}{llllll}2 \hat{2} & 22 & 2 \hat{1} 2120 \\ \end{array}$
470	． 3180	2 I	． 4663	45	570	． 4553	24	8361	82	
10	－ 3201 î	21	． $470 \hat{8}$	$4 \overline{6}$	10	． 4578	24	． $8+443$	$8 \hat{3}$	
20	－ 3222 2	$2 \hat{1}$	． 4755	47	20	． 46021	24	． 8527	8 ¢	
30	－ 3244	$2 \hat{1}$	． 4802	47	30	． 4627	24	． 8611	83	
40	． 3263	$2 \hat{1}$	． 4849	49	40	． 465 fi	24	． 8697	86	
	． 3287	21	． 4896	48	50	． 4676	25	． 8783	88	$715 . \hat{1} 15.415 . \hat{\text { 人 }} 14.7$ 7 $14 . \hat{3}$
480	． 3308	22	． 4945	$4 \hat{8}$	58 0	． 4701	$2 \hat{4}$	． 8871	88	818.017 .6177 .216 .816 .460
10	． 3330	$2 \hat{1}$	－4993	48	10	． 4725	24	． 8959	89	
20	． 3352	22	． 5042	49	20	4750	25	－9048	90	
30	－ 3374	21	． 5091	50	30	4775	25	－9139	91	19 19 İ8
40	． 3393	22	． 5141	50	40	． 4800	2 4	． 9230	$9{ }^{2}$	
50	． $3+19$	22	． 5192	${ }_{5}{ }^{\text {of }}$	50	． 4824	25	．9322	$9 \hat{3}$	
490	－3439̂	22	． 5242	5 İ	590	． 4849	25	． 9416	94	
10	－ 3461	22	． 5294	51	10	4874	25	． 9510	94	
20	－ 348 ¢	22	5345	52	20	． 4899	25	． 9606	97	
30	－ 350 5	22	． 5399	53	30	． 4924	25	． 9703	98	＋3．6｜13．312
40	． 3529	$2 \hat{2}$	． $5+50$	53	40	． $49+9$	23	． 9801	99	
50	． 3550	22	． 5503	53		． 4975	25	． 9900	100	9117.517 .116 .6
500	． 3572		5557		600	． 5000		10000		
－	Vers．	d．	Exsec．	d．	。	Vers．	d．	Exser．	d．	P．P．

TABLE X.-NATURAL VERSED SINES AND ENTERNAL SECANTS.
$60^{\circ}-\% 0^{\circ}$
\% $0^{\circ}-80^{\circ}$

TABLE X.-NATURAL VERSED SINES AND EXTERNAL SECANTS. $80^{\circ}-85^{\circ}$
$85^{\circ}-90^{\circ}$

- ,	Vers.	d.	Exsec.	d.		Vers.	d.	Exsec.	d.		P. P.
500	. 8263	$2 \hat{0}$	4.7587		850	. 9128		10.4737			
10	. 8292	29	4.8554	966	10	. 9157	29	10.8683	- 3946		
20	. 8321	$2 \hat{8}$	4.9553	999 1035	20	. 918 \%	29	11.2912	. 4229		
30	. 8349	2 C	5.0588	1035	30	. 9215	29	11.7455	. 4542		
40	. 8378	-29	5.1660	I II I Î	40	- 9244	29	12.2347	. 5284		
50	. $8+07$	$2 \widehat{8}$	5.2772		50	. 9273	29	12.7631			
S10	. 8435		$5 \cdot 3924$	1152	860	. 9302	-9	13.3356	5725		
10	. $8+64$	$2 \hat{8}$	5.512 I	1196	10	. 9331	29	13.9579	. 6223		
20	. 8493	28 29	5.6363	1242	20	. 9360	29	14.6368	. 6789		292928
30	. 8_{522}	29	5.7654	1291 1343	30	. 9389	29	15.3804	. 7436	1	
40	. 8550 O	29 29	5.8998	1343	40	. 941 ¢	29	$16.198 \hat{4}$. 8180	3	
50	. 8579	29	6.0396	1398	50	. $94+7$ 7	29	17.1026	. 904 Î		${ }^{5}$
S9 0	. 8608		6.1853	1456	S7 0	. 9476	29	18.1073	1.0047	4	
10	. 8637	28	6.3372	1519	10	. 9505	29	19.2303	I. 1230	6	${ }^{17} 77^{17.4}{ }^{17.1}$
20	. 8666	29	6.4957	15	20	. 953 4	29	20.4937	1.2634	7	20.6. $20.319 . \hat{9}$
30	. $869 \hat{t}$	28	6.6613	1656	30	. 9564	29	21.9256	I. 4319	8	23.6 123.2 22.8
40	. 8723	29	$6.834 \hat{4}$	1731	40	. 9593	29	23.5621	I. 6365	9	26.5126.1125.6
50	. 8753	29	7.0156	1512	50	. 9622	29	25.4505	I. 8884		
S3 0	. 878 İ		7.2055	1898	850	. 965 I	29	27.6537	2.2032		
10	. 8810		7.4046	1991	10	. 9680	29	30.2576	2.6039		
20	. 8839	29	7.6138	209 I	20	. 9709	29	33.3823	3.1247		
30	. 8868	29	7.8336	2198	30	. 9738	29	37.2015	3.8192		
40	. 8897	29	8.065 Î	2315	40	. 976 ¢	29	41.9757	4.7741		
50	. 8926	29	8.309 I	2.440	50	. 9796	29	48.1140	6.1383		
St 0	. 8954	28	8.5667	2576	S9 0	. 9825	29	56.2987	8.1846		
10	. 8983	29	8.8391	2723	10	. 9854	29	$67.757 \hat{3}$			
20	. 9012	29	9.1275	2884	20	. 9883	29	84.9456			
30	.904î	29	9.433 4	3059	30	. 991 İ	29	I 13.5930			
40	. 9070 ¢	29	9.7585	3250	40	. 9942	29	170.8883			
50	. 9099	29	10.1045	3460	50	. 9971	29	$342 . .7752$			
850	. 9128	29	10.4737	369	900	I. 0000		∞			
- ,	Vers.	d.	Exsec.	d.		Vers.	d.	Exsec.	d.		

I
$\sin 2 a=2 \sin a \cos a=\frac{2 \tan a}{1+\frac{\tan ^{2} a}{}}$.
$\cos 2 a=\cos ^{2} a-\sin ^{2} a=1-2 \sin ^{2} a=2 \cos ^{2} a-1$

$$
=\frac{1-\tan ^{2} a}{1+\tan ^{2} a}
$$

$\tan 2 a=\frac{2 \tan a}{1-\tan ^{2} a}$.
$\cot 2 a=\frac{1}{2} \cot a-\frac{1}{2} \tan a=\frac{\cot ^{2} a-\mathrm{I}}{2 \cot a}=\frac{1-\tan ^{2} a}{2 \tan a}$.
vers $2 a=2 \sin ^{2} a=1-\cos 2 a=2 \sin a \cos a \tan a$.
$\operatorname{exsec} 2 a=\frac{\tan 2 a}{\cot a}=\frac{2 \tan ^{2} a}{\mathrm{I}-\tan ^{2} a}=\frac{2 \sin ^{2} a}{\mathrm{I}-2 \sin ^{2} a}$.
$\sin (a \pm b)=\sin a \dot{\cos } b \pm \cos a \sin b$.
$\cos (a \pm b)=\cos a \cos b \mp \sin a \sin b$.
$\sin a+\sin b=2 \sin \frac{1}{2}(a+b) \cos \frac{1}{2}(a-b)$.
$\sin a-\sin b=2 \sin \frac{1}{2}(a-b) \cos \frac{1}{2}(a+b)$.
$\cos a+\cos b=2 \cos \frac{1}{2}(a+b) \cos \frac{1}{2}(a-b)$.
$\cos a-\cos b=-2 \sin \frac{1}{2}(a+b) \sin \frac{1}{2}(a-b)$.

Call the sides of any triangle A, B, C, and the opposite angles a, b, and c. Call $s=\frac{1}{2}(A+B+C)$.
$\tan \frac{1}{2}(a-b)=\frac{A-B}{A+B} \tan \frac{1}{2}(a+b)=\frac{A-B}{A+B} \cot \frac{1}{2} c$.
$C=(A+B) \frac{\cos \frac{1}{2}(a+b)}{\cos \frac{1}{2}(a-b)}=(A-B) \frac{\sin \frac{1}{2}(a+b)}{\sin \frac{1}{2}(a-b)}$.
$\sin \frac{1}{2} a=\sqrt{\frac{(s-B)(s-C)}{B C}}$.
$\cos \frac{1}{2} a=\sqrt{\frac{s(s-A)}{B C}}$.
vers $A=\frac{2(s-B)(s-C)}{B C}$.
Area $=\sqrt{s(s-A)(s-B)(s-C)}=A^{2} \frac{\sin b \sin c}{2 \sin a}$.

INDEX.

Abutments for trestles, 167.
Accuracy of earthwork computations, 109.

Accuracy of tunnel surveying, 189.
Adjustments of instruments, 303.
Advantages of tie-plates, 260.
Allowance for shrinkage of earthwork, 113.
American system of tunnel excavation, 197.
Angle-bar (rail-joint)—efficiency, 255.
Arch culverts, 215.
Area of culverts-method of computation, 204.
Area of culverts-results based on observation, 206.
Area of the waterway-culverts, 203.
A. S. C. E. standard rail section, 245.

Austrian system of tunnel excavat on, 197.

Averaging end areas-for volume of earthwork, 79.

Ballast, 220.
Ballast-cost, 224.
Ballast-methods of laying, 223.
Barometric elevations, 6.
Belgian system of tunnel excavation, 197.

Blasting, 142.
Blasting-cost, 147.
Borrow-pits-earthwork, 102.
Bowls (ties), 241.
Box cllyerts, 212.

Bracing-trestles, 166.
Bracing (trestles)-design, 184.
Bridge-joints (rail), 257.
Bridge spirals, 4.
Broken-stone ballast, 221.
Burnettizing-wooden ties, 234.
Caps (trestle)-design, 184.
Cars and horses-use in hauling earthwork-cost, 134.
Cars and locomotives-use in hauling earthwork-cost, 136.
Carts-use in hauling earthworkcost, 130.
Cattle-guards, 216.
Cattle-passes, 218.
Center of gravity of sidc-hill sectionsearthwork, 107.
Central angle-of a curve, 21.
Chemical composition of rails, 251.
Cinders (ballast), 221.
Circular lead-rails-switches, 278.
Classification of excavatel material, 148.

Compound curves, 37.
Compound curves-application of transition curves, 56.
Compound sections-carthwork, 67.
Computations (approximate) from profiles-carthwork, 111.
Computation of products-carthwork, 90.

Computation cF volume of eairthwork, 76.

Connecting cuive from a curved track to the inside, 291.
Connecting curve from a curved track to the outside, 290.
Connecting curve from a straight track, 290.
Construction of tunnels, 195.
Contractor's profit-earthwork, 140.
Corbels-trestles, 168.
Cost of ballast, 224.
Cost of earthwork, 126.
Cost of framed timber trestles, 174.
Cost of metal cross-ties, 240.
Cost of pile trestles, 161.
Cost of rails, 254.
Cost of ties, 232.
Cost of treating wooden ties, 236.
Cost of tumeling, 201.
Creosoting-wooden ties, 233.
Cross-country route, 3.
Crossings, 300.
Crossing-one straight and one curved track, 301.
Crossing-two curved tracks, 301.
Crossing-two straight tracks, 300 .
Cross-over between two parallel curved tracks-reversed curve, 296.
Cross-over between two parallel curved tracks-straight connecting curve, 295.

Cross-over between two parallel straight tracks, 293.
Cross-sectioning-field-work, 10.
Cross-sectioning-for volume of earthwork, 73.
Cross-sectioning irregular sectionsearthwork, 100.
Cross-section method of obtaining contours, 9.
Cross-sections-ballast, 222.
Cross-sections of tunnels, 190.
Culverts, 202.
Curvature correction - volume of earthwork, 103.
Curve location by deflections, 23.
Curve location by middle ordinates, 27.

Curve location by offsets from the long chor", 28.
Curve location by tangential offsets, 26.

Curve location by two transits, 26 .
Deflections for a spiral, 49.
Design of culverts-elements, 202.
Design of nut-locks, 268.
Design of pile trestles, 161.
Design of tiv-plates, 261.
Design of t=ack-bolts, 267.
Design of tunnels, 190.
Design of wooden trestles, 174.
Dimensions of wooden ties, 229.
Ditch ?s, 69.
Drains-tunnels, 195.
Drill-holes, position and directionblasting, 145.
Drilling-blasting, 144.
Driving spikes, 264.
Durability of metal ties, 238.
Durability of wooden ties, 228.
Early forms of rails, 243.
EARTHWORK-COST, 126.
Earthwork surveys, 72.
Eccentricity of the center of gravity of an earthwork ress-section, 104.
Economics of treated ties, 236.
Elements of a 1° curve, 22.
Elements of a simple curve, 21.
English system of tunnel excavation, 197.

Enlargement of headings-tunnels, 196.

Equivalent level sections-eartliwork, 85.

Equivalent sections-earthwork, 83.
Existing track-determination of curvature, 35 .
Expansion of rails, 249.
Exploding the charge-blasting, 147.
Explosive, amount required in blasting, 146.
Explosives-blasting, 142.
Extent of use-metal ties, 238.

Extent of use of trestles, 153.
External distances for a 1° curve, 318. External distance-simple curre, 21.

Factors of safety-design of timber trestles, 180.
Failures of rail-joints, 258.
Fastenings for metal cross-ties, 240.
Field-work for locating a spiral, 52.
Fire protection on trestles, 173.
Five-level sections-earthwork, 92.
Floor systems of trestles, 167.
Formation of embankments, 111.
Forming embankments-methods, 115.
Form of excayations and embankments, 64.
Forms of rail sections (standard), 244.
Formulæ for required area of culverts, 205.

Foundations-trestles, 165.
Framed timber trestles-cost, 174.
Framed tresties, 162.
Free haul-limit, 124.
French system of tunnel excavation, 197.

Frogs, 272.
Frog angles - trigonometrical functions, 321.
Frog number, 273.
German system of tunnel excavation, 197.

Grade line-change, based on masz diagram, 123.
Grade of tunnels, 192.
Gravel (ballast), 221.
Ground-levers, 276.
Guard-rails-switches, 277.
Guard-rails-trestles, 169.
Hauling earthwork-cost, 130.
Haul of earthwork - computations, 116.

Haul of earthwork-method dependent on distance, 137.
Haul of earthwork-profitable limit, 140.

Headings-tunnels, 195.

I-beam bridges, 219.
Instrumental work of locating curves, 24.
lron-pipe culverts, 209.
lrregular prismoid-volume, 94.
Irregular sections-earthwork, 93.
Joints of framed trestles, 162.
Kyanizing-wooden ties, 234.
Lateral bracing-trestles, 167 .
Length of a simple curve, 20 .
Length of rails, 248.
Level-adjustments, 309.
Level sections-carthwork, 81 .
Limitations in location, 34.
Lining of tumnels, 193.
Loading-design of timber trestles, 179.

Loading earthwork-cost, 128.
Location survevs, 13.
Logarithmic sines and tangents of small angles-table of, 345 .
Logarithmic sines, cosines, tangents, and cotangents-table of, 348.
Logarithmic versed sines and external secants-table of, 393.
Logarithms of numbers-talla of, 325 .
Long chords for a 1° curve, 318.
Long chord-simple curve, 21 .
Longitudinal bracing-trestles, 166.
Longitudinals, 241.
Loosening earthwork-cost, 127.
Matiematical design of switcies, 278.

Mass curve-area, 121.
Mass curve-properties, 118.
Mass diagram, 117.
Mass diagram-value, 122.
Metal cross-ties-cost, 240 .
Metal cross-ties-fastenings, 240.
Metal ties, 238.
Metal ties-form and dimensions, 239.
Middle areas-for volume of earthwork, 79.

Middle ordinate-simple curve, 21.
Modifications of location-compound curves, 40.
Modifications of location - simple curves, 31.
Mountain route, 3.
" Mud" ballast, 220.
Mud-sills-trestle foundations, 166.
Multiform compound curves, 47.
Multiple-story construction-trestles, 163.

Natural sines, cosines, tangents, and cotangents-table of, 439.
Natural versed sines and external se-cants--table of, 444.
Notes-location surveys, 16.
Number of a frog-to find, 273.
Nut-locess, 266.

Obstacles to location, 29.
Obstructed curve-curve location, 31.
Old-rail culverts, 213.
Open cuts $v s$. tumnels, 200.
Ordinates of a spiral, 48.
" Paper location," 13.
Pile bents, 155.
Pile-driving formulæ, 159.
Pile-driving methods, 157.
Pile foundations for trestles, 165.
Pile-points and pile-shoes, 160.
Pile trestles, 155.
Pile trestles-cost, 161.
Pipe culverts, 208.
Pipe culverts-construction, 208.
Pit cattle-guards, 216.
Ploughs-use in loosening earth, 127.
Point of curve, 21.
Point of curve inaccessible-curve location, 33.
Point of tangency, 21.
Point of tangency inaccessible-curve location, 30.
Point-rails of switches-construction, 275.

Point-switches, 275.
Portals (tunnel)-excavation, 199.
Posts (trestle)-design, 182.
Preliminary surveys, 8.
Preservation of ties-cost, 236.
Preservative processe; for wooden ties, 232.
Prismoidal correction (approximate) for irregular prismoids, 99.
Prismoidal correction (true) for irregular prismoids, 95.
Prismoids, 72.
Radii of curves-table, 314.
Rails, 243.
Rail expansion, 249.
Rail-gap at joints-effect, 256.
Rail-Joints, 255.
Rails-chemical composition, 251.
Rails-cost, 254.
Rail testing, 252.
Rail wear on curves, 253.
Rail wear on tangents, 252.
Reconnoissance surveys, 1.
Renewals of ties-regulations, 231.
Repairs, etc., of plant for earthworkcost, 139.
Replacement of a compound curve by a curve with spirals, 58.
Replacement of a simple curve by a curve with spirals, 53.
Requirements for a perfect rail-joint, 255.

Requirements-spikes, 263.
Requirements-track-bolts, 266.
Roadbed-width, 67.
Roadways for earthwork-cost, 138.
Rock ballast, 221.
Rules for switch-laying, 298.
Ruling grade, 2.
Scrapers-use in earthwork-cost, 133.
Screws and bolts (rail-fastenings), 264.

Setting tie-plates-methods, 262.
Shafts-tunnels, 193.
Shaft (tunnel)-surveying, 187.

Shells and small coal-ballast, 221 .
Shoveling (hand) of earthwork-cost, 12s.
Shrinkage of earthwork, 111.
Side-hill work-earthwork, 100.
Sills (trestle)-desigu, 184.
Simple curves, 18.
Slag (ballast), 221.
Slide-rule-for earthwork computations, 90.
Slopes-earthwork, 65.
Slope-stakes-position, 75.
Sodding-effect on slopes, 70.
Spacing of ties, 229.
Span-trestles, 164.
Specifications for earthwork, 148.
Specifications for wooden ties, 230.
Spikes, 263.
Spikes-driving, 264.
Spirals-required length, 48.
Spreading earthwork-cost, 138.
Stadia method of obtaining "topography, 12.
Standard angle-bars, 259.
Standard stringer bridges, 219.
Steam-shoveling-earthwork, 129.
Stiffness of rails-effect on traction, 247.

Stone box culverts, 212.
Stone foundations for framed trestles, 166.

Straight connecting curve from a curved main track, 292.
Straight frog-rails-effect, 280.
Straight point-rails-effect, 281.
Strength of timber, 176.
Strength, required elements-trestles, 175.

Stringers for trestles-design, 180.
Stringers-trestles, 167.
Stub switches, 273.
Subchord-length, 19.
Subgrade-form, 68.
Superelevation of the outer rail on curves-general principles, 43.
Superelevation of the outer rail on curves on trestles, 170.

Superelevation of the outer rail on curves-practical rules, 4.5.
Superintendence of earthwork-cost, 139.

Supported joints, 257.
Surface cattle-guards, 217.
Surface surveys-tunneling, 185.
Surveying-tunnels, 18.J.
Suspended joints, 257.
Switchbacks, 4.
Switcil construction, 271.
Switch-laying-practical rules, 298.
Switch leads and distances, 321.
Switch-stands, 276.

Tamping-blasting, 146.
Tangent distance-simple curve, 21.
Tangents for a 1° curve, 318.
Temperature allowances-rails, 250.
Terminal pyramids and wedgesearthwork, 6 a.
Testing rails, 252.
Three-level sections-earthwork, s7.
"Throw" of a switch, 279.
Tie-plates, 260.
Tie-rods, 276.
Ties, 226.
Ties-cost, 232.
Ties on trestles, 170.
Tile pipe eulverts, 211.
Timber for framed trestles, 173.
Timber for pile trestles, 157.
Timber, strength, 176.
Topographical maps, use of, 5.
Thack-bolts, 266.
Transit-adjustments, 304.
Transition curves, 43.
Transition curves-fundamental principle, 43.
Transition eurves-tables of, 322.
Trestles, 153.
Tiestles-franed, 162.
Trestles-pile, 155.
Trestles-posts-design, 182.
Trestles - required clements of strength, 175.

Trestles-sills-design, 184.
Trestles-stringers-design, 180.
Trestles $r s$. embankments, 154.
Tunnels, 185.
Tunneling-cost, 201.
Tunnel spirals, 5.
Turnout (double) from a straight track, 287.
Turnout from the inner side of a curved track-dimensions, 286.
Turnout from the outer side of a curved track-dimensions, 284.
Turnouts with straight point-rails and straight frog-rails-table of, 321.
Two-level ground - for volume of earthwork, 80.
Two turnouts on the same side, 289.

Underground surveys, 188.
Unit chord-simple curves, 19.
Upright switch-stands, 276.
Useful trigonometrical formulæ-table of, 449.

Talley route, 2.
Ventilation (tunnel) during construction, 199.
Vertex inaccessible-curve location, 30.

Vertex-of a curve, 21.
Vertical curves, 61.
Vertical curves-form of curves, 62.
Vertical curves-requirid length, cl.
Vulcanizing-wooden ties, 232.

Waterway required for culverts, 203.
Wear of rails on curves, 253.
Wear of rails on tangents, 252.
Weight of rails, 246.
Wellhouse process - for preserving wooden ties, 235.
Wheelbarrows-use in hauling earth-work-cost, 132.
Wooden box culverts, 212.
" Wooden " spikes, 266.
Wooden ties, 227.

SHORT-TITLE CATALOGUE

UF' 1 HE

PUBLICATIONS

OF
JOHN WILEY \& SONS,
New York.

London: CHAPMAN \& HALL, Lmited.

ARRANGED UNDER SUBJECTS.

Descriptive circulars sent on application.
Books marked with an asterisk are sold at net prices only. All books are bound in cloth unless otherwise stated.

AGRICULTURE.

Cattle Feeding-Dairy Practice-Diseases of AnimalsGardening, Etc.

Armsby's Manual of Cattle Feeding. 12 mo , $\$ 175$
Downing's Fruit and Fruit Trees............................ 8 . 50 , 500
Grotenfelt's The Principles of Modern Dairy Practice. '(Woll.)
$12 \mathrm{mo}, \quad 200$
Kemp's Laudscape Gardeuing.12mo, 250
Mayuard's Landscape Gardening............................12mo, 150
Steel's Treatise on the Diseases of the Dog.................. . $8 \mathrm{vo}, \quad 350$
" Treatise on the Diseases of the Ox..................... $8 \mathrm{vo}, 600$
Stockbridge's Rocks and Soils................................ $8 \mathrm{vvo}, 250$
Woll's Haudbook for Farmers and Dairymen.............. 12 mo , 150

ARCHITECTURE.

Building-Carpentry-Stains-Ventilation-Law, Etc.
Berg's Buildings and Structures of American Railroads.....4to, 750
Birkmire's American Theatres-Planning and Construction.8vo, 300
" Architectural Iron and Steel...................... 8 vo, 350
" Compound Riveted Girders....................... 8 vo , 200
". Skeleton Construction in Buildings8ro, 300
Birkmire's Planning and Construction of High Office Buildings.
$8 \mathrm{vo}, \$ 30$
Briggs' Modern Am. School Building 8vo, 400
Carpenter's Heating and Ventilating of Buildings 8vo, 300
Freitag's Architectural Engineering 8vo, 250
." The Fireproofing of Steel Buildings 8vo, 250
Gerhard's Sanitary House Inspection 16mo, 100
" Theatre Fires and Panics. .12mo, 150
Hatficld's American House Carpenter 8vo, 500
Holly's Carpenter and Joiner. 18 mo , 75
Kidder's Architect and Builder's Pocket-book. . . 16mo, morocco, 400
Merrill's Stones for Building and Decoration 8vo, 500
Monckton's Stair Building-Wood, Iron, and Stone. 400
Wait's Engineering and Architectural Jurisprudence. 8vo, 600
Sheep, 650
Worcester's Small Hospitals-Establishment and Maintenance, including Atkinson's Suggestions for Hospital Archi- tecture .12mo, 125
World's Columbian Exposition of 1893 Large 4to, 250
ARMY, NAVY, Etc.
Military Engineering-Ordnance-Law, Etc.

* Bruff's Ordnance and Gunnery 600
Chase's Screw Propellers. 300
Cronkhite's Gunnery for Non-com. Officers.32mo, morocco, 200
* Davis's Treatise on Military Law 700
Sheep, 750
* "، Elements of Law 250
De Brack's Cavalry Outpost Duties. (Carr.)....32mo, morocco, 200
Dietz's Soldier's First Aid 125
* Dredge's Modern French Artillery. . . Large 4to, half morocco, 1500
" Record of the Transportation Exhibits Building, World's Columbian Exposition of 1893..4to, half morocco, 1000
Durand's Resistance and Propulsion of Ships. 500
Dyer's Light Artillery. 300
Hoff's Naval Tactics 150
* Ingalls's Ballistic Tables. .8vo, 150
Ingalls's Handbook of Problems in Direct Fire 8vo, $\$ 400$
Mahau's Permanent Fortifications. (Mercur.). 8 ro, half morocco, 750
* Mercur's Attack of Fortified Places 12 mo , 200
* " Elements of the Art of War 8vo, 400
Metcalfe's Ordnance and Gunnery 12mo, with Atlas, 500
Murray's A Manual for Courts-Martial 16 mo , morocco, 150
Infantry Drill Regulations adapted to the Springfield Rifle, Caliber . 45. .32mo, paper, 10
* Phelps's Practical Marine Surveying. 250
Powell's Army Officer's Examiner. 400
Sharpe's Subsisting Armies .32mo, morocco, 150
Wheeler's Siege Operations. 200
Winthrop's Abridgment of Military Law 250
Woodhull's Notes on Military Hygiene. 150
Young's Simple Elements of Navigation 16 mo , morocco, 200
" first edition 100
ASSAYING.
Smelting-Ore Dressing-Alloys, Etc.
Fletcher's Quant. Assaying with the Blowpipe..16mo, morocco, 150
Furman's Practical Assaying 300
Kunhardt's Ore Dressing. 150
O'Driscoll's Treatment of Gold Ores. 200
Ricketts and Miller's Notes on Assaying. 300
Thurston's Alloys, Brasses, and Bronzes. 250
Wilson's Cyanide Processes 150
" The Chlorination Process. 150
ASTRONOMY.
Practical, Theoretical, and Descriptive.
Craig's Azimuth 350
Doolittle's Practical Astronomy 400
Gore's Elements of Geodesy 250
Hayford's Text-book of Geodetic Astronomy 300
* Michie and Harlow's Practical Astronomy 300
* White's Theoretical and Descriptive Astronomy. 200

BOTANY.

Gardening for Ladies, Etc.

Baldwin's Orchids of New England................. Small 8vo, $\$ 150$
Thomé's Structural Botany..................................16mo, 225
Westermaier's General Botany. (Schngider.).............. 8vo, 200

> BRIDGES, ROOFS, Etc.
> Cantilever-Draw-Hyghway-Suspension.
> (See also Engineering, p. 8.)

Boller's Highway Bridges...................................... . 8 8v, 200

* " The Thames River Bridge.4to, paper, 500

Burr's Stresses in Bridges. 8 svo , 350
Crehore's Mechanics of the Girder. 8vo, 500
Dredge's Thames Bridges....................... 7 parts, per part, 125
Du Bois's Stresses in Framed Structures.............. Small 4to, 1000
Foster's Wooden Trestle Bridges............................... . 4to, 500
Greene's Arches in Wood, etc. 8vo, 250
" Bridge Trusses... 8 8vo, 250
" Roof Trusses... . 8vo, 125
Howe's Treatise on Arches 8ro, 400
Johnson's Modern Framed Structures............... Small 4to, 1000

Merriman \& Jacoby's Text-book of Roofs and Bridges.
Part II., Graphic Statics....................................... 250
Merriman \& Jacoby's Text-book of Roofs and Bridges.
Paxit III., Bridge Design.. 50
Merriman \& Jacoby's Text-book of Roofs and Bridges. Part IV., Continuous, Draw, Cantilever, Suspension, and Arched Bridges.. . 8 vo , 250

* Morison's The Memphis Bridge.................... Oblong 4to, 1000

Waddell's Iron Highway Bridges............................. . 8vo, 400
" De Pontibus (a Pocket-book for Bridge Engineers). 16mo, morocco, 300
Wood's Construction of Bridges and Ruofs................. 8 vo , 200
Wright's Designing of Draw Spans. Parts I. and II..8vo, each 250
Complete.............8vo,

CHEMISTRY-BIOLOGY-PHARMACY.

Qualitative-Quantitative-Organic-Inorganic, Etc.

Adriance's Laboratory Calculations $.12 \mathrm{mo}, \$ 125$
Allen's Tables for Iron Analysis .8vo, 300
Austen's Notes for Chemical Students. 150
Bolton's Student's Guide in Quantitative Analysis 150
Boltwood's Elementary Electro Chemistry (In the press.)
Classen's Analysis by Electrolysis. (Herrick and Boltwood.).8vo, 300
Cohn's Indicators and Test-papers .12mo 200
Crafts's Qualitative Analysis. (Schaeffer.) 150
Davenport's Statistical Methods with Special Reference to Bio- logical Variations 125
Drechsel's Chemical Reactions. ` (Merrill.) 125
Fresenius's Quantitative Chemical Analysis. (Allen.). 600
" Qualitative " " (Johnson.)....8vo, 300
" (Wells.) Trans.
16th German Edition 500
Fuertes's Water and Public Health. 12mo, 150
Gill's Gas and Fuel Analysis. 125
Hammarsten's Physiological Chemistry. (Mandel.). 400
Helm's Principles of Mathematical Chemistry. (Morgau).12mo, 150
Ladd's Quantitative Chemical Analysis. 100
Landauer's Spectrum Analysis. (Tingle.). 300
Löb's Electrolysis and Electrosyuthesis of Organic Compounds. (Lorenz.) 100
Mr ndel's Bio-chemical Laboratory. 150
Mason's Water-supply 500
" Examination of Water. 125
Meyer's Radicles in Carbon Compounds. (Tingle.). 100
Miller's Chemical Physics. 200
Mixter's Elementary Text-book of Chemistry. 150
Morgan's The Theory of Solutions and its Results. 100
" Elements of Physical Chemistry 200
Nichols's Water-supply (Chemical and Sanitary). 250
O'Brine's Laboratory Guide to Chemical Analysis 200
Perkins's Qualitative Analysis 100
Pinner's Organic Chemistry. (Austen.) 150
Poole's Calorific Power of Fuels 8 vo , $\$ 300$
Ricketts and Russell's Notes on Inorganic Chemistry (Non- metallic) .Oblong 8vo, morocco, 75
Ruddiman's Incompatibilities in Prescriptions 200
Schimpf's Volumetric Analysis 250
Spencer's Sugar Manufacturer's Handbook..... 16mo, morocco, 200
Handbook for Chemists of Beet Sugar Houses. 16 mo , morocco, 300
Stockbridge's Rocks and Soils 250

* Tillman's Descriptive General Chemistry 300
Van Deventer's Physical Chemistry for Beginners. (Boltwood.)
12 mo , 150
Wells's Inorganic Qualitative Analysis .12mo, 150
" Laboratory Guide in Qualitative Chemical Analysis.$8 \mathrm{vo}, \quad 150$
Whipple's Microscopy of Drinking-water 8vo, 350
Wiechmann's Chemical Lecture Notes .12 mo , 300
" Sugar Analysis .Small 8vo, 250
Wulling's Inorganic Phar. and Med. Chemistry .12 mo , 200
DRAWING.
Elementary-Geometrical-Mechanical-Topographical.
Hill's Shades and Shadows and Perspective. 200
MacCord's Descriptive Geometry 300
" Kinematics 500
" Mechanical Drawing 400
Mahan's Industrial Drawing. (Thompson.) 350
Reed's Topographical Drawing. (H. A.) 500
Reid's A Course in Mechanical Drawing 200" Mechanical Drawing and Elementary Machine Design.8vo. (In the press.)
Smith's Topographical Drawing. (Macmillan.) 250
Warren's Descriptive Geometry .2 vols., 8 vo , 350
" Drafting Instruments. 125
" Free-hand Drawing 100
" Linear Perspective. 100
" Machine Construction 50
Warren's Plane Problems $\$ 125$
" Primary Geometry 75
" Problems and Theorems. 250
" Projection Drawing 12 mo , 150
Warren's Shades and Shadows 300
" Stereotomy-Stonc-cutting. 250
Whelpley's Letter Engraving 200
ELECTRICITY AND MAGNETISM.
Illúmination-Batteries-Physics-Railiways.
Anthony and Brackett's Text-book of Physics. (Magie.) Small 8vo, 300
Anthony's Theory of Electrical Measurements 12 mo , 100
Barker's Deep-sea Soundings 200
Benjamin's Voltaic Cell 300
". History of Electricity 300
Classen's Analysis by Electrolysis. (Herrick and Boltwood.) 8vo, 300
Crehore and Squier's Experiments with a New Polarizing Photo- Chronograph 300
Dawson's Electric Railways and Tramways. Small, 4to, half morocce, 1250
* Dredge's Electric Illuminations. . . . 2 vols., 4to, half morocco, 2500
" " " Vol. II. 750
Gilbert's De magnete. (Mottelay.) 250
Holman's Precision of Measurements 200
" Telescope-mirror-scale Method .Large 8vo, 75
Löb's Electrolysis and Electrosynthesis of Organic Compounds. (Lorenz.) 100
*Michie's Wave Motion Relating to Sound and Light 8vo, 400
Morgan's The Theory of Solutions and its Results. 12 mo , 100
Niaudet's Electric Batteries. (Fishback.) 250
Pratt and Alden's Strcet-railway Road-beds. 200
Reagan's Steam and Electric Locomotives 200
Thurston's Stationary Steam Engines for Electric Lighting Pur- poses 250
*Tillman's Heat 150

ENGINEERING.

> Civil-Mechanical-Sanitary, Etc.(See also Bridges, p. 4; Hydradlics, p. 9; Materials of En-gineering, p. 10 ; Mechanics and Machinery, p. 12 ; SteamEngines.and Boilers, p. 14.)
Baker's Masonry Construction $8 \mathrm{vo}, \quad \$ 500$
" Surveying Instruments 12 mo , 300
Black's U. S. Public Works 500
Brooks's Street-railway Location 150
Butts's Civil Engineers' Field Book. 250
Byrne's Highway Construction 500
" Inspection of Materials and Workmanship........16mo, 300
Carpenter's Experimental Engineering 600
Church's Mechanics of Engineering-Solids and Fluids. 600
" Notes and Examples in Mechanics 200
Crandall's Earthwork Tables 150
". The Transition Curve 150

* Drelge's Penn. Railroad Construction, etc. Large 4to, half morocco, 2000
* Drinker's Tunnelling .4to, half morocco, 2500
Eissler's Explosives-Nitroglycerine and Dynamite 400
Folwell's Sewerage. 300
Fowler's Coffer-dam Process for Piers 250
Gerhard's Sanitary Honse Inspection. 100
Godwin's Railroad Engineer's Field-book 250
Gore's Elements of Geodesy 250
Howard's Transition Curve Field-book. 150
Howe's Retaining Walls (New Edition.) 125
Hudson's Excavation Tables. Vol. II. 100
Hutton's Mechauical Engineering of Power Plants 500
" Heat and Heat Engines. 500
Johnson's Materials of Construction Large 8vo, 600
" Theory and Practice• of Surveying.........Small 8vo, 400
Kent's Mechanical Engineer's Pocket-book.16mo, morocco, 500
Kiersted's Sewage Disposal 125
Mahan's Civil Engineering. (Wood.) 500
Merriman and Brook's Handbook for Surveyors. . . .16mo, mor., 200
Merriman's Precise Surveying aud Geodesy 250
". Retaining Walls and Masonry Dams 200
" Sanitary Engineering 200
Nagle's Manual for Railroad Engineers 300
Ogden's Sewer Design 200
Patton's Civil Engineering. .8vo, half morocco, 750
Patton's Foundations 8vo, \$5 00
Pratt and Alden's Strect-railway Road-beds. 200
Rockwell's Roads and Pavements in France. 125
Searles's Field Engincering 16mo, morocco, 300
" Railroad Spiral. 16 mo , morocco, 150
Siebert and Biggin's Modern Stone Cutting and Masonry...8vo, 150
Smart's Engineering Laboratory Practicc. 250
Smith's Wire Manufacture and Uses 300
Spalding's Roads and Pavements 200
" Hydraulic Cement 200
Taylors Prismoidal Formulas and Earthwork. 150
Thurston's Materials of Construction 500
* Trautwine's Civil Engineer's Pocket-book....16mo, morocco, 500
* " Cross-section. 25
* " Excarations and Embankments 200
* " Laying Out Curves..............12mo, morocco, 250
Waddell's De Pontibus (A Pocket-book for Bridge Engineers). 16mo, morocco, 300
Wait's Enginecring and Architectural Jurisprudence. 600
Sheep, 650
" Law of Field Operation in Engineering, etc. 8vo.
Warren's Stereotomy-Stone-cutting 250
Webb's Engineering Instruments. New Edition. 16mo, morocco, 125
Wegmann's Construction of Masonry Dams 500
Wellington's Location of Railways 500
Wheeler's Civil Engineering 400
Wolff's Windmill as a Prime Mover 300
HYDRAULICS.
Water-wheels-Windmilis-Service Pipe-Drainage, Etc.
(See also Engineering, p. 8.)
Bazin's Experiments upon the Contraction of the Liquid Vein. (Trautwine.) 200
Bovey's 'Treatise on Hydraulics 400
Cottin's Graphical Solution of Hydraulic Problems. 12mo, 250
Ferrel's Treatise on the Winds, Cyclones, and Tornadoes. 400
Folwell's Water Supply Eugincering. 400
Fuertes's Water and Public Health 150
Ganguillet \& Kutter's Flow of Water. (Hering \& Trautwine.) $8 \mathrm{vo}, \quad 400$
Hazen's Filtration of Public Water Supply 300
Herschel's 115 Experiments 200
Kiersted's Sewage Disposal 12mo, $\$ 125$
Mason's Water Supply 500
" Examination of Water 125
Merriman's Treatise on Hydraulics. 400
Nichols's Water Supply (Chemical and Sanitary) 250
Wegmann's Water Supply of the City of New York 1000
Weisbach's Hydraulics. (Du Bois.) 500
Whipple's Microscopy of Drinking Water 350
Wilson's Irrigation Engineering 400
" Hydraulic and Placer Mining. 200
Wolff's Windmill as a Prime Mover. 300
Wood's Theory of Turbines 250
MANUFACTURES.
Boilers-Explosives-Iron-Steel-Sugar-Woollens, Etc.
Allen's Tables for Iron Analysis 8 vo, $\quad 300^{\circ}$
Beaumont's Woollen and Worsted Manufacture 12 mo, 150
Bolland's Encyclopædia of Founding Terms. .12mo, 300
". The Iron Founder. 12 mo , 250
" " " " Supplement .12 mo , 250
Bouvier's Handbook on Oil Painting 200
Eissler's Explosives, Nitroglycerine and Dynamite 400
Ford's Boiler Making for Boiler Makers 100
Metcalfe's Cost of Manufactures 500
Metcalf's Steel-A Manual for Steel Users. 200
* Reisig's Guide to Piece Dyeing. 2500
Spencer's Sugar Manufacturer's Handbook16mo, morocco, 200.
". Handbook for Chemists of Beet Sugar Houses. 16 mo , morocco, 300
Thurston's Manual of Steam Boilers 500
Walke's Lectures on Explosives 400
West's American Foundry Practice 250
" Moulder's Text-book 250
Wiechmann's Sugar Analysis 250
Woodbury's Fire Protection of Mills 250
MATERIALS OF ENGINEERING.
Strength-Elasticitt-Resistance, Etc.
(See also Engineering, p. 8.)
Baker's Masonry Construction .8vo, 500
Beardslee and Kent's Strength of Wrought Iron 8vo, 150
Bovey's Strength of Materials 750
Burr's Elasticity and Resistance of Materials 500
Byrne's Highway Construction $\$ 500$
Church's Mechanics of Engineering-Solids and Fluids 600
Du Bois's Stresses in Framed Structures 1000
Johnson's Materials of Construction 600
Lanza's Applied Mechanics \% 50
Martens's Testing Materials. (Henning.) 750
Merrill's Stones for Building and Decoration 500
Merriman's Mechanics of Materials 400
". Strength of Materials 100
Patton's Treatise ou Foundations 500
Rockwell's Roads and Pavements in France. 125
Spalding's Roads and Pavements. 200
Thurston's Materials of Construction 500
" Materials of Engineering. . 3 vols., 8 vo, 800
Vol. I., Non-metallic 200
Vol. II., Iron and Steel 350
Vol. III., Alloys, Brasses, and Bronzes 250
Wood's Resistance of Materials 200
MATHEMATICS.
Calculus-Geometry-Trigonometry, Etc.
Baker's Elliptic Functions 150
Barnard's Pyramid Problem 150
*Bass's Differential Calculus. 400
Briggs's Plane Analytical Geometry 100
Chapman's Theory of Equations. 150
Compton's Logarithmic Computations 150
Davis's Introduction to the Logic of Algebra 150
Halsted's Elements of Geometry 175
" Synthetic Geometry 150
Johnson's Curve Tracing 100
". Differential Equations-Ordinary and Partial.
Small 8vo, 350
" Integral Calculus . 12 mo , 150
" ". " Unabridged. Small 8vo.
(In the press.)
" Least Squares $12 \mathrm{mo}, \quad 150$
*Ludlow's Logarithmic and Other Tables. (Bass.) 200
* " Trigonometry with Tables. (Bass.) 300
*Mahan's Descriptive Geometry (Stone Cutting) 150
Merriman and Woodward's Higher Mathematics. 500
Merriman's Method of Least Squares 200
Rice and Johnson's Differential and Integral Calculus, 2 vols. in 1, small 8vo, 250
Rice aud Johuson's Differential Calculus Small 8vo, 30 Abridgment of Differential Calculus.
Small 8vo, 150
Totten's Metrology 250
Warren's Descriptive Geometry 2 vols:, 8vo 350
". Drafting Instruments. 12 mo , 125
Free-hand Drawing 12 mo , 100
- Linear Perspective 12 mo , 100
Primary Geometry .12mo, 75
Plane Problems 125
" Problems and Theorems 250
Projection Drawing 150
Wood's Co-ordinate Geometry 200
Trigonometry. 100
Woolf's Descriptive Geometry 300
MECHANICS-MACHINERY.
Text-books and Practical Works.
(See also Engineering, p. 8.)
Baldwin's Steam Heating for Buildings. 12 mo , 250
Barr's Kinematics of Machinery 8vo, 250
Benjamin's Wrinkles and Recipes 12 mo 200
Chordal's Letters to Mechanics 12 mo , 200
Church's Mechanics of Engineering 8vo, 600
" Notes and Examples in Mechanics 200
Crehore's Mechanics of the Girder. 500
Cromwell's Belts and Pulleys 150
Toothed Gearing 150
Compton's First Lessons in Metal Working 150
Compton and De Groodt's Speed Lathe 150
Dana's Elementary Mechanics 150
Dingey's Machinery Pattern Making 200
Dredge's Trans. Exhibits Building, World Exposition. Large 4to, half morocco, 1000
Du Bois's Mechanics. Vol. I., Kinematics 8vo, 350
" " Vol. II., Statics 8 vo 400
" " Vol. III., Kinetics 8vo, 350
Fitzgerald's Boston Machinist 18 mo , 100
Flather's Dynamometers 12 mo , 200
" Rope Driving 12 mo , 200
Hall's Car Lubrication 12 mo , 100
Holly's Saw Filing 75
Johnson's Theoretical Mechanics. An Elementary Treatise. (In the pr'ess.)Jones's Machine Design. Part I., Kinematics..8vo,150
Jones's Machine Desigu. Part II., Strength and Proportion of Machine Parts $\$ 300$
Lanza's Applied Mechanics - 50
MacCord's Kinematics 500
Merriman's Mechanics of Materials 400
Metcalfe's Cost of Manufactures. 500
*Michie's Analytical Mcchanics 400
Richards's Compressed Air. 150
Robinson's Principles of Mechanism. 300
Smith's Press-working of Mctals $\because 00$
Thurston's Friction and Lost Work 300
The Animal as a Machine 100
Warren's Maehine Construction \% 50
Weisbach's Hydraulics and Hydraulic Motors. (Du Bois.)..8vo, 500
" Mechanics of Eugineering. Vol. III., Part I., Sec. I. (Klein.)... . . 8vo, 500
Weisbach's Mechanics of Engineering. Vol. III., Part I., Sec. II. (Klein.) . 8vo, 500
Weisbach's Steam Engiues. (Du Bois.) 500
Wood's Aualytical Mechanics 300
" Elementary Mechanics. 125
" " " Supplement and Key.....12mo, 125
METALLURGY.
Iron-Gold-Silyer-Alloys, Etc.
Allen's Tables for Iron Analysis. 300
Egleston's Gold and Mercury Large 8vo, \% 50
" Metallurgy of Silver Large 8vo, 750
* Kerl's Metallurgy-Copper and Iron 1500
* " " Stcel, Fuel, etc. 1500
Kunhardt's Ore Dressing in Europe. 150
Metcalf's Steel-A Manual for Steel Users. 200
O'Driscoll's Treatment of Gold Ores 200
Thurston's Iron and Steel 350
Alloys. 250
Wilson's Cyauide Processes 150
MINERALOGY AND MINING.
Mine Accidents-Ventilation-Ore Dressing, Etc.
Barringer's Minerals of Commercial Value....Oblong morocco, 250
Beard's Ventilation of Mines 250
Boyd's Resources of South Western Virginia 300
" Map of South Western Virginia..... Pocket-book form, 200
Brush and Penfield's Determinative Mineralogy. New Ed. 8vo, 400
Chester's Catalogue of Minerals 8vo, $\$ 125$
 50
" Dictionary of the Names of Minerals 8vo, 300
Daua's American Localities of Minerals Large 8vo, 100
!" Descriptive Mineralogy. (E.S.) Large 8vo. half morocco, 1250
" First Appendix to System of Mineralogy. ...Large 8vo, 100
" Miueralogy and Petrography. (J. D.) 200
" Minerals and How to Study Them. (E. S.)........12mo, 150
" Text-book of Mineralogy. (E. S.)...New Edition. 8vo, 400
* Drinker's Tunnelling, Explosives, Compounds, and Rock Drills. 4to, half morocco, 2500
Egleston's Catalogue of Minerals and Synonyms 250
Eissler's Explosives--Nitroglycerine and Dynamite 400
Hussak's Rock-forming Minerals. (Smith.)......... .Small 8vo, 200
Ihlseng's Manual of Mining 400
Kunhardt's Ore Dressing in Europe 150
O'Driscoll's Treatment of Gold Ores 200
* Peufield's Record of Mineral Tests. 50
Roseubusch's Microscopical Physiography of Minerals and Rocks. (Iddings.).. . . 8vo, 500
:Saryer's Accidents in Mines Large 8vo, 700
Stockbridge's Rocks and Soils 250
Walke's Lectures on Explosives 400
Williams's Lithology 300
Wilson's Mine Ventilation 125
Hydraulic and Placer Mining. 250
STEAM AND ELECTRICAL ENGINES, BOILERS, Etc.
Stationary-Marine-Locomotive-Gas Engines, Etc. (See also Engineering, p. 8.)
Baldwin's Steam Heating for Buildings 12 mo , 250
Clerk's Gas Engine Small 8vo, 400
Ford's Boiler Making for Boiler Makers 100
Hemenway's Indicator Practice 200
Hoadley's Warm-blast Furuace. 150
Kneass's Practice and Theory of the Injector 150
MacCord's Slide Valve. 200
Meyer's Modern Locomotive Construction 1000
Peabody and Miller's Steam-boilers. 400
Peabody's Tables of Saturated Steam 100
" Thermodynamics of the Steam Engine 500
" Valve Gears for the Steam-Engine 250
Pray's Twenty Years with the Indicator .Large 8vo, 250
Pupin and Osterberg's Thermodynamics 12 mo , 125
Reagan's Steam and Electric Locomotives. $\$ 200$
Röntgen's Thermodynamics. (Du Bois.) 500
Sinclair's Locomotive Runniug 200
Snow's Steam-boiler Practice. 300
Thurston's Boiler Explosions 150
" Engine and Boiler Trials. 500
". Manual of the Steam Engine. Part I., Structure and Theory 600
" Manual of the Steam Engine. Part II., Design, Construction, and Operation 600
2 parts, 1000
'Thurston's Philosophy of the Steam Engine...............12mo, 75" Reflection on the Motive Power of Heat. (Carnot.)$12 \mathrm{mo}, \quad 150$
" Stationary Steam Engines 250
" Steam-boiler Construction and Operation 500
Spaugler's Valve Gears 250
Weisbach's Steam Eugine. (Du Bois.) 500
Whitham's Constructive Steam Engineering. 600
Steam-engine Desigu 500
Wilson's Steam Boilers. (Flather.) 250
Wood's Thermodynamics, Heat Motors, etc 400
Tables, WEIGHTS, AND MEASURES.
For Actuaries, Chemists, Engineers, Mechanics-Metric Tables, Etc.
Adriance's Laboratory Calculations 12 mo, 125
Allen's 'Tables for Iron Analysis 300
Bixby's Graphical Computing Tables 25
Compton's Logarithms. 150
Craudall's Railway and Eurthwork Tables 150
Egleston's Weights and Measures 75
Fisher's Table of Cubic Yards 25
Hudson's Excavation Tables. Vol. II 100
Johnson's Stadia and Earthwork Tables 125
Ludlow's Logarithmic and Other Tables. (Bass.) 12 mo , 200
Totteu's Metrology .8vo, 250
VENTILATION.
Steam Heating-House Inspection-Mine Ventilation.
Baldwin's Steam Heating 12mo, 250
Beard's Ventilation of Mines 12mo, 250
Carpenter's Heating and Ventilating of Buildings. 300
Gerhard's Sauitary House Inspection. 100
.12mo,
Wilson's Mine Ventilation. 125

MISCELLANEOUS PUBLICATIONS.

Alcott's Gems, Sentiment, Language .Gilt edges, $\$ 500$
Davis's Elements of Law 200
Emmon's Geological Guide-book of the Rocky Mountains. .8vo, 150
Ferrel's Treatise on the Winds 400
Haines's Addresses Delivered before the Am. Ry. Assn...12mo, 250
Mott's The Fallacy of the Present Theory of Sound. .Sq. 16mo, 100
Richards's Cost of Living 100
Ricketts's History of Rensselaer Polytechnic Institute. 8vo, 300
Rotherham's The New Testament Critically Emphasized. 12 mo , 150
" The Emphasized New Test. A new translation.
Large 8vo, 200
Totten's An Important Question in Metrology 250

* Wiley's Yosemite, Alaska, and Yellowstone 300
HEBREW AND CHALDEE TEXT=BOOKS.
For Schools and Theological Seminaries.
Gesenius's Hebrew and Chaldee Lexicon to Old Testament. (Tregelles.). Small 4to, half morocco, 500
Green's Elementary Hebrew Grammar 125
" Grammar of the Hebrew Language (New Edition). 8\%o, 300
" Hebrew Chrestomathy 200
Letteris's Hebrew Bible (Massoretic Notes in English). 8vo, arabesque, 225
MEDICAL.
Hammarsten's Physiological Chemistry. (Mandel.) 400
Mott's Composition, Digestibility, and Nutritive Value of Food. Large mounted chart, 125
Ruddiman's Incompatibilities in Prescriptions. 200
Steel's Treatise on the Diseases of the Ox 600
" Treatise on the Diseases of the Dog 350
Woodhull's Military Hygiene 150
Worcester's Small Hospitals-Establishment and Maintenance, including Atkinson's Suggestions for Hospital Archi- tecture. 12mo, 125

*

w

[^0]: University of Pennsylvania, Philadelphia, Jan. 1, 1900.

[^1]: Tie-plates 260
 244. Advantages. 245. Elements of the design. 246. Methods of setting.

[^2]: * The ruling grade may here be loosely defined as the maximum grade which is permissible. This definition is not strictly true, as may be seen later when studying Railroad Economics, but it may here serve the purpose.

[^3]: * The student should at once appreciate the fact of the necessary distortion of the figure. The distance $M M^{\prime}$ in Fig. 33 is perhaps 100 times its real proportional value.

[^4]: * (2×5) signifies two ditches each 5 feet wide: the following cases should be interpreted similarly.

[^5]: * Trans. Am. Soc. Civil Eng., Sept. 1894.

[^6]: * Students unfamiliar with the Integral Calculus may take for granted the fundamental formula that $\int d x=x$, that $\int x d x=\frac{1}{2} x^{2}$, and that $\int x^{2} d x=\frac{1}{8} x^{3}$; also that in integrating between the limits of l and 0 (zero), the value of the integral may be found by simply substituting l for x after integration.

[^7]: * The student should note that the derivation of equation (45) does not complete the proof, but that the statements in the following paragraph are logically necessary for a general proof.

[^8]: * Trautwine.

[^9]: * For a thorough treatment of the capabilities, cost, and management of steam-shovels the reader is referred to "Steam-shovels and Steam-shovel Work," by E. A. Hermann. D. Van Nostrand Co., New York.

[^10]: * Condensed from Journ. Franklin Inst., Oct. 1841, by Morris.

[^11]: * Engineering Neics, Nov. 17, 1892.

[^12]: * From " Economical Designing of Timber Trestle Bridges."

[^13]: * Drinker's "Tunneling."

[^14]: * Drinker's "Tunueling."
 † Ržiha, "Lehrbuch der Gesammten Tunuelbaukunsl."

[^15]: * Ržiha, "Lehrbuch der Gersammten Tunnelbaukunst."

[^16]: * Figures derived from Drinker's "Tunneling."

[^17]: * Prof. A. N. Talbot, "Selected Papers of the Civil Engineers' Club of the Univ. of Illinois."

[^18]: * J. P. Snow, Boston \& Maine Railway. From Report to Association of Railway Superinteudents of Bridges and Buildings. 1897.
 \dagger A. J. Kelley, Kansas City Belt Railway. From Report to Association of Railway Superiutendents of Bridges and Buildings. 1897.

[^19]: * Bull. No. 9, U. S. Dept. of Agric., Div. of Forestry. App. No. 1, by Henry Flad.

[^20]: * Bulletin No. 9, U. S. Dept. of Agriculture, Div. of Forestry.

[^21]: * Although the discussion of longitudinals might be considered to belong more properly to the subject of Rails, yet the essential idea of all designs must necessarily be the support of a rail-head on which the rolling stock may run, and therefore this form, unused in this country, will be briefly described here.

[^22]: * Roadmasters Association of America-Reports for 1897.

[^23]: * The student shonld at once appreciate that in Fig. 131, as well as in nearly all the remaining figures in this chapter, it becomes necessary to use excessively large frog angles, short radii, and a very wide gauge in order to illustrate the desired principles with figures which are sufficiently small for the page. In fact, the proportions used in the figures are such that serious mechanical difficulties would be encountered if they were used. These difficulties are here ignored because they can be neglected in the proportions used in practice.

